US10953962B2 - Float, notably for an offshore wind turbine - Google Patents

Float, notably for an offshore wind turbine Download PDF

Info

Publication number
US10953962B2
US10953962B2 US16/604,181 US201816604181A US10953962B2 US 10953962 B2 US10953962 B2 US 10953962B2 US 201816604181 A US201816604181 A US 201816604181A US 10953962 B2 US10953962 B2 US 10953962B2
Authority
US
United States
Prior art keywords
column
branch
forming
float
centering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
US16/604,181
Other languages
English (en)
Other versions
US20200062351A1 (en
Inventor
Anthony Le Gleau
François DAVY
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saipem SA
Original Assignee
Naval Energies SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Naval Energies SAS filed Critical Naval Energies SAS
Assigned to NAVAL ENERGIES reassignment NAVAL ENERGIES ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: DAVY, François, LE GLEAU, Anthony
Publication of US20200062351A1 publication Critical patent/US20200062351A1/en
Application granted granted Critical
Publication of US10953962B2 publication Critical patent/US10953962B2/en
Assigned to NAVAL ENERGIES reassignment NAVAL ENERGIES CHANGE OF ADDRESS Assignors: NAVAL ENERGIES
Assigned to SAIPEM SA reassignment SAIPEM SA ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: NAVAL ENERGIES
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • B63B35/44Floating buildings, stores, drilling platforms, or workshops, e.g. carrying water-oil separating devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • B63B35/34Pontoons
    • B63B35/38Rigidly-interconnected pontoons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D13/00Assembly, mounting or commissioning of wind motors; Arrangements specially adapted for transporting wind motor components
    • F03D13/20Arrangements for mounting or supporting wind motors; Masts or towers for wind motors
    • F03D13/25Arrangements for mounting or supporting wind motors; Masts or towers for wind motors specially adapted for offshore installation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • B63B35/44Floating buildings, stores, drilling platforms, or workshops, e.g. carrying water-oil separating devices
    • B63B2035/4433Floating structures carrying electric power plants
    • B63B2035/446Floating structures carrying electric power plants for converting wind energy into electric energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B2209/00Energy supply or activating means
    • B63B2209/20Energy supply or activating means wind energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/90Mounting on supporting structures or systems
    • F05B2240/93Mounting on supporting structures or systems on a structure floating on a liquid surface
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/727Offshore wind turbines

Definitions

  • the present invention relates to a float, in particular, of an offshore wind turbine.
  • Such floats are already known from the prior art, such as, for example, from WO 2014/031009 A1.
  • This document describes a float having at least four columns, for example of steel, including a central column, and three outer columns connected to the central column by branches forming pontoons, for example in concrete.
  • the outer columns are connected to the central column in a star configuration.
  • the outer columns and the branches forming pontoons of this float comprise ballasts for adjusting the buoyancy of the float.
  • the branches forming pontoons 8 and the columns 3 , 12 are manufactured separately in a first step and then assembled on top of one another in a second step.
  • This float construction step then consists in assembling the columns 3 , 12 with branches forming pontoons 8 on corresponding assembly portions of these branches 8 .
  • this assembly is carried out using machines such as handling cranes, which may not have all the required precision.
  • One of the aims of the invention is to overcome the above drawbacks by proposing a wind turbine float, in particular of an offshore wind turbine, the design of which allows rapid and secure assembly of the columns on the branches forming pontoons.
  • the invention relates to a float, in particular for an offshore wind turbine, of the above-mentioned type in which the columns comprise fixing-collar forming means for fixing them on corresponding assembly portions of the branch forming pontoon, the float comprising centering means of the columns in the assembly position on the corresponding assembly portions of the branch forming pontoon.
  • FIG. 1 shows a schematic perspective view of an exemplary embodiment of an offshore wind turbine float according to the invention
  • FIG. 2 shows a view with transparent portions illustrating the fixing of a column on a branch forming pontoon of a float of FIG. 1 ,
  • FIG. 3 shows a sectional view of a portion of a branch forming pontoon and a portion of a column, and shows the fixing of a column on a branch forming pontoon of the float of FIG. 1 , and
  • FIG. 4 shows a view of the inside of a column of the float of FIG. 1 .
  • FIG. 1 An offshore wind turbine is shown in FIG. 1 and is designated by the reference 10 .
  • the wind turbine 10 comprises a float designated by the reference 12 .
  • the present description defines a vertical direction, represented by the Z axis in the figures, and named “vertical direction Z” in the present description.
  • the vertical direction Z is the normal direction to the plane of the sea, designated by reference 11 .
  • the distance between the sea level and a lower element, measured in the vertical direction Z is smaller than the distance between the sea level and an upper element, measured in the vertical direction Z.
  • the float 12 is, for example, a so-called “hybrid” float.
  • hybrid is understood to mean a float using at least two different materials for producing different parts of the float 12 .
  • the float 12 comprises three branches forming pontoons, identified in FIG. 1 by the references 14 , 16 and 18 .
  • the branches 14 , 16 and 18 forming pontoons are arranged in the form of a star in the example described, i.e. the branches 14 , 16 and 18 extend radially about an axis parallel to the direction vertical Z.
  • the branches 14 , 16 and 18 forming pontoons are made, for example, of concrete.
  • branches may be made of other materials, such as composite materials.
  • These branches 14 , 16 and 18 forming pontoons have, for example, a parallelepiped shape.
  • the float 12 further comprises at least four columns, for example of steel, including a central column, designated by the reference 20 , and three outer columns designated by the references 22 , 24 and 26 .
  • the columns 20 , 22 , 24 and 26 have a cylindrical shape with an axis parallel to the vertical direction Z.
  • These columns 20 , 22 , 24 and 26 have a circular section in a plane normal to the vertical direction Z.
  • the outer columns 22 , 24 and 26 are connected to the central column 20 by the branches 14 , 16 and 18 forming pontoons of the float 12 .
  • the outer columns 22 , 24 and 26 are each positioned on one end of a branch 14 , 16 and 18 forming pontoons.
  • the branches 14 , 16 and 18 forming pontoons and the outer columns 22 , 24 and 26 comprise ballasts.
  • FIG. 2 may be seen the column 22 and the branch 14 forming pontoon comprising a ballast designated by the reference 27 .
  • the column 22 is shown in the assembly position on the branch 14 forming pontoon.
  • the column 22 is positioned on an assembly portion of the branch 14 , designated by the reference 28 .
  • the assembly portion 28 corresponds to the portion of the branch 14 on which the column 22 is mounted.
  • the assembly portion 28 corresponds to the area of an upper face of the branch 14 covered by the column 22 .
  • the column 22 has a circular section in a plane normal to the vertical direction Z.
  • the assembly portion 28 of the column 22 on the branch 14 substantially corresponds to the surface of a disk of an upper face of the branch 14 having the same radius as the section of the column 22 .
  • the column 22 comprises fixing-collar forming means for fixing this column on the assembly portion 28 .
  • the fixing-collar forming means for fixing the outer column 22 on the branch 14 forming pontoon are visible in FIG. 2 , and designated by the reference 30 .
  • the fixing-collar forming means 30 are arranged inside the column 22 , at a lower end of this column.
  • the fixing-collar forming means 30 protrude radially from an inner face of the column 22 .
  • internal face is understood to mean a face disposed in the interior volume of the column 22 .
  • the fixing-collar forming means 30 comprise, for example, an upper annular diaphragm and a lower annular diaphragm spaced apart and parallel to each other in the vertical direction Z, designated in FIG. 2 by the references 32 and 34 .
  • the upper annular diaphragm 32 and the lower annular diaphragm 34 form, respectively, an upper wall and a lower wall of the fixing-collar forming means 30 .
  • the upper diaphragm 32 and the lower diaphragm 34 are made of material attached to the inner face of the column 22 .
  • the fixing-collar forming means 30 may be made integral with the column 22 or be in the form of separate parts fixed, for example, by welding.
  • the fixing-collar forming means 30 are mechanically welded.
  • the reinforcing vanes or fins one of which is designated by the reference 35 , are arranged regularly between the upper diaphragm 32 and the lower diaphragm 34 , to reinforce the fixing-collar forming means 30 .
  • the fixing-collar forming means 30 may be made of steel.
  • the fixing-collar forming means 30 have tensioning cable through holes.
  • These through holes are arranged to face each other in the upper diaphragm 32 and in the lower diaphragm 34 in the vertical direction Z.
  • the through holes 36 and 37 are regularly distributed over the circumference of the upper diaphragm 32 and the lower diaphragm 34 .
  • the tensioning cables are, for example, each placed in a protective sheath, one of which is designated by the reference 40 in FIG. 2 .
  • the protective sheaths 40 are embedded in the concrete of the branch 14 forming pontoon.
  • the ends of the cables 38 protrude, for example, above the branch 14 forming pontoon in order to allow fixing of the column 22 on this branch 14 .
  • each branch 14 , 16 and 18 By placing several cables 38 in this manner in a circle in each branch 14 , 16 and 18 , a ring of elements protruding from each branch is obtained, making it possible to fix the corresponding outer column on the respective branch forming pontoon.
  • the ring of protruding elements of the column 22 protrude from the assembly portion 28 of this column 22 on the branch 14 forming pontoon.
  • fasteners such as, for example, tensioning bars, tie rods or studs, may be used.
  • the float 12 further comprises fixing means which cooperate with the ends of the tensioning cables 38 to fix the fixing-collar forming means 30 to the tensioning cables 38 .
  • the tensioning makes it possible to eliminate studs (of the Nelson type, for example), because it ensures a resumption of pure friction shear.
  • the fixing-collar forming means 30 are solid. In other words, the space between the upper diaphragm 32 and the lower diaphragm 34 is filled with material.
  • the fixing-collar forming means 30 have through holes 39 .
  • One of these through holes is designated by the reference 39 .
  • the through holes 39 pass through the thickness of the fixing-collar forming means 30 and are regularly distributed on the circumference of the fixing-collar forming means 30 .
  • the ends of the tensioning cables 38 protruding above the branch 14 pass through the corresponding through holes 39 of the fixing-collar forming means 30 and are fixed by the fixing means to the fixing-collar forming means 30 .
  • the fixing-collar forming means 30 may be made in one piece with the column 22 , or be in the form of separate parts secured, for example, by welding thereon.
  • the float 12 comprises column 22 centering means in the assembly position on the assembly portion 28 .
  • centering means are designated by the general reference 41 .
  • centering means comprise centering pins designated by the reference 42 .
  • This figure shows the column 22 , the fixing-collar forming means 30 and the branch 14 forming pontoon.
  • the centering pins 42 are distributed, for example, regularly on the assembly portion 28 of the column 22 .
  • centering pins 42 are regularly distributed circumferentially on a periphery of the assembly portion 28 so as to cooperate with corresponding through holes 39 of the fixing-collar forming means 30 .
  • the centering pins 42 are fixed in openings formed in the branch 14 forming pontoon, one of which is designated by the reference 43 .
  • Each centering pin 42 comprises two parts detachable from one another, a first part designated by the reference 44 , forming a body, and a second part, designated by the reference 46 , forming a removable head.
  • One end of the body 44 of the centering pin 42 is fixed in a fixing hole 43 .
  • the other end of the body 44 of the centering pin 42 protrudes from the branch 14 forming pontoon.
  • the removable head 46 of the centering pin 42 is removably attached to the body 44 of said pin 46 in order to be separated from this body.
  • the removable head 46 has a generally frustoconical shape.
  • the removable head 46 has a frustoconical upper portion, designated by the reference 48 , and a lower portion, designated by the reference 50 , designed to be received in a corresponding opening 52 formed in one end of the body 44 of the centering pin 42 .
  • the removable head 46 of the centering pin 42 protrudes fixing-collar forming means 30 .
  • the frustoconical upper portion 48 of the removable head 46 of the centering pin 42 protrudes from the upper diaphragm 32 of the fixing-collar forming means 30 .
  • the frustoconical upper portion 48 of the removable head 46 of the centering pin 42 protrudes from the upper face of the fixing-collar forming means 30 .
  • centering pins 42 may be regularly distributed circumferentially on the branch 14 .
  • the float 12 may comprise more or fewer centering pins 42 .
  • the float 12 further comprises guide means of the column 22 in the assembly position on the corresponding assembly portion 28 .
  • These guide means are designated by the reference 54 in FIG. 3 .
  • the guide means 54 comprise peripheral guide tabs for the column 14 , one of which is designated by the reference 56 .
  • peripheral guide tabs 56 are distributed around the assembly portion 28 of the column 14 .
  • the peripheral guide tabs 56 each comprise a first portion designated by the reference 58 , fixed on a peripheral face of the branch 14 forming pontoon, and aligned in the vertical direction Z.
  • the first portions 58 of the peripheral guide tabs 56 are fixed to the peripheral face of the branch 14 forming pontoon, for example by studs.
  • the peripheral guide tabs 56 each comprise a second portion in the extension of the first portion 58 , inclined outwards from the column 14 , i.e. inclined at an angle relative to the vertical direction Z.
  • the second portions are designated 60 for tab 56 .
  • each second portion 60 and the vertical direction Z is non-zero and is, for example, between 1 degree and 30 degrees. This angle is designated by the reference a in FIG. 3 .
  • the second portions 60 of the peripheral guide tabs 56 may be inclined by 30 degrees over a length of 1 meter (m) measured in the vertical direction Z, then 3 degrees over a length of 2 m measured in the vertical direction Z.
  • first portion 58 of the peripheral guide tab 56 and the second portion 60 of the peripheral guide tab 56 each measure 2 m.
  • the length of the first portion 58 of the peripheral guide tab 56 corresponds to the distance measured between the two ends of said first portion 56 , while the length of the second portion 60 of the peripheral guide tab 56 is the distance between the two ends of said second portion 60 .
  • the length of the first portion 58 is identified by the reference I L1
  • the length of the second portion 60 is identified by the reference L L2 FIG. 3 .
  • the peripheral guide tabs 56 are, for example, of steel.
  • peripheral guide tabs 56 may also be fixed by their first portion 58 on an upper face of a branch 14 forming pontoon.
  • the guide tabs guide the column 22 onto the corresponding assembly portion 28 of the branch 14 forming pontoon, during assembly thereof.
  • the float 12 comprises inclination adjustment means for the column 22 with respect to the branches 14 , 16 and 18 forming pontoons, designated by the reference 62 in FIG. 3 .
  • the inclination adjustment means 62 of the column 14 comprise at least one adjustment cylinder, designated by the reference 64 .
  • This cylinder 64 comprises a body, designated by the reference 66 and a movable head, designated by the reference 68 .
  • the body 66 of the cylinder 64 is designed to cooperate with the body 44 of a centering pin 42 when the removable head 46 of the centering pin 42 is removed from the body 44 of the pin 42 , while the movable head 68 of the cylinder 64 is designed to cooperate with a corresponding bearing portion 76 A of the column 22 .
  • the inclination adjustment means also comprise, for example, a cylinder stand, designated by the reference 70 .
  • the cylinder stand 70 comprises two parallel walls 72 and 74 resting on a portion of the upper diaphragm 32 .
  • the parallel walls 72 and 74 bear against the upper face of the fixing-collar forming means 30 .
  • the inclination adjustment means 62 further comprise an abutment panel, designated 76 , extending in a plane normal to the vertical direction Z, and from the inner face of the column 22 , between the walls 72 and 74 .
  • the abutment panel 76 is disposed inside the cylinder stand 70 , and is integral with the parallel walls 72 and 74 .
  • the lower face of the abutment panel 76 defines the bearing portion 76 A of the column 22 on which the head 68 of the cylinder 64 is able to bear.
  • the column 22 may comprise several cylinder stands 70 , evenly distributed inside the column 22 .
  • the cylinder stands 70 are positioned inside the column 22 so as to be arranged opposite a centering pin 42 .
  • This method is described with regard, for example, to the column 22 on the branch 14 .
  • a first step of the assembly method is a step of handling and guiding the column 22 to the assembly portion 28 of the branch 14 .
  • the column 22 is guided by the peripheral guide tabs 56 above the assembly portion 28 of the branch 14 .
  • This step makes it possible to align the column 22 with the assembly portion 28 of the branch 14 .
  • This step also makes it possible to avoid the large amplitude movements of the column 22 when it reaches the same level as the operators positioned on the float 12 .
  • a second step of the assembly method is a step of centering the column 22 in the assembly position on the corresponding assembly portion 28 .
  • the column 22 is positioned on the assembly portion 28 of the branch 14 .
  • Through-holes 39 of the fixing-collar forming means 30 cooperate with the removable head 46 of the centering pins 42 to correctly center the column 22 on the corresponding assembly portion 28 .
  • the head 46 of each of the centering pins 42 protrudes from the upper diaphragm 32 .
  • a third step of the assembly method is an inclination adjustment step of the column 22 relative to the branch forming pontoon.
  • the head 46 of the centering pins 42 is detached from the body 44 of these centering pins 42 and removed, as may be seen, in particular, in FIG. 3 .
  • a cylinder 64 is assembled on the body of a centering pin 42 .
  • the body 66 of the cylinder 64 is positioned in the opening of the body 44 of the centering pin 42 .
  • the head 68 of the cylinder 64 is then activated to cooperate with a bearing portion 76 A of the stop panel 76 .
  • two cylinders 64 operate concomitantly.
  • a levelling grout such as concrete in liquid form may be injected between the upper face of the pontoon 14 and the underside of the fixing-collar forming means to fill said space.
  • Injected concrete is represented by reference 78 in FIG. 3 .
  • a similar method may be applied to the assembly of the other outer columns 24 , 26 and central column 20 .
  • the ends of the tensioning cables 38 are each threaded into a protection sheath 40 . Then, the tensioning cables 38 are passed through the corresponding through holes 39 of the fixing-collar forming means 30 to be fixed to said collar 30 .
  • This structure and method make it possible to simplify and accelerate the mounting of the columns and thus the floats and provide more safely for the float itself and its environment such as assembly operators.

Landscapes

  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Ocean & Marine Engineering (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Sustainable Development (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Foundations (AREA)
  • Wind Motors (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)
US16/604,181 2017-04-11 2018-04-11 Float, notably for an offshore wind turbine Active US10953962B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR1753158A FR3064976B1 (fr) 2017-04-11 2017-04-11 Flotteur, notamment d'eolienne offshore.
FR1753158 2017-04-11
PCT/EP2018/059321 WO2018189257A1 (fr) 2017-04-11 2018-04-11 Flotteur, notamment d'éolienne offshore

Publications (2)

Publication Number Publication Date
US20200062351A1 US20200062351A1 (en) 2020-02-27
US10953962B2 true US10953962B2 (en) 2021-03-23

Family

ID=58779230

Family Applications (1)

Application Number Title Priority Date Filing Date
US16/604,181 Active US10953962B2 (en) 2017-04-11 2018-04-11 Float, notably for an offshore wind turbine

Country Status (8)

Country Link
US (1) US10953962B2 (ko)
EP (1) EP3609778B1 (ko)
JP (1) JP7128839B2 (ko)
KR (1) KR102525533B1 (ko)
FR (1) FR3064976B1 (ko)
HR (1) HRP20210866T1 (ko)
MY (1) MY196823A (ko)
WO (1) WO2018189257A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023154536A1 (en) * 2022-02-12 2023-08-17 Vl Offshore, Llc Floating offshore foundation including modular components, method for modular assembly of the floating offshore foundation, and a reconfigurable system for the floating offshore foundation

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010029766A1 (ja) 2008-09-11 2010-03-18 三井造船株式会社 緊張係留浮体と緊張係留浮体の曳航及び設置方法
WO2013155521A1 (en) 2012-04-13 2013-10-17 University Of Main System Board Of Trustees Floating wind turbine platform and method of assembling
WO2014031009A1 (en) 2012-08-23 2014-02-27 Dr. Techn. Olav Olsen As Floating, semisubmersible hull for supporting preferably one or several wind turbines and method for commissioning, floating and installation of the semisubmersible hull
US9394035B2 (en) * 2010-11-04 2016-07-19 University Of Maine System Board Of Trustees Floating wind turbine platform and method of assembling
WO2016138088A1 (en) 2015-02-24 2016-09-01 University Of Maine System Board Of Trustees Method of construction, assembly, and launch of a floating wind turbine platform
US10087915B1 (en) * 2014-05-20 2018-10-02 Nagan Srinivasan Self-installing column stabilized offshore wind turbine system and method of installation

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07127310A (ja) * 1993-11-05 1995-05-16 Jgc Corp 柱状構造物の据付工法
JP5221854B2 (ja) 2006-06-23 2013-06-26 テック大洋工業株式会社 柱状構造物の設置構造
JP5069171B2 (ja) * 2008-05-22 2012-11-07 鹿島建設株式会社 洋上風力発電の基礎と上部工の接合部構造および上部工の据付方法
DE102009051425A1 (de) 2009-10-30 2011-05-05 Voith Patent Gmbh Strömungskraftwerk und Verfahren für dessen Erstellung
KR101044752B1 (ko) * 2011-04-04 2011-06-27 (주)대우건설 해상 풍력 발전 시설물 설치시 기울기 보정 장치
KR102316661B1 (ko) * 2013-09-24 2021-10-22 유니버시티 오브 메인 시스템 보드 오브 트러스티스 부유식 풍력 터빈 지지 시스템

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010029766A1 (ja) 2008-09-11 2010-03-18 三井造船株式会社 緊張係留浮体と緊張係留浮体の曳航及び設置方法
US9394035B2 (en) * 2010-11-04 2016-07-19 University Of Maine System Board Of Trustees Floating wind turbine platform and method of assembling
WO2013155521A1 (en) 2012-04-13 2013-10-17 University Of Main System Board Of Trustees Floating wind turbine platform and method of assembling
WO2014031009A1 (en) 2012-08-23 2014-02-27 Dr. Techn. Olav Olsen As Floating, semisubmersible hull for supporting preferably one or several wind turbines and method for commissioning, floating and installation of the semisubmersible hull
US10087915B1 (en) * 2014-05-20 2018-10-02 Nagan Srinivasan Self-installing column stabilized offshore wind turbine system and method of installation
US10337499B1 (en) * 2014-05-20 2019-07-02 Nagan Srinivasan Self-installing column stabilized offshore wind turbine system and method of installation
WO2016138088A1 (en) 2015-02-24 2016-09-01 University Of Maine System Board Of Trustees Method of construction, assembly, and launch of a floating wind turbine platform

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
French Search Report, dated Nov. 24, 2017, from corresponding French patent application No. 17 53158.
International Search Report, dated May 15, 2018, from corresponding PCT application No. PCT/EP2018/059321.

Also Published As

Publication number Publication date
JP7128839B2 (ja) 2022-08-31
WO2018189257A1 (fr) 2018-10-18
US20200062351A1 (en) 2020-02-27
JP2020516526A (ja) 2020-06-11
EP3609778B1 (fr) 2021-05-19
FR3064976B1 (fr) 2019-06-21
KR102525533B1 (ko) 2023-04-24
EP3609778A1 (fr) 2020-02-19
KR20190138795A (ko) 2019-12-16
HRP20210866T1 (hr) 2021-08-20
FR3064976A1 (fr) 2018-10-12
MY196823A (en) 2023-05-03

Similar Documents

Publication Publication Date Title
US20110131899A1 (en) Apparatus and method for producing a concrete foundation
DK2776637T3 (en) A foundation for a wind power plant
US20120131789A1 (en) Installing method for anchor cage and installing method for industrial equipment
US20130326967A1 (en) Large concrete block for crane lifting, method for manufacturing same, and method for installing same
US10214872B2 (en) Foundation for a wind turbine
KR20190022803A (ko) 플로트, 플로트 집합체 및 플로트 집합체의 설치 방법
US10953962B2 (en) Float, notably for an offshore wind turbine
JP2014159674A (ja) 洋上構造物、及び洋上構造物の設置方法
KR20140051531A (ko) 해양 지지구조물과 그 제조방법 및 시공방법
CA3031452A1 (en) Connecting element and method for connecting tower portions of a wind turbine
KR20150053738A (ko) 선박을 조종하기 위한 장치
CN209891234U (zh) 钢管柱混凝土基础预埋地脚螺栓精准定位机构
US20150013414A1 (en) Wjp execution method for reactor vessel lid and jigs
CN106660620A (zh) 用于船舶的可水下安装的推力器的密封装置
US20240084781A1 (en) Wind-turbine tower facility and method of assembling same
CN209131671U (zh) 观测墩
EP2697455B1 (en) A method of obtaining vertical alignment of a tower
JP6136347B2 (ja) スリップフォーム装置、スリップフォーム工法、及び、スリップフォーム工法における壁の形状の修正方法
KR20210133273A (ko) 부체 구조물, 부체식 풍력 발전 장치 및 부체 구조물의 제조 방법
JP2022149531A (ja) 塔型風力発電設備の解体におけるブレードの降ろし方法
KR101473508B1 (ko) 선박용 부이
KR20140004974U (ko) 수직도 체크장치

Legal Events

Date Code Title Description
AS Assignment

Owner name: NAVAL ENERGIES, FRANCE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LE GLEAU, ANTHONY;DAVY, FRANCOIS;SIGNING DATES FROM 20190918 TO 20190919;REEL/FRAME:050674/0229

FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STCF Information on status: patent grant

Free format text: PATENTED CASE

AS Assignment

Owner name: NAVAL ENERGIES, FRANCE

Free format text: CHANGE OF ADDRESS;ASSIGNOR:NAVAL ENERGIES;REEL/FRAME:061616/0756

Effective date: 20210210

AS Assignment

Owner name: SAIPEM SA, FRANCE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:NAVAL ENERGIES;REEL/FRAME:061514/0529

Effective date: 20210709