US10782712B2 - Unit for the regulation or control of a fluid pressure - Google Patents

Unit for the regulation or control of a fluid pressure Download PDF

Info

Publication number
US10782712B2
US10782712B2 US15/800,737 US201715800737A US10782712B2 US 10782712 B2 US10782712 B2 US 10782712B2 US 201715800737 A US201715800737 A US 201715800737A US 10782712 B2 US10782712 B2 US 10782712B2
Authority
US
United States
Prior art keywords
switching film
housing
housing section
circumferential
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US15/800,737
Other languages
English (en)
Other versions
US20180120870A1 (en
Inventor
Lukas Bock
Volker Kuemmerling
Thomas Jessberger
Hoang-Minh Vu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Moldtecs 01 2022 GmbH
Original Assignee
Mann and Hummel GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mann and Hummel GmbH filed Critical Mann and Hummel GmbH
Publication of US20180120870A1 publication Critical patent/US20180120870A1/en
Assigned to MANN+HUMMEL GMBH reassignment MANN+HUMMEL GMBH ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: Vu, Hoang-Minh, JESSBERGER, THOMAS, BOCK, LUKAS, VOLKER, VOLKER
Application granted granted Critical
Publication of US10782712B2 publication Critical patent/US10782712B2/en
Assigned to MOLDTECS-01-2022 GMBH reassignment MOLDTECS-01-2022 GMBH ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MANN+HUMMEL GMBH
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D16/00Control of fluid pressure
    • G05D16/04Control of fluid pressure without auxiliary power
    • G05D16/06Control of fluid pressure without auxiliary power the sensing element being a flexible membrane, yielding to pressure, e.g. diaphragm, bellows, capsule
    • G05D16/063Control of fluid pressure without auxiliary power the sensing element being a flexible membrane, yielding to pressure, e.g. diaphragm, bellows, capsule the sensing element being a membrane
    • G05D16/0633Control of fluid pressure without auxiliary power the sensing element being a flexible membrane, yielding to pressure, e.g. diaphragm, bellows, capsule the sensing element being a membrane characterised by the properties of the membrane
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D16/00Control of fluid pressure
    • G05D16/04Control of fluid pressure without auxiliary power
    • G05D16/06Control of fluid pressure without auxiliary power the sensing element being a flexible membrane, yielding to pressure, e.g. diaphragm, bellows, capsule
    • G05D16/063Control of fluid pressure without auxiliary power the sensing element being a flexible membrane, yielding to pressure, e.g. diaphragm, bellows, capsule the sensing element being a membrane
    • G05D16/0644Control of fluid pressure without auxiliary power the sensing element being a flexible membrane, yielding to pressure, e.g. diaphragm, bellows, capsule the sensing element being a membrane the membrane acting directly on the obturator
    • G05D16/0655Control of fluid pressure without auxiliary power the sensing element being a flexible membrane, yielding to pressure, e.g. diaphragm, bellows, capsule the sensing element being a membrane the membrane acting directly on the obturator using one spring-loaded membrane
    • G05D16/0661Control of fluid pressure without auxiliary power the sensing element being a flexible membrane, yielding to pressure, e.g. diaphragm, bellows, capsule the sensing element being a membrane the membrane acting directly on the obturator using one spring-loaded membrane characterised by the loading mechanisms of the membrane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/10Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating making use of vibrations, e.g. ultrasonic welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/22Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating taking account of the properties of the materials to be welded
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K31/00Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups
    • B23K31/02Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups relating to soldering or welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
    • B23P15/001Making specific metal objects by operations not covered by a single other subclass or a group in this subclass valves or valve housings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/13Single flanged joints; Fin-type joints; Single hem joints; Edge joints; Interpenetrating fingered joints; Other specific particular designs of joint cross-sections not provided for in groups B29C66/11 - B29C66/12
    • B29C66/131Single flanged joints, i.e. one of the parts to be joined being rigid and flanged in the joint area
    • B29C66/1312Single flange to flange joints, the parts to be joined being rigid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/54Joining several hollow-preforms, e.g. half-shells, to form hollow articles, e.g. for making balls, containers; Joining several hollow-preforms, e.g. half-cylinders, to form tubular articles
    • B29C66/541Joining several hollow-preforms, e.g. half-shells, to form hollow articles, e.g. for making balls, containers; Joining several hollow-preforms, e.g. half-cylinders, to form tubular articles a substantially flat extra element being placed between and clamped by the joined hollow-preforms
    • B29C66/5412Joining several hollow-preforms, e.g. half-shells, to form hollow articles, e.g. for making balls, containers; Joining several hollow-preforms, e.g. half-cylinders, to form tubular articles a substantially flat extra element being placed between and clamped by the joined hollow-preforms said substantially flat extra element being flexible, e.g. a membrane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/54Joining several hollow-preforms, e.g. half-shells, to form hollow articles, e.g. for making balls, containers; Joining several hollow-preforms, e.g. half-cylinders, to form tubular articles
    • B29C66/542Joining several hollow-preforms, e.g. half-shells, to form hollow articles, e.g. for making balls, containers; Joining several hollow-preforms, e.g. half-cylinders, to form tubular articles joining hollow covers or hollow bottoms to open ends of container bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/55Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles sealing elements being incorporated into the joints, e.g. gaskets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7392General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
    • B29C66/73921General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic characterised by the materials of both parts being thermoplastics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M13/00Crankcase ventilating or breathing
    • F01M13/0011Breather valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M13/00Crankcase ventilating or breathing
    • F01M13/02Crankcase ventilating or breathing by means of additional source of positive or negative pressure
    • F01M13/021Crankcase ventilating or breathing by means of additional source of positive or negative pressure of negative pressure
    • F01M13/022Crankcase ventilating or breathing by means of additional source of positive or negative pressure of negative pressure using engine inlet suction
    • F01M13/023Control valves in suction conduit
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D16/00Control of fluid pressure
    • G05D16/04Control of fluid pressure without auxiliary power
    • G05D16/06Control of fluid pressure without auxiliary power the sensing element being a flexible membrane, yielding to pressure, e.g. diaphragm, bellows, capsule
    • G05D16/063Control of fluid pressure without auxiliary power the sensing element being a flexible membrane, yielding to pressure, e.g. diaphragm, bellows, capsule the sensing element being a membrane
    • G05D16/0638Control of fluid pressure without auxiliary power the sensing element being a flexible membrane, yielding to pressure, e.g. diaphragm, bellows, capsule the sensing element being a membrane characterised by the form of the obturator
    • G05D16/0641Control of fluid pressure without auxiliary power the sensing element being a flexible membrane, yielding to pressure, e.g. diaphragm, bellows, capsule the sensing element being a membrane characterised by the form of the obturator the obturator is a membrane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/18Dissimilar materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/30Organic material
    • B23K2103/42Plastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/48Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/721Fibre-reinforced materials
    • B29C66/7212Fibre-reinforced materials characterised by the composition of the fibres
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M13/00Crankcase ventilating or breathing
    • F01M13/0011Breather valves
    • F01M2013/0016Breather valves with a membrane

Definitions

  • the invention relates to a unit for the regulation or control of a fluid pressure, in particular for the pressure regulation of an internal combustion engine and/or of the crankcase of the internal combustion engine of a motor vehicle and a method for fluid-tight connection of a switching film to at least one housing section of the unit.
  • Pressure regulating valves are used, for example, in the breather line between crankcase and the intake manifold of an internal combustion engine. This involves not allowing the pressure or vacuum in the receptacles to be vented to increase beyond a predetermined value.
  • blow-by gases occur that are produced by combustion gases in the cylinder getting past the cylinder piston into the crankcase. These blow-by gases allow the pressure in the crankcase to rise, whereby leaks and spillages of oil can be the result. In order to prevent a pressure increase and to discharge these blow-by gases in an environmentally friendly manner, these are conducted from the crankcase back into the air feeder line of the internal combustion engine. Furthermore, the specified negative pressure value should not be significantly undershot, because otherwise undesired air can be erroneously sucked into the crankcase.
  • switching membrane made from elastomer, commonly fluorosilicone rubber is generally employed. These switching membranes are very flexible because of the specific properties of elastomers. Depending on the applied pressure ratios, this switching membrane opens or closes an opening in the pressure regulating valve.
  • the pressure ratio generally results from the pressure differential between the applied pressure in a first chamber and the pressure prevailing in a second chamber of the pressure regulating valve.
  • the pressure in the first chamber may for example be the same as the atmospheric pressure.
  • the switching membrane must react to low switching pressures on the order of 1 to 250 mbar.
  • Blow-by gases in an internal combustion engine are made up of unburned fuel components, motor oil components and other pollutants resulting from the combustion. These gases attack many elastomer types, whereby damages to the material properties can occur. The components made from these materials become brittle, porous and cracked. If the switching films are damaged, the environmentally damaging blow-by gases pass directly into the environment, because the system is no longer sealed.
  • the switching membrane made from elastomer is generally executed as roll film, in order to realize a specific stroke of the switching membrane. The material in the roll region is also mechanically damaged through the unrolling motion by simultaneous contact with blow-by gases and can thus be damaged.
  • the DE 26 29 621 A1 discloses a diaphragm valve having a switching membrane that is designed as a switching film clamped at its edge between the housing and the housing cover which is to be brought into a sealing contact by a pressure member against a seating surface provided in the housing, wherein the switching membrane is made of a thinner layer of low elasticity, for example from PTFE, facing towards the housing interior that is resistant to aggressive through-flow media, and an additional, thicker layer made of elastomeric material. Diaphragm valves of this type are primarily used where a high chemical resistance of the materials coming into contact with the through-flow medium is required.
  • films comprising two layers are used.
  • the contact pressure that is applied by the pressure member via the thick, rubber-like layer is transmitted as evenly as possible onto the sealing surface of the switching film that works together with the seating surface in the housing.
  • relatively large switching pressures of several bar are exerted on the switching membrane for closing the two-layered switching membrane via a pressure spindle that is connected to a hand wheel in order to ensure the necessary sealing function by the stiff PTFE layer.
  • a unit for regulation or control of a fluid pressure and of a switching film connected to at least one housing section wherein the switching film is formed from a polymer film from a polymer material having fluorine and carbon and wherein a hole cross-section of the at least one housing section is closed off by the switching film.
  • the switching film having fluorine and carbon can be formed in particular by a film from thermoplastic having fluorine and carbon.
  • the additional object is achieved by a method for fluid-tight connection of a switching film to at least one housing section or a unit, wherein the switching film is fluid-tightly pressed onto the at least one housing section in the area of the switching film.
  • a unit for the regulation or control of a fluid pressure, having at least one housing section and a switching film connected to the at least one housing section for switching at pressure differentials of 1 to 250 mbar, preferably from 1 to 100 mbar, relative to an ambient pressure acting on the switching film, and for the regulation, release or blocking of a flow of the fluid between an inlet and a discharge for the fluid, wherein the switching film is made out of a polymer material having fluorine and carbon, in particular thermoplastic having fluorine and carbon, and wherein a hole cross-section of the at least one housing section is closed off by the switching film.
  • the unit does not only serve to release or shut off a through-flow, but regulates between the two switching states “release” or “shut off” by a continuous alteration of the through-flow cross-section as a function of the pressure differential on the through-flow of fluid between the inlet and the discharge. In this manner, the through-flow can be restricted.
  • a polymer film having fluorine and carbon in particular a thermoplastic film having fluorine and carbon, is chemically resistant and can switch many switching cycles of the film valve. The long-term stability of the unit is improved.
  • the polymer film having fluorine and carbon can be PTFE (polytetrafluorethylene).
  • the polymer having fluorine and carbon can be made of a PTFE as the base material, which has admixtures, in particular an admixture of glass fiber, glass spheres, graphite and/or carbon fibers, in particular having a proportion of the admixed substances of up to 60%; similarly, the polymer having fluorine and carbon can be a thermoplastically processable PTFE, which is processable in a spraying process, in particular.
  • the switching film is at most 0.5 mm thick, preferably at most 0.3 mm, particularly preferably at most 0.2 mm thick.
  • the switching film can have a diameter between 40 mm and 100 mm, preferably between 50 mm and 80 mm. It is possible that with correspondingly large diameters somewhat higher thickness of the switching film in the region of over 0.5 mm, for example at most 0.5 mm to 1 mm, can be realized.
  • a conventional switching membrane made from elastomer of a conventional unit for pressure regulation of an internal combustion engine and/or the pressure regulation of the crankcase of an internal combustion engine is replaced here by a switching film made from the polymer having fluorine and carbon, in particular a thermoplastic having fluorine and carbon.
  • a polymer material having fluorine and carbon such as PTFE can, for example, be manufactured in a sintering process and then mechanically processed.
  • Such a switching film in its normal form is very stiff and actually not appropriate for flexible components.
  • PTFE has an outstanding chemical resistance and can be used in a very broad range of temperatures, wherein the modulus of elasticity is very sharply increased at low temperatures compared to elastomeric materials.
  • PTFE is not appropriate for an application as switching film in the temperature range required for automotive applications in an internal combustion engine of typically ⁇ 40° C. to +150° C.
  • This disadvantage is avoided in the unit according to the invention by virtue of an advantageous geometry and optionally by an extremely thin wall thickness of the switching film made from the polymer having fluorine and carbon, in particular a thermoplastic having fluorine and carbon.
  • the stiff material is formed into a shape in which it has the necessary flexibility, but nevertheless fulfills the mechanical requirements with respect to crack formation, strain and fatigue strength under reversed bending stresses.
  • roll motion no longer takes place, rather a bending motion can be realized having a radius change that can be accomplished with low strain or even practically no strain of the material and with which a lifting motion of the switching film for the unit according to the invention can be implemented.
  • the switching film can have a plate-like flat body, in particular formed as plate-shaped flat body, having a bending region surrounding a central sealing region, wherein the bending region moves the sealing region in an axial direction with respect to a valve seat, meaning in the direction normal to the flat body, onto the valve seat or away from the valve seat during switching of the switching film by a low-strain—meaning practically strain-free for practical application, in particular strain-free—bending motion.
  • a low-strain meaning practically strain-free for practical application, in particular strain-free—bending motion.
  • the sealing region of the switching film can interrupt the through-flow of the fluid between the inlet and the discharge.
  • the switching film can, for example, be located with its sealing region against a seal seat in order to interrupt the through-flow.
  • the switching film can be movable between its respective maximum positions in the opened and closed state by application of atmospheric pressure as control pressure on one side of the switching film.
  • the switching film can be self-regulating and the switching film can be closed indirectly via a pressure differential between atmospheric pressure in the one chamber of the unit and an operating pressure of the other chamber of the unit.
  • the operating pressure can, for example, be a pressure in a crankcase of an internal combustion engine.
  • the switching film can alternatively be movable between its respective maximum positions in the opened and closed state, if on one side of the switching film a control pressure is applied that does not equal an atmospheric pressure and/or a mechanical actuating means is provided to switch the switching film.
  • the discharge can have a valve seat arranged at an end in the housing section, which is sealable by the sealing region of the switching film, whereby a discharge of fluid from the inlet to the discharge can be regulated.
  • the spring element in this arrangement exerts the appropriate counterforce on the switching film to achieve a control response of the unit in the desired pressure region.
  • the side of the switching film facing away from the fluid to be regulated is generally supplied here with atmospheric pressure.
  • a hole cross-section of the at least one housing section of the unit is closed off fluid-tight by an operating region of the switching film.
  • an edge region surrounding the operating region of the switching film allows a fluid-tight connection of the switching film made from a polymer having fluorine and carbon, in particular a thermoplastic having fluorine and carbon, against the housing of the unit, which can be advantageously made from plastic, for example, glass-fiber reinforced polyamide (PA), and represents an additional great advantage over the prior art, in which the impermeable or closed membranes have no claim to tightness, rather, they are only interlockingly connected to the housing.
  • PA glass-fiber reinforced polyamide
  • a region of the unit is advantageously guaranteed to be sealed as fluid-tight, for example as a pressure regulation valve, because the switching film can in each case seal a housing section fluid-tight by being tightly connected to the housing section, as well as sealing of the interior spaces of two housing sections against each other, if the first housing section is sealed with a second housing section, such as with a housing cover.
  • At least one circumferential mating surface can be provided situated radially to the outside on the at least one housing section at which the switching film is connected to the at least one housing section, in particular fixedly and fluid-tightly connected.
  • the central inner region of the switching film can move freely as a whole in the axial direction and as a sealing region of the switching film can thus exercise the actual switching function of the unit, for example as pressure regulation valve.
  • the fluid-tight connection of the switching film against at least one housing section it can also be effectively prevented that possible outgassing of the material into the environment.
  • a radially outward situated joining region of the switching film can be pressed onto the at least one housing section in a fluid-tight manner.
  • a fluid-tight pressing of the switching film with the mating surface of the housing section can ensure the fluid-tight seal of the hole cross-section of the housing section as well as a durable connection of the switching film for a safe function during the operation of the unit.
  • the pressing can, for example, be performed by a second housing section or by pressing the first housing section with the switching film onto a counterpart from another component in a fluid-tight manner.
  • the switching film can, at least in the region of the joining region, have at least one activated surface, in particular at least one activated surface directed toward a first chamber of the first housing section.
  • the surface of the switching film For preparation of the pressing, it can be advantageous to prepare the surface of the switching film accordingly in that region where it will be pressure will be applied in order to change the surface tension.
  • Such an activation can thus expediently include one or more methods such as etching, plasma treatment, mechanical roughening, stamping, perforating or similar, appropriate methods.
  • the contact between the mating surface and the switching film can thereby be improved.
  • the housing section in which the hole cross-section is closed fluid-tight by the switching film, can be firmly welded to another housing section, for example a cover, or the housing section can be welded to a different component.
  • a further fluid-tight sealing of the unit for safe operation for example as a pressure regulating valve, can be achieved.
  • the mating surface for the welding can thus expediently be designed so that the weld beads from the welding process do not adversely affect the connection of the housing section.
  • the mating surface of the at least one housing section can be formed to be self-adjusting in a longitudinal direction.
  • the mating surface can be formed conically or curved upwards or downwards or corrugated.
  • At least one radially circumferential groove can be provided radially inside the mating surface of the at least one housing section and radially delimited on the inside by an edge for supporting the switching film when there are axial movements transverse to the hole cross-section, wherein in particular two axial opposing and/or radially offset grooves can be provided with an edge, in particular a raised lip.
  • a raised lip on the edge advantageously supports dynamic movements of the switching film with its working region during the execution of the function in the pressure valve and simultaneously achieves a protection against damage by the motion of the switching film.
  • the switching film is thereby always located on at least one edge, preferably however at two edges simultaneously during its switching motion.
  • the edges can be arranged radially offset.
  • a realization of a connection is thus easier, in that the switching film is located on two edges simultaneously.
  • a movement on the boundary surface to an edge can then be prevented.
  • the edge can be optimized for the film motion so that the switching film in operation is protected against damage by the edge. It is also possible to apply a prestress of the switching film via these edges.
  • a housing can be provided with the first housing section and a second housing section, and the first chamber can be separated fluid-tight from a second chamber by the switching film.
  • the second chamber of the unit can be supplied with an atmospheric pressure.
  • the switching film should be able to move as freely as possible, for which reason the second chamber, which is separated by the switching film from the first chamber, in which the fluid to be controlled is located, is expediently connected with the surrounding region, meaning with the atmospheric pressure.
  • the joining region of the switching film between the mating surfaces of the two housing sections can be arranged in a fluid-tight, compressed manner when the housing is sealed.
  • the hole cross section of the at least one housing section is sealed in a fluid-tight manner, and the switching film is permanently fixed in an operationally safe manner.
  • the unit's housing is sealed in a fluid-tight manner.
  • the joining region can be pressed onto one of the mating surfaces by means of a leader element.
  • the leader element ensures that the contact pressure on the switching film is maintained even during operation, when the housing sections may experience slight movements.
  • the leader element may compensate for a possible flowing of the switching film material, which may occur especially under temperature stress, and therefore a change in the switching film's thickness. This way, an permanent, operationally safe functioning of the unit is guaranteed by adjusting the prestress force during the operation of the leader element.
  • the leader element may be arranged on the side of the switching film that faces away from the fluid. It is advantageous, if the leader element does not come in contact with the fluid to be controlled.
  • One possible leader element may be, for example, an elastomer O-ring.
  • the material of such an O-ring may react sensitively to aggressive gases as they may be present in blow-by gases of an internal combustion engine, and degrade under such pressure. It is therefore advantageous to protect the O-ring from the aggressive fluid by arranging it on the side of the switching film that faces away from the fluid.
  • the two housing sections may be connected, in particular through the screwing, clamping, or welding of at least one of the housing sections radially outside the mating surface. If the switching film is compressed between the two housing sections, in particular through a leader element, the two housing sections are expediently fixed against each other with retaining elements, screws, clamping elements or the like. Alternatively, it is also possible to weld the two housing sections together in order to create and maintain a permanent connection between the two housing sections.
  • the polymer material having fluorine and carbon is polytetrafluoroethylene or polytetrafluoroethylene with admixtures or thermoplastically processable polytetrafluoroethylene.
  • a method for the fluid-tight connection of a switching film to at least one housing section of a housing of a unit wherein the switching film is formed from a polymer material having fluorine and carbon, in particular from thermoplastic having fluorine and carbon, and wherein a joining region of the switching film situated radially to the outside is pressed in the area of at least one mating surface onto the at least one housing section.
  • the method thus comprises an application of the switching film to the at least one housing section with the joining region above the mating surface, followed by a pressing of the joining region onto the mating surface, in particular by means of a leader element. After compressing the switching film with the housing section, a durable and fluid-tight connection of the switching film against the housing section and thus a fluid-tight sealing of the hole cross-section of the housing section can thus be achieved.
  • the joining region of the switching film is pretreated by at least one of the methods, etching, plasma treatment, mechanical grinding, embossing or perforation.
  • pretreatment of the pressing process it is advantageous to accordingly pretreat and activate the surface of the switching film in the region where pressure is applied, which can be achieved with one of the procedures mentioned. In this way the surface tension can be changed, whereby the contact between the mating surface and the switching film can be essentially improved.
  • the joining region can be pressed onto the mating surface in a fluid-tight manner by means of a leader element.
  • the leader element ensures that the contact pressure on the switching film is maintained even during operation, when the housing sections may experience slight movements.
  • the leader element may compensate for a possible flowing of the switching film material, which may occur especially under temperature stress, and therefore a change in the switching film's thickness. This way, an permanent, operationally safe functioning of the unit is guaranteed by adjusting the prestress force during the operation of the leader element.
  • a second housing section can advantageously be placed on the switching film after the placement of the switching film on the at least one first housing section with the joining region over the mating surface, and the housing is thus formed, whereby pressure is exerted against the mating surface of the switching film when the housing is closed in the area of the mating surface.
  • the second housing section can be expediently bonded to the switching film and/or to the first housing section.
  • PA glass-fiber reinforced polyamide
  • the two housing sections can be connected with the respective other housing section, in particular radially outside the mating surface through the screwing, clamping, or welding. If the switching film is compressed between the two housing sections, in particular through a leader element, the two housing sections are expediently fixed against each other with retaining elements, screws, clamping elements or the like.
  • the two housing sections can thus be welded together in order to create and maintain a permanent connection between the two housing sections.
  • the housing can also be sealed to an outer circumference after the compression of the switching film through welding or bonding.
  • the housing section, in which the hole cross-section is closed fluid-tight by the switching film can in this way be firmly welded or bonded to another housing section, for example a cover, or the housing section can be welded or bonded to a different component. In this manner, a further fluid-tight sealing of the unit for safe operation, for example as a pressure regulating valve, can be achieved.
  • the mating surface for the welding or bonding can thus expediently be designed so that the welding beads or adhesive beads from the welding or respectively the bonding process do not adversely affect the connection of the housing section and/or the connection of the switching film with the housing components.
  • the switching film can be axially supported by at least one groove running radially inside the mating surface in the at least one housing section, which is radially delimited inside by a lip, in particular a raised lip, for supporting the switching film during axial movements transverse to its cross-sectional area.
  • a lip in particular a raised lip
  • the edges can be arranged radially offset. A realization of a connection is thus easier, in that the switching film is located on two edges simultaneously. A movement on the boundary surface to an edge can then be prevented.
  • the edge can be optimized for the film movement so that the switching film is protected against damages by the edge during operating mode.
  • the switching film can also be axially supported by two grooves arranged in the housing with an edge, which are arranged opposite each other or radially displaced relative to each other.
  • the edges of the housing section can be mutually shifted so that the switching film is not crimped in this region during the joining process. It is also possible to adjust the pretension of the switching film via these edges.
  • the unit according to the invention is used for pressure regulation of an internal combustion engine and/or for pressure regulation of a crankcase of an internal combustion engine.
  • FIG. 1 a unit having a switching film made from a polymer with fluorine and carbon according to an exemplary embodiment of the invention in a sectional view;
  • FIG. 2 a unit having a switching film according to an additional exemplary embodiment of the invention in a sectional view;
  • FIG. 3 a unit having a switching film according to a next exemplary embodiment of the invention in a sectional view showing the switching film in a non-compressed state;
  • FIG. 4 the unit from FIG. 3 with a welded housing in a sectional view
  • FIG. 5 a detail of the unit's joining region from FIG. 3 in a sectional view showing the switching film in a non-compressed state
  • FIG. 6 a detail of the unit's joining region from FIG. 4 with pressed-on film
  • FIG. 7 a simplified detail of the joining region of a unit according to another exemplary embodiment of the invention with a housing section in a sectional view showing the switching film in a non-compressed state;
  • FIG. 8 a simplified detail of the unit's joining region from FIG. 7 in a sectional view showing the switching film in a compressed state
  • FIG. 9 a schematic representation of a joining region with a switching film compressed with a flexible leader element according to another exemplary embodiment of the invention.
  • FIG. 10 a schematic representation of a joining region with a radially clamped switching film according to another exemplary embodiment of the invention.
  • FIG. 11 a schematic representation of a joining region with housing sections connected with screws according to another exemplary embodiment of the invention.
  • FIG. 12 a schematic representation of a joining region with a clamped switching film according to another exemplary embodiment of the invention.
  • FIG. 13 a schematic representation of a joining region with a clamped switching film according to another exemplary embodiment of the invention.
  • FIG. 14 a schematic representation of a joining region with a switching film clamped by a corner segment according to another exemplary embodiment of the invention.
  • FIG. 15 a schematic representation of a joining region with a switching film clamped by a corner segment according to another exemplary embodiment of the invention.
  • FIG. 1 shows a sectional view of a unit 10 for the regulation or control of a fluid pressure using a switching film 22 made from a polymer having fluorine and carbon according to an exemplary embodiment of the invention.
  • the polymer material having fluorine and carbon is thus polytetrafluoroethylene or polytetrafluoroethylene with admixtures or thermoplastically processable polytetrafluoroethylene particularly in a spraying process.
  • the unit 10 serves for regulation or control of a fluid pressure, in particular for application for pressure regulation of an internal combustion engine and/or for the pressure regulation of a crankcase of an internal combustion engine.
  • the unit 10 has a housing 12 having a first housing section 13 and a second housing section 14 , the housing cover, wherein the first housing section 13 has an inlet 28 and a discharge 30 for the fluid.
  • the switching film 22 is formed from a polymer film having fluorine and carbon, for example PTFE, and is clamped with a joining region 42 between first housing section 13 and the second housing section 14 .
  • the hole cross-section 40 of the two housing sections 13 , 14 is sealed by the switching film 22 with its functional region.
  • Two circumferential mating surfaces 50 , 52 are provided situated radially to the outside on the two housing sections 13 , 14 , at which the switching film 22 is connected fluid-tight to the two housing sections 13 , 14 .
  • a joining region 42 of the switching film 22 radially situated on the outside is pressed onto the mating surfaces 50 , 52 of the two housing sections 13 , 14 in a fluid-tight manner.
  • FIGS. 1 and 2 show a diagram of the header elements 44 . Details about the tensioning of the switching film 22 by the leader elements 44 are provided in FIGS. 9 to 15 .
  • the switching film 22 separates a first chamber 36 of the unit 10 from a second chamber 38 in a fluid-tight manner. There is a pressure differential between the first chamber 36 and the second chamber 38 , wherein the second chamber 38 is connected (not depicted) to the surrounding space, meaning to the atmosphere.
  • the switching film 22 can be moved with pressure differences of 1 to 250 mbar, preferably from 1 to 100 mbar, and serves to release or shut off a through-flow of the fluid between the inlet 28 and the discharge 30 .
  • the inlet 28 of the unit 10 is fluidically connected during use to, for example, the crankcase of an internal combustion engine, while the discharge 30 is fluidically connected to the breather line.
  • the switching film 22 has a plate-like flat body 16 having a corrugated bending region 18 surrounding a central sealing region 24 .
  • the bending region 18 moves during switching of the switching film 22 by a low-strain, in particular strain-free bending motion of the sealing region 24 with respect to a valve seat 32 in an axial direction L toward the valve seat 32 or away from the valve seat 32 .
  • the switching film 22 has at least in the bending region 18 a thickness of at most 0.5 mm, preferably of at most 0.3 mm, most preferably of at most 0.2 mm.
  • the diameter of the switching film 22 can thus be between 40 mm and 100 mm, preferably between 50 mm and 80 mm.
  • the bending region 18 extends in a wave-like manner in radial direction around sealing region 24 , wherein a recess on a flat side corresponds to an elevation on the other flat side of the switching film 22 .
  • the sealing region 24 seals the valve seat 32 if it is located on the valve seat 32 .
  • a spring element 26 is provided that is supported at the first housing section 13 which exerts a force on the sealing region 24 of the switching film 22 .
  • the spring element 26 is supported here by an annularly formed plate 34 at the sealing region 24 .
  • the sealing region 24 is formed as a bowl-shaped projection 20 of the switching film 22 , wherein the plate 34 in the form of a support ring annularly encloses this projection.
  • the spring element 26 can alternatively engage the switching film 22 without plate 34 and thus be sprayed on its end face that is turned towards the projection 20 for protection of the switching film 22 , so that the encapsulation can replace the plate 34 .
  • a groove 54 , 56 running radially is provided inside the mating surface 50 , 52 of each of the two housing sections 13 , 14 , which is delimited radially inside by an edge 58 , 60 for supporting the switching film 22 during axial movements transverse to the hole cross-section 40 .
  • the two grooves 54 , 56 are located axially opposite one another. Because the switching film 22 is located on the rounded edges 58 , 60 and is clamped between them, the switching film 22 is protected against excessive wear and damages from sharp edges resulting from axial movements of its working region because of the regulating function of the unit 10 .
  • FIG. 2 shows in a cross-sectional view a unit 10 having a switching film 22 according to an additional exemplary embodiment of the invention.
  • the basic design of the unit 10 essentially corresponds to the exemplary embodiment in FIG. 1 .
  • the mating surfaces 50 , 52 of the two housing sections 13 , 14 are formed conically in the longitudinal direction L.
  • the switching film 22 can advantageously be centered during the joining of the switching film 22 at the first housing section 13 and during assembly of the housing 12 by placement of the second housing section 14 .
  • the grooves 54 , 56 with their edges 58 , 60 are arranged in this case radially displaced, which can also be beneficial for the support of the switching film 22 during the axial movement of the switching film 22 .
  • FIG. 3 shows a unit 10 having a fluid-tight, pressed-on switching film 22 according to a next exemplary embodiment of the invention in a sectional view.
  • the spring element 26 was left out to provide greater clarity.
  • FIG. 5 shows a detail of the housing 12 of unit 10 from FIG. 3 with the joining region 42 .
  • the unit 10 in FIG. 3 does not have any grooves 54 , 56 .
  • the switching film 22 is mounted between the two housing sections 13 , 14 in a fluid-tight manner. Lips 58 , 60 with a rolling radius to relieve the switching film 22 are provided.
  • a radial, external joining area 42 of the switching film 22 is pressed in the area of the joining areas 50 , 52 in a fluid-tight manner onto the first housing section 13 by applying the switching film to the housing section 13 with the joining region 42 onto the mating surface 50 and pressing the joining region 42 against the mating surface 50 , 52 with a leader element 44 , for example an O-ring.
  • the switching film 22 in this arrangement at least in the region of the joining region 42 , may have an activated surface with altered surface tension in order to achieve good tightness, wherein the joining region 42 is prepared, for example, by one of the methods, etching, plasma treatment, mechanical roughening, embossing or perforation.
  • a second housing section 14 is seated on the switching film 22 and thus forms the housing 12 .
  • the joining region 42 of the switching film 22 is compressed during the sealing of the housing 12 in the region of the mating surfaces 50 , 52 .
  • FIG. 4 shows the unit 10 from FIG. 3 with the welded housing 12 .
  • FIG. 6 shows a detail of the housing 12 of unit 10 from FIG. 4 with the joining region 42 .
  • the housing 12 is preferably sealed to a radial outer circumference after the insertion and slight pre-compression of the switching film 22 by the leader element 44 by welding.
  • at least one housing section 13 , 14 is formed radially outside the mounting surface 50 , 52 for closure of the hole cross-section 40 through welding.
  • the first housing section 13 has a circumferential lip 66 , which is to be welded with the second housing section 14 .
  • the two housing sections 13 , 14 are kept at a distance from each other by the circular lip 66 of the first housing section 13 directly after the application of the switching film 22 and placement of the second housing section 14 , which does not disappear until after the two housing sections 13 , 14 are welded together by the melting of the material, so that this way the two housing sections 13 , 14 lie tightly on top of each other and the switching film 22 is firmly compressed between them.
  • the leader element 44 is increasingly compressed by the pressure on the two housing sections 13 , 14 when the distance between the two housing sections 13 , 14 is adjusted during the welding process.
  • the melted material of the lip 66 can flow from both sides of the lip 66 as the welding bead.
  • FIGS. 7 and 8 show a simplified detail of the joining region 42 of a unit 10 according to another exemplary embodiment of the invention with a housing section 13 in a sectional view showing the switching film 22 in a non-compressed state;
  • the leader element 44 is located in a groove 46 , which is arranged in the mating surface 50 of the housing section 13 , and is thus better fixed during the installation of the unit 10 .
  • the switching film 10 is then placed with the joining region over the leader element 44 and can therefore be pressed onto the second housing section 14 when the housing 12 is closed.
  • the leader element 44 is then compressed in the groover 46 and can expand in the groove 46 parallel to the switching film 22 in the radial direction.
  • FIG. 8 shows the pressed-on switching film 22 with the compressed leader element 44 , but does not show the second housing section 14 .
  • the first housing section 13 with applied switching film 22 can be pressed onto another component of an internal combustion engine.
  • the groove 46 can be arranged in the second housing section 14 as well, so that, as in the exemplary embodiment in FIGS. 3 and 4 , the leader element 44 can continue to be arranged between the switching film 22 and the second housing section 14 .
  • FIG. 9 a schematic representation of a joining region 42 with a switching film 22 compressed with a flexible leader element according to another exemplary embodiment of the invention.
  • the leader element 44 for example in the form of a spring, is arranged in a groove 46 in the mating surface 52 of the second housing section 14 and thus fixed for installation.
  • the switching film 22 with its joining region 42 is located between the two housing sections 13 , 14 and can thus be advantageously compressed by the leader element and the mating surfaces 50 , 52 in order to achieve a fluid-tight sealing of the hole cross-section 40 and the housing 12 .
  • FIG. 10 shows a schematic representation of a joining region 42 with a radially clamped switching film 22 according to another exemplary embodiment of the invention.
  • the switching film 22 is also compressed between the mating surfaces 50 , 52 of the two housing sections 13 , 14 and additionally radially clamped and held by a leader element 44 radially arranged at an outside, for example a locking ring, a hose clamp, or a snap-in hook.
  • the leader element 44 can plunge into a radially arranged groove 46 in the first housing section 13 during the clamping process and thus compress the switching film 22 in the groove 46 .
  • FIG. 11 shows a schematic representation of a joining region 42 with housing sections 13 , 14 joined by a screw connection 68 according to another exemplary embodiment of the invention.
  • the switching film 22 is compressed between the two housing sections 13 , 14 , which are joined by the screw connection 68 .
  • the screw connection 68 for example in the form of a screw with a nut as the counterpart, is guided here through an opening in the switching film 22 . In this way, the switching film 22 can be reliably clamped and form a fluid-tight connection between the housing sections 13 , 14 as well as the hole cross-section 40 .
  • FIG. 12 shows a schematic representation of a joining region 42 with a clamped switching film 22 according to another exemplary embodiment of the invention.
  • the switching film 22 is clamped by a raised area 72 in the mating surface 52 of the second housing section 14 , which engages in an opposing groove 46 of the mating surface 50 of the first housing section 14 , and which is held there to fixate the switching film 22 while the two housing sections 13 , 14 are compressed.
  • FIG. 13 shows a schematic representation of a joining region 42 with a clamped switching film 22 according to another exemplary embodiment of the invention.
  • the switching film 22 itself has an embossing 70 as a raised area with which the switching film 22 can be advantageously clamped between the mating surfaces 50 , 52 of the two housing sections 13 , 14 .
  • FIG. 14 shows a schematic representation of a joining region 42 with a switching film 22 clamped by a corner segment according to another exemplary embodiment of the invention.
  • the second housing section 14 protrudes here over the first housing section 13 with a radial circumferential lip, so that the switching film, when placed over the first housing section 13 and the second housing section 14 is slid on top of it, is bent in the axial direction and clamped in this manner. In this manner, a reliable, fluid-tight connection of the two housing sections 13 , 14 and a sealing of the hole cross-section 40 can be achieved.
  • FIG. 15 shows as an expansion of the embodiment represented in FIG. 14 a schematic representation of a joining region 42 with a switching film 22 clamped by a corner segment according to another exemplary embodiment of the invention with an additional fixing.
  • the radial circumferential rim of the second housing section 14 has an internally directed radial raised area 72 , which complements a circumferential grove 46 in the first housing section 13 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Automation & Control Theory (AREA)
  • General Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Electromagnetism (AREA)
  • Toxicology (AREA)
  • Safety Valves (AREA)
  • Diaphragms And Bellows (AREA)
  • Fluid-Driven Valves (AREA)
US15/800,737 2016-11-02 2017-11-01 Unit for the regulation or control of a fluid pressure Active 2037-11-29 US10782712B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102016013015 2016-11-02
DE102016013015.6 2016-11-02
DE102016013015 2016-11-02

Publications (2)

Publication Number Publication Date
US20180120870A1 US20180120870A1 (en) 2018-05-03
US10782712B2 true US10782712B2 (en) 2020-09-22

Family

ID=61912181

Family Applications (1)

Application Number Title Priority Date Filing Date
US15/800,737 Active 2037-11-29 US10782712B2 (en) 2016-11-02 2017-11-01 Unit for the regulation or control of a fluid pressure

Country Status (3)

Country Link
US (1) US10782712B2 (zh)
CN (1) CN108021155B (zh)
DE (1) DE102017010020A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11420817B2 (en) * 2019-02-20 2022-08-23 Husky Corporation Pressure vacuum vent
US20220331823A1 (en) * 2019-09-25 2022-10-20 Kao Corporation Dispenser

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015005692A1 (de) * 2015-05-06 2016-11-10 Mann + Hummel Gmbh Druckregelventil
DE102017010018A1 (de) * 2016-11-02 2018-05-03 Mann + Hummel Gmbh Einheit zum Regeln oder Steuern eines Fluiddrucks
DE102017010071A1 (de) * 2016-11-02 2018-05-03 Mann+Hummel Gmbh Einheit zum Regeln oder Steuern eines Fluiddrucks

Citations (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1421380U (zh)
US2394911A (en) * 1943-09-09 1946-02-12 Clayton Manufacturing Co Automatic vacuum breaker
DE1196032B (de) 1963-01-31 1965-07-01 Effbe Membranenwerk Fritz Brum Membran mit beidseitig aufgelegten elastischen Dichtringen
US3411522A (en) * 1966-12-27 1968-11-19 Robert L. Golden Vacuum regualtor means and parts therefor
DE2063340A1 (de) 1970-12-23 1972-06-29 Bosch Gmbh Robert Elektromagnetisches Drosselventil mit Selbstverstärkung
GB1579160A (en) 1976-07-01 1980-11-12 Mersch Fonderies Atel Diaphragm valve
US4930747A (en) * 1987-12-18 1990-06-05 Aisin Seiki Kabushiki Kaisha Solenoid valve assembly
US5076322A (en) * 1990-10-15 1991-12-31 Pradip Choksi Vacuum limiting, regulating device
US5217797A (en) * 1992-02-19 1993-06-08 W. L. Gore & Associates, Inc. Chemically resistant diaphragm
US5335641A (en) * 1992-04-18 1994-08-09 Filterwerk Mann & Hummel Gmbh Oil filler for an internal combustion engine
US5535987A (en) * 1994-12-29 1996-07-16 The Toro Company Valve diaphragm
DE19821324A1 (de) 1998-05-13 1999-12-02 Fischer Georg Rohrleitung Membrananordnung
WO2000045446A2 (de) 1999-01-29 2000-08-03 Fraunhofer Gesellschaft zur Förderung der angewandten Forschung e.V. Vorrichtung und verfahren zur verklebung von fügeteilen
US6505814B1 (en) * 1998-10-15 2003-01-14 Kabushiki Kaisha Fujikin Fluid controller
US20030216119A1 (en) 2002-05-15 2003-11-20 Nitto Denko Corporation Ventilation member and vented housing using the same
US6719268B2 (en) * 2000-12-28 2004-04-13 Smc Kabushiki Kaisha Solenoid-operated valve
US6874484B2 (en) * 2002-12-03 2005-04-05 Eaton Corporation Fuel vapor vent system and low permeation vacuum operated shut-off valve therefor
US20060037975A1 (en) 2002-04-25 2006-02-23 Udo Suffa Self-closing valve
DE202004015872U1 (de) 2004-10-13 2006-02-23 Hengst Gmbh & Co.Kg Pneumatisches Druckregelventil
US20060090737A1 (en) * 2002-07-26 2006-05-04 Sieghard Pietschner Oil separator for the separation of oil from the crankcase ventilation gas of an internal combustion engine
DE202005012403U1 (de) 2005-08-06 2006-12-21 Hengst Gmbh & Co.Kg Pneumatisches Druckregelventil
DE102007031652A1 (de) 2006-07-06 2008-01-24 Mann + Hummel Gmbh Ventil, insbesondere Überdruckventil, für ein Fluid
JP2008121703A (ja) * 2006-11-08 2008-05-29 Asahi Organic Chem Ind Co Ltd
US7500491B2 (en) * 2006-04-13 2009-03-10 V. Q. Corp. Sanitary fluid pressure control valve
US20100221995A1 (en) 2007-09-04 2010-09-02 Nitto Denko Corporation Ventilation member and method of manufacturing the same
EP2377598A1 (de) 2010-04-16 2011-10-19 Astrium GmbH Verfahren zur biokompatiblen Verbindung einer multifunktionalen PTFE-Membran oder -Folie mit einem Kunststoffteil
US8152132B2 (en) * 2009-01-30 2012-04-10 Fisher Controls International Llc Pneumatic actuator having diaphragm retention ring
US8227521B2 (en) * 2007-11-12 2012-07-24 Zotefoams Plc Fluoropolymer foams prepared with the use of blowing agents and applications thereof
US20120248364A1 (en) 2011-03-31 2012-10-04 Buerkert Werke Gmbh Membrane valve
DE102013005624A1 (de) 2012-04-27 2013-10-31 Mann + Hummel Gmbh Anordnung, Filtereinrichtung und Kurbelgehäuse
US20160076537A1 (en) * 2013-05-24 2016-03-17 Murata Manufacturing Co., Ltd. Valve and fluid control apparatus
US20160123497A1 (en) * 2013-06-04 2016-05-05 Fujikin Incorporated Diaphragm valve
DE102015102545A1 (de) 2015-02-23 2016-08-25 Pierburg Gmbh Elektropneumatischer Druckwandler
DE102015005692A1 (de) 2015-05-06 2016-11-10 Mann + Hummel Gmbh Druckregelventil
US20170102089A1 (en) * 2015-10-12 2017-04-13 Emerson Process Management Regulator Technologies, Inc. Lattice structure valve/regulator body
US20170326692A1 (en) * 2016-05-10 2017-11-16 Fisher Controls International Llc Late Customization on Valve Body End Connections Using Additive Manufacturing

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6620342B1 (en) * 2000-10-23 2003-09-16 Atofina Chemicals, Inc. Narrow composition distribution polyvinylidene fluoride RECLT films, processes, articles of manufacture and compositions
WO2009101695A1 (ja) * 2008-02-14 2009-08-20 Shimadzu Corporation 流路切換バルブ
CN102092866B (zh) * 2010-12-03 2012-11-28 浙江司大膜工程有限公司 一种压力驱动的多功能膜分离装置及分离工艺
CN104315232B (zh) * 2014-08-20 2018-01-09 中国检验检疫科学研究院 微流体微阀驱动装置
DE102017010019A1 (de) * 2016-11-02 2018-05-03 Mann + Hummel Gmbh Einheit zum Regeln oder Steuern eines Fluiddrucks

Patent Citations (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1421380U (zh)
US2394911A (en) * 1943-09-09 1946-02-12 Clayton Manufacturing Co Automatic vacuum breaker
DE1196032B (de) 1963-01-31 1965-07-01 Effbe Membranenwerk Fritz Brum Membran mit beidseitig aufgelegten elastischen Dichtringen
US3411522A (en) * 1966-12-27 1968-11-19 Robert L. Golden Vacuum regualtor means and parts therefor
DE2063340A1 (de) 1970-12-23 1972-06-29 Bosch Gmbh Robert Elektromagnetisches Drosselventil mit Selbstverstärkung
GB1579160A (en) 1976-07-01 1980-11-12 Mersch Fonderies Atel Diaphragm valve
US4930747A (en) * 1987-12-18 1990-06-05 Aisin Seiki Kabushiki Kaisha Solenoid valve assembly
US5076322A (en) * 1990-10-15 1991-12-31 Pradip Choksi Vacuum limiting, regulating device
US5217797A (en) * 1992-02-19 1993-06-08 W. L. Gore & Associates, Inc. Chemically resistant diaphragm
US5335641A (en) * 1992-04-18 1994-08-09 Filterwerk Mann & Hummel Gmbh Oil filler for an internal combustion engine
US5535987A (en) * 1994-12-29 1996-07-16 The Toro Company Valve diaphragm
DE19821324A1 (de) 1998-05-13 1999-12-02 Fischer Georg Rohrleitung Membrananordnung
US6505814B1 (en) * 1998-10-15 2003-01-14 Kabushiki Kaisha Fujikin Fluid controller
WO2000045446A2 (de) 1999-01-29 2000-08-03 Fraunhofer Gesellschaft zur Förderung der angewandten Forschung e.V. Vorrichtung und verfahren zur verklebung von fügeteilen
US6719268B2 (en) * 2000-12-28 2004-04-13 Smc Kabushiki Kaisha Solenoid-operated valve
US20060037975A1 (en) 2002-04-25 2006-02-23 Udo Suffa Self-closing valve
US20030216119A1 (en) 2002-05-15 2003-11-20 Nitto Denko Corporation Ventilation member and vented housing using the same
US20060090737A1 (en) * 2002-07-26 2006-05-04 Sieghard Pietschner Oil separator for the separation of oil from the crankcase ventilation gas of an internal combustion engine
US6874484B2 (en) * 2002-12-03 2005-04-05 Eaton Corporation Fuel vapor vent system and low permeation vacuum operated shut-off valve therefor
DE202004015872U1 (de) 2004-10-13 2006-02-23 Hengst Gmbh & Co.Kg Pneumatisches Druckregelventil
DE202005012403U1 (de) 2005-08-06 2006-12-21 Hengst Gmbh & Co.Kg Pneumatisches Druckregelventil
WO2007017033A1 (de) * 2005-08-06 2007-02-15 Hengst Gmbh & Co. Kg Pneumatisches druckregelventil
US7500491B2 (en) * 2006-04-13 2009-03-10 V. Q. Corp. Sanitary fluid pressure control valve
DE102007031652A1 (de) 2006-07-06 2008-01-24 Mann + Hummel Gmbh Ventil, insbesondere Überdruckventil, für ein Fluid
JP2008121703A (ja) * 2006-11-08 2008-05-29 Asahi Organic Chem Ind Co Ltd
US20100221995A1 (en) 2007-09-04 2010-09-02 Nitto Denko Corporation Ventilation member and method of manufacturing the same
US8227521B2 (en) * 2007-11-12 2012-07-24 Zotefoams Plc Fluoropolymer foams prepared with the use of blowing agents and applications thereof
US8152132B2 (en) * 2009-01-30 2012-04-10 Fisher Controls International Llc Pneumatic actuator having diaphragm retention ring
EP2377598A1 (de) 2010-04-16 2011-10-19 Astrium GmbH Verfahren zur biokompatiblen Verbindung einer multifunktionalen PTFE-Membran oder -Folie mit einem Kunststoffteil
US20120248364A1 (en) 2011-03-31 2012-10-04 Buerkert Werke Gmbh Membrane valve
DE102013005624A1 (de) 2012-04-27 2013-10-31 Mann + Hummel Gmbh Anordnung, Filtereinrichtung und Kurbelgehäuse
US20160076537A1 (en) * 2013-05-24 2016-03-17 Murata Manufacturing Co., Ltd. Valve and fluid control apparatus
US20160123497A1 (en) * 2013-06-04 2016-05-05 Fujikin Incorporated Diaphragm valve
DE102015102545A1 (de) 2015-02-23 2016-08-25 Pierburg Gmbh Elektropneumatischer Druckwandler
DE102015005692A1 (de) 2015-05-06 2016-11-10 Mann + Hummel Gmbh Druckregelventil
US20170102089A1 (en) * 2015-10-12 2017-04-13 Emerson Process Management Regulator Technologies, Inc. Lattice structure valve/regulator body
US20170326692A1 (en) * 2016-05-10 2017-11-16 Fisher Controls International Llc Late Customization on Valve Body End Connections Using Additive Manufacturing

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Machine Translation of JP2008121703A from espacenet.com (retrieved Apr. 2019) (Year: 2019). *
Machine Translation of WO2007017033A1 from espacenet.com (retrieved Apr. 2019) (Year: 2019). *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11420817B2 (en) * 2019-02-20 2022-08-23 Husky Corporation Pressure vacuum vent
US20220331823A1 (en) * 2019-09-25 2022-10-20 Kao Corporation Dispenser

Also Published As

Publication number Publication date
DE102017010020A1 (de) 2018-05-03
CN108021155B (zh) 2023-02-03
US20180120870A1 (en) 2018-05-03
CN108021155A (zh) 2018-05-11

Similar Documents

Publication Publication Date Title
US10671100B2 (en) Unit for the regulation or control of a fluid pressure
US10844761B2 (en) Unit for the regulation or control of a fluid pressure
US10782712B2 (en) Unit for the regulation or control of a fluid pressure
US10690256B2 (en) Unit for the regulation or control of a fluid pressure
US10795384B2 (en) Unit for regulating and controlling a fluid pressure
US10579076B2 (en) Unit for the regulation or control of a fluid pressure
US11409310B2 (en) Unit and switching film for regulation and control of a fluid pressure
US10408099B2 (en) Switching membrane for a pressure control valve and a pressure control valve
CN111788420B (zh) 密封装置和流体控制阀
US10502173B2 (en) Unit for regulating or controlling a fluid pressure
CN109563796B (zh) 流体驱动的隔膜泵
CN109695736B (zh) 用于对流体压力进行调节或者控制的阀构件
JP4427892B2 (ja) 圧力制御弁

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

AS Assignment

Owner name: MANN+HUMMEL GMBH, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BOCK, LUKAS;VOLKER, VOLKER;JESSBERGER, THOMAS;AND OTHERS;SIGNING DATES FROM 20181212 TO 20190122;REEL/FRAME:052520/0492

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED

STCF Information on status: patent grant

Free format text: PATENTED CASE

FEPP Fee payment procedure

Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY