US10738665B2 - Sliding cam system - Google Patents

Sliding cam system Download PDF

Info

Publication number
US10738665B2
US10738665B2 US16/116,427 US201816116427A US10738665B2 US 10738665 B2 US10738665 B2 US 10738665B2 US 201816116427 A US201816116427 A US 201816116427A US 10738665 B2 US10738665 B2 US 10738665B2
Authority
US
United States
Prior art keywords
actuator
fluid
apparatuses
cam system
sliding cam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
US16/116,427
Other languages
English (en)
Other versions
US20190072009A1 (en
Inventor
Jens Dietrich
Thomas Malischewski
Steffen Hirschmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MAN Truck and Bus SE
Original Assignee
MAN Truck and Bus SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MAN Truck and Bus SE filed Critical MAN Truck and Bus SE
Assigned to MAN TRUCK & BUS AG reassignment MAN TRUCK & BUS AG ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: DIETRICH, JENS, Malischewski, Thomas, Hirschmann, Steffen
Publication of US20190072009A1 publication Critical patent/US20190072009A1/en
Application granted granted Critical
Publication of US10738665B2 publication Critical patent/US10738665B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L13/00Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations
    • F01L13/0015Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for optimising engine performances by modifying valve lift according to various working parameters, e.g. rotational speed, load, torque
    • F01L13/0036Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for optimising engine performances by modifying valve lift according to various working parameters, e.g. rotational speed, load, torque the valves being driven by two or more cams with different shape, size or timing or a single cam profiled in axial and radial direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/02Valve drive
    • F01L1/04Valve drive by means of cams, camshafts, cam discs, eccentrics or the like
    • F01L1/047Camshafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/02Valve drive
    • F01L1/04Valve drive by means of cams, camshafts, cam discs, eccentrics or the like
    • F01L1/047Camshafts
    • F01L1/053Camshafts overhead type
    • F01L1/0532Camshafts overhead type the cams being directly in contact with the driven valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L13/00Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations
    • F01L13/0015Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for optimising engine performances by modifying valve lift according to various working parameters, e.g. rotational speed, load, torque
    • F01L13/0036Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for optimising engine performances by modifying valve lift according to various working parameters, e.g. rotational speed, load, torque the valves being driven by two or more cams with different shape, size or timing or a single cam profiled in axial and radial direction
    • F01L13/0047Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for optimising engine performances by modifying valve lift according to various working parameters, e.g. rotational speed, load, torque the valves being driven by two or more cams with different shape, size or timing or a single cam profiled in axial and radial direction the movement of the valves resulting from the sum of the simultaneous actions of at least two cams, the cams being independently variable in phase in respect of each other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/02Valve drive
    • F01L1/04Valve drive by means of cams, camshafts, cam discs, eccentrics or the like
    • F01L1/047Camshafts
    • F01L2001/0471Assembled camshafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • F01L2001/34423Details relating to the hydraulic feeding circuit
    • F01L2001/34426Oil control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • F01L2001/3445Details relating to the hydraulic means for changing the angular relationship
    • F01L2001/34453Locking means between driving and driven members
    • F01L2001/34469Lock movement parallel to camshaft axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L13/00Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations
    • F01L13/0015Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for optimising engine performances by modifying valve lift according to various working parameters, e.g. rotational speed, load, torque
    • F01L13/0036Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for optimising engine performances by modifying valve lift according to various working parameters, e.g. rotational speed, load, torque the valves being driven by two or more cams with different shape, size or timing or a single cam profiled in axial and radial direction
    • F01L2013/0052Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for optimising engine performances by modifying valve lift according to various working parameters, e.g. rotational speed, load, torque the valves being driven by two or more cams with different shape, size or timing or a single cam profiled in axial and radial direction with cams provided on an axially slidable sleeve
    • F01L2105/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2305/00Valve arrangements comprising rollers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2820/00Details on specific features characterising valve gear arrangements
    • F01L2820/03Auxiliary actuators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2820/00Details on specific features characterising valve gear arrangements
    • F01L2820/03Auxiliary actuators
    • F01L2820/033Hydraulic engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2820/00Details on specific features characterising valve gear arrangements
    • F01L2820/03Auxiliary actuators
    • F01L2820/034Pneumatic engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2820/00Details on specific features characterising valve gear arrangements
    • F01L2820/04Sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2820/00Details on specific features characterising valve gear arrangements
    • F01L2820/04Sensors
    • F01L2820/041Camshafts position or phase sensors

Definitions

  • the present disclosure relates to a sliding cam system for an internal combustion engine.
  • Valve-controlled internal combustion engines have one or more controllable inlet and outlet valves per cylinder.
  • Variable valve control mechanisms make flexible actuation of the valves possible in order to change the opening time, closing time and/or the valve lift. As a result, the engine operation can be adapted, for example, to a specific load situation.
  • a variable valve train can be configured, for example, as a sliding cam system.
  • a sliding cam system can have a plurality of cam carriers with a plurality of cams.
  • the cam carriers are arranged fixedly on the camshaft so as to rotate with it and in an axially displaceable manner.
  • the cam carriers can be displaced axially via actuators.
  • a transmission apparatus for example a rocker arm, sets one cam of the plurality of cams of the cam carrier in an operative connection with at least one gas exchange valve in a manner which is dependent on an axial position of the cam carrier.
  • the cam carrier can be displaced axially in order to change a valve control curve of the at least one gas exchange valve, with the result that another cam of the cam carrier passes into engagement with the transmission apparatus.
  • One example for a sliding cam system is disclosed in WO 2004/083611 A1.
  • EP 0 798 451 A1 has likewise disclosed a valve train with a sliding cam system.
  • An actuating element is provided for displacing a cam with three cam tracks which lie axially next to one another. The actuation of the actuating element can take place pneumatically.
  • DE 10 2010 025 099 A1 discloses an adjustable camshaft, having at least one shaft, and having at least one cam pack which has at least two different cams and/or cam contours.
  • the cam pack can be displaced axially on the shaft.
  • An adjusting element is provided in the shaft, which adjusting element can be displaced at least axially relative to a longitudinal axis of the shaft.
  • the adjusting element is coupled mechanically to the cam pack via a contact element.
  • at least two of the cam packs can be coupled mechanically to the adjusting element.
  • the present disclosure is based on the object of providing an alternative or improved sliding cam system which overcomes disadvantages in the prior art and, in particular, has a simplified control system.
  • the sliding cam system is suitable for an internal combustion engine.
  • the sliding cam system has a camshaft and a plurality of cam carriers with in each case at least two cams.
  • the plurality of cam carriers are arranged fixedly on the camshaft so as to rotate with it and in an axially displaceable manner.
  • the sliding cam system has a plurality of fluid-actuated actuator apparatuses which are configured in each case for axially displacing one cam carrier of the plurality of cam carriers.
  • the sliding cam system has a fluid feed apparatus which is provided for feeding a fluid in a fluid connection upstream of the plurality of actuator apparatuses for actuating the plurality of actuator apparatuses. At least two actuator apparatuses of the plurality of actuator apparatuses are coupled fluidically for simultaneous actuation.
  • the fluid coupling between at least two actuator apparatuses makes the simultaneous actuation of the two actuator apparatuses possible by way of a fluid being fed.
  • the control complexity can be simplified considerably, since not every actuator apparatus has to be actuated individually at a defined time. Instead, for example, only a single valve is opened in a fluid connection upstream of the actuator apparatuses, as a result of which the actuator apparatuses are actuated.
  • the at least two cams of the cam carriers can be of different configuration.
  • a plurality of transmission apparatuses for example rocker arms or toggle levers, are preferably additionally provided, which set a first cam or a second cam of the respective cam carrier in an operative connection with at least one gas exchange valve in a manner which is dependent on an axial position of a respective cam carrier.
  • the gas exchange valves can be, for example, inlet valves or outlet valves.
  • the transmission apparatuses can have, in particular, a cam follower, for example a rotatable roller, for following a cam contour of a cam.
  • the actuator apparatuses may be of identical configuration.
  • the actuator apparatuses can engage by way of displaceable elements into engagement tracks of the cam carriers for axially displacing the cam carriers.
  • the actuator apparatuses can have displaceable elements which can be displaced in a radial direction with regard to a longitudinal axis of the camshaft or in an axial direction with regard to the longitudinal axis of the camshaft for axially displacing the respective cam carrier.
  • the fluidically coupled, at least two actuator apparatuses are coupled fluidically by means of a group control valve of the fluid feed apparatus.
  • a fluid can be fed at the same time to the fluidically coupled, at least two actuator apparatuses by way of opening of the group control valve.
  • the group control valve can be provided in a fluid connection downstream of a compressor or a pump and upstream of the at least two actuator apparatuses.
  • actuator-specific valves are additionally provided in a fluid connection between the group control valve and the actuators of the actuator apparatuses.
  • actuator-specific control of the sliding cam system can in turn be made possible if this is desired.
  • a plurality of actuator apparatus groups are provided which have in each case at least two fluidically coupled actuator apparatuses of the plurality of actuator apparatuses.
  • the grouping of the actuator apparatuses in actuator apparatus groups makes a grouped actuation of the actuator apparatuses possible, as a result of which every actuator apparatus of an actuator apparatus group does not have to be actuated individually.
  • the actuator apparatus groups of the plurality of actuator apparatus groups are provided in each case downstream of a respective group control valve of the fluid feed apparatus, with the result that the fluid can be fed by the fluid feed apparatus at the same time to the fluidically coupled, at least two actuator apparatuses of the respective actuator apparatus group by way of opening of the respective group control valve.
  • a first actuator of a first actuator apparatus and a first actuator of a second actuator apparatus and optionally a first actuator of a third actuator apparatus can be provided in a first actuator apparatus group.
  • a second actuator of the first actuator apparatus and a second actuator of the second actuator apparatus and optionally a second actuator of the third actuator apparatus can be provided in a second actuator apparatus group.
  • a first actuator of a fourth actuator apparatus, a first actuator of a fifth actuator apparatus and optionally a first actuator of a sixth actuator apparatus can be provided in a third actuator apparatus group.
  • a second actuator of the fourth actuator apparatus, a second actuator of the fifth actuator apparatus and optionally a second actuator of the sixth actuator apparatus can be provided in a fourth actuator apparatus group.
  • a first group control valve can be provided in a fluid connection upstream of the first actuator apparatus group
  • a second group control valve can preferably be provided in a fluid connection upstream of the second actuator apparatus
  • a third group control valve can be provided in a fluid connection upstream of the third actuator apparatus group
  • a fourth group control valve can be provided in a fluid connection upstream of the fourth actuator apparatus group.
  • the group control valves are arranged in parallel to one another.
  • a first actuator of a first actuator apparatus is coupled fluidically to a first actuator of a second actuator apparatus.
  • a second actuator of the first actuator apparatus is coupled fluidically to a second actuator of the second actuator apparatus. The couplings make it possible for the first actuators to be actuated simultaneously and for the second actuators to be actuated simultaneously.
  • the plurality of actuator apparatuses have in each case a first actuator for displacing a respective cam carrier in a first direction and a second actuator for displacing the respective cam carrier in a second direction which is opposed with respect to the first direction.
  • the first direction and the second direction can run, in particular, parallel to a longitudinal axis of the camshaft.
  • the respective first actuators can be coupled fluidically at least partially to one another and/or the respective second actuators can be coupled fluidically at least partially to one another.
  • the plurality of actuator apparatuses may be actuated hydraulically or pneumatically.
  • the actuator apparatuses can be connected, for example, to a hydraulic system or pneumatic system which is already present in a motor vehicle.
  • the sliding cam system additionally has a position sensor which detects a rotational position of the camshaft, an internal combustion engine sensor which detects an operating parameter of the internal combustion engine, and/or a user interface for a user input.
  • the sliding cam system additionally has a control unit which is configured, based on the detected rotational position, the detected operating parameter and/or the user input, to control the fluid feed apparatus for feeding the fluid to the plurality of actuator apparatuses.
  • the inclusion of the rotational position of the camshaft can ensure that the actuator apparatuses are actuated in such a way that, for example, displaceable elements of the actuator apparatuses are engaged completely before the respective cam carrier is displaced.
  • a displacement of the cam carrier can be triggered, for example, via the detected operating parameter, for example a load of the internal combustion engine, or the user input.
  • control unit relates to control electronics which, depending on the configuration, can undertake control tasks and/or regulation tasks.
  • control unit is configured, based on the detected rotational position, the detected operating parameter and/or the user input, to selectively actuate the group control valves.
  • actuators of the plurality of actuator apparatuses have in each case a control fluid space and a retractable and extendable element, in particular a pin, in operative connection with the control fluid space.
  • the retractable and extendable element extends by way of feeding of the fluid to the control fluid space in order to displace the respective cam carrier.
  • a fluid-actuated actuator can be provided in a structurally simple way.
  • the fluid is a compressible gas, in particular air
  • the control fluid space which is filled with the compressible gas acts as a pneumatic spring during the retraction of the retractable and extendable element.
  • the pneumatic spring is effected by way of compression of the compressible gas and expelling of the compressed gas.
  • the retractable and extendable element engages into an engagement track of the cam carrier in order to displace the cam carrier.
  • the control fluid is fed to the control fluid space (in particular, by way of corresponding opening of the corresponding group control valve) in such a way that the retractable and extendable element makes contact with an outer circumferential face of the cam carrier before the retractable and extendable element engages into the engagement track.
  • the fluid-actuated actuator apparatuses make it possible for the cam-free sections which have the engagement tracks to be moved over by the displaceable elements before the displaceable elements finally engage into the engagement tracks. In this way, control complexity for the actuator apparatus is reduced considerably, since the time window for actuating the actuator apparatuses is increased.
  • the retractable and extendable element may be prestressed by way of an elastic element into a retracted state. As a result, the retractable and extendable element can be returned into a basic position.
  • control fluid space is configured as an annular space in the retracted state of the retractable and extendable element. This makes it possible that a contact area between a bottom face of the control fluid space and the retractable and extendable element is small.
  • control fluid can bear directly against the retractable and extendable element and/or only a low adhesion force can exist between the bottom face and the retractable and extendable element.
  • the retractable and extendable element may have a journal which extends in a direction of a bottom face of the control fluid space.
  • a bottom face of the control fluid space may have a journal which extends in a direction of the retractable and extendable element.
  • control fluid space is sealed towards a surrounding area of the actuator apparatus by way of a fluid seal, in particular an O-ring. In this way, the penetration of oil mist into the control fluid space can be prevented.
  • the present disclosure also relates to a motor vehicle, in particular a commercial vehicle (for example, an omnibus or a lorry), having a sliding cam system as disclosed herein.
  • the fluid feed apparatus preferably has a compressed air tank of the motor vehicle and/or the fluid feed apparatus is integrated into a pneumatic system of the motor vehicle.
  • FIG. 1 shows a perspective view of an exemplary variable valve train
  • FIG. 2 shows a longitudinal sectional view of the camshaft
  • FIG. 3 shows a diagrammatic sectional view of an exemplary actuator
  • FIG. 4 shows a further diagrammatic sectional view of the exemplary actuator
  • FIG. 5 shows a further diagrammatic sectional view of the exemplary actuator
  • FIG. 6 shows a diagrammatic view of a sliding cam system.
  • FIG. 1 shows a variable valve train 10 .
  • the variable valve train 10 can be included in a motor vehicle, in particular a commercial vehicle, having an internal combustion engine.
  • the commercial vehicle can be, for example, a lorry or an omnibus.
  • the variable valve train 10 has a camshaft 12 and a cam carrier 14 .
  • the variable valve train 10 has a transmission apparatus 16 and a first and second gas exchange valve 20 and 22 .
  • the variable valve train 10 has a first actuator 24 and a second actuator 26 .
  • the first actuator 24 and the second actuator 26 form an actuator apparatus 27 .
  • the actuator apparatus can have, for example, only one actuator or a plurality of actuators which are provided in a common housing.
  • the cam carrier 14 , the camshaft 12 and the actuator apparatus 27 form a part of a sliding cam system 11 .
  • the sliding cam system 11 has a plurality of cam carriers 14 and actuator apparatuses for a plurality of cylinders of the internal combustion engine.
  • the construction of the sliding cam system is described by way of example for a cam carrier 14 and an actuator apparatus 27 for a cylinder of the internal combustion engine, as shown in FIGS. 1 and 2 .
  • the camshaft 12 can be configured as an inlet camshaft, an outlet camshaft or a mixed camshaft which actuates both inlet valves and outlet valves.
  • the camshaft 12 can be part of a double camshaft system (not shown in detail) which additionally has a further camshaft (not shown).
  • the camshaft 12 is arranged as an overhead camshaft. In other embodiments, the camshaft 12 can also be arranged as an OHV camshaft.
  • the cam carrier 14 is arranged fixedly on the camshaft 12 so as to rotate with it.
  • the cam carrier 14 is additionally arranged such that it can be displaced axially along a longitudinal axis of the camshaft 12 .
  • the cam carrier 14 can be capable of being displaced axially between a first stop 28 and a second stop 30 .
  • the cam carrier 14 has two cams 32 and 34 which are offset from one another in a longitudinal direction of the cam carrier 14 and the camshaft 12 .
  • the first cam 32 and the second cam 34 are arranged in a central section of the cam carrier 14 .
  • the first cam 32 and the second cam 34 adjoin one another.
  • the first cam 32 and the second cam 34 are of different configuration, with the result that they can bring about different valve lift curves of the gas exchange valves 20 , 22 .
  • the first cam 32 can be, for example, an engine brake cam for an outlet valve
  • the second cam 34 can be a normal cam.
  • the cam carriers can have a different number of cams, different arrangements of the cams and/or different cam contours of the cams.
  • the cam carrier 14 has a first cam-free section 38 and a second cam-free section 40 .
  • the first cam-free section 38 and the second cam-free section 40 are arranged at opposite ends of the cam carrier 14 .
  • a first engagement track (switch guide plate) 42 extends spirally about a longitudinal axis of the cam carrier 14 in the first cam-free section 38 .
  • a second engagement track (switch guide plate) 44 extends spirally about the longitudinal axis of the cam carrier 14 in the second cam-free section 40 .
  • the actuators 24 and 26 can engage with extendable elements (not shown in detail in FIGS. 1 and 2 ) selectively into the engagement tracks 42 , 44 .
  • the actuators 24 , 26 can be of identical configuration.
  • the first actuator 24 can engage selectively into the first engagement track 42 in order to displace the cam carrier 14 from a first axial position to a second axial position.
  • the cam carrier 14 bears against the second stop 30 in the first axial position.
  • the cam carrier 14 bears against the first stop 28 in the second axial position.
  • FIG. 1 shows the cam carrier 14 in the first axial position.
  • the second actuator 26 in turn can engage selectively into the second engagement track 44 .
  • the cam carrier 14 is then displaced from the second axial position to the first axial position.
  • the displacement is triggered by virtue of the fact that the extendable element of the respective actuator 24 , 26 is stationary with regard to an axial direction of the camshaft 12 .
  • the displaceable cam carrier 14 is displaced in a longitudinal direction of the camshaft 12 on account of the spiral shape of the engagement tracks 42 , 44 when the extendable element engages into the respective engagement track 42 , 44 .
  • the extendable element of the respective actuator 24 , 26 is guided by the respective engagement track 42 , 44 in an opposite direction to the extending direction and is therefore retracted.
  • the extendable element of the respective actuator 24 , 26 passes out of engagement with the respective engagement track 42 , 44 .
  • the transmission apparatus 16 establishes an operative connection between the cam carrier 14 and the gas exchange valves 20 , 22 .
  • the gas exchange valves 20 , 22 are actuated (opened) when the first cam 32 or the second cam 34 presses the transmission apparatus 16 downwards.
  • the transmission apparatus 16 is in an operative connection between the first cam 32 and the gas exchange valves 20 , 22 . In other words, the transmission apparatus 16 is not in an operative connection between the second cam 34 and the gas exchange valves 20 , 22 in the first axial position of the cam carrier 14 .
  • the gas exchange valves 20 , 22 are actuated in accordance with a contour of the first cam 32 .
  • the transmission apparatus 16 is in an operative connection between the second cam 34 and the gas exchange valves 20 , 22 which are actuated in accordance with a contour of the second cam 34 .
  • the transmission apparatus 16 is configured as a rocker arm. In other embodiments, the transmission apparatus 16 can be configured as a toggle lever or as a tappet. In some embodiments, the transmission apparatus 16 can have a cam follower, for example in the form of a rotatable roller.
  • a locking apparatus 46 is shown with reference to FIG. 2 .
  • the locking apparatus 46 has an elastic element 48 and a locking body 50 .
  • the elastic element 48 is arranged in a blind bore of the camshaft 12 .
  • the elastic element 48 prestresses the locking body 50 against the cam carrier 14 .
  • a first and second recess 52 and 54 are arranged in an inner circumferential face of the cam carrier 14 .
  • the locking body 50 is pressed, for example, into the first recess 52 when the cam carrier 14 is in the first axial position.
  • the locking body 50 In the second axial position of the cam carrier 14 , the locking body 50 is pressed into the second recess 54 .
  • FIGS. 3 to 5 show the actuator 24 in greater detail by way of example.
  • FIG. 3 shows the actuator 24 in a basic position (in the retracted state).
  • FIG. 4 shows the actuator 24 during the working stroke (in the extended state).
  • FIG. 5 shows the actuator 24 during a spring-back (during the retraction).
  • the actuator 24 is fluid-actuated.
  • the actuator 24 is a pneumatic or hydraulic actuator.
  • the actuator 24 is preferably actuated pneumatically, since this can be advantageous with regard to a temperature insensitivity and a speed which can be achieved.
  • the actuator 24 has a displaceable pin (piston) 56 , an elastic element 58 , a control fluid space 60 and a control fluid feed duct 62 .
  • a control fluid for example air or hydraulic liquid
  • the feed of control fluid to the control fluid space 60 brings about ejection of the pin 56 from the control fluid space 60 .
  • the extended pin 56 can engage into the engagement track 42 , in order to displace the cam carrier 14 axially.
  • the pin 56 and the control fluid space 60 can be configured in such a way that the control fluid space 60 is configured as an annular space in the retracted state of the pin.
  • the pin 56 can be provided with a journal, as shown in FIGS. 3 to 5 .
  • the annular space makes it possible that the control fluid can already bear against the pin 56 at the beginning of the actuation. In this way, a displacement of the pin 56 can begin directly by way of feeding of control fluid to the control fluid space 60 .
  • only low adhesion forces have to be overcome in order to bring about a start of the displacement of the pin 56 , on account of the small contact area between the pin 56 and a bottom face of the control fluid space 60 .
  • the fluid actuation of the actuator 24 makes it possible that the pin 56 moves over the cam-free section 38 (see FIG. 1 ) before the engagement into the engagement track 42 (see FIG. 1 ).
  • an outer circumferential face of the cam-free section 38 makes contact with the pin 56 and prevents the pin 56 from extending further.
  • the pin 56 can engage directly into the engagement track 42 .
  • the control complexity of the actuator 24 can be reduced considerably in comparison with systems which require a precisely timed extension and engagement of the pin of the actuator. This can be the case, for example, in the case of electromagnetically actuated actuators.
  • a ramp of the engagement track 42 presses the pin 56 in the direction of the control fluid space 60 .
  • a compressible fluid is used as control fluid, the fluid is compressed and expelled during the retraction of the pin 56 .
  • the fluid which is situated in the control fluid space 60 therefore acts as a pneumatic spring during the retraction operation of the pin 56 .
  • the elastic element 58 brings about a complete return of the pin 56 into the basic position (into the retracted state).
  • a fluid seal 64 for example a sealing ring, can be provided.
  • the control fluid space 60 can have, for example, a ventilating duct (not shown).
  • the fluid-actuated actuator apparatuses can simplify control of the sliding cam system 11 .
  • a plurality of actuator apparatuses can be actuated at the same time, with the result that a complicated actuator-selective actuation can be dispensed with. This can reduce the control complexity considerably.
  • the sliding cam system 11 has a first actuator apparatus 27 , a second actuator apparatus 127 , a third actuator apparatus 227 , a fourth actuator apparatus 327 , a fifth actuator apparatus 427 and a sixth actuator apparatus 527 .
  • the second to sixth actuator apparatuses 127 , 227 , 327 , 427 , 527 can be configured like the actuator apparatus 27 .
  • the second to sixth actuator apparatuses 127 , 227 , 327 , 427 , 527 can have in each case two actuators 124 , 126 ; 224 , 226 ; 324 , 326 ; 424 , 426 and 524 , 526 for displacing a respective cam carrier (not shown).
  • the actuators 26 , 124 , 126 , 224 , 226 , 324 , 326 , 424 , 426 , 524 and 526 can be configured like the actuator 24 which is described with reference to FIGS. 3 to 5 .
  • a fluid feed apparatus 66 is provided in a fluid connection upstream of the fluid-actuated actuator apparatuses 27 , 127 , 227 , 327 , 427 , 527 .
  • the fluid feed apparatus 66 is configured by way of example as a pneumatic fluid feed apparatus.
  • the fluid feed apparatus 66 has a compressor 68 , a pressure tank 70 and four group control valves 72 , 74 , 76 and 78 .
  • the compressor 68 conveys a fluid for storage into the pressure tank 70 .
  • the compressor 68 can convey air into the pressure tank 70 .
  • the pressure tank 70 can be, in particular, a compressed air tank of a commercial vehicle, which compressed air tank also provides compressed air, for example, for other pneumatically actuated apparatuses of the commercial vehicle.
  • the pressure level can lie, for example, between 8 bar and 12 bar.
  • the compressor 68 and the four group control valves 72 , 74 , 76 and 78 are controlled by a control unit 80 .
  • the control unit 80 is connected to a position sensor 82 , an internal combustion engine sensor 84 and a user interface 86 .
  • the position sensor 82 detects a position of the camshaft 12 (see FIG. 1 ).
  • the internal combustion engine sensor 84 detects at least one operating parameter of the internal combustion engine, for example a parameter which specifies a load of the internal combustion engine.
  • the user interface 86 makes a user input into the control unit 80 possible.
  • the control unit 80 controls operation of the compressor 68 and the four group control valves 72 , 74 , 76 and 78 in a manner which is based on signals which are received from the position sensor 82 , the internal combustion engine sensor 84 and the user interface 86 .
  • the group control valves 72 , 74 , 76 and 78 are provided downstream of the compressor 68 and the pressure tank 70 .
  • the first group control valve 72 is provided in a fluid connection upstream of the actuators 24 , 124 , 224 .
  • the second group control valve 74 is provided in a fluid connection upstream of the actuators 26 , 126 , 226 .
  • the third group control valve 76 is provided in a fluid connection upstream of the actuators 324 , 424 , 524 .
  • the fourth group control valve 78 is provided in a fluid connection upstream of the actuators 326 , 426 , 526 .
  • the group control valves 72 , 74 , 76 and 78 couple the actuator apparatuses 27 , 127 , 227 , 327 , 427 and 527 partially.
  • the first group control valve 72 has to be opened by the control unit 80 in order to actuate the actuators 24 , 124 , 224 .
  • the actuators 24 , 26 , 124 , 126 , 224 , 226 , 324 , 326 , 424 and 426 are divided via the group control valves 72 , 74 , 76 and 78 into four groups for common actuation.
  • the actuators are coupled fluidically within one group. In other embodiments, more or fewer groups can be provided with in each case more or fewer actuators, in order to reduce a control complexity for the sliding cam system.
  • the present disclosure is not restricted to the above-described preferred exemplary embodiments. Rather, a multiplicity of variants and modifications are possible which likewise utilize the concept of the present disclosure and therefore fall within the scope of protection.
  • the present disclosure includes a configuration of the fluid feed apparatus and the fluid coupling of at least two actuator apparatuses.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Valve Device For Special Equipments (AREA)
US16/116,427 2017-09-01 2018-08-29 Sliding cam system Active US10738665B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102017120145.9 2017-09-01
DE102017120145 2017-09-01
DE102017120145.9A DE102017120145A1 (de) 2017-09-01 2017-09-01 Schiebenockensystem

Publications (2)

Publication Number Publication Date
US20190072009A1 US20190072009A1 (en) 2019-03-07
US10738665B2 true US10738665B2 (en) 2020-08-11

Family

ID=63244440

Family Applications (1)

Application Number Title Priority Date Filing Date
US16/116,427 Active US10738665B2 (en) 2017-09-01 2018-08-29 Sliding cam system

Country Status (5)

Country Link
US (1) US10738665B2 (de)
EP (1) EP3450708B1 (de)
CN (1) CN109653823B (de)
BR (1) BR102018017254B1 (de)
DE (1) DE102017120145A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10358954B2 (en) * 2017-05-03 2019-07-23 GM Global Technology Operations LLC Method of noise filtering a sliding camshaft actuator pin position output signal
US10961879B1 (en) * 2019-09-09 2021-03-30 GM Global Technology Operations LLC Sensor assembly for a sliding camshaft of a motor vehicle

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4452188A (en) * 1981-04-17 1984-06-05 Nippon Soken, Inc. Apparatus for controlling feed of oil discharged from oil pump
US4854273A (en) * 1987-01-13 1989-08-08 Mazda Motor Corporation Oil pressure control apparatus for an internal combustion engine
EP0798451A1 (de) 1996-03-25 1997-10-01 Dr.Ing.h.c. F. Porsche Aktiengesellschaft Ventiltrieb einer Brennkraftmaschine
US6244230B1 (en) * 1998-02-20 2001-06-12 Toyota Jidosha Kabushiki Kaisha Variable valve timing apparatus
WO2004083611A1 (de) 2003-03-21 2004-09-30 Audi Ag Ventiltrieb einer einen zylinderkopf aufweisenden brennkraftmaschine
DE202008008142U1 (de) 2007-06-19 2008-10-30 Eto Magnetic Gmbh Elektromagnetische Stellvorrichtung
US20110079191A1 (en) * 2008-06-20 2011-04-07 Markus Lengfeld Valve drive train device
DE102010025099A1 (de) 2010-06-25 2011-12-29 Neumayer Tekfor Holding Gmbh Nockenwelle
EP2487341A1 (de) 2009-10-06 2012-08-15 Yamaha Hatsudoki Kabushiki Kaisha Ventiltrieb für einen motor
WO2012152456A1 (de) 2011-05-10 2012-11-15 Schaeffler Technologies AG & Co. KG Hubkolbenbrennkraftmaschine mit nockenwellenverstelleinrichtung
DE102011104382A1 (de) 2011-06-16 2012-12-20 Daimler Ag Brennkraftmaschinenventiltriebvorrichtung für ein Kraftfahrzeug
US20190003352A1 (en) * 2017-06-30 2019-01-03 Honda Motor Co., Ltd. Internal combustion engine

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007052254B4 (de) * 2007-11-02 2021-02-04 Daimler Ag Ventiltriebvorrichtung
US7743749B1 (en) * 2009-07-21 2010-06-29 Ford Global Technologies, Llc Fuel pump drive system
US9752470B2 (en) * 2014-03-21 2017-09-05 Ford Global Technologies, Llc Applied-ignition internal combustion engine with variable valve drive

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4452188A (en) * 1981-04-17 1984-06-05 Nippon Soken, Inc. Apparatus for controlling feed of oil discharged from oil pump
US4854273A (en) * 1987-01-13 1989-08-08 Mazda Motor Corporation Oil pressure control apparatus for an internal combustion engine
EP0798451A1 (de) 1996-03-25 1997-10-01 Dr.Ing.h.c. F. Porsche Aktiengesellschaft Ventiltrieb einer Brennkraftmaschine
US6244230B1 (en) * 1998-02-20 2001-06-12 Toyota Jidosha Kabushiki Kaisha Variable valve timing apparatus
WO2004083611A1 (de) 2003-03-21 2004-09-30 Audi Ag Ventiltrieb einer einen zylinderkopf aufweisenden brennkraftmaschine
US8176887B2 (en) 2007-06-19 2012-05-15 Eto Magnetic Gmbh Electromagnetic actuating device
DE202008008142U1 (de) 2007-06-19 2008-10-30 Eto Magnetic Gmbh Elektromagnetische Stellvorrichtung
US20110079191A1 (en) * 2008-06-20 2011-04-07 Markus Lengfeld Valve drive train device
EP2487341A1 (de) 2009-10-06 2012-08-15 Yamaha Hatsudoki Kabushiki Kaisha Ventiltrieb für einen motor
DE102010025099A1 (de) 2010-06-25 2011-12-29 Neumayer Tekfor Holding Gmbh Nockenwelle
WO2012152456A1 (de) 2011-05-10 2012-11-15 Schaeffler Technologies AG & Co. KG Hubkolbenbrennkraftmaschine mit nockenwellenverstelleinrichtung
DE102011075537A1 (de) 2011-05-10 2012-11-15 Schaeffler Technologies AG & Co. KG Hubkolbenbrennkraftmaschine mit Nockenwellenverstelleinrichtung
DE102011104382A1 (de) 2011-06-16 2012-12-20 Daimler Ag Brennkraftmaschinenventiltriebvorrichtung für ein Kraftfahrzeug
US20190003352A1 (en) * 2017-06-30 2019-01-03 Honda Motor Co., Ltd. Internal combustion engine

Also Published As

Publication number Publication date
EP3450708A1 (de) 2019-03-06
RU2018131299A (ru) 2020-03-02
DE102017120145A1 (de) 2019-03-07
BR102018017254B1 (pt) 2024-02-06
BR102018017254A2 (pt) 2019-04-16
US20190072009A1 (en) 2019-03-07
CN109653823A (zh) 2019-04-19
EP3450708B1 (de) 2020-12-30
CN109653823B (zh) 2022-09-27
RU2018131299A3 (de) 2022-01-14

Similar Documents

Publication Publication Date Title
EP0931912B1 (de) Brennkraftmaschine mit variabler Hydraulik-Ventilbetätigungsvorrichtung
US5431133A (en) Low mass two-step valve lifter
EP2870330B1 (de) Ventilspielausgleichselement
US7210438B2 (en) Internal combustion engine having valves with variable actuation each provided with a hydraulic tappet at the outside of the associated actuating unit
EP0324085B1 (de) Hydraulisches Spielausgleichselement
US10890087B2 (en) Variable valve train
US8596238B2 (en) Valve train for internal combustion engines for actuating gas exchange valves
US10738665B2 (en) Sliding cam system
US10533466B2 (en) Variable valve gear with braking cams
KR20160140887A (ko) 로커 아암용 바이어스 기구 및 밸브 브리지의 로스트 모션 컴포넌트
EP0649977B1 (de) Bremsvorrichtung für eine Brennkraftmaschine
US10718237B2 (en) Force transmission device
EP2734714B1 (de) Ventilbetätigungsmechanismus und kraftfahrzeug mit einem solchen ventilbetätigungsmechanismus
US20150204250A1 (en) Valve actuation mechanism and automotive vehicle equipped with such a valve actuation mechanism
US20040168660A1 (en) Apparatus for an internal combustion engine
EP2815088B1 (de) Hydraulische ventilanordnung zur steuerbaren betätigung eines gaswechselventils eines hubkolben-verbrennungsmotors
RU2774747C2 (ru) Система кулачков с регулируемым положением
US20220251978A1 (en) Variable valve train for an engine braking mode
EP3489475B1 (de) System und verfahren zur betätigung eines motorventils eines verbrennungsmotors
US20050056243A1 (en) Device for the variable control of gas exchange valves in an internal combustion engine
US10662832B2 (en) Variable valve drive
EP2834482B1 (de) Gaswechselventilanordnung und ventil
US20140326203A1 (en) Device for actuating two outlet valves, which are acted on via a valve bridge, of a valve-controlled internal combustion engine
DE102016014541A1 (de) Ventiltrieb für eine Verbrennungskraftmaschine

Legal Events

Date Code Title Description
AS Assignment

Owner name: MAN TRUCK & BUS AG, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:DIETRICH, JENS;MALISCHEWSKI, THOMAS;HIRSCHMANN, STEFFEN;SIGNING DATES FROM 20180820 TO 20180828;REEL/FRAME:046743/0213

FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION COUNTED, NOT YET MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4