US10734362B2 - Die stack assembly using an edge separation structure for connectivity through a die of the stack - Google Patents

Die stack assembly using an edge separation structure for connectivity through a die of the stack Download PDF

Info

Publication number
US10734362B2
US10734362B2 US15/619,516 US201715619516A US10734362B2 US 10734362 B2 US10734362 B2 US 10734362B2 US 201715619516 A US201715619516 A US 201715619516A US 10734362 B2 US10734362 B2 US 10734362B2
Authority
US
United States
Prior art keywords
die
semiconductor device
power semiconductor
metal
substantially planar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
US15/619,516
Other versions
US20170278828A1 (en
Inventor
Elmar Wisotzki
Frank Ettingshausen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Littelfuse Inc
Original Assignee
Littelfuse Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Littelfuse Inc filed Critical Littelfuse Inc
Priority to US15/619,516 priority Critical patent/US10734362B2/en
Assigned to IXYS CORPORATION reassignment IXYS CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ETTINGSHAUSEN, FRANK, Wisotzki, Elmar
Publication of US20170278828A1 publication Critical patent/US20170278828A1/en
Assigned to IXYS, LLC reassignment IXYS, LLC MERGER AND CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: IXYS CORPORATION, IXYS, LLC
Assigned to LITTELFUSE, INC. reassignment LITTELFUSE, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: IXYS, LLC
Priority to US16/869,907 priority patent/US10854581B2/en
Application granted granted Critical
Publication of US10734362B2 publication Critical patent/US10734362B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • H01L25/074Stacked arrangements of non-apertured devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3157Partial encapsulation or coating
    • H01L23/3171Partial encapsulation or coating the coating being directly applied to the semiconductor body, e.g. passivation layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49838Geometry or layout
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/58Structural electrical arrangements for semiconductor devices not otherwise provided for, e.g. in combination with batteries
    • H01L23/585Structural electrical arrangements for semiconductor devices not otherwise provided for, e.g. in combination with batteries comprising conductive layers or plates or strips or rods or rings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/33Structure, shape, material or disposition of the layer connectors after the connecting process of a plurality of layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L24/80 - H01L24/90
    • H01L24/92Specific sequence of method steps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/94Batch processes at wafer-level, i.e. with connecting carried out on a wafer comprising a plurality of undiced individual devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/50Multistep manufacturing processes of assemblies consisting of devices, each device being of a type provided for in group H01L27/00 or H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0642Isolation within the component, i.e. internal isolation
    • H01L29/0646PN junctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0642Isolation within the component, i.e. internal isolation
    • H01L29/0649Dielectric regions, e.g. SiO2 regions, air gaps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/083Anode or cathode regions of thyristors or gated bipolar-mode devices
    • H01L29/0834Anode regions of thyristors or gated bipolar-mode devices, e.g. supplementary regions surrounding anode regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic System
    • H01L29/167Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic System further characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41716Cathode or anode electrodes for thyristors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/74Thyristor-type devices, e.g. having four-zone regenerative action
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/0401Bonding areas specifically adapted for bump connectors, e.g. under bump metallisation [UBM]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04026Bonding areas specifically adapted for layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04034Bonding areas specifically adapted for strap connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04042Bonding areas specifically adapted for wire connectors, e.g. wirebond pads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0555Shape
    • H01L2224/05552Shape in top view
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0555Shape
    • H01L2224/05552Shape in top view
    • H01L2224/05554Shape in top view being square
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/0601Structure
    • H01L2224/0603Bonding areas having different sizes, e.g. different heights or widths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/061Disposition
    • H01L2224/0618Disposition being disposed on at least two different sides of the body, e.g. dual array
    • H01L2224/06181On opposite sides of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • H01L2224/113Manufacturing methods by local deposition of the material of the bump connector
    • H01L2224/1133Manufacturing methods by local deposition of the material of the bump connector in solid form
    • H01L2224/11334Manufacturing methods by local deposition of the material of the bump connector in solid form using preformed bumps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/13198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/13298Fillers
    • H01L2224/13299Base material
    • H01L2224/133Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/13339Silver [Ag] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/16227Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the bump connector connecting to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/16238Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the bump connector connecting to a bonding area protruding from the surface of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/27Manufacturing methods
    • H01L2224/273Manufacturing methods by local deposition of the material of the layer connector
    • H01L2224/2733Manufacturing methods by local deposition of the material of the layer connector in solid form
    • H01L2224/27334Manufacturing methods by local deposition of the material of the layer connector in solid form using preformed layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29139Silver [Ag] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/2919Material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29339Silver [Ag] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32135Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/32145Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/32227Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the layer connector connecting to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/32238Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the layer connector connecting to a bonding area protruding from the surface of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/33Structure, shape, material or disposition of the layer connectors after the connecting process of a plurality of layer connectors
    • H01L2224/3301Structure
    • H01L2224/3303Layer connectors having different sizes, e.g. different heights or widths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/33Structure, shape, material or disposition of the layer connectors after the connecting process of a plurality of layer connectors
    • H01L2224/3305Shape
    • H01L2224/33051Layer connectors having different shapes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/33Structure, shape, material or disposition of the layer connectors after the connecting process of a plurality of layer connectors
    • H01L2224/331Disposition
    • H01L2224/3318Disposition being disposed on at least two different sides of the body, e.g. dual array
    • H01L2224/33181On opposite sides of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • H01L2224/4005Shape
    • H01L2224/4009Loop shape
    • H01L2224/40091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • H01L2224/401Disposition
    • H01L2224/40151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/40221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/40225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/40227Connecting the strap to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/41Structure, shape, material or disposition of the strap connectors after the connecting process of a plurality of strap connectors
    • H01L2224/411Disposition
    • H01L2224/4111Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain
    • H01L2224/41112Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain the connectors connecting a common bonding area on the semiconductor or solid-state body to different bonding areas outside the body, e.g. diverging straps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/4501Shape
    • H01L2224/45012Cross-sectional shape
    • H01L2224/45014Ribbon connectors, e.g. rectangular cross-section
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/4501Shape
    • H01L2224/45012Cross-sectional shape
    • H01L2224/45015Cross-sectional shape being circular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4847Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond
    • H01L2224/48472Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond the other connecting portion not on the bonding area also being a wedge bond, i.e. wedge-to-wedge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4911Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain
    • H01L2224/49112Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain the connectors connecting a common bonding area on the semiconductor or solid-state body to different bonding areas outside the body, e.g. diverging wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73253Bump and layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73263Layer and strap connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/8119Arrangement of the bump connectors prior to mounting
    • H01L2224/81191Arrangement of the bump connectors prior to mounting wherein the bump connectors are disposed only on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/812Applying energy for connecting
    • H01L2224/81201Compression bonding
    • H01L2224/81203Thermocompression bonding, e.g. diffusion bonding, pressure joining, thermocompression welding or solid-state welding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/818Bonding techniques
    • H01L2224/8184Sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/831Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus
    • H01L2224/83101Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus as prepeg comprising a layer connector, e.g. provided in an insulating plate member
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83191Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/832Applying energy for connecting
    • H01L2224/83201Compression bonding
    • H01L2224/83203Thermocompression bonding, e.g. diffusion bonding, pressure joining, thermocompression welding or solid-state welding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8384Sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/84Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a strap connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/84Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a strap connector
    • H01L2224/8438Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/84399Material
    • H01L2224/844Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/84438Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/84447Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/8538Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/85399Material
    • H01L2224/854Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/85438Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/85447Copper (Cu) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/922Connecting different surfaces of the semiconductor or solid-state body with connectors of different types
    • H01L2224/9222Sequential connecting processes
    • H01L2224/92242Sequential connecting processes the first connecting process involving a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/922Connecting different surfaces of the semiconductor or solid-state body with connectors of different types
    • H01L2224/9222Sequential connecting processes
    • H01L2224/92242Sequential connecting processes the first connecting process involving a layer connector
    • H01L2224/92246Sequential connecting processes the first connecting process involving a layer connector the second connecting process involving a strap connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/922Connecting different surfaces of the semiconductor or solid-state body with connectors of different types
    • H01L2224/9222Sequential connecting processes
    • H01L2224/92242Sequential connecting processes the first connecting process involving a layer connector
    • H01L2224/92247Sequential connecting processes the first connecting process involving a layer connector the second connecting process involving a wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/94Batch processes at wafer-level, i.e. with connecting carried out on a wafer comprising a plurality of undiced individual devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/11Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L24/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L24/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/27Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L24/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L24/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L24/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L24/41Structure, shape, material or disposition of the strap connectors after the connecting process of a plurality of strap connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L24/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/84Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a strap connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00012Relevant to the scope of the group, the symbol of which is combined with the symbol of this group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1301Thyristor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19107Disposition of discrete passive components off-chip wires

Definitions

  • the described embodiments relate to power semiconductor devices, and more particularly to power semiconductor device dice that have peripheral edge separation structures that are at least in part doped with aluminum.
  • a die stack assembly comprises a first power semiconductor device die and a second power semiconductor device die.
  • the backside of the first power semiconductor device die is mounted to the backside of the second power semiconductor device die.
  • the first power semiconductor device die has a peripheral edge separation structure that extends all the way from a first substantially planar semiconductor surface of the first die to a second substantially planar semiconductor surface of the first die along a side edge of the first die.
  • the peripheral edge separation structure is a P type region that is at least in part doped with aluminum.
  • a surface area of the peripheral edge separation structure of the first die is covered with a metal feature. There is passivation on the first die, but the passivation does not entirely cover the metal feature.
  • the metal feature is covered, formed and sized so that it can serve as a wire bond pad or a landing pad.
  • a metal member (for example, a bond wire or a metal lead of a leadframe or a bond ball or a metal clip) is attached to this unpassivated metal feature such that an electrical connection is established from the metal member, through the metal feature, through the peripheral edge separation structure, through a metal electrode on the backside of the first die, and to an electrode of the second die.
  • the metal feature on the first die is, in some examples, disposed on a top surface of the overall die stack assembly.
  • the metal feature of the first die is, in other examples, disposed on the bottom of the overall die stack assembly.
  • the second power semiconductor die may have, or may not have, a peripheral edge separation structure that is at least in part doped with aluminum.
  • a die-sized interface member is attached to the second power semiconductor device die of the die stack assembly.
  • the first die, the second die, and the die-sized interface member are all cut at the same time as a single larger die from a bonded wafer structure.
  • the first die has a side edge periphery that defines a rectangular planar area bounded on four sides by the side edge periphery of the first die.
  • the second die has a side edge periphery that defines a rectangular planar area bounded on four sides by the side edge periphery of the second die.
  • the die-sized interface member has a side edge periphery that defines a rectangular planar area bounded on four sides by the side edge periphery of the die-sized interface member.
  • the die-sized interface member includes an insulative layer and a plurality of metal portions.
  • the insulative layer may, for example, be a flexible substrate insulative layer of one or more mylar or polyimide layers.
  • the die-sized interface member may be a square flex circuit or a square flexible printed circuit board.
  • a passivation layer on the downward facing surface of the second die is substantially thicker than metal features on the downward facing surface of the second die.
  • the upward facing metal portions of the die-sized interface member extend upward from the plane of the top surface of insulative layer of the die-sized interface member by enough so that a first of the metal portions of the die-sized interface member makes electrical contact with a first metal feature on the bottom of the second die (for example, through an intervening first layer of sintered silver), and so that a second of the metal portions of the die-sized interface member extends upward from the plane of the top surface of the insulative layer of the die-sized interface member so that the second metal portion makes electrical contact with a second metal feature on the bottom of the second die (for example, through an intervening second layer of sintered silver).
  • the two upward facing metal portions of the die-sized interface member have enough offset distance to extend through the thickness of the passivation and to reach the silver or other metal features on the bottom side of the second die.
  • the resulting overall assembly (first die, second die, and die-sized interface member) is then mounted down onto a substrate.
  • Metal portions that extend downward from the bottom of the die-sized interface member register with, and make electrical contact with, corresponding patterned metal features on the top of the substrate.
  • Each metal portion of the die-sized interface member provides an electrical connection from a metal feature on the bottom of the second die to a corresponding patterned metal feature on the top of the substrate.
  • the substrate includes a rigid insulative layer and multiple patterned metal features disposed on the insulative layer.
  • the rigid insulative layer may, for example, be a ceramic substrate layer or an FR4 type fiberglass/epoxy substrate layer.
  • the substrate may be a DBM (Direct Bonded Metal) structure.
  • the resulting power semiconductor die stack structure on the substrate is then mounted to a leadframe. Metal features on the top of the die stack are wire bonded to the substrate and/or to landing pads of the leadframe. Also, various ones of the patterned metal features of the substrate are wirebonded to landing pads of the leadframe as appropriate.
  • a semiconductor package is then formed around and over the assembly.
  • the semiconductor package in one example is formed by overmolding the substrate and the multi-die stack with a volume of encapsulant in an injection molding process.
  • the metal leads of the lead frame that extend from the volume of encapsulant are then trimmed and lead formed to make a standard leaded plastic semiconductor device package.
  • the peripheral edge separation structure of one power semiconductor device die of the die stack is used to make electrical connection through that die and to an electrode of the other power semiconductor device die of the die stack.
  • FIG. 1 is a cross-sectional side view of a stacked power semiconductor device die assembly in accordance with one novel aspect.
  • FIG. 2 is a circuit diagram of the assembly of FIG. 1 .
  • FIG. 3 is a perspective diagram of a die stack assembly involving a first power semiconductor device die, a second power semiconductor device die, and a die-sized interface member, where the die stack assembly is mounted to the top of a substrate.
  • FIG. 4 is a cross-sectional diagram of the assembly of FIG. 3 .
  • FIG. 5 is a flowchart of a method of fabricating a packaged power semiconductor device in accordance with another novel aspect.
  • FIG. 6 is a cross-sectional diagram of a peripheral edge separation structure that may be employed in the structures of FIG. 1 , FIG. 3 and FIG. 4 .
  • first object when a first object is referred to as being disposed “over” or “on” or “covering” a second object, it is to be understood that the first object can be directly on the second object, or an intervening object may be present between the first and second objects.
  • terms such as “top”, “bottom”, “side”, “up”, “upward”, “down”, “downward”, “vertically”, “horizontally”, “laterally”, “lower” and “underneath” describe relative orientations between different parts of the structure being described, and it is to be understood that the overall structure being described can actually be oriented in any way in three-dimensional space.
  • FIG. 1 is a cross-sectional side view diagram of a power semiconductor device assembly 1 .
  • Assembly 1 includes a first power semiconductor device die 2 and a second power semiconductor device die 3 .
  • the backside of the first die 2 is bonded to the backside of the second die 3 by a conductive metal layer 4 .
  • conductive metal layer 4 is a layer of sintered silver.
  • the first and second dice 2 and 3 are shown in simplified fashion. Each of the first and second dice 2 and 3 may, for example, include additional peripheral guard rings (not shown) and a metal field plate (not shown) as is known in the power semiconductor device arts.
  • the first die 2 is a thyristor die (also called a SCR or “Silicon Controlled Rectifier”).
  • the first die 2 has a P type semiconductor region 5 , an N type semiconductor region 6 , a P type semiconductor region 7 , and an N type semiconductor region 8 .
  • the N type semiconductor region 8 is referred to as the N-emitter region.
  • the P type semiconductor region 7 is referred to as the P-base region.
  • the P type semiconductor region 5 comprises a planar P type layer portion 5 A that extends across the entire backside of the die as well as a peripheral edge separation P type diffusion region 5 B. The two regions 5 A and 5 B merge together to form the larger P type semiconductor region 5 .
  • Region 5 A is also referred to as the P-emitter region.
  • the peripheral edge separation diffusion region 5 B is an amount of P type semiconductor material that extends all the way from a first substantially planar semiconductor surface 2 A of the die to a second substantially planar surface 2 B of the die along a side edge 9 of the die. No part of any side edge of the first die 2 is N type semiconductor material. At least a part of the P type semiconductor region 5 is doped with aluminum.
  • the first die 2 has a reverse breakdown voltage in excess of 3000 volts.
  • a metal anode electrode 10 makes contact with the bottom surface of the P-emitter region 5 . It is to this metal anode electrode 10 that the conductive layer 4 bonds.
  • a metal feature 11 makes contact with the N type region 8 .
  • Region 8 is also referred to as the N-emitter region.
  • Metal feature 11 is the metal cathode electrode of the device.
  • a metal feature 12 is disposed on the top semiconductor surface 2 A and makes contact the P type P-base region 7 .
  • This metal feature 12 is the metal gate electrode (a control electrode) of the device.
  • a metal feature 13 is disposed on the top surface of the P type peripheral edge separation diffusion region 5 B. This metal feature 13 is the metal anode electrode of the device.
  • Metal feature 13 when the die is considered from the top-down perspective, appears as a four-sided peripheral ring of metal that extends along the four peripheral edges of the die 2 .
  • This ring of metal is not entirely covered with passivation, but rather is at least in part exposed from the top of die 2 so that an electrode connection can be made down to the ring by one or more bond wires.
  • Reference numeral 14 identifies areas of passivation that are disposed on the top semiconductor surface 2 A.
  • the second die 3 is an Anode-Gated Thyristor (an AGT) die.
  • Second die 3 has a P type semiconductor region 15 , an N type semiconductor region 16 , a P type semiconductor region 17 , and an N type semiconductor region 18 .
  • N type region 19 is also referred to as the N-emitter region.
  • the P type semiconductor region 15 is also referred to as the P-emitter region.
  • the N type semiconductor region 18 is also referred to as the N-emitter region.
  • the P type semiconductor region 17 A is also referred to as the P-base region.
  • P type semiconductor region 17 comprises a planar P type layer portion 17 A that extends across the entire backside of the die as well as a peripheral edge separation P type diffusion region 17 B.
  • the peripheral edge separation diffusion region 17 B is an amount of P type semiconductor material that extends all the way from a first substantially planar semiconductor surface 20 A of the die to a second substantially planar surface 20 B of the die along a side edge 21 of the die. At least a part of the P type semiconductor region 17 is doped with aluminum.
  • a metal cathode electrode 22 makes contact with the N-emitter region 18 . It is to this metal cathode electrode 22 that the conductive layer 4 bonds.
  • a metal feature 23 makes contact with the P type P-emitter region 15 . This metal feature 23 is the metal anode electrode of the device.
  • a metal feature 24 is disposed on semiconductor surface 20 A and makes contact to the N type region 19 and to the P type P-emitter region 15 .
  • This metal feature 24 is the metal gate electrode (a control electrode) of the device of the second die.
  • Reference numeral 25 identifies an area of passivation that is disposed on the semiconductor surface 20 A.
  • FIG. 2 is a circuit diagram of the circuit of FIG. 1 .
  • the metal anode electrode 10 of the first die 2 is mounted to, and is electrically coupled to, the metal cathode electrode 22 of the second die 3 .
  • the metal anode electrode 10 of the first die 2 is mounted to the metal cathode electrode 22 of the second die 3 by sintered silver metal layer 4 .
  • Metal feature 12 provides a gate electrode bond pad for the first die 2 .
  • Metal feature 11 provides a cathode electrode bond pad for the first die 2 .
  • Metal feature 13 provides an anode electrode bond pad for first die 2 , and simultaneously provides a bond pad for the cathode electrode of the second die 3 due to the fact that the P emitter region 5 of the first die is mounted to the N-emitter region 18 of the second die.
  • Metal feature 23 provides the anode electrode bond pad of the second die 3 .
  • Metal feature 24 provides the gate electrode bond pad of the second die 3 .
  • FIG. 3 is a perspective view of an assembly 30 .
  • the assembly 30 includes the assembly 1 of FIG. 1 , as well as a die-sized interface member 31 , a substrate 32 , and bond wires 33 - 37 .
  • Bond wire 35 physically connects at one end to a patterned metal feature 38 of the substrate 32 .
  • Substrate 32 which in one example is a Direct-Bonded Metal (“DBM”) or a Direct-Bonded Copper (“DBC”) or a Direct-Copper Bonded (“DCB”) structure, includes an insulative body layer 47 , and several patterned metal features 38 , 39 , 40 , 44 and 46 disposed on the insulative body layer 47 .
  • DBM Direct-Bonded Metal
  • DBC Direct-Bonded Copper
  • DCB Direct-Copper Bonded
  • bond wire 35 an electrical connection is established from the patterned metal feature 38 , through the bond wire 35 , to a bond pad portion 41 of the ring metal feature 13 , and then through the peripheral edge separation diffusion region 5 B of the first die 2 , and through the metal layers 10 , 4 , and 22 , to the N type semiconductor region 18 of the second die 3 .
  • Metal layer 22 is an electrode of the second die 3 .
  • bond wire 34 couples patterned metal feature 39 of the substrate 32 to a bond pad portion 42 of the metal cathode electrode 11 of the first die 2 .
  • Bond wire 33 couples patterned metal feature 40 to metal feature 12 (gate electrode bond pad 12 ) of first die 2 .
  • Each of the bond pad portions 41 , 42 , and 12 on the top of the first die is at least one hundred microns wide by one hundred microns long so that there is enough square surface area of exposed metal provided for wirebonding.
  • Bond pad portion 41 is preferably disposed less than one hundred microns from the side edge 9 of the first die 2 .
  • Metal gate electrode 24 on the bottom of assembly 1 is coupled through a metal portion 43 of the die-sized interface member 31 to a patterned metal feature 44 on the top of substrate 32 .
  • Metal anode electrode 23 on the bottom of assembly 1 is coupled through a metal portion 45 of die-sized interface member 31 to a patterned metal feature 46 on the top of substrate 32 .
  • Bond wire 37 couples the patterned metal feature 44 of the substrate 32 to another object such as, for example, a first bonding pad (not shown) of a first lead of a lead frame.
  • Bond wire 36 couples the patterned metal feature 46 of the substrate 32 to another object such as, for example, a second bonding pad (not shown) of a second lead of the lead frame.
  • FIG. 4 is a cross-sectional diagram that shows the assembly 30 of FIG. 3 in more detail.
  • the cross-sectional view of FIG. 4 is taken along sectional line A-A′ of FIG. 3 .
  • Die-sized interface member 31 includes an insulative layer 56 as well as a number of metal portions. Although not illustrated this way in FIG. 4 , insulative layer 56 may be a composite sandwich structure of multiple insulative layers and each metal portion may also be a composite sandwich structure of multiple metal layers. Each metal portion of the die-sized interface member 31 provides electrical contact from the top side of insulative layer 56 , through the insulative layer 56 , and to the bottom side of insulative layer 56 . Two of the metal portions are identified in FIG. 4 by reference numerals 43 and 45 .
  • Passivation layer 25 on the downward facing surface of the second die 3 is substantially thicker than metal features 23 and 24 .
  • the metal portions 43 and 45 of the die-sized interface member 31 extend upward from the top surface of insulative layer 56 by enough so that the metal portion 43 makes physical and electrical contact with metal feature 24 , and so that metal portion 45 makes physical and electrical contact with metal feature 23 .
  • Die-sized interface member 31 is fabricated so that the metal portions of the die-sized interface member 31 register with, and can make electrical contact with, proper corresponding metal features on the downward facing surface of the second die 3 .
  • the metal portions 43 and 45 of the die-sized interface member 31 also register with, and make electrical contact with, corresponding metal features on the top side of substrate 32 .
  • Reference numeral 57 identifies amounts of adhesive disposed between the die-sized interface member 31 and the bottom of the second die 3 .
  • Reference numeral 58 identifies an amount of sintered silver that bonds and electrically couples metal portion 43 of the die-sized interface member 31 to the corresponding metal feature 24 on the bottom of the second die 3 .
  • Reference numeral 59 identifies an amount of sintered silver that bonds and electrically couples metal portion 45 of the die-sized interface member 31 to the corresponding metal feature 23 on the bottom of the second die 3 .
  • the assembly structure of FIG. 3 After the assembly structure of FIG. 3 has been fabricated, it is packaged and is thereby incorporated into a semiconductor device package.
  • the assembly structure of FIG. 3 is wire bonded and/or attached as appropriate to a stamped metal lead frame (not shown).
  • the assembly structure of FIG. 3 is then overmolded with a volume of an encapsulant in an injection molding process.
  • the metal leads of the lead frame that extend from the volume of encapsulant are then trimmed and lead formed to make a standard leaded plastic semiconductor device package.
  • FIG. 5 is a flowchart of a method 100 in accordance with one novel aspect.
  • a first wafer of power semiconductor devices is fabricated (step 101 ). Each of what will be individual dice of the first wafer has a peripheral edge separation structure.
  • a second wafer of power semiconductor devices is fabricated (step 102 ). The backside of the first wafer is wafer bonded (step 103 ) to the backside of the second wafer, thereby obtaining a bonded wafer structure.
  • the backside of a wafer is the side of the wafer that does not have any gate electrodes.
  • the wafer bonding is done by sandwiching a foil of sinterable material between the two wafers, and then under pressure heating the sandwich such that the silver of the sinter foil sinters, and in so bonds the two wafers together.
  • a suitable sinter foil can be obtained from Alpha Sintered Metals, 95 Mason Run Road, Ridgway, Pa. 15853. With adequate pressure, the sintering temperature and duration of the sintering operation are reduced to the point that the semiconductor structures within the two wafers are not damaged in this high temperature step.
  • a wafer-shaped interface member is attached (step 104 ) to the second wafer side of the bonded wafer structure.
  • the wafer-shaped interface member is a flexible wafer-shaped interface member available from Mektec International Corporation, 1731 Technology Drive, Suite 840, San Jose, Calif. 95110.
  • the flexible wafer-shaped interface member includes an insulative layer that has patterned metal portions. The insulative layer has holes through it such that each of the patterned metal portions of the wafer-shaped interface member provides an electrical connection from one side of the wafer-shaped interface member, through the insulative layer, and to the other side of the wafer-shaped interface member.
  • the insulative layer of the wafer-shaped interface member may, for example, be a flexible layer of insulative material such as mylar or polyimide. In another example, the insulative layer is a rigid layer of insulative material such as FR4 fiberglass and epoxy.
  • regions of sintered or sinterable silver may be formed or otherwise placed on the metal features on the bottom side of the second wafer.
  • An adhesive can be applied to selected parts of the bottom of the prepared second wafer.
  • the wafer-shaped interface member is then placed onto the adhesive. The entire sandwich structure is then heated under appropriate pressure and temperature so that discrete amounts of sinterable silver form good electrical contacts between the metal features on the bottom of the second wafer and corresponding metal portions on top of the wafer-shaped interface member.
  • each power semiconductor device die assembly includes a first power semiconductor device die, a second power semiconductor device die, and a die-sized interface member.
  • the peripheral edge separation structure of the first die is electrically coupled to an electrode of the second die. Because the first power semiconductor device die, the second power semiconductor device die, and the die-sized interface member are all cut at the same time from the same bonded wafer structure, the periphery of the first die, the periphery of the second die, and the periphery of the die-sized interface member are all identical.
  • the cross-section of the power semiconductor device die assembly is as shown in FIG. 4 .
  • bond wires are attached (step 106 ) to bond pads on the top surface of the power semiconductor device assembly.
  • the bottom of the power semiconductor device assembly is mounted to the top of a substrate, and certain of the bond pads on the top of the power semiconductor device die assembly are wire bonded to patterned metal features on the top of the substrate as shown in FIG. 3 .
  • the bottom of the resulting structure is placed on a device support portion of a lead frame, and more wire bonding is performed to connect appropriate parts of the assembly and/or substrate to corresponding bonding pads of leads of the lead frame.
  • a wire bond is left attached to a bond pad on the top surface of the die assembly such that an electrical connection exists from the bond wire, through the bond pad, through the peripheral edge separation structure of the first die, and to an electrode of the second die.
  • several bond wires will be attached to the same four-sided ring-shaped metal feature 13 . These several bond wires provide separate parallel current paths to/from the four-sided ring-shaped metal feature 13 . Accordingly, the novel ring-shaped metal feature 13 may have a ring of bond pad areas for engaging multiple separate bond wires.
  • the peripheral edge separation structure of the first wafer is formed by providing a first strip of aluminum on the top of the N-type wafer so that the strip extends along what will be the ultimate side edges of the device die.
  • a second strip of aluminum is provided on the opposite side of the wafer, directly underneath the first strip.
  • the two aluminum strips act as a diffusion sources.
  • the aluminum strips are first converted into aluminum oxide by heating the first wafer in a nitrogen-oxygen atmosphere at a temperature of about 500 degrees Celsius, which is a temperature below the 660 degree Celsius melting point of aluminum. Once the aluminum has been oxidized, the first wafer is heated to a higher temperature of about 1250 degrees Celsius.
  • This P type region separates the active area of the device in the center of what will be the die (after singulation) from what will be the side edges of the die (after singulation).
  • the peripheral edge separation structure keeps the high electric fields of the reverse biased depletion region in the active area from reaching the side edges of the die.
  • the peripheral edge separation structure of the first wafer is the structure shown in cross-section in FIG. 6 .
  • a region of P type semiconductor material extends all the way from the top substantially planar semiconductor surface of the wafer to the bottom substantially planar semiconductor surface of the wafer.
  • this P type semiconductor material includes an amount of P type polysilicon 61 disposed on a sidewall of a peripheral trench 48 , and also includes a region of P type semiconductor material 49 that extends upward from semiconductor surface 2 B. After deposition of P type polysilicon 61 in the trench, the remainder of the trench is filled, for example with oxide 50 .
  • a peripheral four-sided ring-shaped metal feature 51 extends along the peripheral side edges of the die of FIG. 6 at surface 2 A in the same way that the four-sided ring-shaped metal feature 13 extends along the peripheral side edges of the first die of FIG. 1 .
  • P type layer 60 of FIG. 6 corresponds to P type layer 5 A of FIG. 1 .
  • Metal layer 52 of FIG. 6 corresponds to metal layer 10 of FIG. 1 .
  • Passivation layer 53 of FIG. 6 corresponds to passivation layer 14 of FIG. 1 .
  • N type region 54 of FIG. 6 corresponds to N type region 6 of FIG. 1 .
  • Side edge 55 of FIG. 6 corresponds to side edge 9 of FIG. 1 .
  • U.S. patent application Ser. No. 14/948,156 entitled “Trench Separation Diffusion For High Voltage Device”, filed Nov. 20, 2015, by Wisotzki et al. (the entire subject matter of which is incorporated by reference herein).

Abstract

A die stack assembly includes first and second power semiconductor device dice. The first die has a P type peripheral edge separation structure that extends from the top planar semiconductor surface of the first die all the way to the bottom planar semiconductor surface of the die, and that is doped at least in part with aluminum. The backside of the first die is mounted to the backside of the second die. A metal feature that is not covered with passivation, and that can serve as a bonding pad, is disposed on part of the peripheral edge separation structure. A metal member (for example, a bond wire or metal clip) contacts the metal feature such that an electrical connection is established from the metal member, through the metal feature, through the peripheral edge separation structure of the first die, and to an electrode of the second die.

Description

CROSS REFERENCE TO RELATED APPLICATIONS
This application is a continuation of, and claims priority under 35 U.S.C. § 120 from, nonprovisional U.S. patent application Ser. No. 15/056,818 entitled “Die Stack Assembly Using An Edge Separation Structure For Connectivity Through A Die Of The Stack,” filed on Feb. 29, 2016, now U.S. Pat. No. 9,704,832, the subject matter of which is incorporated herein by reference.
TECHNICAL FIELD
The described embodiments relate to power semiconductor devices, and more particularly to power semiconductor device dice that have peripheral edge separation structures that are at least in part doped with aluminum.
SUMMARY
In a first novel aspect, a die stack assembly comprises a first power semiconductor device die and a second power semiconductor device die. The backside of the first power semiconductor device die is mounted to the backside of the second power semiconductor device die. The first power semiconductor device die has a peripheral edge separation structure that extends all the way from a first substantially planar semiconductor surface of the first die to a second substantially planar semiconductor surface of the first die along a side edge of the first die. The peripheral edge separation structure is a P type region that is at least in part doped with aluminum. A surface area of the peripheral edge separation structure of the first die is covered with a metal feature. There is passivation on the first die, but the passivation does not entirely cover the metal feature. The metal feature is covered, formed and sized so that it can serve as a wire bond pad or a landing pad. A metal member (for example, a bond wire or a metal lead of a leadframe or a bond ball or a metal clip) is attached to this unpassivated metal feature such that an electrical connection is established from the metal member, through the metal feature, through the peripheral edge separation structure, through a metal electrode on the backside of the first die, and to an electrode of the second die. The metal feature on the first die is, in some examples, disposed on a top surface of the overall die stack assembly. The metal feature of the first die is, in other examples, disposed on the bottom of the overall die stack assembly. The second power semiconductor die may have, or may not have, a peripheral edge separation structure that is at least in part doped with aluminum.
In a second novel aspect, a die-sized interface member is attached to the second power semiconductor device die of the die stack assembly. The first die, the second die, and the die-sized interface member are all cut at the same time as a single larger die from a bonded wafer structure. The first die has a side edge periphery that defines a rectangular planar area bounded on four sides by the side edge periphery of the first die. The second die has a side edge periphery that defines a rectangular planar area bounded on four sides by the side edge periphery of the second die. The die-sized interface member has a side edge periphery that defines a rectangular planar area bounded on four sides by the side edge periphery of the die-sized interface member. These rectangular planar areas of the first die, the second die, and the die-sized interface member are all of the same size and shape. The die-sized interface member includes an insulative layer and a plurality of metal portions. The insulative layer may, for example, be a flexible substrate insulative layer of one or more mylar or polyimide layers. The die-sized interface member may be a square flex circuit or a square flexible printed circuit board. A passivation layer on the downward facing surface of the second die is substantially thicker than metal features on the downward facing surface of the second die. The upward facing metal portions of the die-sized interface member extend upward from the plane of the top surface of insulative layer of the die-sized interface member by enough so that a first of the metal portions of the die-sized interface member makes electrical contact with a first metal feature on the bottom of the second die (for example, through an intervening first layer of sintered silver), and so that a second of the metal portions of the die-sized interface member extends upward from the plane of the top surface of the insulative layer of the die-sized interface member so that the second metal portion makes electrical contact with a second metal feature on the bottom of the second die (for example, through an intervening second layer of sintered silver). The two upward facing metal portions of the die-sized interface member have enough offset distance to extend through the thickness of the passivation and to reach the silver or other metal features on the bottom side of the second die. The resulting overall assembly (first die, second die, and die-sized interface member) is then mounted down onto a substrate. Metal portions that extend downward from the bottom of the die-sized interface member register with, and make electrical contact with, corresponding patterned metal features on the top of the substrate. Each metal portion of the die-sized interface member provides an electrical connection from a metal feature on the bottom of the second die to a corresponding patterned metal feature on the top of the substrate. In one example, the substrate includes a rigid insulative layer and multiple patterned metal features disposed on the insulative layer. The rigid insulative layer may, for example, be a ceramic substrate layer or an FR4 type fiberglass/epoxy substrate layer. The substrate may be a DBM (Direct Bonded Metal) structure. The resulting power semiconductor die stack structure on the substrate is then mounted to a leadframe. Metal features on the top of the die stack are wire bonded to the substrate and/or to landing pads of the leadframe. Also, various ones of the patterned metal features of the substrate are wirebonded to landing pads of the leadframe as appropriate. A semiconductor package is then formed around and over the assembly. The semiconductor package in one example is formed by overmolding the substrate and the multi-die stack with a volume of encapsulant in an injection molding process. The metal leads of the lead frame that extend from the volume of encapsulant are then trimmed and lead formed to make a standard leaded plastic semiconductor device package. Within the package, the peripheral edge separation structure of one power semiconductor device die of the die stack is used to make electrical connection through that die and to an electrode of the other power semiconductor device die of the die stack.
Further details and embodiments and techniques are described in the detailed description below. This summary does not purport to define the invention. The invention is defined by the claims.
BRIEF DESCRIPTION OF THE DRAWINGS
The accompanying drawings, where like numerals indicate like components, illustrate embodiments of the invention.
FIG. 1 is a cross-sectional side view of a stacked power semiconductor device die assembly in accordance with one novel aspect.
FIG. 2 is a circuit diagram of the assembly of FIG. 1.
FIG. 3 is a perspective diagram of a die stack assembly involving a first power semiconductor device die, a second power semiconductor device die, and a die-sized interface member, where the die stack assembly is mounted to the top of a substrate.
FIG. 4 is a cross-sectional diagram of the assembly of FIG. 3.
FIG. 5 is a flowchart of a method of fabricating a packaged power semiconductor device in accordance with another novel aspect.
FIG. 6 is a cross-sectional diagram of a peripheral edge separation structure that may be employed in the structures of FIG. 1, FIG. 3 and FIG. 4.
DETAILED DESCRIPTION
Reference will now be made in detail to background examples and some embodiments of the invention, examples of which are illustrated in the accompanying drawings. In the description and claims below, when a first object is referred to as being disposed “over” or “on” or “covering” a second object, it is to be understood that the first object can be directly on the second object, or an intervening object may be present between the first and second objects. Similarly, terms such as “top”, “bottom”, “side”, “up”, “upward”, “down”, “downward”, “vertically”, “horizontally”, “laterally”, “lower” and “underneath” describe relative orientations between different parts of the structure being described, and it is to be understood that the overall structure being described can actually be oriented in any way in three-dimensional space.
FIG. 1 is a cross-sectional side view diagram of a power semiconductor device assembly 1. Assembly 1 includes a first power semiconductor device die 2 and a second power semiconductor device die 3. The backside of the first die 2 is bonded to the backside of the second die 3 by a conductive metal layer 4. In one example, conductive metal layer 4 is a layer of sintered silver. The first and second dice 2 and 3 are shown in simplified fashion. Each of the first and second dice 2 and 3 may, for example, include additional peripheral guard rings (not shown) and a metal field plate (not shown) as is known in the power semiconductor device arts.
The first die 2 is a thyristor die (also called a SCR or “Silicon Controlled Rectifier”). The first die 2 has a P type semiconductor region 5, an N type semiconductor region 6, a P type semiconductor region 7, and an N type semiconductor region 8. The N type semiconductor region 8 is referred to as the N-emitter region. The P type semiconductor region 7 is referred to as the P-base region. The P type semiconductor region 5 comprises a planar P type layer portion 5A that extends across the entire backside of the die as well as a peripheral edge separation P type diffusion region 5B. The two regions 5A and 5B merge together to form the larger P type semiconductor region 5. Region 5A is also referred to as the P-emitter region. The peripheral edge separation diffusion region 5B is an amount of P type semiconductor material that extends all the way from a first substantially planar semiconductor surface 2A of the die to a second substantially planar surface 2B of the die along a side edge 9 of the die. No part of any side edge of the first die 2 is N type semiconductor material. At least a part of the P type semiconductor region 5 is doped with aluminum. The first die 2 has a reverse breakdown voltage in excess of 3000 volts. A metal anode electrode 10 makes contact with the bottom surface of the P-emitter region 5. It is to this metal anode electrode 10 that the conductive layer 4 bonds. At the top of the die 2, a metal feature 11 makes contact with the N type region 8. Region 8 is also referred to as the N-emitter region. Metal feature 11 is the metal cathode electrode of the device. A metal feature 12 is disposed on the top semiconductor surface 2A and makes contact the P type P-base region 7. This metal feature 12 is the metal gate electrode (a control electrode) of the device. A metal feature 13 is disposed on the top surface of the P type peripheral edge separation diffusion region 5B. This metal feature 13 is the metal anode electrode of the device. Metal feature 13, when the die is considered from the top-down perspective, appears as a four-sided peripheral ring of metal that extends along the four peripheral edges of the die 2. This ring of metal is not entirely covered with passivation, but rather is at least in part exposed from the top of die 2 so that an electrode connection can be made down to the ring by one or more bond wires. Reference numeral 14 identifies areas of passivation that are disposed on the top semiconductor surface 2A.
The second die 3 is an Anode-Gated Thyristor (an AGT) die. Second die 3 has a P type semiconductor region 15, an N type semiconductor region 16, a P type semiconductor region 17, and an N type semiconductor region 18. N type region 19 is also referred to as the N-emitter region. The P type semiconductor region 15 is also referred to as the P-emitter region. The N type semiconductor region 18 is also referred to as the N-emitter region. The P type semiconductor region 17A is also referred to as the P-base region. P type semiconductor region 17 comprises a planar P type layer portion 17A that extends across the entire backside of the die as well as a peripheral edge separation P type diffusion region 17B. The two regions 17A and 17B merge together to form the larger P type semiconductor region 17. The peripheral edge separation diffusion region 17B is an amount of P type semiconductor material that extends all the way from a first substantially planar semiconductor surface 20A of the die to a second substantially planar surface 20B of the die along a side edge 21 of the die. At least a part of the P type semiconductor region 17 is doped with aluminum. A metal cathode electrode 22 makes contact with the N-emitter region 18. It is to this metal cathode electrode 22 that the conductive layer 4 bonds. A metal feature 23 makes contact with the P type P-emitter region 15. This metal feature 23 is the metal anode electrode of the device. A metal feature 24 is disposed on semiconductor surface 20A and makes contact to the N type region 19 and to the P type P-emitter region 15. This metal feature 24 is the metal gate electrode (a control electrode) of the device of the second die. Reference numeral 25 identifies an area of passivation that is disposed on the semiconductor surface 20A.
FIG. 2 is a circuit diagram of the circuit of FIG. 1. The metal anode electrode 10 of the first die 2 is mounted to, and is electrically coupled to, the metal cathode electrode 22 of the second die 3. The metal anode electrode 10 of the first die 2 is mounted to the metal cathode electrode 22 of the second die 3 by sintered silver metal layer 4. Metal feature 12 provides a gate electrode bond pad for the first die 2. Metal feature 11 provides a cathode electrode bond pad for the first die 2. Metal feature 13 provides an anode electrode bond pad for first die 2, and simultaneously provides a bond pad for the cathode electrode of the second die 3 due to the fact that the P emitter region 5 of the first die is mounted to the N-emitter region 18 of the second die. Metal feature 23 provides the anode electrode bond pad of the second die 3. Metal feature 24 provides the gate electrode bond pad of the second die 3.
FIG. 3 is a perspective view of an assembly 30. The assembly 30 includes the assembly 1 of FIG. 1, as well as a die-sized interface member 31, a substrate 32, and bond wires 33-37. Bond wire 35 physically connects at one end to a patterned metal feature 38 of the substrate 32. Substrate 32, which in one example is a Direct-Bonded Metal (“DBM”) or a Direct-Bonded Copper (“DBC”) or a Direct-Copper Bonded (“DCB”) structure, includes an insulative body layer 47, and several patterned metal features 38, 39, 40, 44 and 46 disposed on the insulative body layer 47. Through this bond wire 35, an electrical connection is established from the patterned metal feature 38, through the bond wire 35, to a bond pad portion 41 of the ring metal feature 13, and then through the peripheral edge separation diffusion region 5B of the first die 2, and through the metal layers 10, 4, and 22, to the N type semiconductor region 18 of the second die 3. Metal layer 22 is an electrode of the second die 3. In addition, bond wire 34 couples patterned metal feature 39 of the substrate 32 to a bond pad portion 42 of the metal cathode electrode 11 of the first die 2. Bond wire 33 couples patterned metal feature 40 to metal feature 12 (gate electrode bond pad 12) of first die 2. Each of the bond pad portions 41, 42, and 12 on the top of the first die is at least one hundred microns wide by one hundred microns long so that there is enough square surface area of exposed metal provided for wirebonding. Bond pad portion 41 is preferably disposed less than one hundred microns from the side edge 9 of the first die 2. Metal gate electrode 24 on the bottom of assembly 1 is coupled through a metal portion 43 of the die-sized interface member 31 to a patterned metal feature 44 on the top of substrate 32. Metal anode electrode 23 on the bottom of assembly 1 is coupled through a metal portion 45 of die-sized interface member 31 to a patterned metal feature 46 on the top of substrate 32. Bond wire 37 couples the patterned metal feature 44 of the substrate 32 to another object such as, for example, a first bonding pad (not shown) of a first lead of a lead frame. Bond wire 36 couples the patterned metal feature 46 of the substrate 32 to another object such as, for example, a second bonding pad (not shown) of a second lead of the lead frame.
FIG. 4 is a cross-sectional diagram that shows the assembly 30 of FIG. 3 in more detail. The cross-sectional view of FIG. 4 is taken along sectional line A-A′ of FIG. 3. Die-sized interface member 31 includes an insulative layer 56 as well as a number of metal portions. Although not illustrated this way in FIG. 4, insulative layer 56 may be a composite sandwich structure of multiple insulative layers and each metal portion may also be a composite sandwich structure of multiple metal layers. Each metal portion of the die-sized interface member 31 provides electrical contact from the top side of insulative layer 56, through the insulative layer 56, and to the bottom side of insulative layer 56. Two of the metal portions are identified in FIG. 4 by reference numerals 43 and 45. Passivation layer 25 on the downward facing surface of the second die 3 is substantially thicker than metal features 23 and 24. The metal portions 43 and 45 of the die-sized interface member 31 extend upward from the top surface of insulative layer 56 by enough so that the metal portion 43 makes physical and electrical contact with metal feature 24, and so that metal portion 45 makes physical and electrical contact with metal feature 23. Die-sized interface member 31 is fabricated so that the metal portions of the die-sized interface member 31 register with, and can make electrical contact with, proper corresponding metal features on the downward facing surface of the second die 3. The metal portions 43 and 45 of the die-sized interface member 31 also register with, and make electrical contact with, corresponding metal features on the top side of substrate 32. Reference numeral 57 identifies amounts of adhesive disposed between the die-sized interface member 31 and the bottom of the second die 3. Reference numeral 58 identifies an amount of sintered silver that bonds and electrically couples metal portion 43 of the die-sized interface member 31 to the corresponding metal feature 24 on the bottom of the second die 3. Reference numeral 59 identifies an amount of sintered silver that bonds and electrically couples metal portion 45 of the die-sized interface member 31 to the corresponding metal feature 23 on the bottom of the second die 3.
After the assembly structure of FIG. 3 has been fabricated, it is packaged and is thereby incorporated into a semiconductor device package. In one example, the assembly structure of FIG. 3 is wire bonded and/or attached as appropriate to a stamped metal lead frame (not shown). The assembly structure of FIG. 3 is then overmolded with a volume of an encapsulant in an injection molding process. The metal leads of the lead frame that extend from the volume of encapsulant are then trimmed and lead formed to make a standard leaded plastic semiconductor device package.
FIG. 5 is a flowchart of a method 100 in accordance with one novel aspect. A first wafer of power semiconductor devices is fabricated (step 101). Each of what will be individual dice of the first wafer has a peripheral edge separation structure. A second wafer of power semiconductor devices is fabricated (step 102). The backside of the first wafer is wafer bonded (step 103) to the backside of the second wafer, thereby obtaining a bonded wafer structure. The backside of a wafer is the side of the wafer that does not have any gate electrodes. In one example, the wafer bonding is done by sandwiching a foil of sinterable material between the two wafers, and then under pressure heating the sandwich such that the silver of the sinter foil sinters, and in so bonds the two wafers together. A suitable sinter foil can be obtained from Alpha Sintered Metals, 95 Mason Run Road, Ridgway, Pa. 15853. With adequate pressure, the sintering temperature and duration of the sintering operation are reduced to the point that the semiconductor structures within the two wafers are not damaged in this high temperature step.
Next, a wafer-shaped interface member is attached (step 104) to the second wafer side of the bonded wafer structure. In one example, the wafer-shaped interface member is a flexible wafer-shaped interface member available from Mektec International Corporation, 1731 Technology Drive, Suite 840, San Jose, Calif. 95110. The flexible wafer-shaped interface member includes an insulative layer that has patterned metal portions. The insulative layer has holes through it such that each of the patterned metal portions of the wafer-shaped interface member provides an electrical connection from one side of the wafer-shaped interface member, through the insulative layer, and to the other side of the wafer-shaped interface member. The insulative layer of the wafer-shaped interface member may, for example, be a flexible layer of insulative material such as mylar or polyimide. In another example, the insulative layer is a rigid layer of insulative material such as FR4 fiberglass and epoxy. Prior to attaching the wafer-shaped interface member to the bottom of the second wafer, regions of sintered or sinterable silver may be formed or otherwise placed on the metal features on the bottom side of the second wafer. An adhesive can be applied to selected parts of the bottom of the prepared second wafer. The wafer-shaped interface member is then placed onto the adhesive. The entire sandwich structure is then heated under appropriate pressure and temperature so that discrete amounts of sinterable silver form good electrical contacts between the metal features on the bottom of the second wafer and corresponding metal portions on top of the wafer-shaped interface member.
After attachment of the wafer-shaped interface member to the second wafer of the bonded wafer structure, the bonded wafer structure is diced (step 105) so that a plurality of identical power semiconductor device die assemblies is obtained. Each power semiconductor device die assembly includes a first power semiconductor device die, a second power semiconductor device die, and a die-sized interface member. The peripheral edge separation structure of the first die is electrically coupled to an electrode of the second die. Because the first power semiconductor device die, the second power semiconductor device die, and the die-sized interface member are all cut at the same time from the same bonded wafer structure, the periphery of the first die, the periphery of the second die, and the periphery of the die-sized interface member are all identical. The cross-section of the power semiconductor device die assembly is as shown in FIG. 4.
Next, bond wires are attached (step 106) to bond pads on the top surface of the power semiconductor device assembly. In one example, the bottom of the power semiconductor device assembly is mounted to the top of a substrate, and certain of the bond pads on the top of the power semiconductor device die assembly are wire bonded to patterned metal features on the top of the substrate as shown in FIG. 3. The bottom of the resulting structure is placed on a device support portion of a lead frame, and more wire bonding is performed to connect appropriate parts of the assembly and/or substrate to corresponding bonding pads of leads of the lead frame. After the wire bonding, a wire bond is left attached to a bond pad on the top surface of the die assembly such that an electrical connection exists from the bond wire, through the bond pad, through the peripheral edge separation structure of the first die, and to an electrode of the second die. Typically, several bond wires will be attached to the same four-sided ring-shaped metal feature 13. These several bond wires provide separate parallel current paths to/from the four-sided ring-shaped metal feature 13. Accordingly, the novel ring-shaped metal feature 13 may have a ring of bond pad areas for engaging multiple separate bond wires. After the assembly and the substrate have been mounted and wirebonded as appropriate to the leadframe, a semiconductor device package is formed (step 108) that contains the assembly. The forming of the semiconductor device package may, for example, include the step of injection molding an amount of molding compound over the assembly, then step of lead forming, and the step of lead trimming.
In a first example of the method of FIG. 5, the peripheral edge separation structure of the first wafer is formed by providing a first strip of aluminum on the top of the N-type wafer so that the strip extends along what will be the ultimate side edges of the device die. A second strip of aluminum is provided on the opposite side of the wafer, directly underneath the first strip. The two aluminum strips act as a diffusion sources. The aluminum strips are first converted into aluminum oxide by heating the first wafer in a nitrogen-oxygen atmosphere at a temperature of about 500 degrees Celsius, which is a temperature below the 660 degree Celsius melting point of aluminum. Once the aluminum has been oxidized, the first wafer is heated to a higher temperature of about 1250 degrees Celsius. Under this higher temperature condition, aluminum from the aluminum oxide strips diffuses into the first wafer, thereby forming a downward extending P type region that extends downward from the top semiconductor surface of the wafer, and thereby forming an upward extending P type region that extends upward from the bottom semiconductor surface of the wafer. The two diffusion fronts of aluminum meet, thereby forming a peripheral P type region that extends all the way from the top semiconductor surface of the wafer, through the wafer, and to the bottom semiconductor surface of the wafer. The entire backside of the first wafer is doped with boron to form a P type layer. In each device area of the wafer, this boron-doped P type layer merges with a P type peripheral edge separation diffusion region to form an overall P type anode region. This P type region separates the active area of the device in the center of what will be the die (after singulation) from what will be the side edges of the die (after singulation). The peripheral edge separation structure keeps the high electric fields of the reverse biased depletion region in the active area from reaching the side edges of the die. For additional information on peripheral edge separation structures and techniques suitable for use in making the first die 2, see: 1) U.S. patent application Ser. No. 14/948,156, entitled “Trench Separation Diffusion For High Voltage Device”, filed Nov. 20, 2015, by Wisotzki et al.; 2) U.S. Pat. No. 7,442,630, entitled “Method For Fabricating Forward And Reverse Blocking Devices, filed Aug. 30, 2005, by Kelberlau et al.; and 3) U.S. Pat. No. 5,698,454, entitled “Method Of Making A Reverse Blocking IGBT”, filed Jul. 31, 1995, by N. Zommer (the entire subject matter of each of these patent documents is incorporated by reference herein).
In a second example of the method, the peripheral edge separation structure of the first wafer is the structure shown in cross-section in FIG. 6. As in the case of the peripheral edge separation structure of FIG. 1, a region of P type semiconductor material extends all the way from the top substantially planar semiconductor surface of the wafer to the bottom substantially planar semiconductor surface of the wafer. In the case of the peripheral edge separation structure of FIG. 6, this P type semiconductor material includes an amount of P type polysilicon 61 disposed on a sidewall of a peripheral trench 48, and also includes a region of P type semiconductor material 49 that extends upward from semiconductor surface 2B. After deposition of P type polysilicon 61 in the trench, the remainder of the trench is filled, for example with oxide 50. A peripheral four-sided ring-shaped metal feature 51 extends along the peripheral side edges of the die of FIG. 6 at surface 2A in the same way that the four-sided ring-shaped metal feature 13 extends along the peripheral side edges of the first die of FIG. 1. P type layer 60 of FIG. 6 corresponds to P type layer 5A of FIG. 1. Metal layer 52 of FIG. 6 corresponds to metal layer 10 of FIG. 1. Passivation layer 53 of FIG. 6 corresponds to passivation layer 14 of FIG. 1. N type region 54 of FIG. 6 corresponds to N type region 6 of FIG. 1. Side edge 55 of FIG. 6 corresponds to side edge 9 of FIG. 1. For additional information on the peripheral edge separation structure of FIG. 6, see: U.S. patent application Ser. No. 14/948,156, entitled “Trench Separation Diffusion For High Voltage Device”, filed Nov. 20, 2015, by Wisotzki et al. (the entire subject matter of which is incorporated by reference herein).
Although certain specific embodiments are described above for instructional purposes, the teachings of this patent document have general applicability and are not limited to the specific embodiments described above. Accordingly, various modifications, adaptations, and combinations of various features of the described embodiments can be practiced without departing from the scope of the invention as set forth in the claims.

Claims (18)

What is claimed is:
1. A method comprising:
(a) wafer bonding a backside of a first wafer to a backside of a second wafer thereby obtaining a bonded wafer structure;
(b) dicing the bonded wafer structure thereby obtaining a power semiconductor device die assembly, wherein the power semiconductor device die assembly comprises a first power semiconductor device die and a second power semiconductor device die, wherein the first power semiconductor device die comprises a peripheral edge separation structure that extends from a first substantially planar semiconductor surface of the first power semiconductor device die to a second substantially planar semiconductor surface of the first power semiconductor device die along a side edge of the first power semiconductor device die, wherein the second power semiconductor device die comprises a peripheral edge separation structure that extends from a first substantially planar semiconductor surface of the second power semiconductor device die to a second substantially planar semiconductor surface of the second power semiconductor device die along a side edge of the second power semiconductor device die;
(c) forming an anode of the power semiconductor device die assembly by providing a metal feature that covers and makes electrical contact with the peripheral edge separation structure at the first substantially planar semiconductor surface of the first power semiconductor device die, wherein the metal feature is electrically coupled within the assembly through the peripheral edge separation structure of the first power semiconductor device die to the peripheral edge separation structure of the second power semiconductor device die; and
forming a cathode of the power semiconductor device die assembly by providing a further metal feature that covers and makes electrical contact with a region of the first substantially planar semiconductor surface,
wherein the second power semiconductor device die forms an anode gated thyristor, wherein a metal contact structure is not formed on the peripheral edge separation structure of the second power semiconductor device die.
2. The method of claim 1, further comprising:
(c) attaching a bond wire to a bond pad, wherein the bond pad is disposed on a surface area of the peripheral edge separation structure of the first power semiconductor device die.
3. The method of claim 1, further comprising:
(c) attaching a wafer interface member to a topside of the second wafer prior to the dicing of (b) such that when the dicing of (b) occurs the wafer interface member is diced along with the first and second wafers, wherein the power semiconductor device die assembly comprises the first power semiconductor device die, the second power semiconductor device die, and a die-sized interface member cut from the wafer interface member, wherein the die-sized interface member comprises a first metal feature and a second metal feature, wherein the first metal feature is in electrical contact with a first metal electrode of the second power semiconductor device die, and wherein the second metal feature is in electrical contact with a second metal electrode of the second power semiconductor device die.
4. The method of claim 1, wherein the peripheral edge separation structure of the first power semiconductor device die is a region of P type semiconductor material, and wherein no part of the side edge of the first power semiconductor device die is N type semiconductor material.
5. The method of claim 1, wherein the first power semiconductor device die has a control electrode disposed on the first substantially planar semiconductor surface of the first power semiconductor device die, and wherein the second power semiconductor device die has a control electrode disposed on the first substantially planar semiconductor surface of the second power semiconductor device die.
6. The method of claim 5, wherein the peripheral edge separation structure of the first die is a region of P type semiconductor material, and wherein no part of the side edge of the first die is N type semiconductor material.
7. The method of claim 5, wherein the first die has a control electrode disposed on the first substantially planar semiconductor surface of the first die, and wherein the second die has a control electrode disposed on the first substantially planar semiconductor surface of the second die.
8. The method of claim 1, wherein the first power semiconductor device die further comprises a metal layer disposed on the second substantially planar semiconductor surface of the first power semiconductor device die, wherein the second power semiconductor device die further comprises a metal layer disposed on the second substantially planar semiconductor surface of the second power semiconductor device die, and wherein the metal layer of the first power semiconductor device die is bonded to the metal layer of the second power semiconductor device die.
9. The method of claim 8, wherein a layer comprising silver bonds the metal layer disposed on the second substantially planar semiconductor surface of the first power semiconductor device die to the metal layer disposed on the second substantially planar semiconductor surface of the second power semiconductor device die.
10. The method of claim 9, wherein the wafer bonding of (a) involves sintering the layer comprising silver.
11. A method comprising:
wafer bonding a backside of a first wafer to a backside of a second wafer thereby obtaining a bonded wafer structure;
dicing the bonded wafer structure to obtain a die assembly, wherein the die assembly comprises a first die and a second die, wherein the first die comprises a peripheral edge separation structure that extends from a first substantially planar semiconductor surface of the first die to a second substantially planar semiconductor surface of the first die along a side edge of the first die, wherein the second die comprises a peripheral edge separation structure that extends from a first substantially planar semiconductor surface of the second die to a second substantially planar semiconductor surface of the second die along a side edge of the second die, wherein the peripheral edge separation structure of the first die is a region of P type semiconductor material;
forming an anode of the power semiconductor device die assembly by providing an amount of metal that covers and makes electrical contact with the peripheral edge separation structure at the first substantially planar semiconductor surface of the first die, and wherein the amount of metal is electrically coupled within the assembly through the peripheral edge separation structure of the first die to the peripheral edge separation structure of the second die; and
forming a cathode of the power semiconductor device die assembly by providing a further metal feature that covers and makes electrical contact with a region of the first substantially planar semiconductor surface, wherein the second die forms an anode gated thyristor, wherein a metal contact structure is not formed on the peripheral edge separation structure of the second die.
12. The method of claim 11, further comprising:
attaching a bond wire to a bond pad, wherein the bond pad is disposed on a surface area of the peripheral edge separation structure of the first die.
13. The method of claim 11, further comprising:
attaching a wafer interface member to a topside of the second wafer prior to the dicing such that the wafer interface member is diced along with the first and second wafers, wherein the die assembly comprises the first die, the second die, and a die-sized interface member cut from the wafer interface member, wherein the die-sized interface member comprises a first metal feature and a second metal feature, wherein the first metal feature is in electrical contact with a first metal electrode of the second die, and wherein the second metal feature is in electrical contact with a second metal electrode of the second die.
14. The method of claim 11, wherein the wafer bonding involves sintering a layer comprising silver, and wherein the layer comprising silver is disposed between the second substantially planar semiconductor surface of the first die and the second substantially planar semiconductor surface of the second die.
15. The method of claim 11, wherein the first die further comprises a metal layer disposed on the second substantially planar semiconductor surface of the first die, wherein the second die further comprises a metal layer disposed on the second substantially planar semiconductor surface of the second die, and wherein the metal layer of the first die is bonded to the metal layer of the second die.
16. The method of claim 15, further comprising:
a layer comprising silver to bond the metal layer disposed on the second substantially planar semiconductor surface of the first die to the metal layer disposed on the second substantially planar semiconductor surface of the second die.
17. A method comprising:
(a) forming a power semiconductor device die assembly by dicing a bonded wafer structure having two wafers bonded together, wherein the power semiconductor device die assembly building comprises a first die and a second die, wherein the first die comprises a peripheral edge separation structure that extends from a first surface of the first die to a second surface of the first die along a side edge of the first die, wherein the second die comprises a peripheral edge separation structure that extends from a first surface of the second die to a second surface of the second die along a side edge of the second die, wherein an anode of the power semiconductor device die assembly is formed by a metal feature that covers and makes electrical contact with the peripheral edge separation structure at the first surface of the first die, and wherein the metal feature is electronically coupled within the assembly through the peripheral edge separation structure of the first die to the peripheral edge separation structure of the second die; and
forming a cathode of the power semiconductor device die assembly by providing a further metal feature that covers and makes electrical contact with a region of the first substantially planar semiconductor surface, wherein the second die forms an anode gated thyristor, wherein a metal contact structure is not formed on the peripheral edge separation structure of the second die.
18. The method of claim 17, wherein the first die has a control electrode disposed on the first surface of the first due, and wherein the second die has a control electrode disposed on the first surface of the second die.
US15/619,516 2016-02-29 2017-06-11 Die stack assembly using an edge separation structure for connectivity through a die of the stack Active US10734362B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/619,516 US10734362B2 (en) 2016-02-29 2017-06-11 Die stack assembly using an edge separation structure for connectivity through a die of the stack
US16/869,907 US10854581B2 (en) 2016-02-29 2020-05-08 Die stack assembly using an edge separation structure for connectivity through a die of the stack

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US15/056,818 US9704832B1 (en) 2016-02-29 2016-02-29 Die stack assembly using an edge separation structure for connectivity through a die of the stack
US15/619,516 US10734362B2 (en) 2016-02-29 2017-06-11 Die stack assembly using an edge separation structure for connectivity through a die of the stack

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US15/056,818 Continuation US9704832B1 (en) 2016-02-29 2016-02-29 Die stack assembly using an edge separation structure for connectivity through a die of the stack

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/869,907 Division US10854581B2 (en) 2016-02-29 2020-05-08 Die stack assembly using an edge separation structure for connectivity through a die of the stack

Publications (2)

Publication Number Publication Date
US20170278828A1 US20170278828A1 (en) 2017-09-28
US10734362B2 true US10734362B2 (en) 2020-08-04

Family

ID=59257578

Family Applications (3)

Application Number Title Priority Date Filing Date
US15/056,818 Active US9704832B1 (en) 2016-02-29 2016-02-29 Die stack assembly using an edge separation structure for connectivity through a die of the stack
US15/619,516 Active US10734362B2 (en) 2016-02-29 2017-06-11 Die stack assembly using an edge separation structure for connectivity through a die of the stack
US16/869,907 Active US10854581B2 (en) 2016-02-29 2020-05-08 Die stack assembly using an edge separation structure for connectivity through a die of the stack

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US15/056,818 Active US9704832B1 (en) 2016-02-29 2016-02-29 Die stack assembly using an edge separation structure for connectivity through a die of the stack

Family Applications After (1)

Application Number Title Priority Date Filing Date
US16/869,907 Active US10854581B2 (en) 2016-02-29 2020-05-08 Die stack assembly using an edge separation structure for connectivity through a die of the stack

Country Status (1)

Country Link
US (3) US9704832B1 (en)

Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4040878A (en) 1975-03-26 1977-08-09 U.S. Philips Corporation Semiconductor device manufacture
US4351677A (en) 1979-07-16 1982-09-28 Hitachi, Ltd. Method of manufacturing semiconductor device having aluminum diffused semiconductor substrate
US4779126A (en) 1983-11-25 1988-10-18 International Rectifier Corporation Optically triggered lateral thyristor with auxiliary region
US4904609A (en) 1988-05-06 1990-02-27 General Electric Company Method of making symmetrical blocking high voltage breakdown semiconductor device
US5608237A (en) * 1994-03-14 1997-03-04 Kabushiki Kaisha Toshiba Bidirectional semiconductor switch
US5698454A (en) 1995-07-31 1997-12-16 Ixys Corporation Method of making a reverse blocking IGBT
US6194290B1 (en) * 1998-03-09 2001-02-27 Intersil Corporation Methods for making semiconductor devices by low temperature direct bonding
US20030228848A1 (en) * 2002-06-11 2003-12-11 Semiconductor Components Industries, Llc Semiconductor filter circuit and method
US6936908B2 (en) 2001-05-03 2005-08-30 Ixys Corporation Forward and reverse blocking devices
US7030426B2 (en) 2004-03-16 2006-04-18 Ixys Semiconductor Gmbh Power semiconductor component in the planar technique
US7776672B2 (en) 2004-08-19 2010-08-17 Fuji Electric Systems Co., Ltd. Semiconductor device and manufacturing method thereof
US20100298897A1 (en) 2009-05-19 2010-11-25 Chavan Abhi V Integrated high voltage output circuit
US20110193133A1 (en) 2008-10-10 2011-08-11 National Institute Of Advanced Industrial Science And Technology Photo detection device
US8093652B2 (en) 2002-08-28 2012-01-10 Ixys Corporation Breakdown voltage for power devices
DE102011115887A1 (en) 2011-10-15 2013-04-18 Danfoss Silicon Power Gmbh Power semiconductor chip with top potential surfaces
DE102011115886A1 (en) 2011-10-15 2013-04-18 Danfoss Silicon Power Gmbh Method for creating a connection of a power semiconductor chip with top potential surfaces to thick wires
US20130122663A1 (en) 2010-08-12 2013-05-16 Fuji Electric Co., Ltd. Method of manufacturing semiconductor device
US8647974B2 (en) 2011-03-25 2014-02-11 Ati Technologies Ulc Method of fabricating a semiconductor chip with supportive terminal pad
US20140246761A1 (en) 2013-03-01 2014-09-04 Ixys Corporation Fast recovery switching diode with carrier storage area
US20140246790A1 (en) 2013-03-04 2014-09-04 Cree, Inc. Floating bond pad for power semiconductor devices
DE102013003527A1 (en) 2013-03-04 2014-09-04 Danfoss Silicon Power Gmbh Apparatus for low-temperature pressure sintering, method for low-temperature pressure sintering and power electronic assembly
US20160148819A1 (en) * 2014-11-20 2016-05-26 Infineon Technologies Ag Method for Producing a Material-Bonding Connection between a Semiconductor Chip and a Metal Layer
US20170012031A1 (en) * 2015-07-07 2017-01-12 Micron Technology, Inc. Methods of making semiconductor device packages and related semiconductor device packages

Patent Citations (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4040878A (en) 1975-03-26 1977-08-09 U.S. Philips Corporation Semiconductor device manufacture
US4351677A (en) 1979-07-16 1982-09-28 Hitachi, Ltd. Method of manufacturing semiconductor device having aluminum diffused semiconductor substrate
US4779126A (en) 1983-11-25 1988-10-18 International Rectifier Corporation Optically triggered lateral thyristor with auxiliary region
US4904609A (en) 1988-05-06 1990-02-27 General Electric Company Method of making symmetrical blocking high voltage breakdown semiconductor device
US5608237A (en) * 1994-03-14 1997-03-04 Kabushiki Kaisha Toshiba Bidirectional semiconductor switch
US5698454A (en) 1995-07-31 1997-12-16 Ixys Corporation Method of making a reverse blocking IGBT
US6194290B1 (en) * 1998-03-09 2001-02-27 Intersil Corporation Methods for making semiconductor devices by low temperature direct bonding
US6936908B2 (en) 2001-05-03 2005-08-30 Ixys Corporation Forward and reverse blocking devices
US7442630B2 (en) 2001-05-03 2008-10-28 Ixys Corporation Method for fabricating forward and reverse blocking devices
US20030228848A1 (en) * 2002-06-11 2003-12-11 Semiconductor Components Industries, Llc Semiconductor filter circuit and method
US8093652B2 (en) 2002-08-28 2012-01-10 Ixys Corporation Breakdown voltage for power devices
US7030426B2 (en) 2004-03-16 2006-04-18 Ixys Semiconductor Gmbh Power semiconductor component in the planar technique
US7776672B2 (en) 2004-08-19 2010-08-17 Fuji Electric Systems Co., Ltd. Semiconductor device and manufacturing method thereof
US20110193133A1 (en) 2008-10-10 2011-08-11 National Institute Of Advanced Industrial Science And Technology Photo detection device
US20100298897A1 (en) 2009-05-19 2010-11-25 Chavan Abhi V Integrated high voltage output circuit
US20130122663A1 (en) 2010-08-12 2013-05-16 Fuji Electric Co., Ltd. Method of manufacturing semiconductor device
US8647974B2 (en) 2011-03-25 2014-02-11 Ati Technologies Ulc Method of fabricating a semiconductor chip with supportive terminal pad
DE102011115887A1 (en) 2011-10-15 2013-04-18 Danfoss Silicon Power Gmbh Power semiconductor chip with top potential surfaces
DE102011115886A1 (en) 2011-10-15 2013-04-18 Danfoss Silicon Power Gmbh Method for creating a connection of a power semiconductor chip with top potential surfaces to thick wires
US20140246761A1 (en) 2013-03-01 2014-09-04 Ixys Corporation Fast recovery switching diode with carrier storage area
US20140246790A1 (en) 2013-03-04 2014-09-04 Cree, Inc. Floating bond pad for power semiconductor devices
DE102013003527A1 (en) 2013-03-04 2014-09-04 Danfoss Silicon Power Gmbh Apparatus for low-temperature pressure sintering, method for low-temperature pressure sintering and power electronic assembly
US20160148819A1 (en) * 2014-11-20 2016-05-26 Infineon Technologies Ag Method for Producing a Material-Bonding Connection between a Semiconductor Chip and a Metal Layer
US20170012031A1 (en) * 2015-07-07 2017-01-12 Micron Technology, Inc. Methods of making semiconductor device packages and related semiconductor device packages

Also Published As

Publication number Publication date
US20200266174A1 (en) 2020-08-20
US9704832B1 (en) 2017-07-11
US20170278828A1 (en) 2017-09-28
US10854581B2 (en) 2020-12-01

Similar Documents

Publication Publication Date Title
US9824949B2 (en) Packaging solutions for devices and systems comprising lateral GaN power transistors
US8227908B2 (en) Electronic device having contact elements with a specified cross section and manufacturing thereof
US20060151868A1 (en) Package for gallium nitride semiconductor devices
US6396138B1 (en) Chip array with two-sided cooling
US9337155B2 (en) Semiconductor component with moisture barrier for sealing semiconductor body
JP2003240797A5 (en)
US20180033711A1 (en) Double-Encapsulated Power Semiconductor Module and Method for Producing the Same
US20150060872A1 (en) Encapsulated Semiconductor Device
US10096584B2 (en) Method for producing a power semiconductor module
US8461645B2 (en) Power semiconductor device
CN109075086B (en) Semiconductor device, power module and method for manufacturing the same
EP4084064A1 (en) Semiconductor device
US10854581B2 (en) Die stack assembly using an edge separation structure for connectivity through a die of the stack
US9685396B2 (en) Semiconductor die arrangement
JP2009164288A (en) Semiconductor element and semiconductor device
US20180151481A1 (en) Semiconductor Device Including a Bidirectional Switch
JP6579653B2 (en) Semiconductor device and manufacturing method of semiconductor device
KR101626534B1 (en) Semiconductor package and a method of manufacturing the same
JP4030273B2 (en) Semiconductor device
EP2309538A2 (en) Package for semiconductor devices
US9941256B1 (en) Inverse diode stack
CN112530919A (en) Common source planar grid array package
US9263421B2 (en) Semiconductor device having multiple chips mounted to a carrier
US20230078259A1 (en) Semiconductor device
US9245837B1 (en) Radio frequency power device

Legal Events

Date Code Title Description
AS Assignment

Owner name: IXYS CORPORATION, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:WISOTZKI, ELMAR;ETTINGSHAUSEN, FRANK;REEL/FRAME:042670/0855

Effective date: 20160219

AS Assignment

Owner name: IXYS, LLC, CALIFORNIA

Free format text: MERGER AND CHANGE OF NAME;ASSIGNORS:IXYS CORPORATION;IXYS, LLC;REEL/FRAME:045410/0125

Effective date: 20180116

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

AS Assignment

Owner name: LITTELFUSE, INC., ILLINOIS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:IXYS, LLC;REEL/FRAME:049056/0649

Effective date: 20190430

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED

STPP Information on status: patent application and granting procedure in general

Free format text: AWAITING TC RESP., ISSUE FEE NOT PAID

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4