US10626350B2 - Pressed manual dish detergent - Google Patents

Pressed manual dish detergent Download PDF

Info

Publication number
US10626350B2
US10626350B2 US14/962,064 US201514962064A US10626350B2 US 10626350 B2 US10626350 B2 US 10626350B2 US 201514962064 A US201514962064 A US 201514962064A US 10626350 B2 US10626350 B2 US 10626350B2
Authority
US
United States
Prior art keywords
composition
surfactant
solid
surfactants
anionic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US14/962,064
Other languages
English (en)
Other versions
US20170158988A1 (en
Inventor
Wendy LO
Erik C. Olson
Thomas Muller
Jeffrey John Biggs
Angela Sivanich
Katherine Molinaro
Kelsey West
Matt Molinaro
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ecolab USA Inc
Original Assignee
Ecolab USA Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ecolab USA Inc filed Critical Ecolab USA Inc
Priority to US14/962,064 priority Critical patent/US10626350B2/en
Assigned to ECOLAB USA INC. reassignment ECOLAB USA INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: WEST, KELSEY, MOLINARO, MATT, BIGGS, Jeffrey John, OLSON, ERIK C., SIVANICH, ANGELA, LO, WENDY, MOLINARO, KATHERINE, MULLER, THOMAS
Priority to EP16873726.0A priority patent/EP3387100A4/de
Priority to EP18190999.5A priority patent/EP3444327A1/de
Priority to BR112018009827-2A priority patent/BR112018009827B1/pt
Priority to CA3007368A priority patent/CA3007368C/en
Priority to AU2016367170A priority patent/AU2016367170B2/en
Priority to MX2018006902A priority patent/MX2018006902A/es
Priority to CN201680071447.5A priority patent/CN108368457A/zh
Priority to PCT/US2016/065303 priority patent/WO2017100267A1/en
Priority to JP2018529538A priority patent/JP2018536745A/ja
Publication of US20170158988A1 publication Critical patent/US20170158988A1/en
Priority to AU2019203406A priority patent/AU2019203406B2/en
Priority to JP2020003126A priority patent/JP2020073687A/ja
Priority to US16/823,177 priority patent/US11268045B2/en
Publication of US10626350B2 publication Critical patent/US10626350B2/en
Application granted granted Critical
Priority to US17/649,619 priority patent/US11746304B2/en
Priority to US18/355,173 priority patent/US20240026247A1/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/12Sulfonic acids or sulfuric acid esters; Salts thereof
    • C11D1/22Sulfonic acids or sulfuric acid esters; Salts thereof derived from aromatic compounds
    • C11D1/24Sulfonic acids or sulfuric acid esters; Salts thereof derived from aromatic compounds containing ester or ether groups directly attached to the nucleus
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/12Sulfonic acids or sulfuric acid esters; Salts thereof
    • C11D1/22Sulfonic acids or sulfuric acid esters; Salts thereof derived from aromatic compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/88Ampholytes; Electroneutral compounds
    • C11D1/94Mixtures with anionic, cationic or non-ionic compounds
    • C11D11/0023
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/0047Detergents in the form of bars or tablets
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/0047Detergents in the form of bars or tablets
    • C11D17/006Detergents in the form of bars or tablets containing mainly surfactants, but no builders, e.g. syndet bar
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/0047Detergents in the form of bars or tablets
    • C11D17/0065Solid detergents containing builders
    • C11D17/0073Tablets
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/02Inorganic compounds ; Elemental compounds
    • C11D3/04Water-soluble compounds
    • C11D3/046Salts
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/02Inorganic compounds ; Elemental compounds
    • C11D3/04Water-soluble compounds
    • C11D3/10Carbonates ; Bicarbonates
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D2111/00Cleaning compositions characterised by the objects to be cleaned; Cleaning compositions characterised by non-standard cleaning or washing processes
    • C11D2111/10Objects to be cleaned
    • C11D2111/14Hard surfaces

Definitions

  • the application relates to solid detergent materials.
  • the invention relates to a solid detergent composition containing a detergent formulation dispersed in an organic solidification matrix.
  • the combination of ingredients provides excellent soil removal, improved grease cutting and controlled foaming in an aqueous detergent composition made from the solid.
  • Solid block cleaning compositions offer unique advantages over the conventional liquids, granules or pellet forms of detergents, including improved handling, enhanced safety, elimination of component segregation during transportation and storage, and increased concentrations of active components within the composition. Because of these benefits, solid block cleaning compositions, such as those disclosed in Fernholz, et al., U.S. Pat. Nos. Re 32,763, Re 32,818, 4,680,134 and 4,595,520, have quickly replaced the conventional composition forms in commercial and institutional markets. Another sodium hydroxide and sodium carbonate cast solid process using substantially hydrated sodium materials was disclosed in Heile et al.
  • the active ingredients may be combined with the hardening agent under melting temperatures, commonly referred to as a “molten process,” to achieve a homogeneous mixture, wherein the melt is then poured into a mold and cooled to a solid form.
  • molten process melting temperatures
  • Solid block cleaning and sanitizing compositions and detergents provide a significant improvement over the conventional liquid, granular and pelletized cleaning compositions.
  • time and expense would be saved if heating and cooling of the composition could be minimized or eliminated from the process, and higher viscosities could be used.
  • lower process temperatures would better facilitate the use of heat-sensitive ingredients in cleaning compositions.
  • less sturdy packaging would be required if the processed mixture could be packaged at a lower temperature.
  • eliminating molten temperatures would avoid swelling and deformation of the solid product.
  • U.S. Pat. No. 5,061,392 to Bruegge et al. discloses a method of forming a detergent composition having a paste-like consistency, by combining a first aqueous solution containing a potassium tripolyphosphate and a second aqueous solution containing a water-soluble, sodium-based detergent builder, namely sodium hydroxide. Upon mixing, the viscosity of the mixture rapidly increases to form a highly viscous paste.
  • U.S. Pat. No. 5,061,392 to Bruegge et al. discloses a method of forming a detergent composition having a paste-like consistency, by combining a first aqueous solution containing a potassium tripolyphosphate and a second aqueous solution containing a water-soluble, sodium-based detergent builder, namely sodium hydroxide.
  • a water-soluble, sodium-based detergent builder namely sodium hydroxide
  • an organic detergent of particulate or patty form is formed by kneading together a synthetic organic detergent, a hydratable builder salt such as sodium tripolyphosphate, and water.
  • the mixture is passed through an extruder and forced through openings at or slightly above room temperature and a low pressure to form a rod-shaped extrudate.
  • a disadvantage of these processes is that a caustic, hydratable alkaline source is required to facilitate hardening of the processed composition after extrusion.
  • Aqueous cleaning compositions have commonly been used in applications including hospital, household, institutional and industrial services, hand and body soaps, laundry soaps, warewashing and housekeeping surfaces.
  • these cleaning materials are made by diluting liquid or gelled materials to form a use solution.
  • Many such solutions have had some success in the past, however, a substantial need in this art exists to manufacture an easily used concentrate having minimal water and a high actives concentration, excellent soil, e.g. grease, removal properties and controlled foaming.
  • Many prior art materials even in a concentrate form contain substantial amounts of water which is difficult to manufacture, transport and sell. The materials also may have some soil removal properties but improving grease removal and hard surface cleaners is a continuing need or requirement. Further, the manufacture of materials that produce useful foam in the presence of large quantities of greasy soil is a continuing challenge for this marketplace.
  • solid detergent formulations which may preferably be prepared by pressing.
  • the materials of the present invention are solids in that they have a distinct solid character, have a measurable penetrometer value and melt at elevated temperatures.
  • the solid block materials do not rely on a gelling mechanisms in which water combines with solid materials to form a gel, and do not require hearting such as by cast molding, or extrusion.
  • the composition is free of traditional hardening agents such as urea or PEG.
  • the solid pressed compositions of the invention have similar or better performance as demonstrated by foam height and grease/soil removal when compared to traditional solid detergents and are easily formed into solid units.
  • high amounts of anionic surfactants and processing aids create initial foam height and prolong the effectiveness of grease/soil removal; however, high actives and builders also hinder the press process of preparing a solid detergent.
  • Formulations were optimized to achieve similar or better performance to traditional extruded solid detergents while maintaining the availability pressed solid formation.
  • the pressed compositions are preferably free of cationic or nonionic surfactants, and hardening agents such as PEG.
  • the composition includes an anionic sulfonate surfactant which is present in an amount of from 0.01 to 97 wt. % of the composition.
  • the composition also includes one or more processing aids which can make up the remainder of the composition.
  • the processing aids may be selected from the group including an inorganic salt, a carbonate, a silicate, or an acrylic polymer system.
  • the invention is also found in a detergent composition which contains about 1 to 95 wt-% of a neutralized sulfonated anionic surfactant including a mixed alkali metal alkaline earth metal salt of an organic sulfonate, an organic sulfate surfactant or mixture of such surfactants, and an effective amount of a processing aid including an inorganic salt, a carbonate of silicate or acrylic polymer system, or mixture thereof.
  • a neutralized sulfonated anionic surfactant including a mixed alkali metal alkaline earth metal salt of an organic sulfonate, an organic sulfate surfactant or mixture of such surfactants, and an effective amount of a processing aid including an inorganic salt, a carbonate of silicate or acrylic polymer system, or mixture thereof.
  • the cleaning compositions may further include conventional detergent components such as an nonionic or amphoteric surfactant, a sequestering agent, a bleaching agent, an enzyme, an optional hardening agent, detergent filler, defoamer, an anti-redeposition agent, a threshold agent or system, an aesthetic enhancing agent (i.e., dye, perfume), and other like additives.
  • Adjuvants and other additive ingredients will vary according to the type of composition being manufactured.
  • the invention is further found in a pressed solid block detergent composition as above defined which, when diluted with water, forms an aqueous detergent with stable foam and improved greasy soil removing capacity.
  • the solid block detergent is useful in cleaning pots and pans, especially in manually washing pots and pans.
  • FIGS. 1A and 1B are graphs that show the total foam and the foam profile of prototype 22 verses Control formula.
  • FIGS. 2A and 2B are graphs that show the total foam and the foam profile of prototype 24 verses Control formula.
  • FIGS. 3A and 3B are graphs that show the total foam and the foam profile of prototype 39 verses Control formula.
  • FIG. 4 is a graph of Commercial products 1 and 2 , Competitor Product 1 , and prototypes 36 , 37 , and 38 compared to water for % soil removed.
  • FIG. 5 is a graph of Commercial products 1 , 2 , and 3 , Competitor Product 1 , and prototypes 6 and 24 compared to water for % soil removed.
  • weight percent (wt-%), percent by weight, % by weight, and the like are synonyms that refer to the concentration of a substance as the weight of that substance divided by the total weight of the composition and multiplied by 100.
  • the term “about” modifying the quantity of an ingredient in the compositions of the invention or employed in the methods of the invention refers to variation in the numerical quantity that can occur, for example, through typical measuring and liquid handling procedures used for making concentrates or use solutions in the real world; through inadvertent error in these procedures; through differences in the manufacture, source, or purity of the ingredients employed to make the compositions or carry out the methods; and the like.
  • the term about also encompasses amounts that differ due to different equilibrium conditions for a composition resulting from a particular initial mixture. Whether or not modified by the term “about,” the claims include equivalents to the quantities.
  • surfactant or “surface active agent” refers to an organic chemical that when added to a liquid changes the properties of that liquid at a surface. “Cleaning” means to perform or aid in soil removal, bleaching, microbial population reduction, rinsing, or combination thereof.
  • hard surface includes showers, sinks, toilets, bathtubs, countertops, windows, mirrors, transportation vehicles, floors, food manufacturing equipment (usually stainless steel), walls, ceiling, piping, conduit, any surface that can get soiled in a food production environment and the like. These surfaces can be those typified as “hard surfaces” (such as walls, floors, bed-pans).
  • a solid cleaning composition refers to a cleaning composition in the form of a solid such as a powder, a particle, an agglomerate, a flake, a granule, a pellet, a tablet, a lozenge, a puck, a briquette, a brick, a solid block, a unit dose, or another solid form known to those of skill in the art.
  • the term “solid” refers to the state of the cleaning composition under the expected conditions of storage and use of the solid detergent composition. In general, it is expected that the detergent composition will remain in solid form when exposed to temperatures of up to about 100° F. and greater than about 120° F. A cast, pressed, or extruded “solid” may take any form including a block.
  • the hardened composition will not flow perceptibly and will substantially retain its shape under moderate stress or pressure or mere gravity, as for example, the shape of a mold when removed from the mold, the shape of an article as formed upon extrusion from an extruder, and the like.
  • the degree of hardness of the solid cast composition can range from that of a fused solid block, which is relatively dense and hard, for example, like concrete, to a consistency characterized as being malleable and sponge-like, similar to caulking material.
  • actives or “percent actives” or “percent by weight actives” or “actives concentration” are used interchangeably herein and refers to the concentration of those ingredients involved in cleaning expressed as a percentage minus inert ingredients such as water or salts.
  • substantially similar cleaning performance refers generally to achievement by a substitute cleaning product or substitute cleaning system of generally the same degree (or at least not a significantly lesser degree) of cleanliness or with generally the same expenditure (or at least not a significantly lesser expenditure) of effort, or both, when using the substitute cleaning product or substitute cleaning system rather than a alkyl phenol ethoxylate-containing cleaning to address a typical soiling condition on a typical substrate.
  • This degree of cleanliness may, depending on the particular cleaning product and particular substrate, correspond to a general absence of visible soils, or to some lesser degree of cleanliness, as explained in the prior paragraph.
  • the terms “free” or “essentially free” in reference to a particular compound refers to a composition, mixture, or ingredients that do not contain the compound or to which the same has not been added. Should these compounds be present through contamination of a composition, mixture, or ingredients, the amount of the same shall be less than 0.5 wt. %. In another embodiment, the amount of is less than 0.1 wt. % and in yet another embodiment, the amount is less than 0.01 wt. %.
  • the solid block detergents of the invention contain a package of surfactants including a neutralized sulfonated anionic surfactant, and a processing aid.
  • the solid block detergent can be dispensed with a water spray to form an aqueous detergent for cutting and removing grease, removing and suspending soils and rinsing easily leaving cleaned ware.
  • the aqueous detergent concentrate can be used in a cleaning liquid having exceptional soil, particularly grease removing properties with stable foam properties. The detergent formulations are easily pressed for manufacturing efficiency.
  • Anionic surfactants useful in the present cleaning compositions include, for example, sulfonates such as alkylsulfonates, alkylbenzenesulfonates, alkylarylsulfonates, sulfonated fatty acid esters, and the like; sulfates such as sulfated alcohols, sulfated alcohol ethoxylates, sulfated alkylphenols, alkylsulfates, sulfosuccinates, alkylether sulfates, and the like.
  • Preferred anionics include an organic sulfonate surfactant or an organic sulfate surfactant.
  • More preferred anionics include an alkylsulfonate, alkylarylsulfonate, sulfonated fatty acid ester, sulfated alcohol, sulfated alcohol ethoxylate, sulfated alkylphenol, alkyl sulfate, dialkylsulfosuccinate, alkylethersulfate, and mixtures thereof.
  • the anionic surfactant(s) may be neutralized with an alkali metal salt and/or an alkaline earth salt or a mixture thereof.
  • alkaline options include amines.
  • a mixture of salts is used, and the alkali metal is sodium and the alkaline earth metal is magnesium.
  • the molar ratio of sodium to magnesium is from about 3:1 to 1:1, and, most preferably, the molar ratio of sodium to magnesium is about 2:1.
  • the anionic surfactant component makes up the majority of the composition, from 0.01 wt. % to as much as 97 wt %. Preferably from 1 to 99 wt. 5 and more preferably from about 10 to 80 wt. %.
  • the remainder of the composition can include one or more processing aids.
  • Processing aids can include various sources of alkalinity, inorganic salts of acrylic polymers.
  • the cleaning composition produced according to the invention may include minor but effective amounts of one or more alkaline sources to neutralize the anionic surfactants and improve soil removal performance of the composition.
  • an alkali metal or alkaline earth metal hydroxide or other hydratable alkaline source is preferably included in the cleaning composition in an amount effective to neutralize the anionic surfactant.
  • an alkali metal hydroxide or other alkaline source can assist to a limited extent, in solidification of the composition.
  • additional alkaline sources may be present to a point where the pH of an aqueous solution does not exceed 10.
  • Suitable alkali metal hydroxides include, for example, sodium or potassium hydroxide.
  • Suitable alkaline earth metal hydroxides include, for example, magnesium hydroxide.
  • An alkali or alkaline earth metal hydroxide may be added to the composition in the form of solid beads, dissolved in an aqueous solution, or a combination thereof.
  • Alkali and alkaline earth metal hydroxides are commercially available as a solid in the form of prilled beads having a mix of particle sizes ranging from about 12-100 U.S. mesh, or as an aqueous solution, as for example, as a 50 wt-% and a 73 wt-% solution.
  • the alkali or alkaline earth metal hydroxide is added in the form of an aqueous solution, preferably a 50 wt-% hydroxide solution, to reduce the amount of heat generated in the composition due to hydration of the solid alkali material.
  • a cleaning composition may include a secondary alkaline source other than an alkali metal hydroxide.
  • secondary alkaline sources include a metal silicate such as sodium or potassium silicate or metasilicate, a metal carbonate such as sodium or potassium carbonate, bicarbonate or sesquicarbonate, and the like; a metal borate such as sodium or potassium borate, and the like; ethanolamines and amines; and other like alkaline sources.
  • Secondary alkalinity agents are commonly available in either aqueous or powdered form, either of which is useful in formulating the present cleaning compositions.
  • Alkalinity sources are present at concentrations of about 0 to 50 wt-%, preferably about 5-25 wt-%, more preferably about 5-15 wt-%.
  • Processing aides include hydratable inorganic salts, such as sulfates, acetates, carbonates, and bicarbonates.
  • Inorganic salts are present at concentrations of about 0 to 50 wt-%, preferably about 5-25 wt-%, more preferably about 5-15 wt-%.
  • Polyacrylates suitable for use as cleaning agents include, for example, polyacrylic acid, polymethacrylic acid, acrylic acid-methacrylic acid copolymers, hydrolyzed polyacrylamide, hydrolyzed polymethacrylamide, hydrolyzed polyamide-methacrylamide copolymers, hydrolyzed polyacrylonitrile, hydrolyzed polymethacrylonitrile, hydrolyzed acrylonitrile-methacrylonitrile copolymers, and the like.
  • chelating agents/sequestrants see Kirk-Othmer, Encyclopedia of Chemical Technology, Third Edition, volume 5, pages 339-366 and volume 23, pages 319-320, the disclosure of which is incorporated by reference herein.
  • Acrylic polymers are present at concentrations of about 0 to 50 wt-%, preferably about 5-25 wt-%, more preferably about 5-15 wt-%.
  • Nonionic surfactants useful in the present detergent compositions may include those having a polyalkylene oxide polymer as a portion of the surfactant molecule.
  • Such nonionic surfactants include, for example, alcohol alkoxylates such as alcohol ethoxylate propoxylates, alcohol propoxylates, alcohol propoxylate ethyoxylate propoxylates, alcohol ethoxylate butoxylates, and the like, and alkyl-capped alcohol alkoxylates; polyoxyethylene glycol ethers of fatty alcohols such as CETEARETH®-27 or PARETH® 25-7, and the like; carboxylic acid esters such as glycerol esters, polyoxyethylene esters, ethoxylated and glycol esters of fatty acids, and the like; carboxylic amides such as diethanolamine condensates, monoalkanolamine condensates, polyoxyethylene fatty acid amides, and the like; and polyalkylene oxide block copolymers including an ethylene oxide/prop
  • the nonionic surfactant used is a fatty acid amide. More preferably, the nonionic surfactant employed may be lauric monethanol amide, cocomonethanol amide, or a mixture thereof. When present the nonionic surfactant can be from about 0.1 wt. % to about 25 wt. %, preferably from about 1 wt. % to about 20 wt. % and more preferably from about 2 wt. % to about 15 wt. %.
  • the ingredients of the composition may be processed in a minor but effective amount of an aqueous medium such as water, to provide an effective level of viscosity for processing the mixture, and to provide the processed composition with the desired amount of firmness and cohesion during solid block formation and upon hardening.
  • the mixture preferably contains no water.
  • the mixture during processing may include about 0.00 to 5 wt-% of an aqueous medium, preferably about 0.1 to 2 wt-%.
  • a hardening agent is a compound or system of compounds, organic or inorganic that significantly contributes to the uniform solidification of the composition.
  • the hardening agents are compatible with the surfactants and other active ingredients of the composition, and are capable of providing an effective amount of hardness and/or aqueous solubility to the composition.
  • the hardening agents should also be capable of forming a homogeneous matrix with the cleaning agent and other ingredients when mixed and solidified to provide a uniform dissolution of the cleaning agent from the solid composition during use.
  • the invention is particularly formulated for pressed solid formation and in a preferred embodiment does not need to include hardening agents.
  • the amount of optional hardening agent included in the cleaning composition will vary according to the type of cleaning composition being prepared, the ingredients of the composition, the intended use of the composition, the quantity of dispensing solution applied to the solid composition over time during use, the temperature of the dispensing solution, the hardness of the dispensing solution, the physical size of the solid composition, the concentration of the other ingredients, the concentration of the cleaning agent in the composition, and other like factors. It is preferred that the amount of the hardening agent is effective to combine with the cleaning agent and other ingredients of the composition to form a homogeneous mixture under continuous mixing conditions and a temperature at or below the melting temperature of the hardening agent.
  • an organic hardening agent is a polyethylene glycol (PEG) compound for use in the above cleaning composition.
  • PEG polyethylene glycol
  • the solidification rate of cleaning compositions comprising a polyethylene glycol hardening agent made according to the invention will vary, at least in part, according to the amount and the molecular weight of the polyethylene glycol added to the composition.
  • Polyethylene glycol compounds useful according to the invention include, for example, solid polyethylene glycols of the general formula H(OCH 2 —CH 2 ) n OH, where n is greater than 15, more preferably about 30 to 1700.
  • Solid polyethylene glycols which are useful are commercially available from Union Carbide under the name CARBOWAX.
  • the polyethylene glycol is a solid in the form of a free-flowing powder or flakes, having a molecular weight of about 1000 to 100.000, preferably having a molecular weight of at least about 1450 to 20,000, more preferably between about 1450 to about 8000.
  • the polyethylene glycol is present at a concentration of from about 1 to 75 wt-%, preferably about 3 to 15 wt-%.
  • Suitable polyethylene glycol compounds useful according to the invention include, for example, PEG 1450 and PEG 8000 among others.
  • Urea is another useful hardening agent.
  • the cleaning compositions may further include conventional detergent adjuvants such as a sequestering agent, bleaching agent, enzyme, secondary hardening agent, detergent filler, defoamer, anti-redeposition agent, a threshold agent or system, aesthetic enhancing agent (i.e., dye, perfume), and other like additives.
  • conventional detergent adjuvants such as a sequestering agent, bleaching agent, enzyme, secondary hardening agent, detergent filler, defoamer, anti-redeposition agent, a threshold agent or system, aesthetic enhancing agent (i.e., dye, perfume), and other like additives.
  • Adjuvants and other additive ingredients will vary according to the type of composition being manufactured.
  • the cleaning compositions of the invention can further comprise a surfactant or in some cases an additional surfactant.
  • a surfactant can include water soluble or water dispersible nonionic, semi-polar nonionic (supra), anionic, cationic, amphoteric, or zwitterionic surface-active agents; or any combination thereof.
  • additional surfactant can comprises from about 0.01 wt. % to about 20 wt. %, from about 0.01 wt. % to about 15 wt. % and more preferable from about 1 wt. % to about 10 wt. %.
  • Additional nonionic surfactants useful in the invention are generally characterized by the presence of an organic hydrophobic group and an organic hydrophilic group and are typically produced by the condensation of an organic aliphatic, alkyl aromatic or polyoxyalkylene hydrophobic compound with a hydrophilic alkaline oxide moiety which in common practice is ethylene oxide or a polyhydration product thereof, polyethylene glycol.
  • any hydrophobic compound having a hydroxyl, carboxyl, amino, or amido group with a reactive hydrogen atom can be condensed with ethylene oxide, or its polyhydration adducts, or its mixtures with alkoxylenes such as propylene oxide to form a nonionic surface-active agent.
  • hydrophilic polyoxyalkylene moiety which is condensed with any particular hydrophobic compound can be readily adjusted to yield a water dispersible or water soluble compound having the desired degree of balance between hydrophilic and hydrophobic properties.
  • Useful nonionic surfactants in the present invention include:
  • Block polyoxypropylene-polyoxyethylene polymeric compounds based upon propylene glycol, ethylene glycol, glycerol, trimethylolpropane, and ethylenediamine as the initiator reactive hydrogen compound are commercially available under the trade names Pluronic® and Tetronico manufactured by BASF Corp.
  • Pluronic® compounds are difunctional (two reactive hydrogens) compounds formed by condensing ethylene oxide with a hydrophobic base formed by the addition of propylene oxide to the two hydroxyl groups of propylene glycol. This hydrophobic portion of the molecule weighs from 1,000 to 4,000. Ethylene oxide is then added to sandwich this hydrophobe between hydrophilic groups, controlled by length to constitute from about 10% by weight to about 80% by weight of the final molecule.
  • Tetronic® compounds are tetra-functional block copolymers derived from the sequential addition of propylene oxide and ethylene oxide to ethylenediamine.
  • the molecular weight of the propylene oxide hydrotype ranges from 500 to 7,000; and, the hydrophile, ethylene oxide, is added to constitute from 10% by weight to 80% by weight of the molecule.
  • the alkyl group can, for example, be represented by diisobutylene, di-amyl, polymerized propylene, iso-octyl, nonyl, and di-nonyl.
  • These surfactants can be polyethylene, polypropylene, and polybutylene oxide condensates of alkyl phenols. Examples of commercial compounds of this chemistry are available on the market under the trade names Igepal® manufactured by Rhone-Poulenc and Triton® manufactured by Union Carbide.
  • the alcohol moiety can consist of mixtures of alcohols in the above delineated carbon range or it can consist of an alcohol having a specific number of carbon atoms within this range. Examples of like commercial surfactant are available under the trade names Neodol® manufactured by Shell Chemical Co. and Alfonic® manufactured by Vista Chemical Co.
  • the acid moiety can consist of mixtures of acids in the above defined carbon atoms range or it can consist of an acid having a specific number of carbon atoms within the range. Examples of commercial compounds of this chemistry are available on the market under the trade names Nopalcol® manufactured by Henkel Corporation and Lipopeg® manufactured by Lipo Chemicals, Inc.
  • ethoxylated carboxylic acids commonly called polyethylene glycol esters
  • other alkanoic acid esters formed by reaction with glycerides, glycerin, and polyhydric (saccharide or sorbitan/sorbitol) alcohols have application in this invention. All of these ester moieties have one or more reactive hydrogen sites on their molecule which can undergo further acylation or ethylene oxide (alkoxide) addition to control the hydrophilicity of these substances. Care must be exercised when adding these fatty ester or acylated carbohydrates to compositions of the present invention containing amylase and/or lipase enzymes because of potential incompatibility.
  • nonionic low foaming surfactants include:
  • Tetronic® R surfactants are produced by BASF Corporation by the sequential addition of ethylene oxide and propylene oxide to ethylenediamine.
  • the hydrophobic portion of the molecule weighs from 2,100 to 6,700 with the central hydrophile including 10% by weight to 80% by weight of the final molecule. 6.
  • reactants such as thionyl chloride which convert terminal hydroxy groups to a chloride group.
  • Such modifications to the terminal hydroxy group may lead to all-block, block-heteric, heteric-block or all-heteric nonionics.
  • Additional examples of effective low foaming nonionics include:
  • R is an alkyl group of 8 to 9 carbon atoms
  • A is an alkylene chain of 3 to 4 carbon atoms
  • n is an integer of 7 to 16
  • m is an integer of 1 to 10.
  • polyalkylene glycol condensates of U.S. Pat. No. 3,048,548 issued Aug. 7, 1962 to Martin et al. having alternating hydrophilic oxyethylene chains and hydrophobic oxypropylene chains where the weight of the terminal hydrophobic chains, the weight of the middle hydrophobic unit and the weight of the linking hydrophilic units each represent about one-third of the condensate.
  • defoaming nonionic surfactants disclosed in U.S. Pat. No. 3,382,178 issued May 7, 1968 to Lissant et al. having the general formula Z[(OR) n OH] z wherein Z is alkoxylatable material, R is a radical derived from an alkaline oxide which can be ethylene and propylene and n is an integer from, for example, 10 to 2,000 or more and z is an integer determined by the number of reactive oxyalkylatable groups.
  • Y Compounds falling within the scope of the definition for Y include, for example, propylene glycol, glycerine, pentaerythritol, trimethylolpropane, ethylenediamine and the like.
  • the oxypropylene chains optionally, but advantageously, contain small amounts of ethylene oxide and the oxyethylene chains also optionally, but advantageously, contain small amounts of propylene oxide.
  • Additional conjugated polyoxyalkylene surface-active agents which are advantageously used in the compositions of this invention correspond to the formula: P[(C 3 H 6 O) n (C 2 H 4 O) m H] x wherein P is the residue of an organic compound having from 8 to 18 carbon atoms and containing x reactive hydrogen atoms in which x has a value of 1 or 2, n has a value such that the molecular weight of the polyoxyethylene portion is at least 44 and m has a value such that the oxypropylene content of the molecule is from 10% to 90% by weight.
  • the oxypropylene chains may contain optionally, but advantageously, small amounts of ethylene oxide and the oxyethylene chains may contain also optionally, but advantageously, small amounts of propylene oxide.
  • Polyhydroxy fatty acid amide surfactants suitable for use in the present compositions include those having the structural formula R 2 CONR 1 Z in which: R 1 is H, C 1 -C 4 hydrocarbyl, 2-hydroxy ethyl, 2-hydroxy propyl, ethoxy, propoxy group, or a mixture thereof; R is a C 5 -C 3 1 hydrocarbyl, which can be straight-chain; and Z is a polyhydroxyhydrocarbyl having a linear hydrocarbyl chain with at least 3 hydroxyls directly connected to the chain, or an alkoxylated derivative (preferably ethoxylated or propoxylated) thereof.
  • Z can be derived from a reducing sugar in a reductive amination reaction; such as a glycityl moiety.
  • alkyl ethoxylate condensation products of aliphatic alcohols with from 0 to 25 moles of ethylene oxide are suitable for use in the present compositions.
  • the alkyl chain of the aliphatic alcohol can either be straight or branched, primary or secondary, and generally contains from 6 to 22 carbon atoms.
  • the ethoxylated C 6 -C 18 fatty alcohols and C 6 -C 18 mixed ethoxylated and propoxylated fatty alcohols are suitable surfactants for use in the present compositions, particularly those that are water soluble.
  • Suitable ethoxylated fatty alcohols include the C 10 -C 18 ethoxylated fatty alcohols with a degree of ethoxylation of from 3 to 50.
  • Suitable nonionic alkylpolysaccharide surfactants particularly for use in the present compositions include those disclosed in U.S. Pat. No. 4,565,647, Llenado, issued Jan. 21, 1986. These surfactants include a hydrophobic group containing from 6 to 30 carbon atoms and a polysaccharide, e.g., a polyglycoside, hydrophilic group containing from 1.3 to 10 saccharide units. Any reducing saccharide containing 5 or 6 carbon atoms can be used, e.g., glucose, galactose and galactosyl moieties can be substituted for the glucosyl moieties.
  • the hydrophobic group is attached at the 2-, 3-, 4-, etc. positions thus giving a glucose or galactose as opposed to a glucoside or galactoside.
  • the intersaccharide bonds can be, e.g., between the one position of the additional saccharide units and the 2-, 3-, 4-, and/or 6-positions on the preceding saccharide units.
  • Fatty acid amide surfactants suitable for use in the present compositions include those having the formula: R 6 CON(R 7 ) 2 in which R 6 is an alkyl group containing from 7 to 21 carbon atoms and each R 7 is independently hydrogen, C 1 -C 4 alkyl, C 1 -C 4 hydroxyalkyl, or —(C 2 H 4 O) x H, where x is in the range of from 1 to 3.
  • a useful class of non-ionic surfactants includes the class defined as alkoxylated amines or, most particularly, alcohol alkoxylated/aminated/alkoxylated surfactants. These non-ionic surfactants may be at least in part represented by the general formulae: R 20 —(PO) s N-(EO) t H, R 2 O—(PO) s N-(EO) t H(EO) t H, and R 20 —N(EO) t H; in which R 20 is an alkyl, alkenyl or other aliphatic group, or an alkyl-aryl group of from 8 to 20, preferably 12 to 14 carbon atoms, EO is oxyethylene, PO is oxypropylene, s is 1 to 20, preferably 2-5, t is 1-10, preferably 2-5, and u is 1-10, preferably 2-5.
  • Nonionic Surfactants edited by Schick, M. J., Vol. 1 of the Surfactant Science Series, Marcel Dekker, Inc., New York, 1983 is an excellent reference on the wide variety of nonionic compounds generally employed in the practice of the present invention.
  • a typical listing of nonionic classes, and species of these surfactants, is given in U.S. Pat. No. 3,929,678 issued to Laughlin and Heuring on Dec. 30, 1975. Further examples are given in “Surface Active Agents and Detergents” (Vol. I and II by Schwartz, Perry and Berch).
  • Also useful in the present invention are surface active substances which are categorized as anionics because the charge on the hydrophobe is negative; or surfactants in which the hydrophobic section of the molecule carries no charge unless the pH is elevated to neutrality or above (e.g. carboxylic acids).
  • Carboxylate, sulfonate, sulfate and phosphate are the polar (hydrophilic) solubilizing groups found in anionic surfactants.
  • sodium, lithium and potassium impart water solubility; ammonium and substituted ammonium ions provide both water and oil solubility; and, calcium, barium, and magnesium promote oil solubility.
  • anionics are excellent detersive surfactants and are therefore favored additions to heavy duty detergent compositions.
  • anionics have high foam profiles which limit their use alone or at high concentration levels in cleaning systems such as CIP circuits that require strict foam control.
  • Anionic surface active compounds are useful to impart special chemical or physical properties other than detergency within the composition.
  • Anionics can be employed as gelling agents or as part of a gelling or thickening system.
  • Anionics are excellent solubilizers and can be used for hydrotropic effect and cloud point control.
  • the majority of large volume commercial anionic surfactants can be subdivided into five major chemical classes and additional sub-groups known to those of skill in the art and described in “Surfactant Encyclopedia,” Cosmetics & Toiletries, Vol. 104 (2) 71-86 (1989).
  • the first class includes acylamino acids (and salts), such as acylgluamates, acyl peptides, sarcosinates (e.g. N-acyl sarcosinates), taurates (e.g. N-acyl taurates and fatty acid amides of methyl tauride), and the like.
  • the second class includes carboxylic acids (and salts), such as alkanoic acids (and alkanoates), ester carboxylic acids (e.g.
  • alkyl succinates examples include ether carboxylic acids, and the like.
  • the third class includes sulfonic acids (and salts), such as isethionates (e.g. acyl isethionates), alkylaryl sulfonates, alkyl sulfonates, sulfosuccinates (e.g. monoesters and diesters of sulfosuccinate), and the like.
  • the fifth class includes sulfuric acid esters (and salts), such as alkyl ether sulfates, alkyl sulfates, and the like.
  • Anionic sulfate surfactants suitable for use in the present compositions include the linear and branched primary and secondary alkyl sulfates, alkyl ethoxysulfates, fatty oleyl glycerol sulfates, alkyl phenol ethylene oxide ether sulfates, the C 5 -C 1 7 acyl-N—(C 1 -C 4 alkyl) and —N—(C 1 -C 2 hydroxyalkyl)glucamine sulfates, and sulfates of alkylpolysaccharides such as the sulfates of alkylpolyglucoside (the nonionic nonsulfated compounds being described herein).
  • Suitable synthetic, water soluble anionic detergent compounds include the ammonium and substituted ammonium (such as mono-, di- and triethanolamine) and alkali metal (such as sodium, lithium and potassium) salts of the alkyl mononuclear aromatic sulfonates such as the alkyl benzene sulfonates containing from 5 to 18 carbon atoms in the alkyl group in a straight or branched chain, e.g., the salts of alkyl benzene sulfonates or of alkyl toluene, xylene, cumene and phenol sulfonates; alkyl naphthalene sulfonate, diamyl naphthalene sulfonate, and dinonyl naphthalene sulfonate and alkoxylated derivatives.
  • ammonium and substituted ammonium such as mono-, di- and triethanolamine
  • alkali metal such as sodium, lithium
  • Anionic carboxylate surfactants suitable for use in the present compositions include the alkyl ethoxy carboxylates, the alkyl polyethoxy polycarboxylate surfactants and the soaps (e.g. alkyl carboxyls).
  • Secondary soap surfactants (e.g. alkyl carboxyl surfactants) useful in the present compositions include those which contain a carboxyl unit connected to a secondary carbon.
  • the secondary carbon can be in a ring structure, e.g. as in p-octyl benzoic acid, or as in alkyl-substituted cyclohexyl carboxylates.
  • the secondary soap surfactants typically contain no ether linkages, no ester linkages and no hydroxyl groups. Further, they typically lack nitrogen atoms in the head-group (amphiphilic portion).
  • Suitable secondary soap surfactants typically contain 11-13 total carbon atoms, although more carbons atoms (e.g., up to 16) can be
  • anionic detergents suitable for use in the present compositions include olefin sulfonates, such as long chain alkene sulfonates, long chain hydroxyalkane sulfonates or mixtures of alkenesulfonates and hydroxyalkane-sulfonates. Also included are the alkyl sulfates, alkyl poly(ethyleneoxy)ether sulfates and aromatic poly(ethyleneoxy)sulfates such as the sulfates or condensation products of ethylene oxide and nonyl phenol (usually having 1 to 6 oxyethylene groups per molecule). Resin acids and hydrogenated resin acids are also suitable, such as rosin, hydrogenated rosin, and resin acids and hydrogenated resin acids present in or derived from tallow oil.
  • anionic surfactants are given in “Surface Active Agents and Detergents” (Vol. I and II by Schwartz, Perry and Berch). A variety of such surfactants are also generally disclosed in U.S. Pat. No. 3,929,678, issued Dec. 30, 1975 to Laughlin, et al. at Column 23, line 58 through Column 29, line 23.
  • cationic surfactants may be synthesized from any combination of elements containing an “onium” structure RnX+Y—and could include compounds other than nitrogen (ammonium) such as phosphorus (phosphonium) and sulfur (sulfonium).
  • nitrogen containing compounds probably because synthetic routes to nitrogenous cationics are simple and straightforward and give high yields of product, which can make them less expensive.
  • Cationic surfactants preferably include, more preferably refer to, compounds containing at least one long carbon chain hydrophobic group and at least one positively charged nitrogen.
  • the long carbon chain group may be attached directly to the nitrogen atom by simple substitution; or more preferably indirectly by a bridging functional group or groups in so-called interrupted alkylamines and amido amines.
  • Such functional groups can make the molecule more hydrophilic and/or more water dispersible, more easily water solubilized by co-surfactant mixtures, and/or water soluble.
  • additional primary, secondary or tertiary amino groups can be introduced or the amino nitrogen can be quaternized with low molecular weight alkyl groups.
  • the nitrogen can be a part of branched or straight chain moiety of varying degrees of unsaturation or of a saturated or unsaturated heterocyclic ring.
  • cationic surfactants may contain complex linkages having more than one cationic nitrogen atom.
  • the surfactant compounds classified as amine oxides, amphoterics and zwitterions are themselves typically cationic in near neutral to acidic pH solutions and can overlap surfactant classifications.
  • Polyoxyethylated cationic surfactants generally behave like nonionic surfactants in alkaline solution and like cationic surfactants in acidic solution.
  • the simplest cationic amines, amine salts and quaternary ammonium compounds can be schematically drawn thus:
  • R represents a long alkyl chain
  • R′, R′′, and R′′ may be either long alkyl chains or smaller alkyl or aryl groups or hydrogen and X represents an anion.
  • the amine salts and quaternary ammonium compounds are preferred for practical use in this invention due to their high degree of water solubility.
  • the majority of large volume commercial cationic surfactants can be subdivided into four major classes and additional sub-groups known to those of skill in the art and described in “Surfactant Encyclopedia,” Cosmetics & Toiletries, Vol. 104 (2) 86-96 (1989).
  • the first class includes alkylamines and their salts.
  • the second class includes alkyl imidazolines.
  • the third class includes ethoxylated amines.
  • the fourth class includes quaternaries, such as alkylbenzyldimethylammonium salts, alkyl benzene salts, heterocyclic ammonium salts, tetra alkylammonium salts, and the like.
  • Cationic surfactants are known to have a variety of properties that can be beneficial in the present compositions. These desirable properties can include detergency in compositions of or below neutral pH, antimicrobial efficacy, thickening or gelling in cooperation with other agents, and the like.
  • the composition does not include any cationic surfactants.
  • Amphoteric, or ampholytic, surfactants contain both a basic and an acidic hydrophilic group and an organic hydrophobic group. These ionic entities may be any of the anionic or cationic groups described herein for other types of surfactants.
  • a basic nitrogen and an acidic carboxylate group are the typical functional groups employed as the basic and acidic hydrophilic groups.
  • surfactants sulfonate, sulfate, phosphonate or phosphate provide the negative charge.
  • Amphoteric surfactants can be broadly described as derivatives of aliphatic secondary and tertiary amines, in which the aliphatic radical may be straight chain or branched and wherein one of the aliphatic substituents contains from 8 to 18 carbon atoms and one contains an anionic water solubilizing group, e.g., carboxy, sulfo, sulfato, phosphato, or phosphono.
  • Amphoteric surfactants are subdivided into two major classes known to those of skill in the art and described in “Surfactant Encyclopedia,” Cosmetics & Toiletries, Vol. 104 (2) 69-71 (1989). The first class includes acyl/dialkyl ethylenediamine derivatives (e.g. 2-alkyl hydroxyethyl imidazoline derivatives) and their salts. The second class includes N-alkylamino acids and their salts.
  • Amphoteric surfactants can be synthesized by methods known to those of skill in the art. For example, 2-alkyl hydroxyethyl imidazoline is synthesized by condensation and ring closure of a long chain carboxylic acid (or a derivative) with dialkyl ethylenediamine. Commercial amphoteric surfactants are derivatized by subsequent hydrolysis and ring-opening of the imidazoline ring by alkylation—for example with ethyl acetate. During alkylation, one or two carboxy-alkyl groups react to form a tertiary amine and an ether linkage with differing alkylating agents yielding different tertiary amines.
  • R is an acyclic hydrophobic group containing from 8 to 18 carbon atoms and M is a cation to neutralize the charge of the anion, generally sodium.
  • imidazoline-derived amphoterics that can be employed in the present compositions include for example: Cocoamphopropionate, Cocoamphocarboxy-propionate, Cocoamphoglycinate, Cocoamphocarboxy-glycinate, Cocoamphopropyl-sulfonate, and Cocoamphocarboxy-propionic acid.
  • Preferred amphocarboxylic acids are produced from fatty imidazolines in which the dicarboxylic acid functionality of the amphodicarboxylic acid is diacetic acid and/or dipropionic acid.
  • Betaines are a special class of amphoteric discussed herein below in the section entitled, Zwitterion Surfactants.
  • N-alkylamino acids are readily prepared by reacting RNH 2 , in which R.dbd.C 8 -C 18 straight or branched chain alkyl, fatty amines with halogenated carboxylic acids. Alkylation of the primary amino groups of an amino acid leads to secondary and tertiary amines. Alkyl substituents may have additional amino groups that provide more than one reactive nitrogen center. Most commercial N-alkylamine acids are alkyl derivatives of beta-alanine or beta-N(2-carboxyethyl) alanine.
  • Examples of commercial N-alkylamino acid ampholytes having application in this invention include alkyl beta-amino dipropionates, RN(C 2 H 4 COOM) 2 and RNHC 2 H 4 COOM.
  • R is preferably an acyclic hydrophobic group containing from 8 to 18 carbon atoms
  • M is a cation to neutralize the charge of the anion.
  • Preferred amphoteric surfactants include those derived from coconut products such as coconut oil or coconut fatty acid.
  • the more preferred of these coconut derived surfactants include as part of their structure an ethylenediamine moiety, an alkanolamide moiety, an amino acid moiety, preferably glycine, or a combination thereof; and an aliphatic substituent of from 8 to 18 (preferably 12) carbon atoms.
  • Such a surfactant can also be considered an alkyl amphodicarboxylic acid.
  • Disodium cocoampho dipropionate is one most preferred amphoteric surfactant and is commercially available under the tradename Miranol.TM FBS from Rhodia Inc., Cranbury, N.J.
  • Another most preferred coconut derived amphoteric surfactant with the chemical name disodium cocoampho diacetate is sold under the tradename Miranol C2M-SF Conc., also from Rhodia Inc., Cranbury, N.J.
  • Zwitterionic surfactants can be thought of as a subset of the amphoteric surfactants.
  • Zwitterionic surfactants can be broadly described as derivatives of secondary and tertiary amines, derivatives of heterocyclic secondary and tertiary amines, or derivatives of quaternary ammonium, quaternary phosphonium or tertiary sulfonium compounds.
  • a zwitterionic surfactant includes a positive charged quaternary ammonium or, in some cases, a sulfonium or phosphonium ion, a negative charged carboxyl group, and an alkyl group.
  • Zwitterionics generally contain cationic and anionic groups which ionize to a nearly equal degree in the isoelectric region of the molecule and which can develop strong “inner-salt” attraction between positive-negative charge centers.
  • Examples of such zwitterionic synthetic surfactants include derivatives of aliphatic quaternary ammonium, phosphonium, and sulfonium compounds, in which the aliphatic radicals can be straight chain or branched, and wherein one of the aliphatic substituents contains from 8 to 18 carbon atoms and one contains an anionic water solubilizing group, e.g., carboxy, sulfonate, sulfate, phosphate, or phosphonate.
  • Betaine and sultaine surfactants are exemplary zwitterionic surfactants for use herein.
  • R1 contains an alkyl, alkenyl, or hydroxyalkyl radical of from 8 to 18 carbon atoms having from 0 to 10 ethylene oxide moieties and from 0 to 1 glyceryl moiety
  • Y is selected from the group consisting of nitrogen, phosphorus, and sulfur atoms
  • R.sup.2 is an alkyl or monohydroxy alkyl group containing 1 to 3 carbon atoms
  • x is 1 when Y is a sulfur atom and 2 when Y is a nitrogen or phosphorus atom
  • R 3 is an alkylene or hydroxy alkylene or hydroxy alkylene of from 1 to 4 carbon atoms
  • Z is a radical selected from the group consisting of carboxylate, sulfonate, sulfate, phosphonate, and phosphate groups.
  • zwitterionic surfactants having the structures listed above include: 4-[N,N-di(2-hydroxyethyl)-N-octadecylammonio]-butane-1-car-boxyate; 5-[S-3-hydroxypropyl-S-hexadecylsulfonio]-3-hydroxypentane-1-sul-fate; 3-[P,P-diethyl-P-3,6,9-trioxatetracosanephosphonio]-2-hydroxypropane-1-phosphate; 3-[N,N-dipropyl-N-3-dodecoxy-2-hydroxypropyl-ammonio]-propan-e-1-phosphonate; 3-(N,N-dimethyl-N-hexadecylammonio)-propane-1-sulfonate; 3-(N,N-dimethyl-N-hexadecylammonio)-2-hydroxy-propane-1-sulfon
  • the zwitterionic surfactant suitable for use in the present compositions includes a betaine of the general structure:
  • betaines typically do not exhibit strong cationic or anionic characters at pH extremes nor do they show reduced water solubility in their isoelectric range. Unlike “external” quaternary ammonium salts, betaines are compatible with anionics.
  • betaines examples include coconut acylamidopropyldimethyl betaine; hexadecyl dimethyl betaine; C 12-14 acylamidopropylbetaine; C 8-14 acylamidohexyldiethyl betaine; 4-C 14-16 acylmethylamidodiethylammonio-1-carboxybutane; C 16-18 acylamidodimethylbetaine; C 12-16 acylamidopentanediethylbetaine; and C 12-16 acylmethylamidodimethylbetaine.
  • Sultaines useful in the present invention include those compounds having the formula (R(R1) 2 N.sup.+R 2 SO 3 —, in which R is a C 6 -C 18 hydrocarbyl group, each R 1 is typically independently C 1 -C 3 alkyl, e.g. methyl, and R 2 is a C 1 -C 6 hydrocarbyl group, e.g. a C 1 -C 3 alkylene or hydroxyalkylene group.
  • composition may include 0.5-10 wt %, or 1-5 wt %, of surfactant or additional surfactant.
  • the composition may include a chelating/sequestering agent such as an aminocarboxylic acid, a condensed phosphate, a phosphonate, a polyacrylate, and the like.
  • a chelating agent is a molecule capable of coordinating (i.e., binding) the metal ions commonly found in natural water to prevent the metal ions from interfering with the action of the other detersive ingredients of a cleaning composition.
  • a chelating/sequestering agent is included in an amount of about 0.1 to 70 wt-%, preferably from about 5 to 50 wt-%.
  • Useful aminocarboxylic acids include, for example, n-hydroxyethyliminodiacetic acid, nitrilotriacetic acid (NTA), ethylenediaminetetraacetic acid (EDTA), N-hydroxyethyl-ethylenediaminetriacetic acid (HEDTA), diethylenetriaminepentaacetic acid (DTPA), and the like.
  • NTA nitrilotriacetic acid
  • EDTA ethylenediaminetetraacetic acid
  • HEDTA N-hydroxyethyl-ethylenediaminetriacetic acid
  • DTPA diethylenetriaminepentaacetic acid
  • condensed phosphates useful in the present composition include, for example, sodium and potassium orthophosphate, sodium and potassium pyrophosphate, sodium tripolyphosphate, sodium hexametaphosphate, and the like.
  • a condensed phosphate may also assist, to a limited extent, in solidification of the composition by fixing the free water present in the composition as water of
  • the composition may include a phosphonate such as aminotris(methylene phosphonic acid), hydroxyethylidene diphosphonic acid, ethylenediaminetetra(methylene phosphonic acid), diethylenetriaminepente(methylene phosphonic acid), and the like. It is preferred to use a neutralized or alkaline phosphonate, or to combine the phosphonate with an alkali source prior to being added into the mixture such that there is little or no heat generated by a neutralization reaction when the phosphate is added.
  • a phosphonate such as aminotris(methylene phosphonic acid), hydroxyethylidene diphosphonic acid, ethylenediaminetetra(methylene phosphonic acid), diethylenetriaminepente(methylene phosphonic acid), and the like. It is preferred to use a neutralized or alkaline phosphonate, or to combine the phosphonate with an alkali source prior to being added into the mixture such that there is little or no heat generated by a neutralization reaction
  • Polyacrylates suitable for use as cleaning agents include, for example, polyacrylic acid, polymethacrylic acid, acrylic acid-methacrylic acid copolymers, hydrolyzed polyacrylamide, hydrolyzed polymethacrylamide, hydrolyzed polyamide-methacrylamide copolymers, hydrolyzed polyacrylonitrile, hydrolyzed polymethacrylonitrile, hydrolyzed acrylonitrile-methacrylonitrile copolymers, and the like.
  • chelating agents/sequestrants see Kirk-Othmer, Encyclopedia of Chemical Technology, Third Edition, volume 5, pages 339-366 and volume 23, pages 319-320, the disclosure of which is incorporated by reference herein.
  • Bleaching agents that may be used in a cleaning composition for lightening or whitening a substrate, include bleaching compounds capable of liberating an active halogen species, such as —Cl, —Br, —OCl and/or —OBr, under conditions typically encountered during the cleansing process.
  • Suitable bleaching agents for use in the present cleaning compositions include, for example, chlorine-containing compounds such as a chlorine, hypochlorite, chloramine, and the like.
  • Preferred halogen-releasing compounds include the alkali metal dichloroisocyanurates, chlorinated trisodium phosphate, the alkali metal hypochlorides, monochloramine and dichloramine, and the like.
  • Encapsulated chlorine sources may also be used to enhance the stability of the chlorine source in the composition (see, for example, U.S. Pat. No. 4,618,914, the disclosure of which is incorporated by reference herein).
  • a bleaching agent may also be a peroxygen or active oxygen source such as hydrogen peroxide, perborates, sodium carbonate peroxyhydrate, phosphate peroxyhydrates, potassium permonosulfate, and sodium perborate mono and tetrahydrate, with and without activators such as tetraacetylethylene diamine, and the like.
  • a cleaning composition may include a minor but effective amount of a bleaching agent, preferably about 0.1 to 10 wt-%, preferably about 1 to 6 wt-%.
  • a cleaning composition may include a minor but effective amount of one or more of a detergent filler, which does not perform as a cleaning agent per se, but cooperates with the cleaning agent to enhance the overall cleaning action of the composition.
  • a detergent filler which does not perform as a cleaning agent per se, but cooperates with the cleaning agent to enhance the overall cleaning action of the composition.
  • fillers suitable for use in the present cleaning compositions include sodium sulfate, sodium chloride, starch, sugars, and C 1 -C 10 alkylene glycols such as propylene glycol, and the like.
  • the filler is included in an amount of about 1 to 20 wt-%, preferably about 3 to 15 wt-%.
  • a minor but effective amount of a defoaming agent for reducing aeration during processing may also be included in a cleaning composition.
  • the cleaning composition includes about 0.0001 to 5 wt-% of a defoaming agent, preferably about 0.01 to 1 wt-%.
  • defoaming agents suitable for use in the present compositions include silicone compounds such as silica dispersed in polydimethylsiloxane, fatty amides, hydrocarbon waxes, fatty acids, fatty esters, fatty alcohols, fatty acid soaps, ethoxylates, mineral oils, polyethylene glycol esters, alkyl phosphate esters such as monostearyl phosphate, and the like.
  • silicone compounds such as silica dispersed in polydimethylsiloxane, fatty amides, hydrocarbon waxes, fatty acids, fatty esters, fatty alcohols, fatty acid soaps, ethoxylates, mineral oils, polyethylene glycol esters, alkyl phosphate esters such as monostearyl phosphate, and the like.
  • a cleaning composition may also include an anti-redeposition agent capable of facilitating sustained suspension of soils in a cleaning solution and preventing removed soils from being redeposited onto the substrate being cleaned.
  • suitable anti-redeposition agents include fatty acid amides, fluorocarbon surfactants, complex phosphate esters, styrene maleic anhydride copolymers, and cellulosic derivatives such as hydroxyethyl cellulose, hydroxypropyl cellulose, carboxymethyl cellulose, and the like.
  • a cleaning composition may include about 0.5 to 10 wt-%, preferably about 1 to 5 wt-%, of an anti-redeposition agent.
  • Dyes may be included to alter the appearance of the composition, as for example, Direct Blue 86 (Miles), Fastusol Blue (Mobay Chemical Corp.), Acid Orange 7 (American Cyanamid), Basic Violet 10 (Sandoz), Acid Yellow 23 (GAF), Acid Yellow 17 (Sigma Chemical Co.), Fluorescein (Capitol Color and Chemical), Rhodamine (D&C Red No.
  • Fragrances or perfumes that may be included in the compositions include, for example, terpenoids such as citronellol, aldehydes such as amyl cinnamaldehyde, a jasmine such as C IS-jasmine or jasmal, vanillin, and the like.
  • the present solid composition can be made by an advantageous method of pressing the solid composition. Specifically, in a forming process, the liquid and solid components are introduced into the final mixing system and are continuously mixed until the components form a substantially homogeneous semi-solid mixture in which the components are distributed throughout its mass. In an exemplary embodiment, the components are mixed in the mixing system for at least approximately 5 seconds. The mixture is then discharged from the mixing system into, or through, a die, press or other shaping means. The product is then packaged. In an exemplary embodiment, the solid formed composition begins to harden between approximately 1 minute and approximately 3 hours. Particularly, the formed composition begins to harden in between approximately 1 minute and approximately 2 hours. More particularly, the formed composition begins to harden in between approximately 1 minute and approximately 20 minutes.
  • Pressing can employ low pressures compared to conventional pressures used to form tablets or other conventional solid detergent compositions.
  • the present method employs a pressure on the solid of only less than or equal to about 1000 psi.
  • the present method employs pressures of less than or equal to about 900 psi, less than or equal to about 800 psi, or less than or equal to about 700 psi.
  • the present method can employ pressures as low as greater than or equal to about 1 psi, greater than or equal to about 2, greater than or equal to about 5 psi, or greater than or equal to about 10 psi.
  • the present method can employ pressures of about 1 to about 1000 psi, about 2 to about 900 psi, about 5 psi to about 800 psi, or about 10 psi to about 700 psi.
  • the method of the present invention can produce a stable solid without employing a melt and solidification of the melt as in conventional casting.
  • Forming a melt requires heating a composition to melt it.
  • the heat can be applied externally or can be produced by a chemical exotherm (e.g., from mixing caustic (sodium hydroxide) and water). Heating a composition consumes energy.
  • Handling a hot melt requires safety precautions and equipment.
  • solidification of a melt requires cooling the melt in a container to solidify the melt and form the cast solid. Cooling requires time and/or energy.
  • the present method can employ ambient temperature and humidity during solidification or curing of the present compositions.
  • Caustic compositions made according to the present method produce only a slight temperature increase due to the exotherm.
  • the solids of the present invention are held together not by solidification from a melt but by a binding agent produced in the admixed particles and that is effective for producing a stable solid.
  • the method of the present invention can produce a stable solid without extruding to compress the mixture through a die.
  • Conventional processes for extruding a mixture through a die to produce a solid composition apply high pressures to a solid or paste to produce the extruded solid.
  • the present method employs pressures on the solid of only less than or equal to about 1000 psi or even as little as 1 psi.
  • the solids of the present invention are held together not by mere compression but by a binding agent that is effective for producing a stable solid.
  • a single- or twin-screw extruder may be used to combine and mix one or more components agents at high shear to form a homogeneous mixture.
  • the processing temperature is at or below the melting temperature of the components.
  • the processed mixture may be dispensed from the mixer by pressing, forming, extruding or other suitable means, whereupon the composition hardens to a solid form.
  • the structure of the matrix may be characterized according to its hardness, melting point, material distribution, crystal structure, and other like properties according to known methods in the art.
  • a solid composition processed according to the method of the invention is substantially homogeneous with regard to the distribution of ingredients throughout its mass and is dimensionally stable.
  • the resulting solid composition may take forms including, but not limited to: an extruded, molded or formed solid pellet, block, tablet, powder, granule, flake; or the formed solid can thereafter be ground or formed into a powder, granule, or flake.
  • extruded pellet materials formed have a weight of between approximately 50 grams and approximately 250 grams
  • extruded solids have a weight of approximately 100 grams or greater
  • solid blocks formed have a mass of between approximately 1 and approximately 10 kilograms.
  • the solid compositions provide for a stabilized source of functional materials.
  • the solid composition may be dissolved, for example, in an aqueous or other medium, to create a concentrated and/or use solution. The solution may be directed to a storage reservoir for later use and/or dilution, or may be applied directly to a point of use.
  • the solid detergent composition is provided in the form of a unit dose.
  • a unit dose refers to a solid detergent composition unit sized so that the entire unit is used during a single washing cycle.
  • the solid cleaning composition can have a mass of about 1 g to about 50 g.
  • the composition can be a solid, a pellet, or a tablet having a size of about 50 g to 250 g, of about 100 g or greater, or about 40 g to about 11,000 g.
  • the solid detergent composition is provided in the form of a multiple-use solid, such as, a block or a plurality of pellets, and can be repeatedly used to generate aqueous rinse compositions for multiple washing cycles.
  • the solid detergent composition is provided as a solid having a mass of about 5 g to 10 kg.
  • a multiple-use form of the solid detergent composition has a mass of about 1 to 10 kg.
  • a multiple-use form of the solid detergent composition has a mass of about 5 kg to about 8 kg.
  • a multiple-use form of the solid detergent composition has a mass of about 5 g to about 1 kg, or about 5 g and to 500 g.
  • a solid block cleaning composition made according to the present invention is dispensed from a spray-type dispenser such as those disclosed in U.S. Pat. Nos. 4,826,661, 4,690,305, 4,687,121, and 4,426,362, the disclosures of which are incorporated by reference herein.
  • a spray-type dispenser functions by impinging a water spray upon an exposed surface of the solid composition to dissolve a portion of the composition, and then immediately directing the concentrate solution comprising the composition out of the dispenser to a storage reservoir or directly to a point of use.
  • Anionic sulfonate Surfactant 0.1-97 1-95 5-80 Alkalinity source 0.1-45 1-50 5-40 Inorganic salt 0-15 0.1-10 1-8 Acrylic polymer 0-15 0.1-10 1-8 Nonionic surfactant 0.01-30 0.1-35 1-40
  • compositions of the invention were tested against a commercial extruded solid pot and pan detergent containing alkyl polyglucosides, PEGor urea thickeners, and no alkalinity source or/other processing aids as defined herein.
  • This test method is used to screen manual dish washing detergents for foam height and stability. This method could be applied to any manual dish washing detergent but can potentially be used to measure foam height and stability of any detergent or cleaner.
  • Solid detergents are tested at 0.2 oz/gal (1.5 g/L) with 5 grain water at room temperature
  • Liquid detergents are tested at 0.4 oz/gal (3 g/L) with 5 grain water at room temperature
  • test detergent add 40 mL of test detergent to a 250 mL graduated cylinder. Repeat for each detergent to be tested.
  • step 7 foam height (liquid and foam height) is at 45 mL or less.
  • This test method is used to screen manual dish washing detergents based on soil removed from stainless steel surfaces after a soak in the detergent solution.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Detergent Compositions (AREA)
US14/962,064 2015-12-08 2015-12-08 Pressed manual dish detergent Active 2036-04-26 US10626350B2 (en)

Priority Applications (15)

Application Number Priority Date Filing Date Title
US14/962,064 US10626350B2 (en) 2015-12-08 2015-12-08 Pressed manual dish detergent
CN201680071447.5A CN108368457A (zh) 2015-12-08 2016-12-07 压制手动餐盘洗涤剂
JP2018529538A JP2018536745A (ja) 2015-12-08 2016-12-07 圧縮された手動食器洗剤
EP18190999.5A EP3444327A1 (de) 2015-12-08 2016-12-07 Gepresstes handspülmittel
BR112018009827-2A BR112018009827B1 (pt) 2015-12-08 2016-12-07 Composição de detergente sólida, e, método para produzir uma composição de detergente sólida
CA3007368A CA3007368C (en) 2015-12-08 2016-12-07 Pressed manual dish detergent
AU2016367170A AU2016367170B2 (en) 2015-12-08 2016-12-07 Pressed manual dish detergent
MX2018006902A MX2018006902A (es) 2015-12-08 2016-12-07 Detergente para lavar platos manual comprimido.
EP16873726.0A EP3387100A4 (de) 2015-12-08 2016-12-07 Gepresstes handspülmittel
PCT/US2016/065303 WO2017100267A1 (en) 2015-12-08 2016-12-07 Pressed manual dish detergent
AU2019203406A AU2019203406B2 (en) 2015-12-08 2019-05-15 Pressed manual dish detergent
JP2020003126A JP2020073687A (ja) 2015-12-08 2020-01-10 圧縮された手動食器洗剤
US16/823,177 US11268045B2 (en) 2015-12-08 2020-03-18 Pressed manual dish detergent
US17/649,619 US11746304B2 (en) 2015-12-08 2022-02-01 Pressed manual dish detergent
US18/355,173 US20240026247A1 (en) 2015-12-08 2023-07-19 Pressed manual dish detergent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US14/962,064 US10626350B2 (en) 2015-12-08 2015-12-08 Pressed manual dish detergent

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/823,177 Continuation US11268045B2 (en) 2015-12-08 2020-03-18 Pressed manual dish detergent

Publications (2)

Publication Number Publication Date
US20170158988A1 US20170158988A1 (en) 2017-06-08
US10626350B2 true US10626350B2 (en) 2020-04-21

Family

ID=58800210

Family Applications (4)

Application Number Title Priority Date Filing Date
US14/962,064 Active 2036-04-26 US10626350B2 (en) 2015-12-08 2015-12-08 Pressed manual dish detergent
US16/823,177 Active US11268045B2 (en) 2015-12-08 2020-03-18 Pressed manual dish detergent
US17/649,619 Active US11746304B2 (en) 2015-12-08 2022-02-01 Pressed manual dish detergent
US18/355,173 Pending US20240026247A1 (en) 2015-12-08 2023-07-19 Pressed manual dish detergent

Family Applications After (3)

Application Number Title Priority Date Filing Date
US16/823,177 Active US11268045B2 (en) 2015-12-08 2020-03-18 Pressed manual dish detergent
US17/649,619 Active US11746304B2 (en) 2015-12-08 2022-02-01 Pressed manual dish detergent
US18/355,173 Pending US20240026247A1 (en) 2015-12-08 2023-07-19 Pressed manual dish detergent

Country Status (8)

Country Link
US (4) US10626350B2 (de)
EP (2) EP3444327A1 (de)
JP (2) JP2018536745A (de)
CN (1) CN108368457A (de)
AU (2) AU2016367170B2 (de)
CA (1) CA3007368C (de)
MX (1) MX2018006902A (de)
WO (1) WO2017100267A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11268045B2 (en) * 2015-12-08 2022-03-08 Ecolab Usa Inc. Pressed manual dish detergent

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3743494A1 (de) 2018-01-26 2020-12-02 Ecolab Usa Inc. Verfestigendes flüssiges aminoxid, betain, und/oder sultaintenside mit einem bindemittel und einem optionalen träger
JP7485606B2 (ja) * 2018-01-26 2024-05-16 エコラボ ユーエスエー インコーポレイティド 液体アニオン性界面活性剤の固化
WO2019148090A1 (en) 2018-01-26 2019-08-01 Ecolab Usa Inc. Solidifying liquid amine oxide, betaine, and/or sultaine surfactants with a carrier
US11377626B2 (en) 2018-03-08 2022-07-05 Ecolab Usa Inc. Solid enzymatic detergent compositions and methods of use and manufacture
JP7389256B2 (ja) * 2019-12-23 2023-11-29 エコラボ ユーエスエー インコーポレイティド 洗浄機用固形洗剤ディスペンサ

Citations (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3766254A (en) 1970-05-05 1973-10-16 Chevron Res Linear alkylphenol disulfonate phosphate free detergent actives
US3816352A (en) 1972-11-01 1974-06-11 V Loureiro Spray dried alpha-olefin sulfonate detergent compositions
US3869412A (en) 1966-06-23 1975-03-04 Ake Waag Surface-active compositions having controlled foaming properties and process for controlling foam therewith
US3920586A (en) 1972-10-16 1975-11-18 Procter & Gamble Detergent compositions
GB1454895A (en) 1972-11-15 1976-11-03 Unilever Ltd Scouring powders
GB1489867A (en) 1973-10-05 1977-10-26 Albright & Wilson Detergent compositions comprising amine polyphosphates
US4196103A (en) 1971-06-18 1980-04-01 Colgate-Palmolive Company Colored detergents
US4252664A (en) 1978-10-30 1981-02-24 Colgate-Palmolive Company Effervescent granules
US4320033A (en) 1979-10-29 1982-03-16 Lion Corporation Solid detergent composition
US4350619A (en) 1980-04-23 1982-09-21 Lion Corporation Granular detergent containing zeolite, silicate, LAS and olefin sulfonate
US4365853A (en) 1974-05-15 1982-12-28 Colgate-Palmolive Company Article for storing and dispensing detergent compositions utilizing separate tablets of components
AU8506682A (en) 1981-06-22 1983-01-06 Procter & Gamble Company, The Peroxyacid bleaches
AU4421785A (en) 1984-07-02 1986-01-09 Clorox Company, The Process for synthesising alkyl monoperoxysuccinic acid
AU4699585A (en) 1984-09-04 1986-03-13 Colgate-Palmolive Company, The Wash cycle detergent-softener compositions
EP0178893A2 (de) 1984-10-18 1986-04-23 Ecolab Inc. Feste Detergenszusammensetzungen
EP0267042A2 (de) 1986-11-07 1988-05-11 Unilever Plc Detergens-Granulate und Verfahren zu ihrer Zubereitung
CA2040307A1 (en) 1991-04-12 1992-10-13 Yogesh Sennik Effervescent detergent tablets
AU3522193A (en) 1992-07-02 1994-01-06 Lubrizol Corporation, The Compositions containing combinations of surfactants and derivatives of succinic acylating agent or hydroxyaromatic compounds and methods of using the same
WO1994002573A1 (en) 1992-07-15 1994-02-03 The Procter & Gamble Company Process and compositions for compact detergents
WO1998005742A1 (en) 1996-08-07 1998-02-12 The Procter & Gamble Company Liquid cleaning compositions containing dianionic esters
WO1999063034A1 (en) 1998-06-02 1999-12-09 The Procter & Gamble Company Dishwashing detergent compositions containing organic diamines
IN184031B (de) 1995-11-06 2000-06-03 Lever Hindustan Ltd
IN184056B (de) 1995-08-09 2000-06-03 Lever Hindustan Ltd
WO2000040551A1 (en) 1999-01-06 2000-07-13 The Procter & Gamble Company Process for forming highly soluble linear alkyl benzene sulfonate surfactant and cleaning compositions containing same
WO2000043476A2 (en) 1999-01-20 2000-07-27 The Procter & Gamble Company Dishwashing detergent compositions containing mixtures of crystallinity-disrupted surfactants
EP1036839A2 (de) 1999-03-17 2000-09-20 Basf Aktiengesellschaft Kompakte, teilchenförmige Wasch- und Reinigungsmittel enthaltend quervernetztes Polyvinylpyrrolidon und dessen Verwendung
WO2000058436A1 (en) 1999-03-29 2000-10-05 Ecolab Inc. Solid pot and pan detergent
US6150317A (en) 1999-07-15 2000-11-21 Colgate-Palmolive Company High foaming, grease cutting light duty liquid composition containing a C12 alkyl amido propyl dimethyl amine oxide
WO2000071659A1 (en) 1999-05-26 2000-11-30 The Procter & Gamble Company Liquid detergent compositions comprising polymeric suds enhancers
US6172021B1 (en) 1996-12-20 2001-01-09 The Procter & Gamble Company Dishwashing detergent compositions containing alkanolamine
WO2001027228A1 (en) 1999-10-12 2001-04-19 Colgate-Palmolive Company Homogenous solution of an alpha olefin sulfonate surfactant
JP2001515954A (ja) 1997-09-09 2001-09-25 ヘンケル・コマンディットゲゼルシャフト・アウフ・アクチエン 改善された溶解性を示す洗浄剤および洗剤成形体
WO2001094509A2 (en) 2000-06-08 2001-12-13 Colgate-Palmolive Company Aqueous solution of an alpha olefin sulfonate surfactant
IN188383B (de) 1996-04-10 2002-09-14 Lever Hindustan Ltd
US6528477B2 (en) 1997-11-21 2003-03-04 Procter & Gamble Company Liquid detergent compositions comprising polymeric suds enhancers
WO2003089560A2 (en) 2002-04-16 2003-10-30 Colgate-Palmolive Company Cleaning compositions in the form of a tablet
US6689732B1 (en) * 1997-09-11 2004-02-10 The Procter & Gamble Company Detergent compositions having a specific hydrophobic peroxyacid bleaching system and anionic surfactant
EP1418224A1 (de) 2002-10-09 2004-05-12 Unilever N.V. Verfahren zur Herstellung einer Reinigungsmitteltablette
US6740630B2 (en) * 2001-07-24 2004-05-25 The Procter & Gamble Company Processes for making substantially anhydrous structured surfactant pastes and other detergent ingredients and compositions employing same
US6759382B2 (en) 2001-06-01 2004-07-06 Kay Chemical, Inc. Detergent composition containing a primary surfactant system and a secondary surfactant system, and a method of using the same
US6774099B1 (en) 1999-01-20 2004-08-10 The Procter & Gamble Company Dishwashing detergent compositions containing mixtures or crystallinity-disrupted surfactants
JP2005511820A (ja) 2001-12-07 2005-04-28 ヘンケル・コマンディットゲゼルシャフト・アウフ・アクチエン 界面活性剤粒状物および界面活性剤粒状物の製造法
EP1221475B1 (de) 2001-01-05 2005-11-23 The Procter & Gamble Company Flüssigwaschmittelzusammensetzungen enthaltend quarternären Stickstoff enthaltende und/oder zwitterionische polymere Schaumbilder
WO2006063668A1 (de) 2004-12-14 2006-06-22 Degussa Gmbh Verpresste formkörper enthaltend umhüllte natriumpercarbonatpartikel
CA2254737C (en) 1996-05-24 2006-12-12 Unilever Plc Detergent soap bar composition
WO2007104805A1 (es) 2006-03-16 2007-09-20 Petroquímica Española, S.A. (Petresa) Procedimiento para la obtención de sulfonatos de alquilbenceno lineales altamente solubles
EP1180129B1 (de) 1999-05-26 2007-09-26 The Procter & Gamble Company Flüssige waschmittelzusammensetzungen enthaltend blockpolymere schaumbilder
US7326675B2 (en) 2004-12-17 2008-02-05 Procter & Gamble Company Hydrophobically modified polyols for improved hydrophobic soil cleaning
US7332467B2 (en) 2004-12-17 2008-02-19 Procter & Gamble Company Hydrophilically modified polyols for improved hydrophobic soil cleaning
US20100056413A1 (en) 2008-09-04 2010-03-04 Harry Jr David Ray high-temperature cleaning system, associated substrates, and associated methods
US20110112003A1 (en) * 2009-11-09 2011-05-12 Ecolab Inc. Enhanced dispensing of solid compositions
WO2013043803A2 (en) 2011-09-20 2013-03-28 The Procter & Gamble Company Detergent compositions comprising specific blend ratios of isoprenoid-based surfactants
WO2013043852A2 (en) 2011-09-20 2013-03-28 The Procter & Gamble Company Easy-rinse detergent compositions comprising isoprenoid-based surfactants
WO2013043855A2 (en) 2011-09-20 2013-03-28 The Procter & Gamble Company High suds detergent compositions comprising isoprenoid-based surfactants
US20130123164A1 (en) 2008-01-04 2013-05-16 Ecolab Usa Inc. Solid tablet unit dose oven cleaner
WO2013148639A1 (en) 2012-03-26 2013-10-03 The Procter & Gamble Company Cleaning compositions comprising ph-switchable amine surfactants
US20140080748A1 (en) 2012-09-20 2014-03-20 The Procter & Gamble Company Easy rinse detergent compositions comprising isoprenoid-based surfactants
CA2688927C (en) 1999-05-26 2014-06-17 The Procter & Gamble Company Detergent compositions comprising polymeric suds enhancers which have improved mildness and skin feel
US8815790B2 (en) 2009-12-17 2014-08-26 Stepan Company Foaming light duty liquid detergent compositions, methods of making and uses thereof
US20150119312A1 (en) 2013-10-29 2015-04-30 Ecolab Usa Inc Use of amino carboxylate for enhancing metal protection in alkaline detergents

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2903486A (en) 1959-09-08 Karl h
NL272723A (de) 1951-05-31
US2674619A (en) 1953-10-19 1954-04-06 Wyandotte Chemicals Corp Polyoxyalkylene compounds
US3048548A (en) 1959-05-26 1962-08-07 Economics Lab Defoaming detergent composition
NL285082A (de) 1962-02-28
US3356612A (en) 1965-02-01 1967-12-05 Petrolite Corp Stable detergent compositions
US3442242A (en) 1967-06-05 1969-05-06 Algonquin Shipping & Trading Stopping and manoeuvering means for large vessels
US3664961A (en) 1970-03-31 1972-05-23 Procter & Gamble Enzyme detergent composition containing coagglomerated perborate bleaching agent
ZA752732B (en) * 1974-05-15 1976-12-29 Colgate Palmolive Co Unitary detergent compositions and washing methods
US3929678A (en) 1974-08-01 1975-12-30 Procter & Gamble Detergent composition having enhanced particulate soil removal performance
USRE32818E (en) 1978-02-07 1989-01-03 Ecolab Inc. Cast detergent-containing article and method of using
USRE32763E (en) 1978-02-07 1988-10-11 Ecolab Inc. Cast detergent-containing article and method of making and using
US4426362A (en) 1978-12-05 1984-01-17 Economics Laboratory, Inc. Solid block detergent dispenser
US4565647B1 (en) 1982-04-26 1994-04-05 Procter & Gamble Foaming surfactant compositions
US4680134A (en) 1984-10-18 1987-07-14 Ecolab Inc. Method for forming solid detergent compositions
US4690305A (en) 1985-11-06 1987-09-01 Ecolab Inc. Solid block chemical dispenser for cleaning systems
US4687121A (en) 1986-01-09 1987-08-18 Ecolab Inc. Solid block chemical dispenser for cleaning systems
US4826661A (en) 1986-05-01 1989-05-02 Ecolab, Inc. Solid block chemical dispenser for cleaning systems
US5108642A (en) * 1986-10-30 1992-04-28 Colgate-Palmolive Company Solid detergent cleaning composition, and method of manufacturing
US5078301A (en) 1987-10-02 1992-01-07 Ecolab Inc. Article comprising a water soluble bag containing a multiple use amount of a pelletized functional material and methods of its use
US5234615A (en) 1987-10-02 1993-08-10 Ecolab Inc. Article comprising a water soluble bag containing a multiple use amount of a pelletized functional material and methods of its use
US5198198A (en) 1987-10-02 1993-03-30 Ecolab Inc. Article comprising a water soluble bag containing a multiple use amount of a pelletized functional material and methods of its use
US4933100A (en) 1988-01-19 1990-06-12 Colgate-Palmolive Co. Built synthetic organic detergent composition patties and processes for washing laundry therewith
US5061392A (en) 1990-02-07 1991-10-29 Dubois Chemicals, Inc. Method of making paste detergent and product produced
US5316688A (en) 1991-05-14 1994-05-31 Ecolab Inc. Water soluble or dispersible film covered alkaline composition
US5397506A (en) * 1993-08-20 1995-03-14 Ecolab Inc. Solid cleaner
US5445755A (en) * 1994-05-31 1995-08-29 The Procter & Gamble Company Detergent compositions containing a peroxidase/accelerator system without linear alkylbenzenesulfonate
US5728671A (en) * 1995-12-21 1998-03-17 The Procter & Gamble Company Soil release polymers with fluorescent whitening properties
JPH11504977A (ja) * 1996-02-29 1999-05-11 ザ、プロクター、エンド、ギャンブル、カンパニー エンドデキストラナーゼを含有したクリーニング組成物
WO1997042282A1 (en) * 1996-05-03 1997-11-13 The Procter & Gamble Company Detergent compositions comprising polyamine polymers with improved soil dispersancy
CN1155687C (zh) * 1997-09-11 2004-06-30 普罗格特-甘布尔公司 漂白组合物
ES2279729B1 (es) * 2006-02-13 2008-08-16 Universidad De Cadiz Nuevo tensioactivo anionico y procedimiento de obtencion.
US20150024072A1 (en) 2013-07-22 2015-01-22 Johnson & Johnson Consumer Companies, Inc. Methods of treating a skin condition with malva neglecta
US10626350B2 (en) * 2015-12-08 2020-04-21 Ecolab Usa Inc. Pressed manual dish detergent
CN109832103A (zh) 2017-10-11 2019-06-04 湖北正道生态肥业工程有限公司 一种中药材的优质高产种植方法

Patent Citations (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3869412A (en) 1966-06-23 1975-03-04 Ake Waag Surface-active compositions having controlled foaming properties and process for controlling foam therewith
US3766254A (en) 1970-05-05 1973-10-16 Chevron Res Linear alkylphenol disulfonate phosphate free detergent actives
US4196103A (en) 1971-06-18 1980-04-01 Colgate-Palmolive Company Colored detergents
US3920586A (en) 1972-10-16 1975-11-18 Procter & Gamble Detergent compositions
US3816352A (en) 1972-11-01 1974-06-11 V Loureiro Spray dried alpha-olefin sulfonate detergent compositions
GB1454895A (en) 1972-11-15 1976-11-03 Unilever Ltd Scouring powders
GB1489867A (en) 1973-10-05 1977-10-26 Albright & Wilson Detergent compositions comprising amine polyphosphates
US4365853A (en) 1974-05-15 1982-12-28 Colgate-Palmolive Company Article for storing and dispensing detergent compositions utilizing separate tablets of components
US4252664A (en) 1978-10-30 1981-02-24 Colgate-Palmolive Company Effervescent granules
US4320033A (en) 1979-10-29 1982-03-16 Lion Corporation Solid detergent composition
US4350619A (en) 1980-04-23 1982-09-21 Lion Corporation Granular detergent containing zeolite, silicate, LAS and olefin sulfonate
AU8506682A (en) 1981-06-22 1983-01-06 Procter & Gamble Company, The Peroxyacid bleaches
AU4421785A (en) 1984-07-02 1986-01-09 Clorox Company, The Process for synthesising alkyl monoperoxysuccinic acid
AU4699585A (en) 1984-09-04 1986-03-13 Colgate-Palmolive Company, The Wash cycle detergent-softener compositions
EP0178893A2 (de) 1984-10-18 1986-04-23 Ecolab Inc. Feste Detergenszusammensetzungen
EP0267042A2 (de) 1986-11-07 1988-05-11 Unilever Plc Detergens-Granulate und Verfahren zu ihrer Zubereitung
CA2040307A1 (en) 1991-04-12 1992-10-13 Yogesh Sennik Effervescent detergent tablets
AU3522193A (en) 1992-07-02 1994-01-06 Lubrizol Corporation, The Compositions containing combinations of surfactants and derivatives of succinic acylating agent or hydroxyaromatic compounds and methods of using the same
WO1994002573A1 (en) 1992-07-15 1994-02-03 The Procter & Gamble Company Process and compositions for compact detergents
IN184056B (de) 1995-08-09 2000-06-03 Lever Hindustan Ltd
IN184031B (de) 1995-11-06 2000-06-03 Lever Hindustan Ltd
IN188383B (de) 1996-04-10 2002-09-14 Lever Hindustan Ltd
CA2254737C (en) 1996-05-24 2006-12-12 Unilever Plc Detergent soap bar composition
WO1998005742A1 (en) 1996-08-07 1998-02-12 The Procter & Gamble Company Liquid cleaning compositions containing dianionic esters
US6172021B1 (en) 1996-12-20 2001-01-09 The Procter & Gamble Company Dishwashing detergent compositions containing alkanolamine
JP2001515954A (ja) 1997-09-09 2001-09-25 ヘンケル・コマンディットゲゼルシャフト・アウフ・アクチエン 改善された溶解性を示す洗浄剤および洗剤成形体
US6689732B1 (en) * 1997-09-11 2004-02-10 The Procter & Gamble Company Detergent compositions having a specific hydrophobic peroxyacid bleaching system and anionic surfactant
US6528477B2 (en) 1997-11-21 2003-03-04 Procter & Gamble Company Liquid detergent compositions comprising polymeric suds enhancers
WO1999063034A1 (en) 1998-06-02 1999-12-09 The Procter & Gamble Company Dishwashing detergent compositions containing organic diamines
WO2000040551A1 (en) 1999-01-06 2000-07-13 The Procter & Gamble Company Process for forming highly soluble linear alkyl benzene sulfonate surfactant and cleaning compositions containing same
US6774099B1 (en) 1999-01-20 2004-08-10 The Procter & Gamble Company Dishwashing detergent compositions containing mixtures or crystallinity-disrupted surfactants
WO2000043476A2 (en) 1999-01-20 2000-07-27 The Procter & Gamble Company Dishwashing detergent compositions containing mixtures of crystallinity-disrupted surfactants
EP1036839A2 (de) 1999-03-17 2000-09-20 Basf Aktiengesellschaft Kompakte, teilchenförmige Wasch- und Reinigungsmittel enthaltend quervernetztes Polyvinylpyrrolidon und dessen Verwendung
WO2000058436A1 (en) 1999-03-29 2000-10-05 Ecolab Inc. Solid pot and pan detergent
US6387870B1 (en) 1999-03-29 2002-05-14 Ecolab Inc. Solid pot and pan detergent
EP1180129B1 (de) 1999-05-26 2007-09-26 The Procter & Gamble Company Flüssige waschmittelzusammensetzungen enthaltend blockpolymere schaumbilder
CA2688927C (en) 1999-05-26 2014-06-17 The Procter & Gamble Company Detergent compositions comprising polymeric suds enhancers which have improved mildness and skin feel
WO2000071659A1 (en) 1999-05-26 2000-11-30 The Procter & Gamble Company Liquid detergent compositions comprising polymeric suds enhancers
US6150317A (en) 1999-07-15 2000-11-21 Colgate-Palmolive Company High foaming, grease cutting light duty liquid composition containing a C12 alkyl amido propyl dimethyl amine oxide
WO2001027228A1 (en) 1999-10-12 2001-04-19 Colgate-Palmolive Company Homogenous solution of an alpha olefin sulfonate surfactant
WO2001094509A2 (en) 2000-06-08 2001-12-13 Colgate-Palmolive Company Aqueous solution of an alpha olefin sulfonate surfactant
EP1221475B1 (de) 2001-01-05 2005-11-23 The Procter & Gamble Company Flüssigwaschmittelzusammensetzungen enthaltend quarternären Stickstoff enthaltende und/oder zwitterionische polymere Schaumbilder
US6759382B2 (en) 2001-06-01 2004-07-06 Kay Chemical, Inc. Detergent composition containing a primary surfactant system and a secondary surfactant system, and a method of using the same
US6740630B2 (en) * 2001-07-24 2004-05-25 The Procter & Gamble Company Processes for making substantially anhydrous structured surfactant pastes and other detergent ingredients and compositions employing same
JP2005511820A (ja) 2001-12-07 2005-04-28 ヘンケル・コマンディットゲゼルシャフト・アウフ・アクチエン 界面活性剤粒状物および界面活性剤粒状物の製造法
WO2003089560A2 (en) 2002-04-16 2003-10-30 Colgate-Palmolive Company Cleaning compositions in the form of a tablet
EP1418224A1 (de) 2002-10-09 2004-05-12 Unilever N.V. Verfahren zur Herstellung einer Reinigungsmitteltablette
WO2006063668A1 (de) 2004-12-14 2006-06-22 Degussa Gmbh Verpresste formkörper enthaltend umhüllte natriumpercarbonatpartikel
US7326675B2 (en) 2004-12-17 2008-02-05 Procter & Gamble Company Hydrophobically modified polyols for improved hydrophobic soil cleaning
US7332467B2 (en) 2004-12-17 2008-02-19 Procter & Gamble Company Hydrophilically modified polyols for improved hydrophobic soil cleaning
WO2007104805A1 (es) 2006-03-16 2007-09-20 Petroquímica Española, S.A. (Petresa) Procedimiento para la obtención de sulfonatos de alquilbenceno lineales altamente solubles
US20130123164A1 (en) 2008-01-04 2013-05-16 Ecolab Usa Inc. Solid tablet unit dose oven cleaner
US20100056413A1 (en) 2008-09-04 2010-03-04 Harry Jr David Ray high-temperature cleaning system, associated substrates, and associated methods
US20110112003A1 (en) * 2009-11-09 2011-05-12 Ecolab Inc. Enhanced dispensing of solid compositions
US8815790B2 (en) 2009-12-17 2014-08-26 Stepan Company Foaming light duty liquid detergent compositions, methods of making and uses thereof
WO2013043852A2 (en) 2011-09-20 2013-03-28 The Procter & Gamble Company Easy-rinse detergent compositions comprising isoprenoid-based surfactants
WO2013043855A2 (en) 2011-09-20 2013-03-28 The Procter & Gamble Company High suds detergent compositions comprising isoprenoid-based surfactants
WO2013043803A2 (en) 2011-09-20 2013-03-28 The Procter & Gamble Company Detergent compositions comprising specific blend ratios of isoprenoid-based surfactants
WO2013148639A1 (en) 2012-03-26 2013-10-03 The Procter & Gamble Company Cleaning compositions comprising ph-switchable amine surfactants
US20140080748A1 (en) 2012-09-20 2014-03-20 The Procter & Gamble Company Easy rinse detergent compositions comprising isoprenoid-based surfactants
US20150119312A1 (en) 2013-10-29 2015-04-30 Ecolab Usa Inc Use of amino carboxylate for enhancing metal protection in alkaline detergents

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Ecolab USA Inc., PCT/US2016/065303 filed Dec. 7, 2016, "The International Search Report and the Written Opinion of the International Searching Authority, or the Declaration", dated Mar. 13, 2017, 10 pages.
European Patent Office, extended European Search Report of Application No. 18190999.5, 6 pages, dated Dec. 12, 2018.

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11268045B2 (en) * 2015-12-08 2022-03-08 Ecolab Usa Inc. Pressed manual dish detergent
US20220154102A1 (en) * 2015-12-08 2022-05-19 Ecolab Usa Inc. Pressed manual dish detergent
US11746304B2 (en) * 2015-12-08 2023-09-05 Ecolab Usa Inc. Pressed manual dish detergent
US20240026247A1 (en) * 2015-12-08 2024-01-25 Ecolab Usa Inc. Pressed manual dish detergent

Also Published As

Publication number Publication date
AU2019203406A1 (en) 2019-06-06
US20170158988A1 (en) 2017-06-08
JP2020073687A (ja) 2020-05-14
WO2017100267A1 (en) 2017-06-15
US11746304B2 (en) 2023-09-05
BR112018009827A2 (pt) 2018-11-13
CA3007368A1 (en) 2017-06-15
BR112018009827A8 (pt) 2019-02-26
EP3444327A1 (de) 2019-02-20
EP3387100A4 (de) 2019-06-12
EP3387100A1 (de) 2018-10-17
CA3007368C (en) 2021-08-17
CN108368457A (zh) 2018-08-03
US20240026247A1 (en) 2024-01-25
MX2018006902A (es) 2018-11-09
US20220154102A1 (en) 2022-05-19
US20200216777A1 (en) 2020-07-09
US11268045B2 (en) 2022-03-08
AU2016367170A1 (en) 2018-05-24
AU2016367170B2 (en) 2019-02-28
AU2019203406B2 (en) 2019-12-05
JP2018536745A (ja) 2018-12-13

Similar Documents

Publication Publication Date Title
US11746304B2 (en) Pressed manual dish detergent
US11236291B2 (en) Moderately alkaline cleaning compositions for proteinaceous and fatty soil removal at low temperatures
US6900167B2 (en) Solid composition with rheology modifier
US8748365B2 (en) Solidification matrix comprising phosphinosuccinic acid derivatives
US20210071109A1 (en) Hard surface cleaning compositions
EP2788128B1 (de) Schaumarmes festes spülmittel
US10364409B2 (en) Solidification matrix comprising a carboxylic acid terpolymer
US9023779B2 (en) Inhibiting corrosion of aluminum on consumer ware washing product using phosphinosuccinic acid oligomers
US20140261567A1 (en) Inhibiting corrosion of aluminum on alkaline media by phosphinosuccinate oligomers and mixtures thereof
BR112018009827B1 (pt) Composição de detergente sólida, e, método para produzir uma composição de detergente sólida

Legal Events

Date Code Title Description
AS Assignment

Owner name: ECOLAB USA INC., MINNESOTA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LO, WENDY;OLSON, ERIK C.;MULLER, THOMAS;AND OTHERS;SIGNING DATES FROM 20151207 TO 20160330;REEL/FRAME:038255/0156

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: ADVISORY ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STCF Information on status: patent grant

Free format text: PATENTED CASE

CC Certificate of correction
MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4