US10480984B2 - Device, container and method for measuring liquid volume in container based on pressure sensing - Google Patents
Device, container and method for measuring liquid volume in container based on pressure sensing Download PDFInfo
- Publication number
- US10480984B2 US10480984B2 US15/831,147 US201715831147A US10480984B2 US 10480984 B2 US10480984 B2 US 10480984B2 US 201715831147 A US201715831147 A US 201715831147A US 10480984 B2 US10480984 B2 US 10480984B2
- Authority
- US
- United States
- Prior art keywords
- value
- container
- pressure
- compression
- volume
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related, expires
Links
- 239000007788 liquid Substances 0.000 title claims abstract description 72
- 238000000034 method Methods 0.000 title claims abstract description 43
- 230000006835 compression Effects 0.000 claims abstract description 155
- 238000007906 compression Methods 0.000 claims abstract description 155
- 230000005540 biological transmission Effects 0.000 claims abstract description 47
- 239000003570 air Substances 0.000 claims description 83
- 238000001514 detection method Methods 0.000 claims description 44
- 230000033001 locomotion Effects 0.000 claims description 23
- 238000007789 sealing Methods 0.000 claims description 22
- 239000012080 ambient air Substances 0.000 claims description 19
- 239000004020 conductor Substances 0.000 claims description 10
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 9
- 230000008859 change Effects 0.000 claims description 9
- 229910052710 silicon Inorganic materials 0.000 claims description 9
- 239000010703 silicon Substances 0.000 claims description 9
- 239000000463 material Substances 0.000 claims description 7
- 230000008569 process Effects 0.000 claims description 7
- 238000009413 insulation Methods 0.000 claims description 5
- 238000004804 winding Methods 0.000 claims description 2
- 238000005259 measurement Methods 0.000 abstract description 13
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 11
- 230000006872 improvement Effects 0.000 description 26
- 230000003068 static effect Effects 0.000 description 8
- 230000035622 drinking Effects 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 230000036541 health Effects 0.000 description 3
- 230000007547 defect Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000001360 synchronised effect Effects 0.000 description 2
- 230000001960 triggered effect Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000009529 body temperature measurement Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 239000003651 drinking water Substances 0.000 description 1
- 235000020188 drinking water Nutrition 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F23/00—Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
- G01F23/14—Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measurement of pressure
- G01F23/18—Indicating, recording or alarm devices actuated electrically
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F13/00—Apparatus for measuring by volume and delivering fluids or fluent solid materials, not provided for in the preceding groups
- G01F13/006—Apparatus for measuring by volume and delivering fluids or fluent solid materials, not provided for in the preceding groups measuring volume in function of time
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F22/00—Methods or apparatus for measuring volume of fluids or fluent solid material, not otherwise provided for
- G01F22/02—Methods or apparatus for measuring volume of fluids or fluent solid material, not otherwise provided for involving measurement of pressure
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D47/00—Closures with filling and discharging, or with discharging, devices
- B65D47/40—Closures with filling and discharging, or with discharging, devices with drip catchers or drip-preventing means
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B67—OPENING, CLOSING OR CLEANING BOTTLES, JARS OR SIMILAR CONTAINERS; LIQUID HANDLING
- B67D—DISPENSING, DELIVERING OR TRANSFERRING LIQUIDS, NOT OTHERWISE PROVIDED FOR
- B67D1/00—Apparatus or devices for dispensing beverages on draught
- B67D1/04—Apparatus utilising compressed air or other gas acting directly or indirectly on beverages in storage containers
- B67D1/0412—Apparatus utilising compressed air or other gas acting directly or indirectly on beverages in storage containers the whole dispensing unit being fixed to the container
- B67D1/0425—Apparatus utilising compressed air or other gas acting directly or indirectly on beverages in storage containers the whole dispensing unit being fixed to the container comprising an air pump system
- B67D1/0431—Apparatus utilising compressed air or other gas acting directly or indirectly on beverages in storage containers the whole dispensing unit being fixed to the container comprising an air pump system power-operated
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F17/00—Methods or apparatus for determining the capacity of containers or cavities, or the volume of solid bodies
Definitions
- the present invention relates to the field of intelligent equipment, and more specifically to a device for measuring a liquid volume.
- the present invention further relates to a container for measuring an internal liquid volume and a method for measuring the liquid volume in the container.
- Water serves as a life source, is an essential substance for life of people, and is helpful for people to keep the health in a correct drinking mode.
- people rely on their own feelings to drink water and cannot intuitively understand amount of their own water drinking.
- the intelligent water drinking device is popular with people, and the amount of water taken by people for one day can be accurately measured, so that people can reasonably plan amount of their own water drinking, and meanwhile, the drinking water data becomes an important part in the whole large health data.
- the existing intelligent water drinking device is generally provided with a measuring device on a container, and the method has some defects: firstly, due to the requirements of water leakage prevention, heat preservation and other aspects, the self structure (including shapes, materials, functions and the like) has certain limitation, therefore, the adding of the measuring device can further increase the design and manufacturing difficulty of the container, and the product cost is increased; secondly, the measuring device does not have universality, and each container needs to be independently designed, so the production cost is further increased; thirdly, an existing measuring device is generally a liquid level sensor, and the stability is poor, the measurement error caused by the inclination of the container and the shape of the container can be easily caused, so the requirement for accurate measurement is difficult to meet.
- the present invention provides a device for measuring a liquid volume in a container based on pressure sensing, which accurately measures the liquid volume in the container, effectively eliminates the impact of the shaking of the liquid on the measurement result, and has a good measuring stability; containers of different materials, functions and volumes can be matched, thus having a high versatility.
- the present invention is convenient to use, and the water volume detection is completed in a natural usage without special operations.
- the present invention provides a container for measuring the volume of internal liquid.
- the present invention provides a method for measuring the liquid volume in the container based on pressure sensing.
- the compression member is hermetically connected to the container to be detected to form a sealed space in the container, and compresses air in the sealed space under an external force; a volume value of the compressed air is a determined value;
- the force transmission member converts an air pressure in the sealed space into pressure applied to the pressure sensor, and an area value of a stress surface is a determined value;
- the pressure sensor detects a pressure value from the force transmission member before and after the compression;
- an air pressure sensor for detecting an ambient air pressure value
- the controller is configured to receive the pressure value obtained by the pressure sensor and the ambient air pressure value obtained by the air pressure sensor, and calculates the liquid volume in the container to be detected based on the pressure value, the ambient air pressure value, the volume value, the area value and the volume value of the container to be detected.
- the device further comprises at least one limiting device for limiting a movement of the compression member after the compression member moves a fixed distance.
- the two limiting devices are located on a same horizontal plane, and the limiting devices are made of a conductive material; the pressure sensor performs a first detection of the pressure value before compression; and performs a second detection of the pressure value in the sealed space when being conducted between the limiting devices.
- the limiting device comprises at least one fixing member and an elastic member correspondingly arranged under the fixing member; the fixing member and the elastic member are made of conductive materials; the elastic member moves elastically so as to have a first state of conducting with the fixing member and a second state of disconnecting from the fixing member; the pressure sensor performs the first detection of the pressure value before compression, and performs the second detection of the pressure value when the elastic member is in the first state.
- the compression member is a cover body, and the cover body is provided with an extending part with a fixed and known size; and a sealing ring is arranged on a periphery of the extending part.
- a cavity communicated with the outside is provided on the extending part, and the cavity is isolated from the sealed space through the force transmission member, and the pressure sensor is arranged in the cavity.
- the force transmission member comprises a rigid force-bearing sheet
- the rigid force-bearing sheet is hermetically connected with an inner wall of the cavity through a flexible silicon sheet arranged on the periphery of the rigid force-bearing sheet, and the flexible silicon sheet is of a wave-shaped structure.
- a temperature insulation layer is arranged between the rigid force-bearing sheet and the pressure sensor.
- a device for measuring a liquid volume in a container based on pressure sensing comprising:
- the compression member is hermetically connected to the container to be detected to form a sealed space in the container, and compresses air in the sealed space under an external force; a volume value of the compressed air is a determined value;
- the force transmission member converts an air pressure in the sealed space into pressure applied to the pressure sensor, and an area value of a stress surface is a determined value;
- the pressure sensor detects a pressure value from the force transmission member before and after the compression;
- an air pressure sensor for detecting an ambient air pressure value
- volume detection device arranged on the compression member and used for detecting the volume value of the compressed air
- the controller is configured to receive the pressure value obtained by the pressure sensor and the ambient air pressure value obtained by the air pressure sensor, and calculate the liquid volume in the container to be detected based on the pressure value, the ambient air pressure value, the volume value, the determined area value and the volume value of the container to be detected.
- the volume detection device comprises an angle sensor and a thread arranged on the compression member, a thread pitch of the thread is fixed and known; the angle sensor is used for detecting a rotating angle value of the compression member, and transmitting the angle value to the controller.
- the compression member is a cover body, and the cover body is provided with an extending part with a fixed and known size; and a sealing ring is arranged on a periphery of the extending part.
- a cavity communicated with the outside is provided on the extending part, and the cavity is isolated from the sealed space through the force transmission member, and the pressure sensor is arranged in the cavity.
- the force transmission member comprises a rigid force-bearing sheet
- the rigid force-bearing sheet is hermetically connected with an inner wall of the cavity through a flexible silicon sheet arranged on the periphery of the rigid force-bearing sheet, and the flexible silicon sheet is of a wave-shaped structure.
- a temperature insulation layer is arranged between the rigid force-bearing sheet and the pressure sensor.
- a container for measuring the volume of an internal liquid the container is provided with a container opening and comprises the device for measuring the liquid volume in the container based on pressure sensing as described above, the device is hermetically connected with the container opening through the compression member, and the sealed space is formed in the container.
- a protrusion for winding a circle is arranged on an inner wall of the container.
- the container opening is made of a conductive material.
- a method for measuring a liquid volume in a container based on pressure sensing comprising the following steps:
- obtaining a liquid quantity detection parameter comprising an air pressure value in the sealed space before compression, a pressure value detected by the pressure sensor before compression, a pressure value detected by the pressure sensor after the compression, an area value of the stress surface of the force transmission member, a volume value of the compressed air in the container, and a volume value of the container;
- the method for obtaining the volume value of the air in the container in the step S 30 comprises: enabling an area of a compression surface on the compression member perpendicular to a movement direction and directly acting on the air is fixed and known, obtaining a movement distance value of the compression member; and the volume value of the compressed air is obtained by combining the area of the compression surface and the movement distance value.
- the method for obtaining the movement distance value of the compression member comprises the following steps: arranging a limiting device, so that the movement distance of the compression member each time is fixed and known.
- the method for obtaining the movement distance value of the compression member comprises: connecting the compression member with the container through a thread, and a thread pitch of the thread is fixed and known, detecting the angle value of rotating the compression member, and calculating the distance value through the angle value and the thread pitch.
- the method for the angle value detection is as follows: the method for detecting the angle value detection comprises: arranging an angle sensor, recording the value when the air begins to be compressed as a first angle value, and recording the value in the rotation process or at the end of rotation as a second angle value; and a difference value of the second angle value and the first angle value is the angle value of rotating the compression member at the corresponding moment.
- the method for obtaining the air pressure value in the sealed space before compression in the step S 30 comprises: obtaining the ambient air pressure value by detecting the air pressure sensor, and then obtaining the pressure value in the sealed space before compression based on the pressure value in the sealed space before compression is equal to the ambient air pressure value.
- the method for acquiring the liquid volume in the container in the step S 40 is as follows:
- ⁇ P is the difference value of the pressure change in the sealed space before and after compression
- F 0 is the pressure value obtained by detecting the pressure sensor before compression
- F 1 is the pressure value obtained by detecting the pressure sensor after compression
- P 0 is the air pressure value in the sealed space before compression
- P 1 is the air pressure value in the sealed space after compression
- S is the area value of the stress surface of the force transmission member
- V 1 P 1 V X /( P 0 ⁇ P 1 )
- V 1 is the volume value of the air in the container before compression
- V X is the volume value of the compressed air in the container
- V 2 is the volume value of the liquid in the container, and V is the volume value of the container.
- the beneficial effects of the present invention are as follows.
- the present invention accurately measures the liquid volume in the container, effectively eliminates the impact of the shaking of the liquid on the measurement result, and has a good measuring stability.
- containers of different materials, functions and volumes can be matched, thus having a high versatility. Besides, it is convenient to use, and the water volume detection is completed in a natural usage without special operations.
- FIG. 1 is a schematic diagram of first embodiment of a compression member according to the present invention
- FIG. 2 is a schematic diagram of second embodiment of a compression member according to the present invention.
- FIG. 3 is a schematic diagram of third embodiment of a compression member according to the present invention.
- FIG. 4 is a cross-sectional view of an embodiment of the measuring device according to the present invention.
- FIG. 5 is a cross-sectional view of an embodiment of the force transmission member according to the present invention.
- FIG. 6 is a cross-sectional view of first embodiment of a static detection scheme according to the present invention.
- FIG. 7 is a cross-sectional view of second embodiment of a static detection scheme according to the present invention.
- FIG. 8 is a cross-sectional view of third embodiment of a static detection scheme according to the present invention.
- FIG. 9 is a cross-sectional view of an embodiment of a container according to the present invention.
- the measuring device disclosed in the present invention at least comprises a compression member, a force transmission member, a pressure sensor, an air pressure sensor and a controller.
- the compression member forms a sealed space with a container containing the liquid to be detected and compresses the air in the sealed space under the external force.
- the force transmission member converts the air pressure in the sealed space into the pressure applied to the pressure sensor; the pressure sensor is used for acquiring the pressure value from the force transmission member before and after compression; under the condition that the area value of the stress surface of the force transmission is constant; the pressure sensor is used for detecting an ambient air pressure value; and the controller calculates a liquid volume in the container to be detected based on the pressure value, the ambient air pressure value, the area value of the stress surface, the volume value of the air compressed and the volume value of the container to be detected.
- the compression member can be circular, square or other shapes, which is determined by the shape of the container opening, the compression member is sealed in a built-in manner.
- the compression member 1 is columnar, and a sealing ring is arranged on the outer wall thereof, the compression member is stuffed into the container opening, and the sealing process is completed through the sealing ring and the inner wall of the container.
- the compression member can also be external, as shown in FIG. 2 , the compression member 1 is arranged as a cover body, and a sealing ring is arranged on the inner wall of the cover body, the cover body is buckled with the container opening, and the sealing process is completed through the sealing ring and the outer wall of the container.
- the compression member 1 can also be in parallel sealed with the container, as shown in FIG. 3 , the size of the sealing part of the compression member 1 is equal to the size of the container opening, and sealing is carried out through the sealing rings between the sealing part and the container opening; it can be understood that the three modes are combined with each other.
- the compression member can be directly connected with the container in a sealed mode, and the process is completed through other accessory structures.
- the present invention discloses a static detection scheme of a measuring device.
- the obtaining of the value volume of the above air compressed is static, that is, the volume value is a definite value, and the definite value is stored in a controller;
- the definite value can be known through pre-limitation/measurement, and particularly, the value volume of the air compressed is equal to the volume of the compression member invaded into the sealed space, so that the detection of the compression volume is essentially the detection of the intrusion volume of the compression member; and under the condition that the cross sectional area of the compression member is certain, the invading volume is known only by obtaining the moving distance of the compression member, and the specific implementation mode is as follows:
- the device comprises a limiting devices, wherein the limiting devices enable the compression member to move a fixed distance and then is abutted by the container so as to limit the movement of the compression member; by pre-limiting/measuring the distance value, the moving distance of the compressing member at each time is known accurately, and in combination with the area of the compression surface of the compression member (the compression surface refers to the direction perpendicular to the movement of the compression member and acts directly on the cross section of the compressed air, and the area of the compressed air can be known/measured in advance), the intrusion volume, namely, the volume value of the air is compressed, is obtained by a simple calculation.
- the limiting devices enable the compression member to move a fixed distance and then is abutted by the container so as to limit the movement of the compression member; by pre-limiting/measuring the distance value, the moving distance of the compressing member at each time is known accurately, and in combination with the area of the compression surface of the compression member (the compression surface refers to the direction perpendicular to
- the limiting devices 14 enables the compression member to be abutted by the container opening after being pressed by a certain distance h relative to the container, the h value can be limited to a definite value through the structure.
- the measurement of the air pressure in the container needs to be synchronously started after the compression member is compressed.
- the above-mentioned limiting device only plays the role of limiting the displacement and obtaining the moving distance, the function of synchronous detection cannot be realized, and in order to solve the problem, the present invention discloses an improved mode of a limiting device.
- the limiting device 14 is made of a conductive material, and the pressure sensor performs first detection of the pressure value before compression, and a second first detection of the pressure value is carried out when the limiting device is conducted between the limiting devices.
- the method is suitable for the container with a conductive function.
- the above-mentioned embodiment is only suitable for container with a conductive function, but container made of insulating materials cannot achieved functions thereof.
- the container may not be simultaneously in contact with the limit device, so that synchronous measurement cannot be realized. Therefore, the present invention discloses a further improvement mode, and referring to FIG.
- the limiting devices comprises a fixing member 141 and an elastic member 142 correspondingly arranged below the fixing member 141 , the fixing member 141 and the elastic member 142 are made of a conductive material, and the elastic member 142 moves elastically, so as to have a first state of conducting with the fixing member 141 and a second state of disconnecting from the fixing member 141 ; when the compression member moves downwards to a certain distance, the container opening abuts against the elastic member 142 to enable the elastic member 142 to be in contact with the fixing member 141 , the method is not limited to the material of the container, so that the problems of the above embodiment is effectively solved.
- the pressure sensor performs the first detection of the pressure value before compression; and the second detection of the pressure value in the sealed space is carried out when the elastic member is in the first state.
- the present invention further discloses another scheme of the measuring device, similarly, the measuring device also comprises a compression member, a force transmission member, a pressure sensor, an air pressure sensor and a controller.
- the volume detection device comprises a thread 15 arranged on the compression member 1 , and the thread pitch of the thread is fixed and known, and the compression member 1 is connected to the container through the thread in a threaded manner, and can be screwed into and screwed out.
- the volume detection device also comprises an angle sensor (not shown) capable of detecting the rotating angle of the compression member 1 , the sensor can transmit the obtained angle value to the controller.
- an angle sensor capable of detecting the rotating angle of the compression member 1
- the sensor can transmit the obtained angle value to the controller.
- the measuring device disclosed by the present invention can also be provided with an output terminal, and the output terminal can output the liquid volume data in the form of voice, characters or images.
- the compression member 1 comprises a circular cover body 10 , comprising a bottom wall and a rim arranged along a circumferential direction of the bottom wall, an extending part 11 is arranged on the inner side of the bottom wall, and the extending part 11 is preferably cylindrical, and a gap 13 is formed between the extending part and the rim for containing the container.
- a sealing structure is arranged on the periphery of the extending part 11 of the container opening, in the embodiment, the sealing structure is preferably a sealing ring 2 ; and when the container opening is inserted into the gap, the inner wall of the container is matched with the sealing ring 2 , and the sealed space is formed in the container.
- the pressure sensor 3 and the force transmission member 5 are arranged on the extension part 11 , specifically, a cavity 12 communicated with the outside is formed in the extending part 11 , and the pressure sensor 3 is fixed in the pressure sensor 3 .
- the cavity 12 is isolated from the sealed space through the force transmission member 5 , namely the two sides of the force transmission member are respectively provided with the sealed space and the cavity; when the air pressure in the sealed space is increased, the pressure exerted on the pressure sensor 3 by the force transmission member is also synchronously increased, thus realizing the positive correlation between the air pressure change and the pressure change, in the scheme, the area of the stress surface of the force transmission member 5 is determined and known.
- the force transmission member 5 comprises a rigid force-bearing sheet 51 .
- the rigid force-bearing sheet is hermetically connected with the inner wall of the cavity through a flexible silicon sheet 52 arranged on the periphery of the rigid force-bearing sheet; since the stress required for deformation of the flexible silicon sheet is extremely small, the air pressure in the sealing cavity is transmitted to the pressure sensor basically without loss, and the measurement accuracy is guaranteed.
- the flexible silicon sheet 52 is of a wave-shaped structure so as to further reduce the stress value.
- a temperature measuring device (such as a temperature sensor and the like, not shown) for measuring the temperature of the force-bearing sheet is further included to facilitate the user to grasp the temperature of the liquid in the container in real time.
- the rigid force-bearing sheet is made of a heat-conducting material, and through the transfer of heat, the temperature of the rigid force-bearing sheet is gradually kept consistent with the temperature of the liquid, and realizing measurement through the heat conduction contact between the temperature measuring device and the force-bearing sheet;
- the temperature measuring device can also be a non-contact device such as infrared measurement, the present invention do not limit the temperature measurement mode.
- a temperature insulation layer (not shown) is preferably arranged between the pressure sensor and the force-bearing sheet, and the temperature insulation layer not affects the pressure exerted on the pressure sensor by the force transmission member.
- the present invention further discloses a container for measuring the volume of internal liquid.
- the container 4 is provided with a container opening 41 , the compression member 1 is buckled on the container 4 ; the container opening 41 is inserted into the gap 16 between the cover body 10 and the extension part 11 , and is in sealed connection with the extending part 11 , and a sealed space is formed in the container.
- the extending part 11 is driven to further extend into the sealed space, so that the air in the sealed space can be compressed.
- the inner wall of the container 4 is provided with a protrusion 42 , and the extending part 11 extends into the container, the sealing ring 2 is extruded by the protrusion 42 to deform so as to achieve a better sealing effect and position the starting point of pressure reduction more accurately.
- the container 4 has a conductive function, and a conductive part can be arranged at the container opening 41 , or may be made of a conductive material as a whole.
- the outer wall of the container 4 is provided with external thread 43 matched with the thread 15 .
- the present invention further discloses a method for measuring the liquid volume in the container based on pressure sensing, referring to FIG. 10 , comprising the following steps:
- obtaining a liquid quantity detection parameter comprising the air pressure value in a sealed space before compression, the pressure value detected by the pressure sensor before compression, the pressure value detected by the pressure sensor after the compression, the area value of the stress surface of the force transmission member, the volume value of air compressed in the container and the volume value of the container.
- the method for obtaining the volume value of the air in the container is as follows: enabling the cross section area of the compression member perpendicular to the movement direction and directly acting on of the air fixed and known, obtaining the motion distance value of the compression member; and the value of the air compressed is obtained by combining the cross section area and the distance value.
- the present invention discloses two methods for obtaining the motion distance value of the compression member:
- the first method it is usually used in combination with a limiting device, and after the compression member moves to the limit position, the limiting devices are triggered and the pressure detection device starts to detect the air pressure in the container, this is the static detection method.
- the pressure sensor detects the change of air pressure in real time (or at a certain fast frequency) when the compression member is separated from the container; recording the first pressure value corresponding to the first angle value as the compression member contacts the container and begins to form the sealed space, similarly, recording the second pressure value in the rotation process or at the end of rotation; in addition, a plurality of values can be recorded; by combining any set of angle values and pressure values, a corresponding liquid quantity value can be obtained, and the measuring result is more accurate by combining a plurality of the liquid quantity values.
- step S 30 the method for obtaining the ambient air pressure value by detecting of the pressure sensor, and then obtaining the pressure value in the sealed space before compression according to the relationship that the pressure value in the sealed space before compression is equal to the ambient air pressure value.
- the method specifically comprises the following steps:
- ⁇ P is the difference value of the pressure change in the sealed space before and after compression
- F 0 is the pressure value obtained by detecting the pressure sensor before compression
- F 1 is the pressure value obtained by detecting the pressure sensor after compression
- P 0 is the air pressure value in the sealed space before compression
- P 1 is the air pressure value in the sealed space after compression
- S is the area value of the stress surface of the force transmission member
- V 1 P 1 V X /( P 0 ⁇ P 1 )
- V 1 is the volume value of the air in the container before compression
- V X is the volume value of the compressed air in the container.
- V 2 is the volume value of the liquid in the container, and V is the volume value of the container.
Landscapes
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- General Physics & Mathematics (AREA)
- Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)
- Measuring Fluid Pressure (AREA)
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510310397.9 | 2015-06-08 | ||
CN201510310397 | 2015-06-08 | ||
CN201510310397.9A CN105004395B (zh) | 2015-06-08 | 2015-06-08 | 一种基于压力感应的容器内液体体积测量装置、容器与方法 |
PCT/CN2015/082353 WO2016197415A1 (zh) | 2015-06-08 | 2015-06-25 | 一种基于压力感应的容器内液体体积测量装置、容器与方法 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2015/082353 Continuation WO2016197415A1 (zh) | 2015-06-08 | 2015-06-25 | 一种基于压力感应的容器内液体体积测量装置、容器与方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
US20180120141A1 US20180120141A1 (en) | 2018-05-03 |
US10480984B2 true US10480984B2 (en) | 2019-11-19 |
Family
ID=54377156
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/831,147 Expired - Fee Related US10480984B2 (en) | 2015-06-08 | 2017-12-04 | Device, container and method for measuring liquid volume in container based on pressure sensing |
Country Status (3)
Country | Link |
---|---|
US (1) | US10480984B2 (zh) |
CN (1) | CN105004395B (zh) |
WO (1) | WO2016197415A1 (zh) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA3023607A1 (en) * | 2016-05-17 | 2017-11-23 | Waterio Ltd. | Smart caps for medication containers |
US10909611B2 (en) | 2017-07-25 | 2021-02-02 | Dollar Shave Club, Inc. | Smart cap product reordering |
US10970773B2 (en) | 2017-07-25 | 2021-04-06 | Dollar Shave Club, Inc. | Smart cap and/or handle |
CN110636969A (zh) * | 2018-08-13 | 2019-12-31 | 深圳市大疆创新科技有限公司 | 农业无人机及其水箱 |
CN109481300A (zh) * | 2018-11-01 | 2019-03-19 | 英华达(上海)科技有限公司 | 具药量侦测功能的智能药盒 |
CN109489767A (zh) * | 2018-12-07 | 2019-03-19 | 江西洪都航空工业集团有限责任公司 | 一种机载容器内液体体积测量结构及方法 |
CN111256629B (zh) * | 2020-03-03 | 2022-03-01 | 元能科技(厦门)有限公司 | 一种测量电芯体积变化的仪器及方法 |
CN115096487B (zh) * | 2022-06-17 | 2024-02-20 | 青岛理工大学 | 一种用于土的压力测定装置及方法 |
CN117309091B (zh) * | 2023-12-01 | 2024-03-08 | 深圳市恒永达科技股份有限公司 | 吸液量准确性压力检测方法、系统和可读存储介质 |
CN118274921B (zh) * | 2024-05-30 | 2024-08-06 | 三峡金沙江云川水电开发有限公司 | 一种轴承油槽液位监控测量装置及方法 |
Citations (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2668437A (en) * | 1951-01-12 | 1954-02-09 | Clara L Patch | Apparatus for metering entrained air or gas by pressure observations |
US3060735A (en) * | 1959-12-04 | 1962-10-30 | Owens Illinois Glass Co | Volumetric measurement |
GB1223848A (en) | 1967-10-10 | 1971-03-03 | Whitbread & Company Ltd | Improvements in the measurement of the volume of beer or like beverages in containers |
US3956934A (en) | 1975-08-20 | 1976-05-18 | Joseph Montague White | Liquid level indicator for pressurized liquid container |
US4144749A (en) * | 1977-12-09 | 1979-03-20 | Whitmore Henry B | Total body volume meter |
DE3320793A1 (de) * | 1983-06-09 | 1984-12-13 | Daimler-Benz Ag, 7000 Stuttgart | Verfahren zur bestimmung des kompressionsvolumens von hubkolbenverbrennungsmotoren |
US4841982A (en) * | 1986-12-22 | 1989-06-27 | Research & Consulting Company A.G. | Plethysmographic measuring chamber |
CN1053120A (zh) | 1990-01-06 | 1991-07-17 | 北京市西城新开通用试验厂 | 一种贮液容器液量精确计量装置 |
DE4127233A1 (de) | 1991-08-17 | 1993-02-18 | Battelle Institut E V | Verfahren zur fuellstandsmessung von behaeltern |
US5620005A (en) * | 1994-11-12 | 1997-04-15 | Ganshorn; Peter | Calibration apparatus for the pressure gauges of a whole-body plethysmograph |
US6910373B2 (en) * | 2001-12-31 | 2005-06-28 | Life Measurement, Inc. | Apparatus and methods for repeatable door closure in a plethysmographic measurement chamber |
CN1906378A (zh) | 2003-02-10 | 2007-01-31 | 费舍-柔斯芒特系统股份有限公司 | 利用压力测量容器中的流体体积 |
US20070068241A1 (en) * | 2003-11-20 | 2007-03-29 | Narinngs Singh Bains | Volume measuring device |
US20070190664A1 (en) * | 2006-02-15 | 2007-08-16 | Hitotoshi Kimura | Method of detecting liquid residual quantity, failure detection device, liquid consuming apparatus, and liquid container |
CN101048644A (zh) | 2004-11-01 | 2007-10-03 | 株式会社东海 | 液体剩余量检测方法 |
US7310999B2 (en) * | 2005-09-16 | 2007-12-25 | Greg Miller | Body volume measurement apparatus and method of measuring the body volume of a person |
CN201731910U (zh) | 2009-05-31 | 2011-02-02 | 王巨川 | 体积度量仪器 |
US20110077876A1 (en) * | 2008-04-30 | 2011-03-31 | Multisense As | Tap for mounting on container for fluid and method for registering the level of fluid in said container |
US20110126614A1 (en) * | 2009-05-25 | 2011-06-02 | Wolfgang Belitsch | Measuring procedure and measuring device for measuring physical quantities of non-compressible media |
CN102985352A (zh) | 2010-07-21 | 2013-03-20 | 嘉士伯酿酒有限公司 | 饮料的体积测量 |
US8561459B2 (en) * | 2009-05-06 | 2013-10-22 | Stratec Biomedical Usa, Inc. | Volume gauge |
US20130276524A1 (en) * | 2012-04-24 | 2013-10-24 | Bernhard Christ | Volume measurement of a liquid, method and device |
US20130327787A1 (en) * | 2012-06-01 | 2013-12-12 | Albert-Ludwigs-Universitaet Freiburg | Device and method for dispensing or receiving a liquid volume |
CN204730908U (zh) | 2015-06-08 | 2015-10-28 | 深圳麦开网络技术有限公司 | 一种基于压力感应的容器内液体体积测量装置与容器 |
US20160041079A1 (en) * | 2013-02-08 | 2016-02-11 | Schlumberger Technology Corporation | Apparatus and methodology for measuring properties of microporous material at multiple scales |
US10006796B2 (en) * | 2015-06-01 | 2018-06-26 | Shenzhen Mecare Network Technology Co., Ltd. | Device, container and method for measuring liquid volume in container based on air pressure sensing |
US10173817B2 (en) * | 2015-04-24 | 2019-01-08 | Shenzhen Mecare Network Technology Co., Ltd. | Container, device and method for measuring liquid volume in a container |
-
2015
- 2015-06-08 CN CN201510310397.9A patent/CN105004395B/zh not_active Expired - Fee Related
- 2015-06-25 WO PCT/CN2015/082353 patent/WO2016197415A1/zh active Application Filing
-
2017
- 2017-12-04 US US15/831,147 patent/US10480984B2/en not_active Expired - Fee Related
Patent Citations (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2668437A (en) * | 1951-01-12 | 1954-02-09 | Clara L Patch | Apparatus for metering entrained air or gas by pressure observations |
US3060735A (en) * | 1959-12-04 | 1962-10-30 | Owens Illinois Glass Co | Volumetric measurement |
GB1223848A (en) | 1967-10-10 | 1971-03-03 | Whitbread & Company Ltd | Improvements in the measurement of the volume of beer or like beverages in containers |
US3956934A (en) | 1975-08-20 | 1976-05-18 | Joseph Montague White | Liquid level indicator for pressurized liquid container |
US4144749A (en) * | 1977-12-09 | 1979-03-20 | Whitmore Henry B | Total body volume meter |
DE3320793A1 (de) * | 1983-06-09 | 1984-12-13 | Daimler-Benz Ag, 7000 Stuttgart | Verfahren zur bestimmung des kompressionsvolumens von hubkolbenverbrennungsmotoren |
US4841982A (en) * | 1986-12-22 | 1989-06-27 | Research & Consulting Company A.G. | Plethysmographic measuring chamber |
CN1053120A (zh) | 1990-01-06 | 1991-07-17 | 北京市西城新开通用试验厂 | 一种贮液容器液量精确计量装置 |
DE4127233A1 (de) | 1991-08-17 | 1993-02-18 | Battelle Institut E V | Verfahren zur fuellstandsmessung von behaeltern |
US5620005A (en) * | 1994-11-12 | 1997-04-15 | Ganshorn; Peter | Calibration apparatus for the pressure gauges of a whole-body plethysmograph |
US6910373B2 (en) * | 2001-12-31 | 2005-06-28 | Life Measurement, Inc. | Apparatus and methods for repeatable door closure in a plethysmographic measurement chamber |
CN1906378A (zh) | 2003-02-10 | 2007-01-31 | 费舍-柔斯芒特系统股份有限公司 | 利用压力测量容器中的流体体积 |
US20070068241A1 (en) * | 2003-11-20 | 2007-03-29 | Narinngs Singh Bains | Volume measuring device |
US7658103B2 (en) * | 2004-11-01 | 2010-02-09 | Yasuaki Nakamura | Residual liquid quantity detecting method |
US20100126265A1 (en) * | 2004-11-01 | 2010-05-27 | Yasuaki Nakamura | Residual liquid quantity detecting method |
CN101048644A (zh) | 2004-11-01 | 2007-10-03 | 株式会社东海 | 液体剩余量检测方法 |
US7310999B2 (en) * | 2005-09-16 | 2007-12-25 | Greg Miller | Body volume measurement apparatus and method of measuring the body volume of a person |
US20070190664A1 (en) * | 2006-02-15 | 2007-08-16 | Hitotoshi Kimura | Method of detecting liquid residual quantity, failure detection device, liquid consuming apparatus, and liquid container |
US20110077876A1 (en) * | 2008-04-30 | 2011-03-31 | Multisense As | Tap for mounting on container for fluid and method for registering the level of fluid in said container |
US8561459B2 (en) * | 2009-05-06 | 2013-10-22 | Stratec Biomedical Usa, Inc. | Volume gauge |
US8413488B2 (en) * | 2009-05-25 | 2013-04-09 | Wolfgang Belitsch | Measuring procedure and measuring device for measuring physical quantities of non-compressible media |
US20110126614A1 (en) * | 2009-05-25 | 2011-06-02 | Wolfgang Belitsch | Measuring procedure and measuring device for measuring physical quantities of non-compressible media |
CN201731910U (zh) | 2009-05-31 | 2011-02-02 | 王巨川 | 体积度量仪器 |
CN102985352A (zh) | 2010-07-21 | 2013-03-20 | 嘉士伯酿酒有限公司 | 饮料的体积测量 |
US20130276524A1 (en) * | 2012-04-24 | 2013-10-24 | Bernhard Christ | Volume measurement of a liquid, method and device |
US9250110B2 (en) * | 2012-04-24 | 2016-02-02 | Dionex Softron Gmbh | Volume measurement of a liquid, method and device |
US20130327787A1 (en) * | 2012-06-01 | 2013-12-12 | Albert-Ludwigs-Universitaet Freiburg | Device and method for dispensing or receiving a liquid volume |
US9459128B2 (en) * | 2012-06-01 | 2016-10-04 | Hahn-Schickard-Gesellschaft Fuer Angewandte Forschung E.V. | Device and method for dispensing or receiving a liquid volume |
US20160041079A1 (en) * | 2013-02-08 | 2016-02-11 | Schlumberger Technology Corporation | Apparatus and methodology for measuring properties of microporous material at multiple scales |
US10173817B2 (en) * | 2015-04-24 | 2019-01-08 | Shenzhen Mecare Network Technology Co., Ltd. | Container, device and method for measuring liquid volume in a container |
US10006796B2 (en) * | 2015-06-01 | 2018-06-26 | Shenzhen Mecare Network Technology Co., Ltd. | Device, container and method for measuring liquid volume in container based on air pressure sensing |
CN204730908U (zh) | 2015-06-08 | 2015-10-28 | 深圳麦开网络技术有限公司 | 一种基于压力感应的容器内液体体积测量装置与容器 |
Also Published As
Publication number | Publication date |
---|---|
US20180120141A1 (en) | 2018-05-03 |
CN105004395B (zh) | 2019-03-12 |
WO2016197415A1 (zh) | 2016-12-15 |
CN105004395A (zh) | 2015-10-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10480984B2 (en) | Device, container and method for measuring liquid volume in container based on pressure sensing | |
US10173817B2 (en) | Container, device and method for measuring liquid volume in a container | |
US10006796B2 (en) | Device, container and method for measuring liquid volume in container based on air pressure sensing | |
US20180143086A1 (en) | Cooking temperature sensor with submersed probe | |
CN206038222U (zh) | 压力传感器测试校准工装 | |
CN108020259A (zh) | 一种同时测量温度和压力的装置 | |
CN204514528U (zh) | 一种气囊装置 | |
CN104605822A (zh) | 承载体和床垫 | |
CN103575357A (zh) | 使用遥控密封件的过程流体的液面测量 | |
WO2019006802A1 (zh) | 泳池水质检测仪 | |
JP3178826U (ja) | 温度及び圧力をワイヤレス送受信で検出するセンサ | |
CN105353186A (zh) | 一种基于电量比对的不断电接入持续监测式反窃电装置 | |
CN204630631U (zh) | 一种容器内液体体积的测量装置与容器 | |
CN204730908U (zh) | 一种基于压力感应的容器内液体体积测量装置与容器 | |
US20180188096A1 (en) | Measuring device for volume of liquid in container through temperature correction and container | |
CN206919920U (zh) | 一种同时测量温度和压力的装置 | |
CN201837376U (zh) | 一种气动式位置传感器 | |
CN204730907U (zh) | 一种基于气压感应的容器内液体体积测量装置与容器 | |
WO2017067022A1 (zh) | 一种可消除外界干扰的容器内液体体积测量方法 | |
CN204944603U (zh) | 一种带恒压舱的液体体积测量装置与容器 | |
CN204705424U (zh) | 鞋面压力检测装置 | |
CN208833430U (zh) | 由壬压力变送器 | |
CN204797795U (zh) | 承载体和床垫 | |
CN207136695U (zh) | 一种可显示温度的杯体 | |
CN207825467U (zh) | 3d打印头组件以及3d打印机 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FEPP | Fee payment procedure |
Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
FEPP | Fee payment procedure |
Free format text: ENTITY STATUS SET TO SMALL (ORIGINAL EVENT CODE: SMAL); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS |
|
AS | Assignment |
Owner name: SHENZHEN MOIKIT NETWORK TECHNOLOGY CO.,LTD., CHINA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SHENZHEN MECARE NETWORK TECHNOLOGY CO.,LTD.;REEL/FRAME:050695/0240 Effective date: 20191013 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FEPP | Fee payment procedure |
Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
LAPS | Lapse for failure to pay maintenance fees |
Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20231119 |