US10418655B2 - Cathode catalyst layer for fuel cells, method of manufacturing the same and membrane-electrode assembly for fuel cells including the same - Google Patents

Cathode catalyst layer for fuel cells, method of manufacturing the same and membrane-electrode assembly for fuel cells including the same Download PDF

Info

Publication number
US10418655B2
US10418655B2 US15/534,108 US201615534108A US10418655B2 US 10418655 B2 US10418655 B2 US 10418655B2 US 201615534108 A US201615534108 A US 201615534108A US 10418655 B2 US10418655 B2 US 10418655B2
Authority
US
United States
Prior art keywords
catalyst layer
cathode catalyst
heat
fuel cells
treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US15/534,108
Other versions
US20170346120A1 (en
Inventor
Yeon Su Kim
Tae Yoon Kim
Dae Jong YOU
Hong Chul JANG
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kolon Industries Inc
Original Assignee
Kolon Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kolon Industries Inc filed Critical Kolon Industries Inc
Assigned to KOLON INDUSTRIES, INC. reassignment KOLON INDUSTRIES, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KIM, YEON SU, YOU, DAE JONG, JANG, HONG CHUL, KIM, TAE YOON
Publication of US20170346120A1 publication Critical patent/US20170346120A1/en
Application granted granted Critical
Publication of US10418655B2 publication Critical patent/US10418655B2/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9075Catalytic material supported on carriers, e.g. powder carriers
    • H01M4/9083Catalytic material supported on carriers, e.g. powder carriers on carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8817Treatment of supports before application of the catalytic active composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8878Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
    • H01M4/8882Heat treatment, e.g. drying, baking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8878Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
    • H01M4/8892Impregnation or coating of the catalyst layer, e.g. by an ionomer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • H01M4/926Metals of platinum group supported on carriers, e.g. powder carriers on carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • Y02P70/56

Definitions

  • the present invention relates to a cathode catalyst layer for fuel cells, a method of manufacturing the same and a membrane-electrode assembly including the same.
  • a fuel cell is an electric power generating system for directly converting chemical reaction energy of oxygen and hydrogen contained in a hydrocarbon-based material such as methanol, ethanol, or natural gas, into electrical energy.
  • Such a fuel cell is a clean energy source which can replace fossil energy, which has an advantage of providing a variety of range of power based on stack configuration via lamination of unit cells, and attracts much attention as a small portable power supply owing to 4 to 10-times higher energy density than small lithium batteries.
  • fuel cells include polymer electrolyte membrane fuel cells (PEMFCs) and direct oxidation fuel cells.
  • PEMFCs polymer electrolyte membrane fuel cells
  • DMFC direct methanol fuel cell
  • the polymer electrolyte membrane fuel cell has advantages of high energy density and high power, but has disadvantages of requiring care in handling hydrogen gas and additional facilities such as fuel modification devices for modifying methane, methanol, natural gas or the like in order to produce hydrogen as a fuel gas.
  • the direct oxidation fuel cell has lower energy density than the polymer electrolyte membrane fuel cell, but has advantages of easy handling of fuels, operation availability at a low operation temperature such as room temperature and in particular, and no need for fuel modification devices.
  • the stack actually generating electricity has a structure in which several to several dozen unit cells, each consisting of a membrane-electrode assembly (MEA) and a separator (also called a “bipolar plate”), are laminated.
  • MEA membrane-electrode assembly
  • the membrane-electrode assembly has a structure in which a polymer electrolyte membrane including a hydrogen ion conducting polymer is interposed between an anode (also called a “fuel electrode” or “oxidation electrode”) and a cathode (also called an “air electrode” or “reduction electrode”).
  • Electricity is generated by a fuel cell based on the following principle.
  • a fuel is supplied to a fuel electrode, i.e., the anode, is adsorbed on a catalyst of the anode, and is then oxidized to produce a hydrogen ion and an electron.
  • the generated electron moves to an oxidation electrode, i.e., a cathode via an exterior circuit, while the hydrogen ion passes through the polymer electrolyte membrane and then moves to the cathode.
  • An oxidizing agent is supplied to the cathode, the oxidizing agent, the hydrogen ion and electron react with one another on the catalyst of the cathode to produce water and, at the same time, generate electricity.
  • the polymer electrolyte membrane fuel cell is commercially available and practically applicable earlier than other fuel cells due to the advantage of providing high-efficiency high power at low operation temperature.
  • Cost reduction via reduction of the amount of platinum used is the most potential issue in order to commercialize polymer electrolyte membrane fuel cells.
  • reduction in amount of platinum used can have adverse influences on both power and durability.
  • a Pt/C catalyst wherein nano-scale Pt is supported on carbon having a high specific surface area is most commonly used, but there is a problem of decrease in durability caused by deterioration of the catalyst.
  • the present invention has been made in view of the above problems, and it is one object of the present invention to provide a cathode catalyst layer for fuel cells with excellent durability and power performance as well as superior economic efficiency.
  • a cathode catalyst layer for fuel cells including heat-treated ordered mesoporous carbon, wherein the heat-treated ordered mesoporous carbon is present in an amount of 1% by weight to 15% by weight, with respect to the total weight of the cathode catalyst layer for fuel cells.
  • the heat treatment may be carried out at 900° C. to 3000° C. for 30 minutes to 3 hours.
  • the heat-treated ordered mesoporous carbon may include pores having a mean diameter of 3 nm to 10 nm.
  • the heat-treated ordered mesoporous carbon may have a hydrophobic surface.
  • the heat-treated ordered mesoporous carbon may take the shape of a nanorod.
  • the nanorod may have a length of 500 nm to 1000 nm.
  • a total pore diameter in the cathode catalyst layer for fuel cells may be 40 nm to 120 nm.
  • the cathode catalyst layer for fuel cells may further include Co, Ru, or a combination thereof.
  • a cathode catalyst layer for fuel cells including heat-treating ordered mesoporous carbon containing a hydrophilic group, dispersing the heat-treated ordered mesoporous carbon with an ionomer in an organic solvent to prepare a composition, and coating a support film with the composition and drying the support film.
  • the dispersion may be carried out using a 3-roll mill.
  • the ionomer may be a sulfonated highly fluorinated polymer.
  • the support film may include a polyethylene film, a Mylar film, a polyethylene terephthalate film, a Teflon film, a polyimide film or a combination thereof.
  • the heat-treated ordered mesoporous carbon may take the shape of a nanorod.
  • the nanorod has been described above.
  • the heat-treated ordered mesoporous carbon may be present in an amount of 1% by weight to 15% by weight, with respect to the total weight of the cathode catalyst layer for fuel cells.
  • a membrane-electrode assembly for fuel cells including the cathode catalyst layer for fuel cells.
  • the fuel cell may be a polymer electrolyte membrane fuel cell (PEMFC).
  • PEMFC polymer electrolyte membrane fuel cell
  • the cathode catalyst layer for fuel cells exhibits excellent durability, power performance and economic efficiency.
  • FIG. 1 is a current-voltage graph of membrane-electrode assemblies according to Example 1 and Comparative Example 1;
  • FIGS. 2 and 3 are graphs showing electrochemical impedance spectroscopy (EIS) analysis results for cathode catalyst layers of membrane-electrode assemblies according to Example 1 and Comparative Example 1, respectively, and in FIGS. 2 and 3 , R c1 represents resistance applied to the catalyst layer (interface resistance between the catalyst layer and a layer (membrane) adjacent thereto), R m represents membrane resistance, R tr represents mass transfer resistance, and R ct represents charge transfer resistance;
  • EIS electrochemical impedance spectroscopy
  • FIGS. 4 and 5 are graphs comparatively showing pore volume and pore size between cathode catalyst layers in membrane-electrode assemblies according to Example 1 and Comparative Example 1;
  • FIG. 6 is a schematic view illustrating the structure of a fuel cell system.
  • a combination thereof means an alloy, mixture or laminate thereof.
  • An embodiment provides a cathode catalyst layer for fuel cells including heat-treated ordered mesoporous carbon, wherein the heat-treated ordered mesoporous carbon is present in an amount of 1% by weight to 15% by weight, with respect to the total weight of the cathode catalyst layer for fuel cells.
  • the cathode catalyst layer for fuel cells includes the heat-treated ordered mesoporous carbon, thereby exhibiting excellent structural stability and reducing mass transfer resistance and charge transfer resistance to greatly improve durability and power performance of the membrane-electrode assembly including the cathode catalyst layer for fuel cells.
  • the heat-treated ordered mesoporous carbon is present in an amount of 1% by weight to 15% by weight, with respect to the total weight of the cathode catalyst layer for fuel cells.
  • the heat-treated ordered mesoporous carbon in an amount within the range defined above, pore volume can be controlled. For this reason, power performance can be improved. That is, when the content is within the range, pore volume and pore particle size are increased, gas transfer routes can be sufficiently secured and high power characteristics can thus be accomplished.
  • the heat treatment may be carried out at 900° C. to 3000° C. for 30 minutes to 3 hours.
  • the ordered mesoporous carbon is heat-treated under these conditions, the ordered mesoporous carbon is surface-modified. That is, the ordered mesoporous carbon has hydrophilic groups such as hydroxyl groups on the surface thereof. Through the heat-treatment, the surface of the ordered mesoporous carbon becomes hydrophobic. For this reason, dispersibility of the ordered mesoporous carbon in an organic solvent or the like can be improved.
  • the membrane-electrode assembly including a cathode catalyst layer can accomplish high durability under high-humidity conditions.
  • the heat-treated ordered mesoporous carbon may include pores having a mean diameter of 3 nm to 10 nm, for example, 3 nm to 5 nm.
  • the mean diameter of pores is 3.5 nm, but the present invention is not limited thereto.
  • the cathode catalyst layer for fuel cells may have a total pore diameter of 40 nm to 120 nm. When the pores have a mean diameter within the range defined above and the total pore diameter is within the range, gas transfer route is sufficiently secured and electrochemical activity such as high power can be improved.
  • the heat-treated ordered mesoporous carbon may take the shape of a nanorod. In this case, mass transfer of gas can be facilitated.
  • the nanorod may have a length of 500 nm to 1000 nm.
  • the nanorod can have a wide surface area without agglomeration between particles.
  • the cathode catalyst layer for fuel cells may further include Co, Ru or a combination thereof, but the present invention is not limited thereto.
  • a method of manufacturing the cathode catalyst layer for fuel cells having the configuration according to an embodiment includes: heat-treating ordered mesoporous carbon containing a hydrophilic group; dispersing the heat-treated ordered mesoporous carbon with an ionomer in an organic solvent to prepare a composition; and coating a support film with the composition and drying the support film.
  • the dispersion may be carried out using a 3-roll mill.
  • the ordered mesoporous carbon tends to agglomerate and is thus difficult to disperse when mixed with other catalysts or the like in a solvent. Accordingly, ordered mesoporous carbon containing a hydrophilic group, such as a hydroxyl group, is heat-treated.
  • a 3-roll mill is used to disperse the heat-treated ordered mesoporous carbon with an ionomer in a small amount of organic solvent (such as water and alcohol or the like).
  • a representative example of the ionomer is sulfonated highly fluorinated polymer (for example, Nafion: DuPontTM) which has a main chain containing fluorinated alkylene and a side chain containing fluorinated vinyl ether having a sulfonic acid group at an end thereof and all polymers having similar properties thereto can be used.
  • sulfonated highly fluorinated polymer for example, Nafion: DuPontTM
  • DuPontTM sulfonated highly fluorinated polymer which has a main chain containing fluorinated alkylene and a side chain containing fluorinated vinyl ether having a sulfonic acid group at an end thereof and all polymers having similar properties thereto can be used.
  • the support film may include a polyethylene film, a Mylar film, a polyethylene terephthalate film, a Teflon film, a polyimide film or a combination thereof.
  • the heat-treated ordered mesoporous carbon may take the shape of a nanorod. In this case, the effect of facilitating mass transfer of gas can be achieved.
  • the nanorod may have a length of 500 nm to 1000 nm.
  • the nanorod can have a wide surface area without agglomeration between particles.
  • the heat-treated ordered mesoporous carbon may be present in an amount of 1% by weight to 15% by weight, with respect to the total weight of the cathode catalyst layer for fuel cells.
  • the heat-treated ordered mesoporous carbon present in the amount within the range defined above, pore volume can be controlled and power performance can thus be improved. That is, when the content is within the range, pore volume and pore particle size are increased, gas transfer route is sufficiently secured and high power characteristics can thus be accomplished.
  • Another embodiment provides a membrane-electrode assembly for fuel cells including the cathode catalyst layer for fuel cells.
  • the membrane-electrode assembly may further include a cathode and/or an anode. That is, the membrane-electrode assembly for fuel cells includes a cathode and an anode which face each other, and a polymer electrolyte membrane interposed between the cathode and the anode, and the cathode may further include the cathode catalyst layer for fuel cells according to the embodiment.
  • the polymer electrolyte membrane is generally used as a polymer electrolyte membrane for fuel cells and any polymer electrolyte membrane may be used so long as it is made of a polymer resin having the ability to conduct hydrogen ions.
  • Representative examples include polymer resins having, at a side chain thereof, a cationic exchanger selected from the group consisting of a sulfonic acid group, a carboxylic acid group, a phosphoric acid group, a phosphonic acid group and a derivative thereof.
  • polymer resin examples include at least one of fluoro-based polymers, benzimidazole-based polymers, polyimide-based polymers, polyetherimide-based polymers, polyphenylene sulfide-based polymers, polysulfone-based polymers, polyether sulfone-based polymers, polyether ketone-based polymers, polyether-ether ketone-based polymers and polyphenylquinoxaline-based polymers.
  • Representative polymer resins include one or more selected from poly(perfluorosulfonic acid) (generally, marketed under the trademark of Nafion), poly(perfluorocarboxylic acid), and copolymers of fluorovinylether and tetrafluoroethylene including sulfonic acid groups, defluorinated polyetherketone sulfide, arylketone, poly(2,2′-(m-phenylene)-5,5′-bibenzimidazole) and poly(2,5-benzimidazole).
  • poly(perfluorosulfonic acid) generally, marketed under the trademark of Nafion
  • poly(perfluorocarboxylic acid) poly(perfluorocarboxylic acid)
  • copolymers of fluorovinylether and tetrafluoroethylene including sulfonic acid groups, defluorinated polyetherketone sulfide, arylketone, poly(2,2′-(m-phenylene
  • hydrogen (H) of the hydrogen ion conductive group of this hydrogen ion-conducting polymer can be replaced by Na, K, Li, Cs, or tetrabutylammonium.
  • the hydrogen (H) of the hydrogen ion conductive group of the hydrogen ion-conducting polymer is replaced by Na
  • tetrabutylammonium hydroxide is used for the replacement
  • K, Li, or Cs can be also replaced by a suitable compound.
  • This replacement method is well-known in the art and detailed description is omitted in the specification.
  • catalyst layer acid-treatment is conducted so that a proton-type (H + -form) polymer electrolyte membrane is obtained.
  • the fuel cell may be a polymer electrolyte membrane fuel cell (PEMFC).
  • PEMFC polymer electrolyte membrane fuel cell
  • Yet another embodiment provides a fuel cell system which includes at least one electricity generator, a fuel feeder and an oxidizing agent feeder.
  • the electricity generator includes the membrane-electrode assembly and a separator (also referred to as a “bipolar plate”).
  • the electricity generator functions to generate electricity through oxidation of fuel and reduction of an oxidizing agent.
  • the fuel feeder functions to supply fuels to the electricity generator and the oxidizing agent feeder functions to supply an oxidizing agent such as oxygen or air to the electricity generator.
  • the fuel may include gas or liquid hydrogen or hydrocarbon.
  • Representative examples of the hydrocarbon include methanol, ethanol, propanol, butanol or natural gas.
  • FIG. 6 A schematic structure of the fuel cell system according to the embodiment is shown in FIG. 6 .
  • the fuel cell system will be described in more detail with reference to FIG. 6 .
  • the system supplies fuel and an oxidizing agent using a pump to the electricity generator, but the fuel cell system is not limited to this structure and the fuel cell system using a diffusion method without using a pump may be used.
  • the fuel cell system 1 includes at least one electricity generator 3 which generates electrical energy through oxidation of fuel and reduction of an oxidizing agent, a fuel feeder 5 for supplying the fuel, and an oxidizing agent feeder 7 for supplying an oxidizing agent to the electricity generator 3 .
  • the fuel feeder 5 for supplying the fuel may include a fuel tank 9 for storing fuel and a fuel pump 11 connected to the fuel tank 9 .
  • the fuel pump 11 functions to discharge the stored fuel in the fuel tank 9 via a predetermined pumping power.
  • the oxidizing agent feeder 7 for supplying the oxidizing agent to the electricity generator 3 includes at least one oxidizing agent pump 13 for absorbing the oxidizing agent via a predetermined pumping power.
  • the electricity generator 3 includes a membrane-electrode assembly 17 for oxidizing and reducing fuel and an oxidizing agent, and separators 19 and 19 ′ for supplying fuel and the oxidizing agent to both sides of the membrane-electrode assembly 17 , and one or more electricity generators including such electricity generator 3 are joined to form a stack 15 .
  • a solvent consisting of ultra-pure water and an organic solvent was prepared.
  • a catalyst, a thickening agent and an ionomer for example, Nafion produced by DuPont or the like
  • OMC ordered mesoporous carbon
  • a solvent consisting of ultra-pure water and an organic solvent was prepared.
  • a catalyst, a thickening agent and an ionomer for example, Nafion produced by DuPont, or the like
  • the material was dispersed by mixing using a 3-roll mill to prepare a slurry.
  • the prepared slurry was coated to produce a cathode catalyst layer.
  • the transmission electron microscope (TEM) image of ordered mesoporous carbon in the cathode catalyst layer for fuel cells is shown in FIG. 1 of Korean Patent Application No.10-2015-0076585, and the scanning electron microscope (SEM) image is shown in FIG. 2 of Korean Patent Application No. 10-2015-0076585.
  • TEM transmission electron microscope
  • the membrane-electrode assembly including a cathode catalyst layer including ordered mesoporous carbon exhibited better power characteristics, as compared to the membrane-electrode assembly including a cathode catalyst layer not including ordered mesoporous carbon.
  • the membrane-electrode assembly including a cathode catalyst layer including ordered mesoporous carbon had lower resistance than the membrane-electrode assembly including a cathode catalyst layer not including ordered mesoporous carbon.
  • the membrane-electrode assembly including a cathode catalyst layer including ordered mesoporous carbon had effective gas channels due to increased overall pore volume and pore diameter, and thus reduced mass transfer resistance, as compared to the membrane-electrode assembly including a cathode catalyst layer not including ordered mesoporous carbon.
  • the present invention relates to a cathode catalyst layer for fuel cells, a method of manufacturing the same and a membrane-electrode assembly including the same.
  • the present invention relates to a cathode catalyst layer for fuel cells including heat-treated ordered mesoporous carbon wherein the heat-treated ordered mesoporous carbon is present in an amount of 1% by weight to 15% by weight, with respect to the total weight of the cathode catalyst layer for fuel cells, and a method of manufacturing the same.
  • the cathode catalyst layer for fuel cells exhibits excellent durability, power performance and economic efficiency.

Abstract

Disclosed is a cathode catalyst layer for fuel cells including heat-treated ordered mesoporous carbon, wherein the heat-treated ordered mesoporous carbon is present in an amount of 1% by weight to 15% by weight, with respect to the total weight of the cathode catalyst layer for fuel cells, and a method of manufacturing the same.

Description

CROSS REFERENCE TO RELATED APPLICATIONS
This application is a National Stage of International Application No. PCT/KR2016/005530 filed May 25, 2016, claiming priority based on Korean Patent Application No. 10-2015-0076585 filed May 29, 2015, the contents of all of which are incorporated herein by reference in their entirety.
TECHNICAL FIELD
The present invention relates to a cathode catalyst layer for fuel cells, a method of manufacturing the same and a membrane-electrode assembly including the same.
BACKGROUND ART
A fuel cell is an electric power generating system for directly converting chemical reaction energy of oxygen and hydrogen contained in a hydrocarbon-based material such as methanol, ethanol, or natural gas, into electrical energy.
Such a fuel cell is a clean energy source which can replace fossil energy, which has an advantage of providing a variety of range of power based on stack configuration via lamination of unit cells, and attracts much attention as a small portable power supply owing to 4 to 10-times higher energy density than small lithium batteries.
Representative examples of fuel cells include polymer electrolyte membrane fuel cells (PEMFCs) and direct oxidation fuel cells. A direct methanol fuel cell (DMFC) refers to a type of direct oxidation fuel cell which uses methanol as a fuel.
The polymer electrolyte membrane fuel cell has advantages of high energy density and high power, but has disadvantages of requiring care in handling hydrogen gas and additional facilities such as fuel modification devices for modifying methane, methanol, natural gas or the like in order to produce hydrogen as a fuel gas.
On the other hand, the direct oxidation fuel cell has lower energy density than the polymer electrolyte membrane fuel cell, but has advantages of easy handling of fuels, operation availability at a low operation temperature such as room temperature and in particular, and no need for fuel modification devices.
In such a fuel cell system, the stack actually generating electricity has a structure in which several to several dozen unit cells, each consisting of a membrane-electrode assembly (MEA) and a separator (also called a “bipolar plate”), are laminated. The membrane-electrode assembly has a structure in which a polymer electrolyte membrane including a hydrogen ion conducting polymer is interposed between an anode (also called a “fuel electrode” or “oxidation electrode”) and a cathode (also called an “air electrode” or “reduction electrode”).
Electricity is generated by a fuel cell based on the following principle. A fuel is supplied to a fuel electrode, i.e., the anode, is adsorbed on a catalyst of the anode, and is then oxidized to produce a hydrogen ion and an electron. The generated electron moves to an oxidation electrode, i.e., a cathode via an exterior circuit, while the hydrogen ion passes through the polymer electrolyte membrane and then moves to the cathode. An oxidizing agent is supplied to the cathode, the oxidizing agent, the hydrogen ion and electron react with one another on the catalyst of the cathode to produce water and, at the same time, generate electricity.
Research to improve activity of catalysts is actively underway because the performance of the fuel cell is greatly affected by the performance of catalysts of the anode and cathode.
In particular, the polymer electrolyte membrane fuel cell is commercially available and practically applicable earlier than other fuel cells due to the advantage of providing high-efficiency high power at low operation temperature.
Cost reduction via reduction of the amount of platinum used is the most potential issue in order to commercialize polymer electrolyte membrane fuel cells. However, reduction in amount of platinum used can have adverse influences on both power and durability.
Generally, a Pt/C catalyst wherein nano-scale Pt is supported on carbon having a high specific surface area is most commonly used, but there is a problem of decrease in durability caused by deterioration of the catalyst.
Therefore, research is continuing to design structures of catalyst layers capable of solving problems associated with performance and durability resulting from decreased platinum content.
DISCLOSURE Technical Problem
Therefore, the present invention has been made in view of the above problems, and it is one object of the present invention to provide a cathode catalyst layer for fuel cells with excellent durability and power performance as well as superior economic efficiency.
It is another object of the present invention to provide a method of manufacturing a cathode catalyst layer for fuel cells.
It is yet another object of the present invention to provide a membrane-electrode assembly including the cathode catalyst layer for fuel cells.
Technical Solution
In accordance with the present invention, the above and other objects can be accomplished by the provision of a cathode catalyst layer for fuel cells including heat-treated ordered mesoporous carbon, wherein the heat-treated ordered mesoporous carbon is present in an amount of 1% by weight to 15% by weight, with respect to the total weight of the cathode catalyst layer for fuel cells.
The heat treatment may be carried out at 900° C. to 3000° C. for 30 minutes to 3 hours.
The heat-treated ordered mesoporous carbon may include pores having a mean diameter of 3 nm to 10 nm.
The heat-treated ordered mesoporous carbon may have a hydrophobic surface.
The heat-treated ordered mesoporous carbon may take the shape of a nanorod.
The nanorod may have a length of 500 nm to 1000 nm.
A total pore diameter in the cathode catalyst layer for fuel cells may be 40 nm to 120 nm.
The cathode catalyst layer for fuel cells may further include Co, Ru, or a combination thereof.
In another aspect of the present invention, provided is a method of manufacturing a cathode catalyst layer for fuel cells including heat-treating ordered mesoporous carbon containing a hydrophilic group, dispersing the heat-treated ordered mesoporous carbon with an ionomer in an organic solvent to prepare a composition, and coating a support film with the composition and drying the support film.
The heat treatment has been described above.
The dispersion may be carried out using a 3-roll mill.
The ionomer may be a sulfonated highly fluorinated polymer.
The support film may include a polyethylene film, a Mylar film, a polyethylene terephthalate film, a Teflon film, a polyimide film or a combination thereof.
The heat-treated ordered mesoporous carbon may take the shape of a nanorod.
The nanorod has been described above.
The heat-treated ordered mesoporous carbon may be present in an amount of 1% by weight to 15% by weight, with respect to the total weight of the cathode catalyst layer for fuel cells.
In yet another aspect of the present invention, provided is a membrane-electrode assembly for fuel cells including the cathode catalyst layer for fuel cells.
The fuel cell may be a polymer electrolyte membrane fuel cell (PEMFC).
Effects of the Invention
The cathode catalyst layer for fuel cells exhibits excellent durability, power performance and economic efficiency.
BRIEF DESCRIPTION OF THE DRAWINGS
The above and other objects, features and other advantages of the present invention will be more clearly understood from the following detailed description taken in conjunction with the accompanying drawings, in which:
FIG. 1 is a current-voltage graph of membrane-electrode assemblies according to Example 1 and Comparative Example 1;
FIGS. 2 and 3 are graphs showing electrochemical impedance spectroscopy (EIS) analysis results for cathode catalyst layers of membrane-electrode assemblies according to Example 1 and Comparative Example 1, respectively, and in FIGS. 2 and 3, Rc1 represents resistance applied to the catalyst layer (interface resistance between the catalyst layer and a layer (membrane) adjacent thereto), Rm represents membrane resistance, Rtr represents mass transfer resistance, and Rct represents charge transfer resistance;
FIGS. 4 and 5 are graphs comparatively showing pore volume and pore size between cathode catalyst layers in membrane-electrode assemblies according to Example 1 and Comparative Example 1; and
FIG. 6 is a schematic view illustrating the structure of a fuel cell system.
BEST MODE
Hereinafter, embodiments of the present invention will be described in more detail such that a person having ordinary knowledge in the field to which the present invention pertains can easily implement the embodiments. However, the embodiments of the present invention can be implemented in various forms and should not be construed as being limited to the embodiments described herein.
This application claims the benefit of Korean Patent Application No. 10-2015-0076585 filed on May 29, 2015 with the Korean Intellectual Property Office, the disclosure of which is herein incorporated by reference in its entirety.
In the drawings, the thicknesses of layers and regions are exaggerated for better understanding of the present invention.
It will be understood that when an element such as a layer, film, region or substrate is referred to as being “on” another element, it can be directly on the other element or intervening elements may also be present. In contrast, when an element is referred to as being “directly on” another element, there are no intervening elements present.
As used herein, the expression “a combination thereof” means an alloy, mixture or laminate thereof.
An embodiment provides a cathode catalyst layer for fuel cells including heat-treated ordered mesoporous carbon, wherein the heat-treated ordered mesoporous carbon is present in an amount of 1% by weight to 15% by weight, with respect to the total weight of the cathode catalyst layer for fuel cells.
The cathode catalyst layer for fuel cells includes the heat-treated ordered mesoporous carbon, thereby exhibiting excellent structural stability and reducing mass transfer resistance and charge transfer resistance to greatly improve durability and power performance of the membrane-electrode assembly including the cathode catalyst layer for fuel cells.
In addition, the heat-treated ordered mesoporous carbon is present in an amount of 1% by weight to 15% by weight, with respect to the total weight of the cathode catalyst layer for fuel cells. By including the heat-treated ordered mesoporous carbon in an amount within the range defined above, pore volume can be controlled. For this reason, power performance can be improved. That is, when the content is within the range, pore volume and pore particle size are increased, gas transfer routes can be sufficiently secured and high power characteristics can thus be accomplished. However, when the heat-treated ordered mesoporous carbon is present in an amount of less than 1% by weight, with respect to the total weight of the cathode catalyst layer for fuel cells, gas transfer routes cannot be sufficiently secured and when the heat-treated ordered mesoporous carbon is present in an amount exceeding 15% by weight, with respect to the total weight of the cathode catalyst layer for fuel cells, durability is disadvantageously deteriorated.
The heat treatment may be carried out at 900° C. to 3000° C. for 30 minutes to 3 hours. When the ordered mesoporous carbon is heat-treated under these conditions, the ordered mesoporous carbon is surface-modified. That is, the ordered mesoporous carbon has hydrophilic groups such as hydroxyl groups on the surface thereof. Through the heat-treatment, the surface of the ordered mesoporous carbon becomes hydrophobic. For this reason, dispersibility of the ordered mesoporous carbon in an organic solvent or the like can be improved. That is, by heat-treating ordered mesoporous carbon within the above temperature range, hydrophilicity and hydrophobicity of the surface of the ordered mesoporous carbon can be controlled so that dispersibility in an organic solvent or the like can be improved. In addition, ultimately, the membrane-electrode assembly including a cathode catalyst layer according to an embodiment can accomplish high durability under high-humidity conditions.
The heat-treated ordered mesoporous carbon may include pores having a mean diameter of 3 nm to 10 nm, for example, 3 nm to 5 nm. For example, the mean diameter of pores is 3.5 nm, but the present invention is not limited thereto. In addition, the cathode catalyst layer for fuel cells may have a total pore diameter of 40 nm to 120 nm. When the pores have a mean diameter within the range defined above and the total pore diameter is within the range, gas transfer route is sufficiently secured and electrochemical activity such as high power can be improved.
The heat-treated ordered mesoporous carbon may take the shape of a nanorod. In this case, mass transfer of gas can be facilitated.
The nanorod may have a length of 500 nm to 1000 nm. In this case, the nanorod can have a wide surface area without agglomeration between particles.
The cathode catalyst layer for fuel cells may further include Co, Ru or a combination thereof, but the present invention is not limited thereto.
A method of manufacturing the cathode catalyst layer for fuel cells having the configuration according to an embodiment includes: heat-treating ordered mesoporous carbon containing a hydrophilic group; dispersing the heat-treated ordered mesoporous carbon with an ionomer in an organic solvent to prepare a composition; and coating a support film with the composition and drying the support film.
The heat treatment has been described above.
The dispersion may be carried out using a 3-roll mill. The ordered mesoporous carbon tends to agglomerate and is thus difficult to disperse when mixed with other catalysts or the like in a solvent. Accordingly, ordered mesoporous carbon containing a hydrophilic group, such as a hydroxyl group, is heat-treated. In addition to the heat treatment, a 3-roll mill is used to disperse the heat-treated ordered mesoporous carbon with an ionomer in a small amount of organic solvent (such as water and alcohol or the like).
A representative example of the ionomer is sulfonated highly fluorinated polymer (for example, Nafion: DuPont™) which has a main chain containing fluorinated alkylene and a side chain containing fluorinated vinyl ether having a sulfonic acid group at an end thereof and all polymers having similar properties thereto can be used.
The support film may include a polyethylene film, a Mylar film, a polyethylene terephthalate film, a Teflon film, a polyimide film or a combination thereof.
The heat-treated ordered mesoporous carbon may take the shape of a nanorod. In this case, the effect of facilitating mass transfer of gas can be achieved.
The nanorod may have a length of 500 nm to 1000 nm. In this case, the nanorod can have a wide surface area without agglomeration between particles.
The heat-treated ordered mesoporous carbon may be present in an amount of 1% by weight to 15% by weight, with respect to the total weight of the cathode catalyst layer for fuel cells. By including the heat-treated ordered mesoporous carbon present in the amount within the range defined above, pore volume can be controlled and power performance can thus be improved. That is, when the content is within the range, pore volume and pore particle size are increased, gas transfer route is sufficiently secured and high power characteristics can thus be accomplished.
Another embodiment provides a membrane-electrode assembly for fuel cells including the cathode catalyst layer for fuel cells.
The membrane-electrode assembly may further include a cathode and/or an anode. That is, the membrane-electrode assembly for fuel cells includes a cathode and an anode which face each other, and a polymer electrolyte membrane interposed between the cathode and the anode, and the cathode may further include the cathode catalyst layer for fuel cells according to the embodiment.
The polymer electrolyte membrane is generally used as a polymer electrolyte membrane for fuel cells and any polymer electrolyte membrane may be used so long as it is made of a polymer resin having the ability to conduct hydrogen ions. Representative examples include polymer resins having, at a side chain thereof, a cationic exchanger selected from the group consisting of a sulfonic acid group, a carboxylic acid group, a phosphoric acid group, a phosphonic acid group and a derivative thereof.
Representative examples of the polymer resin include at least one of fluoro-based polymers, benzimidazole-based polymers, polyimide-based polymers, polyetherimide-based polymers, polyphenylene sulfide-based polymers, polysulfone-based polymers, polyether sulfone-based polymers, polyether ketone-based polymers, polyether-ether ketone-based polymers and polyphenylquinoxaline-based polymers. Representative polymer resins include one or more selected from poly(perfluorosulfonic acid) (generally, marketed under the trademark of Nafion), poly(perfluorocarboxylic acid), and copolymers of fluorovinylether and tetrafluoroethylene including sulfonic acid groups, defluorinated polyetherketone sulfide, arylketone, poly(2,2′-(m-phenylene)-5,5′-bibenzimidazole) and poly(2,5-benzimidazole).
In addition, hydrogen (H) of the hydrogen ion conductive group of this hydrogen ion-conducting polymer can be replaced by Na, K, Li, Cs, or tetrabutylammonium. When the hydrogen (H) of the hydrogen ion conductive group of the hydrogen ion-conducting polymer is replaced by Na, in case where NaOH is replaced by tetrabutylammonium, tetrabutylammonium hydroxide is used for the replacement, and K, Li, or Cs can be also replaced by a suitable compound. This replacement method is well-known in the art and detailed description is omitted in the specification. In addition, after replacement by Na, K, Li, Cs, or tetrabutylammonium, catalyst layer acid-treatment is conducted so that a proton-type (H+-form) polymer electrolyte membrane is obtained.
The fuel cell may be a polymer electrolyte membrane fuel cell (PEMFC).
Yet another embodiment provides a fuel cell system which includes at least one electricity generator, a fuel feeder and an oxidizing agent feeder.
The electricity generator includes the membrane-electrode assembly and a separator (also referred to as a “bipolar plate”). The electricity generator functions to generate electricity through oxidation of fuel and reduction of an oxidizing agent.
The fuel feeder functions to supply fuels to the electricity generator and the oxidizing agent feeder functions to supply an oxidizing agent such as oxygen or air to the electricity generator.
In an embodiment, the fuel may include gas or liquid hydrogen or hydrocarbon. Representative examples of the hydrocarbon include methanol, ethanol, propanol, butanol or natural gas.
A schematic structure of the fuel cell system according to the embodiment is shown in FIG. 6. The fuel cell system will be described in more detail with reference to FIG. 6. With regard to the structure shown in FIG. 6, the system supplies fuel and an oxidizing agent using a pump to the electricity generator, but the fuel cell system is not limited to this structure and the fuel cell system using a diffusion method without using a pump may be used.
The fuel cell system 1 according to an embodiment includes at least one electricity generator 3 which generates electrical energy through oxidation of fuel and reduction of an oxidizing agent, a fuel feeder 5 for supplying the fuel, and an oxidizing agent feeder 7 for supplying an oxidizing agent to the electricity generator 3.
In addition, the fuel feeder 5 for supplying the fuel may include a fuel tank 9 for storing fuel and a fuel pump 11 connected to the fuel tank 9. The fuel pump 11 functions to discharge the stored fuel in the fuel tank 9 via a predetermined pumping power.
The oxidizing agent feeder 7 for supplying the oxidizing agent to the electricity generator 3 includes at least one oxidizing agent pump 13 for absorbing the oxidizing agent via a predetermined pumping power.
The electricity generator 3 includes a membrane-electrode assembly 17 for oxidizing and reducing fuel and an oxidizing agent, and separators 19 and 19′ for supplying fuel and the oxidizing agent to both sides of the membrane-electrode assembly 17, and one or more electricity generators including such electricity generator 3 are joined to form a stack 15.
[Mode for the Invention]
Now, the present invention will be described in more detail with reference to preferred examples and comparative examples. However, these examples are provided only for illustrative purpose and should not be construed as limiting the scope of the present invention.
EXAMPLE Example 1 Production of Cathode Catalyst Layer Including Ordered Mesoporous Carbon (OMC)
A solvent consisting of ultra-pure water and an organic solvent was prepared. A catalyst, a thickening agent and an ionomer (for example, Nafion produced by DuPont or the like) were added to the prepared solvent, and ordered mesoporous carbon (OMC) which had been surface-modified by heat treatment at 1500° C. to 2000° C. for 1 to 2 hours was added thereto. Then, the resulting material was dispersed by mixing using a 3-roll mill to prepare a slurry. The prepared slurry was coated to produce a cathode catalyst layer.
Comparative Example 1 Production of Cathode Catalyst Layer Not Including Ordered Mesoporous Carbon (OMC)
A solvent consisting of ultra-pure water and an organic solvent was prepared. A catalyst, a thickening agent and an ionomer (for example, Nafion produced by DuPont, or the like) were added to the prepared solvent. Then, the material was dispersed by mixing using a 3-roll mill to prepare a slurry. The prepared slurry was coated to produce a cathode catalyst layer.
Test 1: Dispersibility
Transmission electron microscope (TEM) and scanning electron microscope (SEM) images of the cathode catalyst layers according to Example 1 and Comparative Example 1 were obtained and dispersibility of ordered mesoporous carbon was measured.
The transmission electron microscope (TEM) image of ordered mesoporous carbon in the cathode catalyst layer for fuel cells is shown in FIG. 1 of Korean Patent Application No.10-2015-0076585, and the scanning electron microscope (SEM) image is shown in FIG. 2 of Korean Patent Application No. 10-2015-0076585.
As can be seen from the TEM image shown in FIG. 1 of Korean Patent Application No. 10-2015-0076585 and the SEM image shown in FIG. 2 of Korean Patent Application No. 10-2015-0076585, cathode catalyst layers with excellent dispersibility were produced. In addition, the mean particle size of pores was found to be 3.5 nm.
Test 2: Power and Resistance Characteristics
The power and resistance characteristics of membrane-electrode assemblies including cathode catalyst layers according to Example 1 and Comparative Example 1 were measured and results are shown in FIGS. 1 to 3.
As can be seen from FIG. 1, the membrane-electrode assembly including a cathode catalyst layer including ordered mesoporous carbon exhibited better power characteristics, as compared to the membrane-electrode assembly including a cathode catalyst layer not including ordered mesoporous carbon. In addition, as can be seen from FIGS. 2 and 3, the membrane-electrode assembly including a cathode catalyst layer including ordered mesoporous carbon had lower resistance than the membrane-electrode assembly including a cathode catalyst layer not including ordered mesoporous carbon.
Test 3: Pore characteristics
The pore volume and pore diameter in the cathode catalyst layer according to Example 1 and Comparative Example 1 were tested and results are shown in FIGS. 4 and 5.
As can be seen from FIGS. 4 and 5, the membrane-electrode assembly including a cathode catalyst layer including ordered mesoporous carbon had effective gas channels due to increased overall pore volume and pore diameter, and thus reduced mass transfer resistance, as compared to the membrane-electrode assembly including a cathode catalyst layer not including ordered mesoporous carbon.
Although the preferred embodiments of the present invention have been disclosed for illustrative purposes, those skilled in the art will appreciate that various modifications, additions and substitutions are possible, without departing from the scope and spirit of the invention as disclosed in the accompanying claims.
INDUSTRIAL APPLICABILITY
The present invention relates to a cathode catalyst layer for fuel cells, a method of manufacturing the same and a membrane-electrode assembly including the same. The present invention relates to a cathode catalyst layer for fuel cells including heat-treated ordered mesoporous carbon wherein the heat-treated ordered mesoporous carbon is present in an amount of 1% by weight to 15% by weight, with respect to the total weight of the cathode catalyst layer for fuel cells, and a method of manufacturing the same. The cathode catalyst layer for fuel cells exhibits excellent durability, power performance and economic efficiency.

Claims (17)

The invention claimed is:
1. A cathode catalyst layer for fuel cells comprising heat-treated ordered mesoporous carbon,
wherein the heat-treated ordered mesoporous carbon is present in an amount of 1% by weight to 15% by weight, with respect to the total weight of the cathode catalyst layer for fuel cells,
wherein the heat-treated ordered mesoporous carbon is formed by heat-treating ordered mesoporous carbon containing a hydroxyl group, and
wherein the surface of the ordered mesoporous carbon becomes hydrophobic through the heat-treatment.
2. The cathode catalyst layer according to claim 1, wherein the heat treatment is carried out at 900° C. to 3000° C. for 30 minutes to 3 hours.
3. The cathode catalyst layer according to claim 1, wherein the heat-treated ordered mesoporous carbon comprises pores having a mean diameter of 3 nm to 10 nm.
4. The cathode catalyst layer according to claim 1, wherein the heat-treated ordered mesoporous carbon has a hydrophobic surface.
5. The cathode catalyst layer according to claim 1, wherein the heat-treated ordered mesoporous carbon is nanorod-shaped.
6. The cathode catalyst layer according to claim 5, wherein the nanorod has a length of 500 nm to 1000 nm.
7. The cathode catalyst layer according to claim 1, wherein a total pore diameter in the cathode catalyst layer for fuel cells is 40 nm to 120 nm.
8. The cathode catalyst layer according to claim 1, wherein the cathode catalyst layer for fuel cells further comprises Co, Ru, or a combination thereof.
9. A method of manufacturing a cathode catalyst layer for fuel cells comprising:
(a) heat-treating ordered mesoporous carbon (OMC) containing a hydrophilic group at 900° C. to 3000° C. for 30 minutes to 3 hours to obtain a heat-treated OMC, said heat-treated OMC having a hydrophobic surface;
(b) dispersing the heat-treated OMC with hydrophobic surface obtained in (a) and an ionomer in an organic solvent in presence of a catalyst to prepare a catalyst composition comprising the heat-treated OMC with hydrophobic surface, the catalyst, the ionomer, and the organic solvent; and
(c) coating a support film with the catalyst composition and drying the support film to give the cathode catalyst layer for fuel cells.
10. The method according to claim 9, wherein the dispersion is carried out using a 3-roll mill.
11. The method according to claim 9, wherein the ionomer of (b) is a sulfonated highly fluorinated polymer.
12. The method according to claim 9, wherein the support film of (c) comprises a polyethylene film, a Mylar film, a polyethylene terephthalate film, a Teflon film, a polyimide film or a combination thereof.
13. The method according to claim 9, wherein the heat-treated OMC with hydrophobic surface obtained in (a) is nanorod shaped.
14. The method according to claim 13, wherein the nanorod has a length of 500 nm to 1000 nm.
15. The method according to claim 9, wherein, in the cathode catalyst layer for fuel cells obtained in (c), the heat-treated OMC is present in an amount of 1% by weight to 15% by weight, with respect to the total weight of the cathode catalyst layer for fuel cells.
16. A membrane-electrode assembly for fuel cells comprising the cathode catalyst layer for fuel cells according to claim 1.
17. The membrane-electrode assembly according to claim 16, wherein the fuel cell is a polymer electrolyte membrane fuel cell (PEMFC).
US15/534,108 2015-05-29 2016-05-25 Cathode catalyst layer for fuel cells, method of manufacturing the same and membrane-electrode assembly for fuel cells including the same Active 2036-05-27 US10418655B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR1020150076585A KR102195891B1 (en) 2015-05-29 2015-05-29 CATHOD CATALYST LAYER FOR FUEL CELL, MANUFACTURING METHOD OF THE SAME AND Membrane-Electrode Assembly INCLUDING THE SAME
KR10-2015-0076585 2015-05-29
PCT/KR2016/005530 WO2016195313A1 (en) 2015-05-29 2016-05-25 Cathode catalyst layer for fuel cell, preparation method therefor, and membrane-electrode assembly for fuel cell including cathode catalyst layer

Publications (2)

Publication Number Publication Date
US20170346120A1 US20170346120A1 (en) 2017-11-30
US10418655B2 true US10418655B2 (en) 2019-09-17

Family

ID=57441566

Family Applications (1)

Application Number Title Priority Date Filing Date
US15/534,108 Active 2036-05-27 US10418655B2 (en) 2015-05-29 2016-05-25 Cathode catalyst layer for fuel cells, method of manufacturing the same and membrane-electrode assembly for fuel cells including the same

Country Status (6)

Country Link
US (1) US10418655B2 (en)
EP (1) EP3211699B1 (en)
JP (1) JP6556843B2 (en)
KR (1) KR102195891B1 (en)
CN (1) CN107112546B (en)
WO (1) WO2016195313A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108037468A (en) * 2017-12-27 2018-05-15 新源动力股份有限公司 A kind of fuel cell diagnostic device and method
CN114512682A (en) * 2022-02-21 2022-05-17 浙江高成绿能科技有限公司 Carbon-supported platinum catalyst, fuel cell membrane electrode and preparation method thereof
KR20230171817A (en) * 2022-06-14 2023-12-21 코오롱인더스트리 주식회사 Membrane-electrode assembly and fuel cell comprising the same

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004071253A (en) 2002-08-02 2004-03-04 Toyota Motor Corp Electrocatalyst for fuel cell and fuel cell
KR100574030B1 (en) 2003-12-04 2006-04-26 한남대학교 산학협력단 Electrocatalysts for fuel cell supported by porous carbon structure having regularly 3-dimensionally arranged spherical pores of uniform diameter and their preparation method
US20070116624A1 (en) 2005-11-22 2007-05-24 Samsung Sdi Co., Ltd. Mesoporous carbon, method of preparing the same, and fuel cell using the carbon
US20080160391A1 (en) 2006-12-29 2008-07-03 Samsung Sdi Co., Ltd Sulfur-containing mesoporous carbon, method of manufacturing the same, and fuel cell using the mesoporous carbon
US20110159403A1 (en) * 2010-03-02 2011-06-30 Ford Global Technologies, Llc Layered Catalyst Assembly and Electrode Assembly Employing the Same
KR20120061484A (en) * 2010-12-03 2012-06-13 현대자동차주식회사 Preparing method of Hydrophobic polymer-Carbon support composites for Fuel cell electrode
KR101264147B1 (en) 2010-08-18 2013-05-14 한화케미칼 주식회사 Preparation of Concentrated CNT Dispersion Solution Using the Treated CNT
US20130337365A1 (en) * 2012-06-18 2013-12-19 Samsung Electornics Co., Ltd. Composite support, method of preparing the same, electrode catalyst including the composite support, and membrane-electrode assembly and fuel cell each including the electrode catalyst
US20140080011A1 (en) 2011-05-23 2014-03-20 Korea University Research And Business Foundation Manufacturing method for catalyst electrode, catalyst electrode manufactured by means of method, and battery comprising same
US20140099553A1 (en) * 2012-10-09 2014-04-10 Korea University Research and Business Foundation Mesoporous carbon structures, preparation method thereof and lithium secondary battery including the same
US20140329085A1 (en) 2011-12-21 2014-11-06 Lg Chem, Ltd. Novel secondary structure of carbon nanostructure, bundle thereof and composite comprising same
US20150207152A1 (en) * 2014-01-23 2015-07-23 Samsung Sdi Co., Ltd. Electrode catalyst for fuel cell, method of preparing the same, electrode for fuel cell including the electrolyte catalyst, and fuel cell including the electrode
US20150214554A1 (en) * 2012-08-01 2015-07-30 Toyo Ink Sc Holdings Co., Ltd. Cell catalyst composition andmanufacturing method thereof, electrode material, and fuel cell

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7255451B2 (en) * 2002-09-20 2007-08-14 Donnelly Corporation Electro-optic mirror cell
WO2007136816A2 (en) * 2006-05-21 2007-11-29 Massachusetts Institute Of Technology Optical structures including nanocrystals
US20110015940A1 (en) * 2009-07-20 2011-01-20 Nathan Goldfein Electronic physician order sheet
FR2986829B1 (en) * 2012-02-09 2014-03-21 Safran TURBOMACHINE SUPPORT PIECE WITH HYBRID STRUCTURE
US9242733B2 (en) * 2013-07-18 2016-01-26 Nick Pajic Tray table with articulating support
KR101390038B1 (en) * 2013-07-24 2014-04-29 주식회사 휴브아이웨어 Hinge and eyeglasses structure and connection method combined

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004071253A (en) 2002-08-02 2004-03-04 Toyota Motor Corp Electrocatalyst for fuel cell and fuel cell
KR100574030B1 (en) 2003-12-04 2006-04-26 한남대학교 산학협력단 Electrocatalysts for fuel cell supported by porous carbon structure having regularly 3-dimensionally arranged spherical pores of uniform diameter and their preparation method
US20070116624A1 (en) 2005-11-22 2007-05-24 Samsung Sdi Co., Ltd. Mesoporous carbon, method of preparing the same, and fuel cell using the carbon
JP2007137755A (en) 2005-11-22 2007-06-07 Samsung Sdi Co Ltd Method of preparing mesoporous carbon, mesoporous carbon, supported catalyst and fuel cell
US20080160391A1 (en) 2006-12-29 2008-07-03 Samsung Sdi Co., Ltd Sulfur-containing mesoporous carbon, method of manufacturing the same, and fuel cell using the mesoporous carbon
US20110159403A1 (en) * 2010-03-02 2011-06-30 Ford Global Technologies, Llc Layered Catalyst Assembly and Electrode Assembly Employing the Same
KR101264147B1 (en) 2010-08-18 2013-05-14 한화케미칼 주식회사 Preparation of Concentrated CNT Dispersion Solution Using the Treated CNT
KR20120061484A (en) * 2010-12-03 2012-06-13 현대자동차주식회사 Preparing method of Hydrophobic polymer-Carbon support composites for Fuel cell electrode
KR101390036B1 (en) 2011-05-23 2014-04-30 고려대학교 산학협력단 Manufacturing mathod of catalyst electrode, catalyst electrode thereof and battery using thereof
US20140080011A1 (en) 2011-05-23 2014-03-20 Korea University Research And Business Foundation Manufacturing method for catalyst electrode, catalyst electrode manufactured by means of method, and battery comprising same
US20140329085A1 (en) 2011-12-21 2014-11-06 Lg Chem, Ltd. Novel secondary structure of carbon nanostructure, bundle thereof and composite comprising same
KR20130142242A (en) 2012-06-18 2013-12-30 삼성전자주식회사 Composite support, method for peraing the same, electrode catalyst including the same, and membrane electrode assembly and fuel cell including the same
US20130337365A1 (en) * 2012-06-18 2013-12-19 Samsung Electornics Co., Ltd. Composite support, method of preparing the same, electrode catalyst including the composite support, and membrane-electrode assembly and fuel cell each including the electrode catalyst
US20150214554A1 (en) * 2012-08-01 2015-07-30 Toyo Ink Sc Holdings Co., Ltd. Cell catalyst composition andmanufacturing method thereof, electrode material, and fuel cell
US20140099553A1 (en) * 2012-10-09 2014-04-10 Korea University Research and Business Foundation Mesoporous carbon structures, preparation method thereof and lithium secondary battery including the same
US20150207152A1 (en) * 2014-01-23 2015-07-23 Samsung Sdi Co., Ltd. Electrode catalyst for fuel cell, method of preparing the same, electrode for fuel cell including the electrolyte catalyst, and fuel cell including the electrode

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
English translation of KR Publication 10-2012-0061484, Jun. 2012. *
European Patent Office, Communication dated Jul. 17, 2018, issued in corresponding European Application No. 16803668.9.
European Patent Office; Communication dated Mar. 29, 2018, in counterpart European Application No. 16803668.9.
International Search Report of PCT/KR2016/005530 dated Aug. 8, 2016.
Japanese Patent Office ;Communication dated Jun. 5, 2018 in counterpart Japanese application No. 2017-530700.
Norihiro Suzuki et al, "Synthesis of Functional Mesoporous (Nanoporous) Materials", Oreo science, 2013, vol. 13, No. 8, pp. 29-36 (9 total).

Also Published As

Publication number Publication date
US20170346120A1 (en) 2017-11-30
CN107112546A (en) 2017-08-29
KR102195891B1 (en) 2020-12-28
EP3211699B1 (en) 2020-12-30
EP3211699A4 (en) 2018-08-15
WO2016195313A1 (en) 2016-12-08
CN107112546B (en) 2021-01-26
KR20160140228A (en) 2016-12-07
JP2018504740A (en) 2018-02-15
JP6556843B2 (en) 2019-08-07
EP3211699A1 (en) 2017-08-30

Similar Documents

Publication Publication Date Title
KR100717790B1 (en) Membrane/electrode assembly for fuel cell and fuel cell system comprising the same
US8257825B2 (en) Polymer electrode membrane for fuel, and membrane-electrode assembly and fuel cell system comprising the same
US9343750B2 (en) Supporter for fuel cell, and electrode for fuel cell, membrane-electrode assembly for a fuel cell, and fuel cell system including same
JP2007305591A (en) Cathode catalyst for fuel cell, membrane-electrode assembly for fuel cell including the same and fuel cell system including the same
EP1916728A1 (en) Electrode for fuel cell, and membrane-electrode assembly and fuel cell system including the same
EP2365569B1 (en) A membrane-electrode assembly for a fuel cell
KR20070106200A (en) Membrane electrode assembly for fuel cell, method for preparing same and fuel cell system comprising same
KR100953617B1 (en) Electrode for fuel cell, membrane-electrode assembly for fuel cell comprising same, and fuel cell system comprising same
JP2006073529A (en) Composite electrolyte film, its manufacturing method, and fuel cell
US10418655B2 (en) Cathode catalyst layer for fuel cells, method of manufacturing the same and membrane-electrode assembly for fuel cells including the same
KR20070098136A (en) Membrane-electrode assembly for fuel cell and fuel cell system comprising same
JP2007128665A (en) Electrode catalyst layer for fuel cell, and manufacturing method of membrane-electrode assembly using it
US8846272B2 (en) Anode for fuel cell, membrane-electrode assembly for fuel cell including same, and fuel cell system including same
JP2006210342A (en) Fuel cell electrode, film-electrode bonded body including the same
KR100959117B1 (en) Electrode for fuel cell and fuel cell system including same
KR20070090556A (en) Membrane-electrode assembly for fuel cell and fuel cell system comprising same
KR101112693B1 (en) Membrane-electrode assembly of fuel cell and preparing method thereof
KR20080045461A (en) Polymer electrolyte membrane for fuel cell, membrane-electrode assembly comprising for fuel cell and fuel cell system comprising same
KR20080041846A (en) Membrane-electrode assembly for fuel cell, method of preparing same and fuel cell system comprising same
KR20110002127A (en) Membrane electrode assembly for direct methanol fuel cell and stack comprising the same
JP2009187799A (en) Membrane-electrode assembly and fuel cell
KR20220076681A (en) Electrode forming composition, electrode, methode for manufacturing the electrode, membrane-electrode assembly, and fuel cell
KR20230082759A (en) Composition for fuel cell electrode and manufacturing method of the same
KR100766964B1 (en) Membrane electrode assembly for fuel cell, preparing method for same, and fuel cell system comprising same
KR20200013993A (en) Membrane electrode assembly, fuel cell comprising the same and manufacturing method thereof

Legal Events

Date Code Title Description
AS Assignment

Owner name: KOLON INDUSTRIES, INC., KOREA, REPUBLIC OF

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KIM, YEON SU;KIM, TAE YOON;YOU, DAE JONG;AND OTHERS;SIGNING DATES FROM 20170529 TO 20170607;REEL/FRAME:042652/0980

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4