US10385934B2 - Method for determining and/or controlling a position of an electric motor - Google Patents

Method for determining and/or controlling a position of an electric motor Download PDF

Info

Publication number
US10385934B2
US10385934B2 US14/443,556 US201314443556A US10385934B2 US 10385934 B2 US10385934 B2 US 10385934B2 US 201314443556 A US201314443556 A US 201314443556A US 10385934 B2 US10385934 B2 US 10385934B2
Authority
US
United States
Prior art keywords
rotor
electric motor
analysis unit
signal
sensor system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US14/443,556
Other languages
English (en)
Other versions
US20170321766A1 (en
Inventor
Markus Dietrich
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schaeffler Technologies AG and Co KG
Original Assignee
Schaeffler Technologies AG and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schaeffler Technologies AG and Co KG filed Critical Schaeffler Technologies AG and Co KG
Assigned to Schaeffler Technologies AG & Co. KG reassignment Schaeffler Technologies AG & Co. KG ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: DIETRICH, MARKUS
Publication of US20170321766A1 publication Critical patent/US20170321766A1/en
Application granted granted Critical
Publication of US10385934B2 publication Critical patent/US10385934B2/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D48/00External control of clutches
    • F16D48/06Control by electric or electronic means, e.g. of fluid pressure
    • F16D48/064Control of electrically or electromagnetically actuated clutches
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/10System to be controlled
    • F16D2500/102Actuator
    • F16D2500/1021Electrical type
    • F16D2500/1023Electric motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/10System to be controlled
    • F16D2500/102Actuator
    • F16D2500/1021Electrical type
    • F16D2500/1023Electric motor
    • F16D2500/1024Electric motor combined with hydraulic actuation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/10System to be controlled
    • F16D2500/104Clutch
    • F16D2500/10406Clutch position
    • F16D2500/10412Transmission line of a vehicle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/302Signal inputs from the actuator
    • F16D2500/3026Stroke
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/50Problem to be solved by the control system
    • F16D2500/501Relating the actuator
    • F16D2500/5012Accurate determination of the clutch positions, e.g. treating the signal from the position sensor, or by using two position sensors for determination
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/70Details about the implementation of the control system
    • F16D2500/704Output parameters from the control unit; Target parameters to be controlled
    • F16D2500/70402Actuator parameters
    • F16D2500/7041Position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/70Details about the implementation of the control system
    • F16D2500/71Actions
    • F16D2500/7107Others
    • F16D2500/7109Pulsed signal; Generating or processing pulsed signals; PWM, width modulation, frequency or amplitude modulation

Definitions

  • the invention relates to a method for determining and/or controlling a position of an electric motor, in particular in a clutch actuation system of a motor vehicle, wherein the position of a rotor of the electric motor is picked up by a sensor system situated on a stator of the electric motor outside an axis of rotation of the electric motor, and the position signal picked up by the sensor system is analyzed by an analysis unit.
  • a magnetic transmitter ring is non-rotatably connected to the rotor of the electric motor, for example on a shaft end (on-axis), while the sensor system that senses the magnetic transmitter ring is attached, for example, to the stator (off-axis).
  • the position of the sensor system does not change.
  • the rotor of the electric motor has a limited number of pairs of poles, from which a specified number of flanks of the magnetic field switch are used to determine the position.
  • the object of the invention is therefore to specify a method for determining and/or controlling a position of an electric motor, in particular in a clutch actuation system, wherein the position of the rotor is detected with a high level of certainty despite the simple construction.
  • the object is fulfilled by the fact that the position signal is transmitted to the analysis unit depending on a transmission distance between the sensor system and the analysis unit by means of an serial peripheral interface (SPI) protocol signal for short transmission distances, and/or by means of a pulse width modulation (PWM) signal for longer transmission distances.
  • SPI serial peripheral interface
  • PWM pulse width modulation
  • the position signal is transmitted via a digital signal.
  • the SPI protocol signal is also susceptible to interference, so for longer transmission distances the position signal is transmitted by means of a PWM signal.
  • a microprocessor is used in the analysis unit which permits both the analysis of an SPI protocol signal and the analysis of a PWM signal, meaning that only one electrical component is needed in order to satisfy both conditions.
  • an absolute position of the electric motor is transmitted by the sensor system via the SPI protocol signal or the PWM signal to the analysis unit, whereupon the electric motor is then supplied with current via a commutation derived by the analysis unit from an incremental position of the rotor unit.
  • the transmission of the absolute position of the rotor via the SPI protocol signal or the PWM signal is then conducted very precisely in both cases.
  • the position information needed for the motor commutation is transmitted via an incremental interface, in which the flanks issued by the sensor system, which are caused by the change of poles of the rotating magnetic transmitter ring, are counted.
  • Such a procedure includes a short signal travel time, and is very precise.
  • a pulse to no-pulse ratio of the PWM signal is analyzed to transmit the absolute position of a pole pair of the rotor of the electric motor.
  • the PWM signal is not sensitive to external influences of interference, particularly at a greater distance between the sensor system and the analysis unit, and permits an exact determination of the absolute position by analyzing the pulse to no-pulse ratio in the analysis unit.
  • a comparison is performed between an incremental position of the rotor calculated by the analysis unit and the absolute position of the pole pair.
  • the purpose of this comparison is to increase confidence in the calculated position information, and to detect transmission errors or calculation errors.
  • the comparison of the absolute position and incremental position makes it possible to reliably validate the plausibility of the position signal.
  • the comparison is carried out cyclically, so that during operation of the electric motor there is always assurance that the commutated actuation of the electric motor also occurs at the right moment.
  • a small-diameter electric transmitter ring fastened to the rotor of the electric motor which has only one pole pair is used to determine the position of the rotor.
  • the use of the small magnetic transmitter ring with two diametric magnetic poles allows reliable analysis of only one electrical period.
  • the magnetic transmitter ring having a larger diameter and a plurality of pole pairs, fastened to the rotor of the electric motor is used to determine the position of the rotor, where the number of pole pairs of the magnetic transmitter ring is equal to the number of pole pairs of the rotor. That ensures that the sensor signal delivered by the sensor system is always clearly within one electrical period. Such a sensor signal can be used for the position information for commutation of the motor, since it is absolutely usable electrically through 360°.
  • FIG. 1 is a schematic view of a clutch actuation system of the present invention
  • FIG. 2 is a schematic view of transmission of an output signal from the sensor system to an analysis unit
  • FIG. 3 is a perspective view of a magnetic transmitter ring
  • FIG. 4 is a first embodiment of a magnetic transmitter ring having a first ring diameter
  • FIG. 5 a second embodiment of a magnetic transmitter ring having a second ring diameter.
  • FIG. 1 depicts in simplified form clutch actuating system 1 for an automated clutch.
  • Clutch actuating system 1 is assigned to friction clutch 2 in a drivetrain of a motor vehicle, and includes master cylinder 3 , which is connected to slave cylinder 5 via hydraulic line 4 , also referred to as a pressure line.
  • Movable axially in slave cylinder 5 is slave piston 6 , which actuates friction clutch 2 , by means of actuating organ 7 and with bearing 8 interposed.
  • Master cylinder 3 is connected to equalizing container 9 through connecting aperture 9 A.
  • Master piston 10 is movable in master cylinder 3 .
  • Piston rod 11 which is movable linearly in the longitudinal direction together with master piston 10 , extends from master piston 10 .
  • Piston rod 11 of master cylinder 3 is coupled by means of threaded spindle 12 with positioner 13 operated by an electric motor.
  • the electric-motor-operated positioner 13 includes electric motor 14 designed as a commutated DC motor and analysis unit 15 .
  • Threaded spindle 12 converts a rotary motion of electric motor 14 to a longitudinal motion of piston rod 11 or of master cylinder piston 10 .
  • Friction clutch 2 is actuated automatically by electric motor 14 , threaded spindle 12 , master cylinder 3 and slave cylinder 5 .
  • sensor system 16 Integrated onto or into electric-motor-operated positioner 13 is sensor system 16 , as depicted in FIG. 2 .
  • Sensor system 16 is spatially separated from analysis unit 15 .
  • sensor system 16 can be situated, for example, in a transmission bell, while analysis unit 15 is positioned outside of the transmission bell.
  • signal conditioning circuit 17 Situated inside sensor system 16 is signal conditioning circuit 17 , which has SPI interface 18 and/or PWM interface 19 .
  • signal conditioning circuit 17 includes incremental interface 20 .
  • FIG. 3 shows rotor 22 of electric motor 14 , which is designed as a hollow shaft.
  • Rotor 22 of commutated electric motor 14 (not shown in further detail) has, on a side facing toward sensor system 16 , which is positioned on the stator (not shown in further detail), magnetic transmitter ring 23 , which includes a specified number of N, S magnetic poles.
  • Rotor magnets 24 are fastened within rotor 23 , rotor magnets 24 having the same number of N, S pole pairs as magnetic transmitter ring 23 .
  • An N, S pole pair is made up here of two N, S magnetic poles, whose directions of magnetization run in opposite directions.
  • Such an off-axis system operates with very high resolution and precision, and is able to permit rapid and reliable data transmission through the use of a standard sensor system.
  • the absolute position of rotor 22 of electric motor 14 is determined.
  • the absolute position sensed in a N, S pole pair is transmitted via PWM interface 19 or SPI interface 18 .
  • the selection between SRI interface 18 and PWM interface 19 is made depending on the distance between sensor system 16 and analysis unit 15 .
  • the SPI protocol signal is always used to transmit the absolute position of rotor 22 if only short transmission distances have to be surmounted between sensor system 16 and analysis unit 15 . But if the distance between sensor system 16 and analysis unit 15 is greater, the absolute position is transmitted by means of the digital PWM signal.
  • Such a PWM signal has the advantage of not being susceptible to interference acting on the output signal of sensor system 16 along the transmission path.
  • the absolute position is ascertained by analysis unit 15 from the pulse to no-pulse ratio of the PWM signal.
  • the electrification and actuation of electric motor 14 begins. From this moment on, the rotor position is transmitted with incremental information, which is issued via incremental interface 20 of sensor system 16 .
  • the position of rotor 22 of electric motor 14 is calculated from the incremental information, based on the absolute position of a pole pair.
  • a fast incremental sensor for example a giant magnetoresistance (GMR) sensor, is used in sensor system 16 to ascertain the position of rotor 22 .
  • the output signal of incremental interface 20 of sensor system 16 is preferably transmitted via an A/B signal track. Signal tracks A, B are electrically phase-shifted by 90° relative to each other, which corresponds to half a pulse.
  • FIG. 4 shows magnetic transmitter ring 23 with a small ring diameter.
  • Such a magnetic transmitter ring 23 is also known as a diametric-magnetic tray, and has only one pole pair consisting of one south pole S and one north pole N ( FIG. 4 a ).
  • the GMR sensor contained in sensor system 16 delivers via this pole pair a signal which is electrically unambiguous through 360°. This is particularly recognizable in the signal course of the output signal A issued by the sensor system, which has a sufficiently noticeable gradient which can be readily analyzed.
  • the diameter of magnetic transmitter ring 23 is enlarged, and if a variety of pole pairs are distributed alternately around magnetic transmitter ring 23 , this guarantees that the output signal A from sensor system 16 also remains clearly within one electrical period of 360° with such a multi-pole sensor, if magnetic transmitter ring 23 has exactly as many pole pairs as rotor 22 .
  • an off-axis sensor system which has short signal transit times, in order to use position information for commutating electric motor 14 .
  • the output signal A from sensor system 16 is electrically unambiguous through 360°.
  • a PWM signal to determine the absolute position, in particular the analysis of the pulse to no-pulse ratio of this PWM signal, a precise determination of the absolute position of electrical motor 14 at its start is possible.
  • interference-proof transmission between sensor system 16 and analysis unit 15 free of external interference signals is realized.
  • plausibility checking of the calculated incremental position against the absolute position in a pole pair is possible at any time.
  • an off-axis electric motor is presented which is simple to construct, and whose rotor position is detected with a high level of certainty.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
US14/443,556 2012-11-22 2013-11-04 Method for determining and/or controlling a position of an electric motor Active 2036-10-22 US10385934B2 (en)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
DE102012221372 2012-11-22
DE102012221372.4 2012-11-22
DE102012221372 2012-11-22
DE102012223738 2012-12-19
DE102012223738 2012-12-19
DE102012223738.0 2012-12-19
PCT/DE2013/200268 WO2014079435A1 (de) 2012-11-22 2013-11-04 Verfahren zur bestimmung und/oder ansteuerung einer position eines elektromotors

Publications (2)

Publication Number Publication Date
US20170321766A1 US20170321766A1 (en) 2017-11-09
US10385934B2 true US10385934B2 (en) 2019-08-20

Family

ID=49918344

Family Applications (1)

Application Number Title Priority Date Filing Date
US14/443,556 Active 2036-10-22 US10385934B2 (en) 2012-11-22 2013-11-04 Method for determining and/or controlling a position of an electric motor

Country Status (6)

Country Link
US (1) US10385934B2 (de)
EP (1) EP2923103B1 (de)
KR (1) KR102174353B1 (de)
CN (1) CN104769306B (de)
DE (2) DE112013005598A5 (de)
WO (1) WO2014079435A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11555688B2 (en) 2017-05-24 2023-01-17 Schaeffler Technologies AG & Co. KG Device having two mutually spaced sensor loops for determining the angle of a rotating component

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014216279A1 (de) * 2014-08-15 2016-02-18 Schaeffler Technologies AG & Co. KG Verfahren zum Schutz einer Kupplungsaktorik eines Kupplungsbetätigungssystems, vorzugsweise für ein Kraftfahrzeug
DE102014225658A1 (de) 2014-12-12 2016-06-16 Schaeffler Technologies AG & Co. KG Verfahren und Messsystem zur Sensierung einer Dreh- und Linearbewegung in einem Schaltaktor
DE102016204890A1 (de) 2016-03-23 2017-09-28 Schaeffler Technologies AG & Co. KG Verfahren zum justierten Befestigen einer Magnetsensorvorrichtung an einem Aktuator und Aktuator mit einem Elektromotor und einer Magnetsensorvorrichtung
DE102016207643A1 (de) 2016-05-03 2017-11-09 Schaeffler Technologies AG & Co. KG Verfahren zum Bestimmen einer Position eines Läufers einer elektrischen Maschine
DE102016212173A1 (de) * 2016-07-05 2018-01-11 Schaeffler Technologies AG & Co. KG Verfahren und Vorrichtung zur Ermittlung einer Umdrehungszahl und einer Winkelposition eines um eine Drehachse verdrehbaren Bauteils
DE102016214949A1 (de) 2016-08-11 2018-02-15 Schaeffler Technologies AG & Co. KG Verfahren zum justierten Befestigen einer Magnetsensorvorrichtung an einem Aktuator und Aktuatoreinrichtung mit einem Aktuator und einer Magnetsensorvorrichtung
DE102016214948A1 (de) 2016-08-11 2018-02-15 Schaeffler Technologies AG & Co. KG Verfahren zum Justieren einer Aktuatoreinrichtung mit einer Magnetsensorvorrichtung und einem Aktuator und Aktuatoreinrichtung mit einem Aktuator und einer Magnetsensorvorrichtung
DE102016214947A1 (de) 2016-08-11 2018-02-15 Schaeffler Technologies AG & Co. KG Verfahren zum gegenseitigen Justierten einer Magnetsensorvorrichtung und eines Aktuators und Aktuatoreinrichtung mit einem Aktuator und einer Magnetsensorvorrichtung
DE102016219623A1 (de) 2016-10-10 2018-04-12 Schaeffler Technologies AG & Co. KG Verfahren zur Störunterdrückung bei der Ermittlung einer Beschleunigung, Drehzahl und/oder einer Winkelposition eines drehenden Bauteils mittels eines Resolvers
DE102016220188A1 (de) 2016-10-17 2018-04-19 Schaeffler Technologies AG & Co. KG Verfahren zur Korrektur von Messabweichungen eines Sinus-Cosinus-Rotationssensors
DE102016223938B4 (de) 2016-12-01 2018-06-14 Schaeffler Technologies AG & Co. KG Verfahren zur Demodulation von Signalen eines Sinus-Cosinus-Rotationssensors
DE102017109403B4 (de) * 2017-05-03 2023-06-22 Schaeffler Technologies AG & Co. KG Verfahren und Vorrichtung zur Absolutpositionsbestimmung eines sich um eine Drehachse drehenden Bauteiles eines Aktors, insbesondere eines Kupplungsaktors
DE102017111895B3 (de) 2017-05-31 2018-07-05 Schaeffler Technologies AG & Co. KG Verfahren zur Bestimmung einer Winkelposition eines sich drehenden Bauteiles, insbesondere eines Elektromotors für ein Kupplungsbetätigungssystem eines Fahrzeuges
DE102018111588A1 (de) * 2017-06-07 2018-12-13 Schaeffler Technologies AG & Co. KG Verfahren und Vorrichtung zur Absolutpositionsbestimmung eines sich um eine Drehachse drehenden Bauteiles eines Aktors, insbesondere eines Kupplungsaktors
DE102017216664A1 (de) * 2017-09-20 2019-03-21 Continental Teves Ag & Co. Ohg Elektrischer Hohlwellenmotor
DE102018102329A1 (de) 2018-02-02 2019-08-08 Schaeffler Technologies AG & Co. KG Verfahren zur Steuerung eines Kupplungssystems
CN110608241A (zh) * 2018-06-15 2019-12-24 舍弗勒技术股份两合公司 动力耦合控制系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006022858A1 (de) 2006-05-16 2007-11-22 Magna Powertrain Ag & Co Kg Druckabbaueinheit für eine hydromechanische, auf eine Drehzahldifferenz ansprechende Kupplung
US20080238351A1 (en) * 2007-03-27 2008-10-02 Fanuc Ltd Motor control system
WO2011044874A1 (de) 2009-10-15 2011-04-21 Schaeffler Technologies Gmbh & Co. Kg Kupplungseinrichtung
DE102009053693A1 (de) 2009-11-18 2011-05-19 Conti Temic Microelectronic Gmbh Verfahren zum Bestimmen eines Anlegepunktes einer Kupplung sowie Kupplung
DE102011014936A1 (de) 2010-04-08 2011-12-15 Schaeffler Technologies Gmbh & Co. Kg Steuereinrichtung und Verfahren zum Steuern
US20170155352A1 (en) * 2014-06-04 2017-06-01 Conti Temic Microelectronic Gmbh Apparatus For Actuating And/Or Monitoring A Brushless DC Motor
US9813007B2 (en) * 2013-04-12 2017-11-07 Protean Electric Limited Control system for an electric motor

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01234071A (ja) * 1988-03-15 1989-09-19 Matsushita Electric Ind Co Ltd 磁気式エンコーダ装置付き超音波モータ
DE4120023C1 (de) * 1991-06-18 1992-08-13 Heidelberger Druckmaschinen Ag, 6900 Heidelberg, De
CN101197555A (zh) * 2006-12-05 2008-06-11 比亚迪股份有限公司 电动汽车电机控制方法及其转子位置检测容错处理方法
CN101325391B (zh) * 2007-06-13 2010-06-16 台达电子工业股份有限公司 马达控制装置
DE102008057288A1 (de) * 2008-11-14 2010-05-20 Continental Automotive Gmbh Steuervorrichtung für einen Motor und Verfahren zum Steuern des Motors
DE112010001147B4 (de) * 2009-03-12 2021-12-02 Schaeffler Technologies AG & Co. KG Verfahren und Vorrichtung zum Betreiben einer Antriebseinrichtung zum Verstellen einer automatisierten Kupplung

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006022858A1 (de) 2006-05-16 2007-11-22 Magna Powertrain Ag & Co Kg Druckabbaueinheit für eine hydromechanische, auf eine Drehzahldifferenz ansprechende Kupplung
US20080238351A1 (en) * 2007-03-27 2008-10-02 Fanuc Ltd Motor control system
WO2011044874A1 (de) 2009-10-15 2011-04-21 Schaeffler Technologies Gmbh & Co. Kg Kupplungseinrichtung
DE102009053693A1 (de) 2009-11-18 2011-05-19 Conti Temic Microelectronic Gmbh Verfahren zum Bestimmen eines Anlegepunktes einer Kupplung sowie Kupplung
DE102011014936A1 (de) 2010-04-08 2011-12-15 Schaeffler Technologies Gmbh & Co. Kg Steuereinrichtung und Verfahren zum Steuern
US9813007B2 (en) * 2013-04-12 2017-11-07 Protean Electric Limited Control system for an electric motor
US20170155352A1 (en) * 2014-06-04 2017-06-01 Conti Temic Microelectronic Gmbh Apparatus For Actuating And/Or Monitoring A Brushless DC Motor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11555688B2 (en) 2017-05-24 2023-01-17 Schaeffler Technologies AG & Co. KG Device having two mutually spaced sensor loops for determining the angle of a rotating component

Also Published As

Publication number Publication date
KR20150087373A (ko) 2015-07-29
CN104769306A (zh) 2015-07-08
WO2014079435A1 (de) 2014-05-30
EP2923103A1 (de) 2015-09-30
DE112013005598A5 (de) 2015-10-22
DE102013222366A1 (de) 2014-05-22
EP2923103B1 (de) 2016-07-13
CN104769306B (zh) 2017-07-07
US20170321766A1 (en) 2017-11-09
KR102174353B1 (ko) 2020-11-04

Similar Documents

Publication Publication Date Title
US10385934B2 (en) Method for determining and/or controlling a position of an electric motor
CN104205613B (zh) 用于确定电动机的位置的、尤其是在机动车的离合器操纵系统中的电动机的位置的方法和设备
CN107749724B (zh) 用于确定和/或控制电动机的位置的方法和设备
JP6657584B2 (ja) 回転検出装置、回転角検出装置および電動パワーステアリング装置
CN104604119B (zh) 用于确定在机动车离合器操纵系统中的电动机位置的方法
US10161519B2 (en) Electronic parking lock apparatus
US10177638B2 (en) Rotor position encoder for an electronically commutated electric machine having a reference encoder
EP3351906B1 (de) Türpositiondetektionsvorrichtung für elektrischen türöffner
CN102686980A (zh) 用于检测运动元件位移的磁场传感器装置
CN109565215B (zh) 用于磁传感器装置与致动器进行相互校准的方法及包括致动器和磁传感器装置的致动器设备
CN102549908B (zh) 用于对在永久励磁的马达中的无传感器的转子位置识别进行监控和修正的方法和设备
US10103672B2 (en) Stator segment for a linear motor-based transport system and transport system
CN101444916A (zh) 机器人初始精确定位装置
JP2018500543A (ja) 液圧式のマスタユニット用のスピンドルアクチュエータの絶対変位測定装置の較正方法、液圧式のマスタユニット用のスピンドルアクチュエータのスピンドルナットの位置の制御方法及び液圧式のマスタユニット用のスピンドルアクチュエータ
CN106258001A (zh) 用于检测配备有角位置传感器的同步机中的短路的方法
US20120242265A1 (en) Method for operating an electric machine, and drive device
US10495494B2 (en) Method and circuit for detecting a short circuit of the sine or cosine receiver coil of a resolver
JP6006069B2 (ja) エンコーダおよびエンコーダの異常検出方法
KR101952962B1 (ko) 스마트부스터 시스템의 위치센서 이상 검출방법
CN110678716B (zh) 用于校正磁体相对于gmr传感器的位置的方法和装置
KR20110016573A (ko) 회전자 위치 센서
US20130334916A1 (en) Drive system
CN112567220B (zh) 致动器系统,尤其用于车辆
CN105393448A (zh) 用于识别电机的角错误位置的方法
US11460322B2 (en) Rotational angle measuring system

Legal Events

Date Code Title Description
AS Assignment

Owner name: SCHAEFFLER TECHNOLOGIES AG & CO. KG, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:DIETRICH, MARKUS;REEL/FRAME:035661/0269

Effective date: 20150428

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4