US10081129B1 - Additive manufacturing system implementing hardener pre-impregnation - Google Patents
Additive manufacturing system implementing hardener pre-impregnation Download PDFInfo
- Publication number
- US10081129B1 US10081129B1 US15/858,445 US201715858445A US10081129B1 US 10081129 B1 US10081129 B1 US 10081129B1 US 201715858445 A US201715858445 A US 201715858445A US 10081129 B1 US10081129 B1 US 10081129B1
- Authority
- US
- United States
- Prior art keywords
- continuous reinforcement
- matrix component
- print head
- matrix
- coating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 25
- 239000004848 polyfunctional curative Substances 0.000 title claims description 6
- 239000000654 additive Substances 0.000 title description 12
- 230000000996 additive effect Effects 0.000 title description 12
- 238000005470 impregnation Methods 0.000 title description 2
- 239000011159 matrix material Substances 0.000 claims abstract description 123
- 230000002787 reinforcement Effects 0.000 claims abstract description 120
- 238000000034 method Methods 0.000 claims abstract description 27
- 239000011248 coating agent Substances 0.000 claims abstract description 26
- 238000000576 coating method Methods 0.000 claims abstract description 26
- 239000002131 composite material Substances 0.000 claims abstract description 16
- 238000007599 discharging Methods 0.000 claims abstract description 12
- 239000003054 catalyst Substances 0.000 claims description 24
- 229920005989 resin Polymers 0.000 claims description 21
- 239000011347 resin Substances 0.000 claims description 21
- 239000000203 mixture Substances 0.000 claims description 8
- 239000003999 initiator Substances 0.000 claims description 7
- 239000000843 powder Substances 0.000 claims description 2
- 238000005507 spraying Methods 0.000 claims 1
- 239000000463 material Substances 0.000 description 24
- 239000000835 fiber Substances 0.000 description 22
- 239000003623 enhancer Substances 0.000 description 13
- 230000007246 mechanism Effects 0.000 description 6
- 229920000647 polyepoxide Polymers 0.000 description 6
- 238000011144 upstream manufacturing Methods 0.000 description 6
- 230000033001 locomotion Effects 0.000 description 5
- 230000002028 premature Effects 0.000 description 5
- 239000007788 liquid Substances 0.000 description 4
- 230000001105 regulatory effect Effects 0.000 description 4
- 229920001169 thermoplastic Polymers 0.000 description 4
- 239000004416 thermosoftening plastic Substances 0.000 description 4
- 239000003822 epoxy resin Substances 0.000 description 3
- 229920000049 Carbon (fiber) Polymers 0.000 description 2
- 239000004593 Epoxy Substances 0.000 description 2
- 239000004917 carbon fiber Substances 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 229920001225 polyester resin Polymers 0.000 description 2
- 239000004645 polyester resin Substances 0.000 description 2
- 239000012255 powdered metal Substances 0.000 description 2
- 229920002522 Wood fibre Polymers 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 239000000109 continuous material Substances 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 230000005670 electromagnetic radiation Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 125000003700 epoxy group Chemical group 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000002557 mineral fiber Substances 0.000 description 1
- 239000002480 mineral oil Substances 0.000 description 1
- 235000010446 mineral oil Nutrition 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- -1 photopolymers Polymers 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000010926 purge Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 150000003573 thiols Chemical class 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
- 150000003673 urethanes Chemical class 0.000 description 1
- 235000013311 vegetables Nutrition 0.000 description 1
- 229920001567 vinyl ester resin Polymers 0.000 description 1
- 239000012855 volatile organic compound Substances 0.000 description 1
- 239000002025 wood fiber Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/30—Auxiliary operations or equipment
- B29C64/307—Handling of material to be used in additive manufacturing
- B29C64/314—Preparation
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F299/00—Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers
- C08F299/02—Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates
- C08F299/04—Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates from polyesters
- C08F299/0407—Processes of polymerisation
- C08F299/0421—Polymerisation initiated by wave energy or particle radiation
- C08F299/0428—Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
- B22F10/10—Formation of a green body
- B22F10/18—Formation of a green body by mixing binder with metal in filament form, e.g. fused filament fabrication [FFF]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
- B22F10/30—Process control
- B22F10/34—Process control of powder characteristics, e.g. density, oxidation or flowability
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F12/00—Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
- B22F12/50—Means for feeding of material, e.g. heads
- B22F12/53—Nozzles
-
- B22F3/008—
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B15/00—Pretreatment of the material to be shaped, not covered by groups B29B7/00 - B29B13/00
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B15/00—Pretreatment of the material to be shaped, not covered by groups B29B7/00 - B29B13/00
- B29B15/08—Pretreatment of the material to be shaped, not covered by groups B29B7/00 - B29B13/00 of reinforcements or fillers
- B29B15/10—Coating or impregnating independently of the moulding or shaping step
- B29B15/12—Coating or impregnating independently of the moulding or shaping step of reinforcements of indefinite length
- B29B15/122—Coating or impregnating independently of the moulding or shaping step of reinforcements of indefinite length with a matrix in liquid form, e.g. as melt, solution or latex
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C31/00—Handling, e.g. feeding of the material to be shaped, storage of plastics material before moulding; Automation, i.e. automated handling lines in plastics processing plants, e.g. using manipulators or robots
- B29C31/04—Feeding of the material to be moulded, e.g. into a mould cavity
- B29C31/042—Feeding of the material to be moulded, e.g. into a mould cavity using dispensing heads, e.g. extruders, placed over or apart from the moulds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C31/00—Handling, e.g. feeding of the material to be shaped, storage of plastics material before moulding; Automation, i.e. automated handling lines in plastics processing plants, e.g. using manipulators or robots
- B29C31/04—Feeding of the material to be moulded, e.g. into a mould cavity
- B29C31/042—Feeding of the material to be moulded, e.g. into a mould cavity using dispensing heads, e.g. extruders, placed over or apart from the moulds
- B29C31/044—Feeding of the material to be moulded, e.g. into a mould cavity using dispensing heads, e.g. extruders, placed over or apart from the moulds with moving heads for distributing liquid or viscous material into the moulds
- B29C31/045—Feeding of the material to be moulded, e.g. into a mould cavity using dispensing heads, e.g. extruders, placed over or apart from the moulds with moving heads for distributing liquid or viscous material into the moulds moving along predetermined circuits or distributing the material according to predetermined patterns
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C31/00—Handling, e.g. feeding of the material to be shaped, storage of plastics material before moulding; Automation, i.e. automated handling lines in plastics processing plants, e.g. using manipulators or robots
- B29C31/04—Feeding of the material to be moulded, e.g. into a mould cavity
- B29C31/042—Feeding of the material to be moulded, e.g. into a mould cavity using dispensing heads, e.g. extruders, placed over or apart from the moulds
- B29C31/048—Feeding of the material to be moulded, e.g. into a mould cavity using dispensing heads, e.g. extruders, placed over or apart from the moulds the material being severed at the dispensing head exit, e.g. as ring, drop or gob, and transported immediately into the mould, e.g. by gravity
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/15—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor incorporating preformed parts or layers, e.g. extrusion moulding around inserts
- B29C48/154—Coating solid articles, i.e. non-hollow articles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/10—Processes of additive manufacturing
- B29C64/106—Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/10—Processes of additive manufacturing
- B29C64/106—Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
- B29C64/118—Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using filamentary material being melted, e.g. fused deposition modelling [FDM]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/10—Processes of additive manufacturing
- B29C64/165—Processes of additive manufacturing using a combination of solid and fluid materials, e.g. a powder selectively bound by a liquid binder, catalyst, inhibitor or energy absorber
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/20—Apparatus for additive manufacturing; Details thereof or accessories therefor
- B29C64/205—Means for applying layers
- B29C64/209—Heads; Nozzles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/20—Apparatus for additive manufacturing; Details thereof or accessories therefor
- B29C64/264—Arrangements for irradiation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/20—Apparatus for additive manufacturing; Details thereof or accessories therefor
- B29C64/295—Heating elements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/30—Auxiliary operations or equipment
- B29C64/386—Data acquisition or data processing for additive manufacturing
- B29C64/393—Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C70/00—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
- B29C70/04—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
- B29C70/06—Fibrous reinforcements only
- B29C70/10—Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres
- B29C70/16—Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length
- B29C70/20—Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length oriented in a single direction, e.g. roofing or other parallel fibres
- B29C70/205—Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length oriented in a single direction, e.g. roofing or other parallel fibres the structure being shaped to form a three-dimensional configuration
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C70/00—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
- B29C70/04—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
- B29C70/06—Fibrous reinforcements only
- B29C70/10—Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres
- B29C70/16—Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length
- B29C70/24—Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length oriented in at least three directions forming a three dimensional structure
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C70/00—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
- B29C70/04—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
- B29C70/28—Shaping operations therefor
- B29C70/30—Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core
- B29C70/38—Automated lay-up, e.g. using robots, laying filaments according to predetermined patterns
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y10/00—Processes of additive manufacturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y30/00—Apparatus for additive manufacturing; Details thereof or accessories therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y40/00—Auxiliary operations or equipment, e.g. for material handling
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y50/00—Data acquisition or data processing for additive manufacturing
- B33Y50/02—Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y70/00—Materials specially adapted for additive manufacturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y70/00—Materials specially adapted for additive manufacturing
- B33Y70/10—Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F299/00—Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers
- C08F299/02—Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates
- C08F299/04—Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates from polyesters
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F299/00—Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers
- C08F299/02—Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates
- C08F299/04—Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates from polyesters
- C08F299/0407—Processes of polymerisation
- C08F299/0421—Polymerisation initiated by wave energy or particle radiation
- C08F299/0428—Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
- C08F299/0435—Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light with sensitising agents
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L63/00—Compositions of epoxy resins; Compositions of derivatives of epoxy resins
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2207/00—Aspects of the compositions, gradients
- B22F2207/01—Composition gradients
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2999/00—Aspects linked to processes or compositions used in powder metallurgy
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y40/00—Auxiliary operations or equipment, e.g. for material handling
- B33Y40/10—Pre-treatment
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/25—Process efficiency
Definitions
- the present disclosure relates generally to a manufacturing system and, more particularly, to an additive manufacturing system implementing hardener pre-impregnation.
- FDM fused deposition modeling
- a recently developed improvement over traditional FDM manufacturing involves the use of continuous fibers embedded within material discharging from the print head (a.k.a., Continuous Fiber 3D Printing—CF3DTM).
- a matrix is supplied to the print head and discharged (e.g., extruded and/or pultruded) along with one or more continuous fibers also passing through the same head at the same time.
- the matrix can be a traditional thermoplastic, a powdered metal, a liquid matrix (e.g., a UV curable and/or two-part resin), or a combination of any of these and other known matrixes.
- a cure enhancer e.g., a UV light, an ultrasonic emitter, a heat source, a catalyst supply, etc.
- a cure enhancer e.g., a UV light, an ultrasonic emitter, a heat source, a catalyst supply, etc.
- the matrix material located at a center of the corresponding fiber bundle can receive sufficient cure enhancement (e.g., sufficient cure energy, catalyst, etc.). If unaccounted for, the resulting structure may lack strength and/or sag undesirably.
- sufficient cure enhancement e.g., sufficient cure energy, catalyst, etc.
- the disclosed system is directed to addressing one or more of the problems set forth above and/or other problems of the prior art.
- the present disclosure is directed to a method of additively manufacturing a composite structure.
- the method may include directing a continuous reinforcement into a print head, and coating the continuous reinforcement with a first matrix component inside of the print head.
- the method may further include coating the continuous reinforcement with a second matrix component, discharging the continuous reinforcement through a nozzle of the print head, and moving the print head in multiple dimensions during the discharging.
- the first and second matrix components interact to cause hardening of a matrix around the continuous reinforcement.
- the present disclosure is directed to a system for additively manufacturing a composite structure.
- the system may include a support, and a print head connected to an end of the support.
- the print head may have a body with a chamber, in which a continuous reinforcement is coated with one of a resin and a catalyst.
- the print head may also include a nozzle connected to a discharge end of the body and configured to discharge the continuous reinforcement coated in both the resin and the catalyst.
- the system may further include a controller in communication with the support and the head. The controller may be configured to selectively cause the support to move the head in multiple dimensions during discharge of the continuous reinforcement from the nozzle, according to specifications for the composite structure.
- the present disclosure is directed to a prepreg material for use in additively manufacturing a composite structure.
- the prepreg material may include a continuous reinforcement, and a catalyst of a multi-part matrix.
- the multi-part matrix which also includes at least a resin, is curable around the continuous reinforcement to form the composite structure.
- the reinforcement is at least partially saturated with the catalyst and substantially free of the resin prior to manufacture of the composite structure, and the reinforcement makes up about 35-70% of the composite structure.
- the catalyst makes up about 0.1-10% of the composite structure.
- FIG. 1 is a diagrammatic illustration of an exemplary disclosed manufacturing system
- FIGS. 2-4 are diagrammatic illustrations an exemplary disclosed heads that may be used in conjunction with the manufacturing system of FIG. 1 .
- FIG. 1 illustrates an exemplary system 10 , which may be used to continuously manufacture a composite structure 12 having any desired cross-sectional shape (e.g., circular, polygonal, etc.).
- System 10 may include at least a support 14 and a head 16 .
- Head 16 may have a body 18 that is coupled to and moved by support 14 , and a nozzle 20 located at an opposing discharge end of body 18 .
- support 14 is a robotic arm capable of moving head 16 in multiple directions during fabrication of structure 12 , such that a resulting longitudinal axis of structure 12 is three-dimensional.
- support 14 could alternatively be an overhead gantry or a hybrid gantry/arm also capable of moving head 16 in multiple directions during fabrication of structure 12 .
- support 14 is shown as being capable of 6-axis movements, it is contemplated that any other type of support 14 capable of moving head 16 in the same or in a different manner could also be utilized, if desired.
- a drive may mechanically couple head 16 to support 14 , and may include components that cooperate to move and/or supply power or materials to head 16 .
- Body 18 may be configured to receive or otherwise contain a matrix material.
- the matrix material may include any type of matrix material (e.g., a liquid resin, such as a zero volatile organic compound resin; a powdered metal; etc.) that is curable.
- exemplary resins include thermosets, single- or multi-part epoxy resins, polyester resins, cationic epoxies, acrylated epoxies, urethanes, esters, thermoplastics, photopolymers, polyepoxides, thiols, alkenes, thiol-enes, and more.
- the matrix material inside body 18 may be pressurized, for example by an external device (e.g., an extruder or another type of pump—not shown) that is fluidly connected to head 16 via a corresponding conduit (not shown). In another embodiment, however, the pressure may be generated completely inside of body 18 by a similar type of device. In yet other embodiments, the matrix material may be gravity-fed through and/or mixed within body 18 . In some instances, the matrix material inside body 18 may need to be kept cool and/or dark to inhibit premature curing; while in other instances, the matrix material may need to be kept warm for the same reason. In either situation, body 18 may be specially configured (e.g., insulated, chilled, and/or warmed) to provide for these needs.
- an external device e.g., an extruder or another type of pump—not shown
- the pressure may be generated completely inside of body 18 by a similar type of device.
- the matrix material may be gravity-fed through and/or mixed within body 18 .
- the matrix material inside body 18 may need
- the matrix material may be used to coat, encase, or otherwise surround any number of continuous reinforcements (e.g., separate fibers, tows, rovings, and/or sheets of material) and, together with the reinforcements, make up at least a portion (e.g., a wall) of composite structure 12 .
- the reinforcements may be stored within (e.g., on separate internal spools—not shown) or otherwise passed through body 18 (e.g., fed from external spools 21 —See FIGS. 2-4 ).
- the reinforcements may be of the same type and have the same diameter and cross-sectional shape (e.g., circular, square, flat, etc.), or of a different type with different diameters and/or cross-sectional shapes.
- the reinforcements may include, for example, carbon fibers, vegetable fibers, wood fibers, mineral fibers, glass fibers, metallic wires, optical tubes, etc. It should be noted that the term “reinforcement” is meant to encompass both structural and non-structural types of continuous materials that can be at least partially encased in the matrix material discharging from nozzle 20 .
- the reinforcements may be exposed to (e.g., coated with) the matrix material while the reinforcements are passing through body 18 .
- the matrix material, dry reinforcements, and/or reinforcements that are already exposed to the matrix material may be transported into body 18 in any manner apparent to one skilled in the art.
- the matrix material and reinforcement may be discharged from nozzle 20 via at least two different modes of operation.
- a first mode of operation the matrix material and reinforcement are extruded (e.g., pushed under pressure and/or mechanical force) from nozzle 20 , as head 16 is moved by support 14 to create the 3-dimensional shape of structure 12 .
- a second mode of operation at least the reinforcement is pulled from nozzle 20 , such that a tensile stress is created in the reinforcement during discharge.
- the matrix material may cling to the reinforcement and thereby also be pulled from nozzle 20 along with the reinforcement, and/or the matrix material may be discharged from nozzle 20 under pressure along with the pulled reinforcement.
- the resulting tension in the reinforcement may increase a strength of structure 12 , while also allowing for a greater length of unsupported material to have a straighter trajectory (i.e., the tension may act against the force of gravity to provide free-standing support for structure 12 ).
- the reinforcement may be pulled from nozzle 20 as a result of head 16 moving away from an anchor point 22 .
- a length of matrix-impregnated reinforcement may be pulled and/or pushed from nozzle 20 , deposited onto anchor point 22 , and cured, such that the discharged material adheres to anchor point 22 .
- head 16 may be moved away from anchor point 22 , and the relative movement may cause the reinforcement to be pulled from nozzle 20 .
- the movement of reinforcement through body 18 could be assisted (e.g., via one or more internal and/or external feed mechanisms—not shown), if desired.
- the discharge rate of reinforcement from nozzle 20 may primarily be the result of relative movement between head 16 and anchor point 22 , such that tension is created and maintained within the reinforcement. It is contemplated that anchor point 22 could be moved away from head 16 instead of or in addition to head 16 being moved away from anchor point 22 .
- One or more cure enhancers (e.g., a UV light, an ultrasonic emitter, a laser, a heater, a catalyst dispenser, etc.) 24 may be mounted proximate (e.g., within, on, and/or trailing from) head 16 (e.g., at a base of body 18 , inside of body 18 , outside of body 18 , or otherwise adjacent nozzle 20 ) and configured to enhance a cure rate and/or quality of the matrix material as it is discharged from head 16 .
- a UV light e.g., an ultrasonic emitter, a laser, a heater, a catalyst dispenser, etc.
- Cure enhancer 24 may be controlled to selectively expose internal and/or external surfaces of structure 12 to energy (e.g., UV light, electromagnetic radiation, vibrations, heat, a chemical catalyst, hardener, or initiator, etc.) during the formation of structure 12 .
- energy e.g., UV light, electromagnetic radiation, vibrations, heat, a chemical catalyst, hardener, or initiator, etc.
- the energy may increase a rate of chemical reaction occurring within the matrix material, sinter the material, harden the material, or otherwise cause the material to cure as it discharges from head 16 .
- a controller 26 may be provided and communicatively coupled with support 14 , head 16 , and any number and type of cure enhancers 24 .
- Controller 26 may embody a single processor or multiple processors that include a means for controlling an operation of system(s) 10 and/or 12 .
- Controller 26 may include one or more general- or special-purpose processors or microprocessors.
- Controller 26 may further include or be associated with a memory for storing data such as, for example, design limits, performance characteristics, operational instructions, matrix characteristics, reinforcement characteristics, characteristics of structure 12 , and corresponding parameters of each component of system 10 .
- Various other known circuits may be associated with controller 26 , including power supply circuitry, signal-conditioning circuitry, solenoid/motor driver circuitry, communication circuitry, and other appropriate circuitry.
- controller 26 may be capable of communicating with other components of system 10 via wired and/or wireless transmission.
- One or more maps may be stored in the memory of controller 26 and used during fabrication of structure 12 .
- Each of these maps may include a collection of data in the form of lookup tables, graphs, and/or equations.
- the maps are used by controller 26 to determine desired characteristics of cure enhancers 24 , the associated matrix, and/or the associated reinforcements at different locations within structure 12 .
- the characteristics may include, among others, a type, quantity, and/or configuration of reinforcement and/or matrix to be discharged at a particular location within structure 12 , and/or an amount, shape, and/or location of desired curing.
- Controller 26 may then correlate operation of support 14 (e.g., the location and/or orientation of head 16 ) and/or the discharge of material from nozzle 20 (a type of material, desired performance of the material, cross-linking requirements of the material, a discharge rate, etc.) with the operation of cure enhancers 24 such that structure 12 is produced in a desired manner.
- support 14 e.g., the location and/or orientation of head 16
- discharge of material from nozzle 20 a type of material, desired performance of the material, cross-linking requirements of the material, a discharge rate, etc.
- the fibers may be exposed to the matrix material during travel through one or more chambers 28 that are located inside of body 18 .
- the matrix material being applied to the reinforcement inside of head 16 is a multi-part matrix.
- the matrix includes a first matrix component (e.g., an epoxy resin, a polyester resin, a vinylester resin, or another type of resin) and at least a second matrix component (e.g., a hardener, a catalyst, or another initiator) that, under controlled conditions, together react or causes a reaction to form a cured and hardened matrix encasing the associated reinforcements.
- At least two separate chambers 28 are located inside of body 18 of FIG. 2 , for separately coating the reinforcements with the first and second matrix components.
- These chambers 28 include a first chamber 28 a that is sequentially arranged with a second chamber 28 b , in relation to a travel direction of the reinforcement(s) through head 16 (e.g., from spool 21 to nozzle 20 ).
- first chamber 28 a contains one of the first and second matrix components
- second chamber 28 b contains the other of the first and second matrix components. It should be noted that both sequential orders of the first and second matrix components within body 18 are contemplated in this disclosure.
- the first and/or second matrix components may be supplied to the corresponding chamber(s) 28 a , 28 b in several different ways.
- one or both of the first and second matrix components may be provided as a gas-, a liquid-, or a powder-stream via a jet 30 (see FIG. 4 ); as a liquid bath via a supply inlet 32 or jet 30 ; as a suspended powder via a pressurized conduit 34 , supply inlet 32 , or jet 30 ; or in another manner known in the art.
- a regulating device 36 e.g., opposing rollers, a squeegee, a wiper, a brush, an air jet, etc.
- first and second chambers 28 a and 28 b and/or downstream of second chamber 28 b ) to remove excess matrix component from the reinforcements prior to the coated reinforcements entering second chamber 28 b (and/or just prior to the coated reinforcement entering nozzle 20 ).
- a regulating device 36 e.g., opposing rollers, a squeegee, a wiper, a brush, an air jet, etc.
- a mechanical means e.g., a tube surrounding the catalyst-coated reinforcement and extending to jet(s) 30
- curing of the matrix components may primarily initiate or proceed rapidly only when a temperature of the matrix components exceeds a minimum threshold, regardless of undesired mixing inside second chamber 28 b .
- body 18 of head 16 may be maintained below the minimum threshold, to inhibit premature curing.
- jet(s) 30 could be utilized and oriented at a different angle, if desired.
- jet(s) 30 could be tilted downward toward nozzle 20 and at an oblique angle relative to the axis of the reinforcement. This may help to reduce splashing and contamination of catalyst within matrix reservoir 28 , in some applications.
- a purge fluid e.g., mineral oil
- a purge fluid could be periodically (e.g., at a start and/or end of a fabrication event) passed through jet(s) 30 , if desired.
- the reinforcements may be coated with overlapping inner and outer layers of the first and second matrix components. In some embodiments, the layers remain substantially separated until the reinforcements reach nozzle 20 . In other embodiments, some mixing of the first and second matrix components at their corresponding boundaries occurs, prior to the reinforcements reaching nozzle 20 . Regardless of how much mixing occurs upstream of nozzle 20 , the mechanical motion of the coated reinforcements converging and being discharged through nozzle 20 may enhance mixing of the first and second matrix components. And upon exiting nozzle 20 , curing may begin or speed up as both a result of the increased mixing and exposure to energy from cure enhancers 24 .
- cure enhancers 24 may be unnecessary, as the mixing of the two matrix components (and/or exposure of the mixed components to ambient conditions) at nozzle 20 may be sufficient for complete curing. It is further contemplated that nozzle 20 (e.g., a tip end of nozzle 20 ) could be energized (e.g., heated, vibrated, etc.) to increase a rate of cure, if desired.
- an additive or third matrix component may be mixed into one or both of the first and second matrix components.
- the additive may include, for example, a filler and/or an additional or different catalyst.
- a UV cure initiator e.g., different from the second matrix component
- the UV cure initiator may be sufficient to raise a temperature of the matrix mixture coating the reinforcements to the minimum threshold temperature discussed above, upon exposure to light energy from cure enhancers 24 . Thereafter, the second matrix component in the mixture coating the reinforcements may be triggered to cause full and complete curing of the first matrix component in the mixture.
- the reinforcements being fed into head 16 may include many (e.g., thousands) of individual fibers that are bound, woven, twisted or otherwise gathered together. In these situations, it can be difficult to ensure that a sufficient amount of the first and/or second matrix components coats each of the individual fibers. This may be even more difficult when large tows or thick ribbons of fibers are passed through head 16 at high speeds. For this reason, head 16 may be equipped with one or more fiber-teasing mechanisms 38 that help to separate and/or flatten the tows or ribbons, such that the matrix components can penetrate to the centermost fibers more thoroughly and/or quicker. Mechanisms 38 may be located inside and/or outside of body 18 , at a position upstream of and/or between chamber(s) 28 . Mechanisms 38 may include, for example, brushes, a tortuous path of protrusions (e.g., rollers, fingers, or stationary bumps), air and/or resin jets, and other similar devices.
- Mechanisms 38 may include, for example, brushes, a tort
- FIG. 3 illustrates an alternative embodiment of head 16 that is also configured to discharge reinforcements coated in a multi-part matrix.
- body 18 includes a single chamber 28 .
- the single chamber 28 may hold either the first matrix component or the second matrix component discussed above, with or without the additive.
- the remaining matrix component may already coat the reinforcement and be supplied to head 16 as a prepreg material (e.g., from spool 21 and/or from an upstream and offboard coating chamber—not shown).
- head 16 may be configured to apply only part of the multi-part matrix, with the remaining part(s) already being applied to the reinforcements at an earlier time and/or upstream location.
- FIG. 4 illustrates another embodiment having a single-chamber head 16 , which is also configured to discharge reinforcements coated in a multi-part matrix.
- the single chamber 28 of FIG. 4 may hold either the first matrix component or the second matrix component discussed above (with or without the additive).
- the remaining matrix component may be injected, sprayed, or otherwise advanced (e.g., via jet 30 , inlet 32 , and/or conduit 34 ) into head 16 at a discharge end.
- the remaining matrix component is advanced into body 18 at a discharge end of chamber 28 , just upstream of nozzle 20 .
- the remaining matrix component is advanced directly into nozzle 20 .
- the location of the matrix component advancement should be far enough upstream of the tip end of nozzle 20 to ensure adequate mixing of the matrix components, yet downstream enough to inhibit premature curing inside of nozzle 20 .
- the reinforcements fed into head 16 may include dry fibers or fibers pre-impregnated with another material (e.g., the additive), if desired.
- structure 12 may be comprised of at least three primary constituents.
- these constituents may include the reinforcement (e.g., the continuous fibers, tows, ribbons, sheets, etc.), the first matrix component (e.g., the resin, such as an epoxy resin), and the second matrix component (e.g., the hardener, catalyst, initiator, etc.).
- the additive e.g., the UV cure initiator
- the reinforcement may comprise about (e.g., within engineering tolerances) 35-70% (e.g., by weight and/or volume) of structure 12 ; the first matrix component may comprise about 30-50% of structure 12 , and the second matrix component may comprise about 0.1-10% of structure 12 . In embodiments including the additive, the additive may comprise about 0-10%.
- the disclosed system may be used to continuously manufacture composite structures having any desired cross-sectional shape, length, density, and/or strength.
- the composite structures may include any number of different reinforcements of the same or different types, diameters, shapes, configurations, and consists, and/or any number of different matrixes. Operation of system 10 will now be described in detail.
- information regarding a desired structure 12 may be loaded into system 10 (e.g., into controller 26 that is responsible for regulating operation of support 14 , cure enhancer(s) 24 , jet(s) 30 , regulating device(s) 36 , fiber-teasing mechanism(s) 38 , and/or any other associated components).
- This information may include, among other things, a size (e.g., diameter, wall thickness, length, etc.), a contour (e.g., a trajectory), surface features (e.g., ridge size, location, thickness, length; flange size, location, thickness, length; etc.), connection geometry (e.g., locations and sizes of couplings, tees, splices, etc.), location-specific matrix stipulations, location-specific reinforcement stipulations, desired cure rates, cure locations, cure shapes, cure amounts, etc. It should be noted that this information may alternatively or additionally be loaded into system 10 at different times and/or continuously during the manufacturing event, if desired.
- a size e.g., diameter, wall thickness, length, etc.
- a contour e.g., a trajectory
- surface features e.g., ridge size, location, thickness, length; flange size, location, thickness, length; etc.
- connection geometry e.g., locations and sizes of couplings
- a specific nozzle 20 and/or cure enhancer configuration may be connected to head 16 (e.g., to the discharge end of body 18 ), and one or more different (e.g., different sizes, shapes, and/or types of) reinforcements and/or matrix materials may be selectively installed within system 10 and/or continuously supplied into nozzle 20 .
- the corresponding reinforcements may be passed through one or more fiber-teasing mechanisms 38 (e.g., between the bristles of adjacent brushes, and/or over or around protrusions, etc.) and nozzle 20 , and thereafter connected to a pulling machine (not shown) and/or to a mounting fixture (e.g., to anchor point 22 ).
- Installation of the matrix material may include filling chamber(s) 28 and/or coupling of an extruder (not shown) to head 16 .
- Head 16 may be moved by support 14 under the regulation of controller 26 to cause matrix-coated reinforcements to be placed against or on a corresponding anchor point 22 .
- Cure enhancers 24 may then be selectively activated (e.g., turned on/off and/or intensity-adjusted by controller 26 ) to cause hardening of the matrix material surrounding the reinforcements, thereby bonding the reinforcements to anchor point 22 .
- the component information may then be used to control operation of system 10 .
- the reinforcements may be pulled through fiber-teasing mechanism(s) 38 ; separated and/or flattened; submerged within the first matrix component, wrung out by regulating device 36 ; submerged within the second matrix component; and then discharged from nozzle 20 .
- Controller 26 selectively cause support 14 to move head 16 in a desired manner at this time, such that an axis of the resulting structure 12 follows a desired trajectory (e.g., a free-space, unsupported, 3-D trajectory).
- cure enhancers 24 may be selectively activated by controller 26 during material discharge to initiate, speed up, or complete hardening of the liquid matrix mixture.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Composite Materials (AREA)
- Automation & Control Theory (AREA)
- Robotics (AREA)
- Ceramic Engineering (AREA)
- Structural Engineering (AREA)
- Civil Engineering (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Medicinal Chemistry (AREA)
- Textile Engineering (AREA)
- Toxicology (AREA)
- Moulding By Coating Moulds (AREA)
- Reinforced Plastic Materials (AREA)
- Application Of Or Painting With Fluid Materials (AREA)
Priority Applications (11)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/858,445 US10081129B1 (en) | 2017-12-29 | 2017-12-29 | Additive manufacturing system implementing hardener pre-impregnation |
US15/995,027 US10807303B2 (en) | 2017-12-29 | 2018-05-31 | Additive manufacturing system implementing hardener pre-impregnation |
US15/995,035 US11135764B2 (en) | 2017-12-29 | 2018-05-31 | Additive manufacturing system implementing hardener pre-impregnation |
AU2018204887A AU2018204887B1 (en) | 2017-12-29 | 2018-07-05 | Additive manufacturing system implementing hardener pre-impregnation |
EP18183250.2A EP3505331A1 (fr) | 2017-12-29 | 2018-07-12 | Système ainsi que procédé de fabrication additive mettant en oeuvre une préimprégnation de durcisseur et matériau préimprégné |
BR102018014351A BR102018014351A8 (pt) | 2017-12-29 | 2018-07-13 | Métodos de fabricação aditiva de uma estrutura composta |
CA3012238A CA3012238C (fr) | 2017-12-29 | 2018-07-24 | Systeme de fabrication additive mettant en oeuvre la preimpregnation de durcisseur |
JP2018138337A JP6546324B1 (ja) | 2017-12-29 | 2018-07-24 | 硬化剤の予備含浸を実施する付加製造システム |
RU2018127312A RU2714813C2 (ru) | 2017-12-29 | 2018-07-25 | Система аддитивного производства, реализующая предварительную пропитку отвердителя |
KR1020180095182A KR101967105B1 (ko) | 2017-12-29 | 2018-08-14 | 경화제 사전 함침을 구현하는 적층 가공 시스템 |
CN201810969188.9A CN109986777B (zh) | 2017-12-29 | 2018-08-23 | 实施硬化剂预浸渍的增材制造系统 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/858,445 US10081129B1 (en) | 2017-12-29 | 2017-12-29 | Additive manufacturing system implementing hardener pre-impregnation |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/995,035 Division US11135764B2 (en) | 2017-12-29 | 2018-05-31 | Additive manufacturing system implementing hardener pre-impregnation |
US15/995,027 Division US10807303B2 (en) | 2017-12-29 | 2018-05-31 | Additive manufacturing system implementing hardener pre-impregnation |
Publications (1)
Publication Number | Publication Date |
---|---|
US10081129B1 true US10081129B1 (en) | 2018-09-25 |
Family
ID=62948054
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/858,445 Active US10081129B1 (en) | 2017-12-29 | 2017-12-29 | Additive manufacturing system implementing hardener pre-impregnation |
US15/995,027 Active 2038-04-06 US10807303B2 (en) | 2017-12-29 | 2018-05-31 | Additive manufacturing system implementing hardener pre-impregnation |
US15/995,035 Active 2039-06-27 US11135764B2 (en) | 2017-12-29 | 2018-05-31 | Additive manufacturing system implementing hardener pre-impregnation |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/995,027 Active 2038-04-06 US10807303B2 (en) | 2017-12-29 | 2018-05-31 | Additive manufacturing system implementing hardener pre-impregnation |
US15/995,035 Active 2039-06-27 US11135764B2 (en) | 2017-12-29 | 2018-05-31 | Additive manufacturing system implementing hardener pre-impregnation |
Country Status (9)
Country | Link |
---|---|
US (3) | US10081129B1 (fr) |
EP (1) | EP3505331A1 (fr) |
JP (1) | JP6546324B1 (fr) |
KR (1) | KR101967105B1 (fr) |
CN (1) | CN109986777B (fr) |
AU (1) | AU2018204887B1 (fr) |
BR (1) | BR102018014351A8 (fr) |
CA (1) | CA3012238C (fr) |
RU (1) | RU2714813C2 (fr) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20180214909A1 (en) * | 2013-03-19 | 2018-08-02 | Airbus Group Limited | Extrusion-based additive manufacturing |
US20190061948A1 (en) * | 2017-08-29 | 2019-02-28 | Goodrich Corporation | Conformable tank fabricated using additive manufacturing |
WO2019157296A3 (fr) * | 2018-02-08 | 2020-04-30 | Essentium Materials, Llc | Filament à couches multiples et procédé de fabrication |
US10703481B2 (en) | 2017-08-29 | 2020-07-07 | Goodrich Corporation | Conformable tank with sandwich structure walls |
CN111761844A (zh) * | 2020-06-30 | 2020-10-13 | 诺思贝瑞新材料科技(苏州)有限公司 | 一种3d打印用连续纤维复合材料及其制备方法及装置 |
US10816138B2 (en) | 2017-09-15 | 2020-10-27 | Goodrich Corporation | Manufacture of a conformable pressure vessel |
CN112936862A (zh) * | 2019-03-05 | 2021-06-11 | 钟隆君 | 一种生物打印机用喷头组件及使用方法 |
US11167375B2 (en) | 2018-08-10 | 2021-11-09 | The Research Foundation For The State University Of New York | Additive manufacturing processes and additively manufactured products |
US11279085B2 (en) * | 2018-10-26 | 2022-03-22 | Continuous Composites Inc. | System for additive manufacturing |
US11285649B2 (en) * | 2013-11-15 | 2022-03-29 | Makerbot Industries, Llc | Three-dimensional printer tool systems |
US20220339871A1 (en) * | 2021-04-27 | 2022-10-27 | Continuous Composites Inc. | Additive manufacturing system |
US20230166450A1 (en) * | 2021-02-25 | 2023-06-01 | Caracol S.R.L. | Improved Method and Kit for Three-Dimensional Printing |
US11939105B2 (en) | 2017-08-29 | 2024-03-26 | Goodrich Corporation | 3D woven conformable tank |
US12128607B2 (en) | 2021-10-20 | 2024-10-29 | Continuous Composites Inc. | Systems and methods for additive manufacturing |
US12134226B2 (en) | 2022-10-18 | 2024-11-05 | Continuous Composites Inc. | Systems and methods of additive manufacturing |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3797904A1 (fr) * | 2019-09-27 | 2021-03-31 | Flender GmbH | Procédé de fabrication additive avec durcissement |
US20210178659A1 (en) * | 2019-12-17 | 2021-06-17 | Saudi Arabian Oil Company | Grooved die for manufacturing unidirectional tape |
JPWO2022118581A1 (fr) * | 2020-12-04 | 2022-06-09 | ||
RU206982U1 (ru) * | 2020-12-30 | 2021-10-05 | Общество с ограниченной ответственностью "МайтиТех" | Печатающая головка для 3D-принтера |
CN112895425B (zh) * | 2021-01-15 | 2022-07-19 | 浙江大学 | 偏心多辊子浸渍复合的纤维丝熔融沉积挤出打印喷头装置 |
CN113601836B (zh) * | 2021-07-22 | 2022-02-11 | 浙江大学 | 机器人辅助大尺度纤维增强异质多材料原位增材制造系统 |
Citations (173)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3286305A (en) | 1964-09-03 | 1966-11-22 | Rexall Drug Chemical | Apparatus for continuous manufacture of hollow articles |
US3809514A (en) | 1971-11-13 | 1974-05-07 | Castro Nunez Elem Huecos | Machine for the continuous manufacture of hollow elements |
US3984271A (en) | 1973-06-25 | 1976-10-05 | Owens-Corning Fiberglas Corporation | Method of manufacturing large diameter tubular structures |
US3993726A (en) | 1974-01-16 | 1976-11-23 | Hercules Incorporated | Methods of making continuous length reinforced plastic articles |
US4643940A (en) | 1984-08-06 | 1987-02-17 | The Dow Chemical Company | Low density fiber-reinforced plastic composites |
US4671761A (en) | 1984-06-30 | 1987-06-09 | Fried. Krupp Gesellschaft Mit Beschrankter Haftung | Apparatus for producing reinforced elongate bodies |
US4822548A (en) | 1986-06-13 | 1989-04-18 | Firma Carl Freudenberg | Method and apparatus for manufacturing a thread-reinforced rubber hose |
US4851065A (en) | 1986-01-17 | 1989-07-25 | Tyee Aircraft, Inc. | Construction of hollow, continuously wound filament load-bearing structure |
US5002712A (en) | 1988-10-19 | 1991-03-26 | Bayer Aktiengesellschaft | Manufacturing composite materials |
US5037691A (en) | 1986-09-15 | 1991-08-06 | Compositech, Ltd. | Reinforced plastic laminates for use in the production of printed circuit boards and process for making such laminates and resulting products |
DE4102257A1 (de) | 1991-01-23 | 1992-07-30 | Artos Med Produkte | Vorrichtung zur herstellung von kunststoffteilen |
US5296335A (en) | 1993-02-22 | 1994-03-22 | E-Systems, Inc. | Method for manufacturing fiber-reinforced parts utilizing stereolithography tooling |
US5340433A (en) | 1989-10-30 | 1994-08-23 | Stratasys, Inc. | Modeling apparatus for three-dimensional objects |
US5746967A (en) | 1995-06-26 | 1998-05-05 | Fox Lite, Inc. | Method of curing thermoset resin with visible light |
US5866058A (en) | 1997-05-29 | 1999-02-02 | Stratasys Inc. | Method for rapid prototyping of solid models |
US5936861A (en) | 1997-08-15 | 1999-08-10 | Nanotek Instruments, Inc. | Apparatus and process for producing fiber reinforced composite objects |
US6153034A (en) | 1997-08-03 | 2000-11-28 | Micromod R.P. Ltd | Rapid prototyping |
US20020009935A1 (en) | 1999-03-23 | 2002-01-24 | Hexcel Corporation | Core-crush resistant fabric and prepreg for fiber reinforced composite sandwich structures |
US20020062909A1 (en) | 2000-11-29 | 2002-05-30 | Jang Bor Z. | Layer-additive method and apparatus for freeform fabrication of 3-D objects |
US20020113331A1 (en) | 2000-12-20 | 2002-08-22 | Tan Zhang | Freeform fabrication method using extrusion of non-cross-linking reactive prepolymers |
US6459069B1 (en) | 1996-11-22 | 2002-10-01 | Joshua E. Rabinovich | Rapid manufacturing system for metal, metal matrix composite materials and ceramics |
US20020165304A1 (en) | 2000-12-04 | 2002-11-07 | Mulligan Anthony C. | Methods and appratus for preparation of three-dimensional bodies |
US6501554B1 (en) | 2000-06-20 | 2002-12-31 | Ppt Vision, Inc. | 3D scanner and method for measuring heights and angles of manufactured parts |
US20030044539A1 (en) | 2001-02-06 | 2003-03-06 | Oswald Robert S. | Process for producing photovoltaic devices |
US20030056870A1 (en) | 2001-09-21 | 2003-03-27 | Stratasys, Inc. | High-precision modeling filament |
US20030160970A1 (en) | 2002-01-30 | 2003-08-28 | Anup Basu | Method and apparatus for high resolution 3D scanning |
US20030186042A1 (en) | 2002-05-07 | 2003-10-02 | Dunlap Earl N. | Process for tempering rapid prototype parts |
US20030236588A1 (en) | 2002-03-14 | 2003-12-25 | Jang Bor Z. | Nanotube fiber reinforced composite materials and method of producing fiber reinforced composites |
US6799081B1 (en) | 2000-11-15 | 2004-09-28 | Mcdonnell Douglas Corporation | Fiber placement and fiber steering systems and corresponding software for composite structures |
US6803003B2 (en) | 2000-12-04 | 2004-10-12 | Advanced Ceramics Research, Inc. | Compositions and methods for preparing multiple-component composite materials |
US20050006803A1 (en) | 2001-05-17 | 2005-01-13 | Owens Charles R. | Preform for manufacturing a material having a plurality of voids and method of making the same |
US20050061422A1 (en) | 2003-09-22 | 2005-03-24 | Martin James P. | Multiple tape laying apparatus and method |
US20050104257A1 (en) | 2003-09-04 | 2005-05-19 | Peihua Gu | Multisource and multimaterial freeform fabrication |
US20050109451A1 (en) | 2003-11-20 | 2005-05-26 | Hauber David E. | Composite tape laying apparatus and method |
US20050230029A1 (en) | 2001-01-02 | 2005-10-20 | Advanced Ceramics Research, Inc. | Continuous fiber reinforced composites and methods, apparatuses, and compositions for making the same |
US7039485B2 (en) | 2004-03-12 | 2006-05-02 | The Boeing Company | Systems and methods enabling automated return to and/or repair of defects with a material placement machine |
US20070003650A1 (en) | 2001-03-01 | 2007-01-04 | Schroeder Ernest C | Apparatus for fabricating fiber reinforced plastic parts |
US20070228592A1 (en) | 2006-04-03 | 2007-10-04 | Stratasys, Inc. | Auto tip calibration in an extrusion apparatus |
US20090095410A1 (en) | 2007-10-16 | 2009-04-16 | Ingersoll Machine Tools, Inc. | Fiber Placement Machine Platform System Having Interchangeable Head and Creel Assemblies |
US7555404B2 (en) | 2007-08-09 | 2009-06-30 | The Boeing Company | Methods and systems for automated ply boundary and orientation inspection |
US7795349B2 (en) | 1999-11-05 | 2010-09-14 | Z Corporation | Material systems and methods of three-dimensional printing |
KR100995983B1 (ko) | 2008-07-04 | 2010-11-23 | 재단법인서울대학교산학협력재단 | 회로기판의 교차인쇄방법 및 장치 |
US20110032301A1 (en) | 2004-09-21 | 2011-02-10 | Z Corporation | Apparatus and methods for servicing 3d printers |
US20110143108A1 (en) | 2008-05-09 | 2011-06-16 | Fit Fruth Innovative Technologien Gmbh | Fibers and methods for use in solid freeform fabrication |
US20120060468A1 (en) | 2010-09-13 | 2012-03-15 | Experimental Propulsion Lab, Llc | Additive manufactured propulsion system |
US20120159785A1 (en) | 2009-09-04 | 2012-06-28 | BayerMaerialScience LLC | Automated processes for the production of polyurethane wind turbine blades |
US8221669B2 (en) | 2009-09-30 | 2012-07-17 | Stratasys, Inc. | Method for building three-dimensional models in extrusion-based digital manufacturing systems using ribbon filaments |
KR101172859B1 (ko) | 2010-10-04 | 2012-08-09 | 서울대학교산학협력단 | 나노 스케일 3차원 프린팅을 사용한 초정밀 가공 장치 및 방법 |
US20120231225A1 (en) | 2010-09-17 | 2012-09-13 | Stratasys, Inc. | Core-shell consumable materials for use in extrusion-based additive manufacturing systems |
US20120247655A1 (en) | 2009-11-13 | 2012-10-04 | Karlsruher Institut Fuer Technologie | Method for producing a component from a fiber-reinforced material |
WO2013017284A2 (fr) | 2011-08-04 | 2013-02-07 | Arburg Gmbh + Co. Kg | Procédé et dispositif de fabrication d'un objet tridimensionnel comprenant l'apport de fibres |
US20130164498A1 (en) | 2011-12-21 | 2013-06-27 | Adc Acquisition Company | Thermoplastic composite prepreg for automated fiber placement |
US20130209600A1 (en) | 2012-02-10 | 2013-08-15 | Adam Perry Tow | Multi-axis, multi-purpose robotics automation and quality adaptive additive manufacturing |
US20130233471A1 (en) | 2012-03-08 | 2013-09-12 | Randall A. Kappesser | Small flat composite placement system |
US20130292039A1 (en) | 2012-04-04 | 2013-11-07 | Massachusetts Institute Of Technology | Methods and Apparatus for Actuated Fabricator |
US20130337265A1 (en) | 2012-06-19 | 2013-12-19 | EADS UK Limited British | Thermoplastic polymer powder |
US20130337256A1 (en) | 2012-06-19 | 2013-12-19 | Eads Uk Limited | Extrusion-based additive manufacturing system |
US20140034214A1 (en) | 2012-07-31 | 2014-02-06 | Makerbot Industries, Llc | Build material switching |
US20140061974A1 (en) | 2012-08-29 | 2014-03-06 | Kenneth Tyler | Method and apparatus for continuous composite three-dimensional printing |
US20140159284A1 (en) | 2012-12-07 | 2014-06-12 | Stratasys, Inc. | Liquefier assembly for use in additive manufacturing system |
US20140232035A1 (en) | 2013-02-19 | 2014-08-21 | Hemant Bheda | Reinforced fused-deposition modeling |
US20140268604A1 (en) | 2013-03-14 | 2014-09-18 | Board Of Regents, The University Of Texas System | Methods and Systems For Embedding Filaments in 3D Structures, Structural Components, and Structural Electronic, Electromagnetic and Electromechanical Components/Devices |
US20140291886A1 (en) | 2013-03-22 | 2014-10-02 | Gregory Thomas Mark | Three dimensional printing |
US8962717B2 (en) | 2012-08-20 | 2015-02-24 | Basf Se | Long-fiber-reinforced flame-retardant polyesters |
US20150136455A1 (en) | 2013-11-15 | 2015-05-21 | Robert J. Fleming | Shape forming process and application thereof for creating structural elements and designed objects |
US9126367B1 (en) | 2013-03-22 | 2015-09-08 | Markforged, Inc. | Three dimensional printer for fiber reinforced composite filament fabrication |
US9126365B1 (en) | 2013-03-22 | 2015-09-08 | Markforged, Inc. | Methods for composite filament fabrication in three dimensional printing |
US9149988B2 (en) | 2013-03-22 | 2015-10-06 | Markforged, Inc. | Three dimensional printing |
US9156205B2 (en) | 2013-03-22 | 2015-10-13 | Markforged, Inc. | Three dimensional printer with composite filament fabrication |
US9186846B1 (en) | 2013-03-22 | 2015-11-17 | Markforged, Inc. | Methods for composite filament threading in three dimensional printing |
US9186848B2 (en) | 2013-03-22 | 2015-11-17 | Markforged, Inc. | Three dimensional printing of composite reinforced structures |
US20160012935A1 (en) | 2014-07-11 | 2016-01-14 | Empire Technology Development Llc | Feedstocks for additive manufacturing and methods for their preparation and use |
EP2589481B1 (fr) | 2011-11-04 | 2016-01-20 | Ralph Peter Hegler | Dispositif de fabrication continue d'un tuyau composite doté d'un manchon de raccordement |
US20160031155A1 (en) | 2014-07-29 | 2016-02-04 | Cc3D Llc | Method and Apparatus for Additive Mechanical Growth of Tubular Structures |
US20160046082A1 (en) | 2014-08-12 | 2016-02-18 | Airbus Operations Gmbh | Apparatus and method for manufacturing components from a fiber-reinforced composite material |
US20160052208A1 (en) | 2014-08-21 | 2016-02-25 | Mosaic Manufacturing Ltd. | Series enabled multi-material extrusion technology |
US20160082659A1 (en) | 2014-09-18 | 2016-03-24 | The Boeing Company | Extruded Deposition of Polymers Having Continuous Carbon Nanotube Reinforcements |
US20160082641A1 (en) | 2014-09-18 | 2016-03-24 | The Boeing Company | Extruded Deposition of Fiber Reinforced Polymers |
US20160107379A1 (en) | 2013-03-22 | 2016-04-21 | Markforged, Inc. | Composite filament 3d printing using complementary reinforcement formations |
US20160114532A1 (en) | 2013-05-31 | 2016-04-28 | United Technologies Corporation | Continuous fiber-reinforced component fabrication |
US20160136885A1 (en) | 2014-11-14 | 2016-05-19 | Cole Nielsen-Cole | Additive manufacturing techniques and systems to form composite materials |
WO2016088048A1 (fr) | 2014-12-01 | 2016-06-09 | Sabic Global Technologies B.V. | Refroidissement rapide de buse pour la fabrication additive |
WO2016088042A1 (fr) | 2014-12-01 | 2016-06-09 | Sabic Global Technologies B.V. | Systèmes et procédés d'automatisation de processus de fabrication additive |
US9370896B2 (en) | 2013-06-05 | 2016-06-21 | Markforged, Inc. | Methods for fiber reinforced additive manufacturing |
US9381702B2 (en) | 2013-03-15 | 2016-07-05 | Seriforge Inc. | Composite preforms including three-dimensional interconnections |
US20160192741A1 (en) | 2015-01-05 | 2016-07-07 | Markforged, Inc. | Footwear fabrication by composite filament 3d printing |
WO2016110444A1 (fr) | 2015-01-09 | 2016-07-14 | Daher Aerospace | Procédé pour la fabrication d'un pièce composite complexe, notamment à matrice thermoplastique et pièce obtenue par un tel procédé |
US20160243762A1 (en) | 2013-11-15 | 2016-08-25 | Fleming Robert J | Automated design, simulation, and shape forming process for creating structural elements and designed objects |
US20160263806A1 (en) | 2013-10-30 | 2016-09-15 | Laing O'rourke Australia Pty Limited | Method for fabricating an object |
US20160263823A1 (en) | 2015-03-09 | 2016-09-15 | Frederick Matthew Espiau | 3d printed radio frequency absorber |
US20160263822A1 (en) | 2013-10-30 | 2016-09-15 | R. Platt Boyd, IV | Additive manufacturing of building and other structures |
US20160271876A1 (en) | 2015-03-22 | 2016-09-22 | Robert Bruce Lower | Apparatus and method of embedding cable in 3D printed objects |
US9458955B2 (en) | 2012-07-20 | 2016-10-04 | Mag Aerospace Industries, Llc | Composite waste and water transport elements and methods of manufacture for use on aircraft |
US9457521B2 (en) | 2011-09-01 | 2016-10-04 | The Boeing Company | Method, apparatus and material mixture for direct digital manufacturing of fiber reinforced parts |
WO2016159259A1 (fr) | 2015-03-31 | 2016-10-06 | キョーラク株式会社 | Moulage de résine filamenteuse, procédé de fabrication d'objet tridimensionnel, et procédé de fabrication de moulage de résine filamenteuse |
US20160297104A1 (en) | 2013-11-19 | 2016-10-13 | Guill Tool & Engineering | Coextruded, multilayer and multicomponent 3d printing inputs field |
US20160311165A1 (en) | 2013-03-22 | 2016-10-27 | Markforged, Inc. | Multiaxis fiber reinforcement for 3d printing |
US20160325491A1 (en) | 2013-12-26 | 2016-11-10 | Texas Tech University System | Microwave-induced localized heating of cnt filled polymer composites for enhanced inter-bead diffusive bonding of fused filament fabricated parts |
US20160332369A1 (en) | 2014-02-04 | 2016-11-17 | Samir Shah | Device and method of manufacturing customizable three-dimensional objects |
US20160339633A1 (en) | 2014-01-17 | 2016-11-24 | Graphene 3D Lab Inc. | Fused filament fabrication using multi-segment filament |
WO2016196382A1 (fr) | 2015-06-01 | 2016-12-08 | Velo3D, Inc. | Impression en trois dimensions et objets tridimensionnels formés au moyen de celle-ci |
US20160361869A1 (en) | 2013-03-22 | 2016-12-15 | Markforged, Inc. | Three dimensional printer for fiber reinforced composite filament fabrication |
US20160368255A1 (en) | 2015-06-19 | 2016-12-22 | Airbus Operations Gmbh | Method of manufacturing components, in particular elongated profile sections from band-shaped pre-impregnated fibers (prepreg) |
US9539762B2 (en) | 2013-03-22 | 2017-01-10 | Markforged, Inc. | 3D printing with kinematic coupling |
US20170007360A1 (en) | 2015-07-07 | 2017-01-12 | Align Technology, Inc. | Systems, apparatuses and methods for dental appliances with integrally formed features |
US20170007361A1 (en) | 2015-07-07 | 2017-01-12 | Align Technology, Inc. | Multi-material aligners |
US20170008333A1 (en) | 2015-07-07 | 2017-01-12 | Align Technology, Inc. | Dental appliance having ornamental design |
WO2017006324A1 (fr) | 2015-07-09 | 2017-01-12 | Something3D Ltd. | Procédé et appareil d'impression tridimensionnelle |
US20170007365A1 (en) | 2015-07-07 | 2017-01-12 | Align Technology, Inc. | Direct fabrication of aligners with interproximal force coupling |
WO2017006178A1 (fr) | 2015-07-07 | 2017-01-12 | Align Technology, Inc. | Systèmes, appareils et procédés pour l'administration de substances par des appareils dentaires et pour réaliser des motifs décoratifs sur des appareils dentaires |
US20170007362A1 (en) | 2015-07-07 | 2017-01-12 | Align Technology, Inc. | Dental materials using thermoset polymers |
US20170007367A1 (en) | 2015-07-07 | 2017-01-12 | Align Technology, Inc. | Direct fabrication of aligners for palate expansion and other applications |
US20170015060A1 (en) | 2015-07-17 | 2017-01-19 | Lawrence Livermore National Security, Llc | Additive manufacturing continuous filament carbon fiber epoxy composites |
US20170015059A1 (en) | 2015-07-17 | 2017-01-19 | Lawrence Livermore National Securty, Llc | High performance, rapid thermal/uv curing epoxy resin for additive manufacturing of short and continuous carbon fiber epoxy composites |
US20170021565A1 (en) | 2014-04-30 | 2017-01-26 | Magna International Inc. | Apparatus and process for forming three-dimensional objects |
US20170028628A1 (en) | 2015-07-31 | 2017-02-02 | The Boeing Company | Systems and methods for additively manufacturing composite parts |
US20170028620A1 (en) | 2015-07-31 | 2017-02-02 | The Boeing Company | Systems and methods for additively manufacturing composite parts |
US20170030207A1 (en) | 2015-07-28 | 2017-02-02 | General Electric Company | Ply, method for manufacturing ply, and method for manufacturing article with ply |
US20170028635A1 (en) | 2015-07-31 | 2017-02-02 | Boeing Co | Systems and methods for additively manufacturing composite parts |
US20170028623A1 (en) | 2015-07-31 | 2017-02-02 | The Boeing Company | Systems and methods for additively manufacturing composite parts |
US20170028633A1 (en) | 2015-07-31 | 2017-02-02 | The Boeing Company | Systems and methods for additively manufacturing composite parts |
US20170028644A1 (en) | 2015-07-31 | 2017-02-02 | The Boeing Company | Systems and methods for additively manufacturing composite parts |
US20170028638A1 (en) | 2015-07-31 | 2017-02-02 | The Boeing Company | Systems and methods for additively manufacturing composite parts |
US20170036403A1 (en) | 2014-03-28 | 2017-02-09 | Ez Print, Llc | 3D Print Bed Having Permanent Coating |
US9579851B2 (en) | 2013-03-22 | 2017-02-28 | Markforged, Inc. | Apparatus for fiber reinforced additive manufacturing |
US20170057165A1 (en) | 2015-08-25 | 2017-03-02 | The Boeing Company | Composite feedstock strips for additive manufacturing and methods of forming thereof |
US20170057181A1 (en) | 2015-08-25 | 2017-03-02 | The Boeing Company | Composite feedstock strips for additive manufacturing and methods of forming thereof |
US20170064840A1 (en) | 2015-08-24 | 2017-03-02 | Board Of Regents, The University Of Texas System | Method and apparatus for wire handling and embedding on and within 3d printed parts |
US20170057167A1 (en) | 2015-08-25 | 2017-03-02 | University Of South Carolina | Integrated robotic 3d printing system for printing of fiber reinforced parts |
US20170057164A1 (en) | 2015-08-31 | 2017-03-02 | Colorado School Of Mines | Hybrid additive manufacturing method and apparatus made therefrom |
WO2017051202A1 (fr) | 2015-09-24 | 2017-03-30 | Victrex Manufacturing Limited | Matériaux polymères |
US20170106565A1 (en) | 2015-10-14 | 2017-04-20 | Northrop Grumman Systems Corporation | Continuous fiber filament for fused deposition modeling (fdm) additive manufactured (am) structures |
US20170120519A1 (en) | 2013-03-22 | 2017-05-04 | Markforged, Inc. | Embedding 3d printed fiber reinforcement in molded articles |
US20170129171A1 (en) | 2015-11-09 | 2017-05-11 | U.S.A. As Represented By The Administrator Of The National Aeronautics And Space Administration | Devices and Methods for Additive Manufacturing Using Flexible Filaments |
US20170129186A1 (en) | 2015-11-06 | 2017-05-11 | U.S.A. As Represented By The Administrator Of The National Aeronautics And Space Administration | Adhesion test station in an extrusion apparatus and methods for using the same |
US20170129170A1 (en) | 2015-11-06 | 2017-05-11 | U.S.A. As Represented By The Administrator Of The National Aeronautics And Space Administration | Method for the free form fabrication of articles out of electrically conductive filaments using localized heating |
US20170129182A1 (en) | 2015-11-05 | 2017-05-11 | U.S.A. As Represented By The Administrator Of The National Aeronautics And Space Administration | Cutting mechanism for carbon nanotube yarns, tapes, sheets and polymer composites thereof |
US20170129176A1 (en) | 2015-11-09 | 2017-05-11 | Nike, Inc. | Tack and Drag Printing |
WO2017081253A1 (fr) | 2015-11-12 | 2017-05-18 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Dispositif pour la fabrication additive d'une pièce |
US20170144375A1 (en) | 2015-11-20 | 2017-05-25 | The Boeing Company | System and method for cutting material in continuous fiber reinforced additive manufacturing |
WO2017085649A1 (fr) | 2015-11-17 | 2017-05-26 | Politecnico Di Milano | Appareil et procédé pour l'impression tridimensionnelle de matériaux composites en fibres continues |
WO2017087663A1 (fr) | 2015-11-17 | 2017-05-26 | Zephyros, Inc. | Systèmes pour des matériaux de fabrication additive |
US20170151728A1 (en) | 2015-11-30 | 2017-06-01 | Ut-Battelle, Llc | Machine and a Method for Additive Manufacturing with Continuous Fiber Reinforcements |
US20170157831A1 (en) | 2015-12-08 | 2017-06-08 | Xerox Corporation | System and method for operation of multi-nozzle extrusion printheads in three-dimensional object printers |
US20170157828A1 (en) | 2015-12-08 | 2017-06-08 | Xerox Corporation | Three-dimensional object printer with multi-nozzle extruders and dispensers for multi-nozzle extruders and printheads |
US20170157851A1 (en) | 2015-12-08 | 2017-06-08 | Northrop Grumman Systems Corporation | Device and method for 3d printing with long-fiber reinforcement |
US20170157844A1 (en) | 2015-12-08 | 2017-06-08 | Xerox Corporation | Extrusion printheads for three-dimensional object printers |
US20170165908A1 (en) | 2015-12-11 | 2017-06-15 | Massachusetts Institute Of Technology | Systems, devices, and methods for deposition-based three-dimensional printing |
US20170173868A1 (en) | 2013-03-22 | 2017-06-22 | Markforged, Inc. | Continuous and random reinforcement in a 3d printed part |
US9688028B2 (en) | 2013-03-22 | 2017-06-27 | Markforged, Inc. | Multilayer fiber reinforcement design for 3D printing |
US20170182712A1 (en) | 2015-12-28 | 2017-06-29 | Southwest Research Institute | Reinforcement System for Additive Manufacturing, Devices and Methods Using the Same |
WO2017108758A1 (fr) | 2015-12-22 | 2017-06-29 | Arburg Gmbh + Co Kg | Dispositif et procédé de fabrication d'un objet tridimensionnel présentant un dispositif d'alimentation en fibres |
US9694544B2 (en) | 2013-03-22 | 2017-07-04 | Markforged, Inc. | Methods for fiber reinforced additive manufacturing |
WO2017122943A1 (fr) | 2016-01-14 | 2017-07-20 | 주식회사 키스타 | Appareil d'alimentation en matériau pour apporter un matériau comprenant un matériau plastique modelable et robot de fabrication d'objet en 3d le comprenant |
WO2017124085A1 (fr) | 2016-01-15 | 2017-07-20 | Markforged, Inc. | Renforcement continu et aléatoire dans une pièce imprimée en 3d |
WO2017122941A1 (fr) | 2016-01-14 | 2017-07-20 | 주식회사 키스타 | Transformateur pour commander le déplacement d'une unité de tête et la tension et la température d'une matière plastique façonnable |
WO2017122942A1 (fr) | 2016-01-14 | 2017-07-20 | 주식회사 키스타 | Unité d'alimentation de tête et unité de tête permettant le réglage de l'éjection de matière comprenant de la matière plastique façonnable |
WO2017123726A1 (fr) | 2016-01-12 | 2017-07-20 | Markforged, Inc. | Incorporation d'un renfort de fibres obtenu par impression 3d dans des articles moulés |
US20170210074A1 (en) | 2014-05-27 | 2017-07-27 | Nihon University | Three-dimensional printing system, three-dimensional printing method, molding device, fiber-containing object, and production method thereof |
WO2017126476A1 (fr) | 2016-01-22 | 2017-07-27 | 三菱瓦斯化学株式会社 | Procédé de production de structures tridimensionnelles et filament pour imprimantes 3d |
WO2017126477A1 (fr) | 2016-01-22 | 2017-07-27 | 三菱瓦斯化学株式会社 | Procédé de production de structures tridimensionnelles |
US20170217088A1 (en) | 2013-10-30 | 2017-08-03 | Branch Technology, Inc. | Cellular Fabrication and Apparatus for Additive Manufacturing |
WO2017137851A2 (fr) | 2016-02-11 | 2017-08-17 | Martin Kuster | Dispositifs d'impression mobiles pour imprimantes 3d |
US20170232674A1 (en) | 2013-03-22 | 2017-08-17 | Markforged, Inc. | Wear resistance in 3d printing of composites |
WO2017142867A1 (fr) | 2016-02-15 | 2017-08-24 | Georgia-Pacific Chemicals Llc | Fabrication d'additif d'extrusion de granules ou filaments de résines thermodurcissables |
WO2017150186A1 (fr) | 2016-02-29 | 2017-09-08 | 学校法人日本大学 | Appareil et procédé d'impression 3d |
US20170259502A1 (en) | 2016-03-10 | 2017-09-14 | Mantis Composites Inc. | Additive manufacturing of composite materials |
EP3219474A1 (fr) | 2016-03-16 | 2017-09-20 | Airbus Operations GmbH | Procédé et dispositif a poser des bandes pour fabriquer en 3d un composant composite renforcé par des fibres |
US20170266876A1 (en) | 2014-12-01 | 2017-09-21 | Sabic Global Technologies B.V. | Nozzle tool changing for material extrusion additive manufacturing |
US20170274585A1 (en) | 2016-03-28 | 2017-09-28 | Arevo, Inc. | Method and Apparatus for Additive Manufacturing Using Filament Shaping |
US20170284876A1 (en) | 2016-04-04 | 2017-10-05 | Xerox Corporation | 3d printed conductive compositions anticipating or indicating structural compromise |
US9782926B2 (en) | 2012-04-13 | 2017-10-10 | Compositence Gmbh | Laying head and apparatus and method for manufacturing a three-dimensional pre-form for a structural component from a fiber composite material |
US20180065300A1 (en) * | 2016-09-06 | 2018-03-08 | Cc3D Llc | Additive manufacturing system having in-head fiber teasing |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR91622E (fr) * | 1965-06-19 | 1968-07-19 | Tubes stratifiés étanches | |
US5207850A (en) * | 1990-07-17 | 1993-05-04 | General Electric Company | Process for making thermoplastic composites with cyclics oligomers and composites made thereby |
KR100214153B1 (ko) * | 1993-02-25 | 1999-08-02 | 로톤 렌들 더블유. | 강성의 3차원 구조 예비 성형체의 제조 방법 |
JP3554570B2 (ja) * | 1993-12-28 | 2004-08-18 | 株式会社アイペック | 結晶性熱可塑性樹脂シート又はフイルムの製造方法 |
US20040119188A1 (en) | 2002-12-20 | 2004-06-24 | Lowe Kenneth A. | Impregnated fiber precursors and methods and systems for producing impregnated fibers and fabricating composite structures |
US7093638B2 (en) | 2003-04-21 | 2006-08-22 | Lignum Vitae Limited | Apparatus and method for manufacture and use of composite fiber components |
US20070023975A1 (en) * | 2005-08-01 | 2007-02-01 | Buckley Daniel T | Method for making three-dimensional preforms using anaerobic binders |
CN101474868B (zh) * | 2008-10-15 | 2011-02-02 | 上海杰事杰新材料股份有限公司 | 连续纤维增强热塑性树脂复合材料预浸带制备设备及应用 |
CN103847111B (zh) * | 2012-12-01 | 2016-05-11 | 北京化工大学 | 一种连续纤维增强热塑性树脂片材的成型方法 |
US9855680B2 (en) | 2013-06-11 | 2018-01-02 | Johns Manville | Fiber-reinforced composite articles and methods of making them |
US9725563B2 (en) * | 2014-02-05 | 2017-08-08 | Johns Manville | Fiber reinforced thermoset composites and methods of making |
WO2015123732A1 (fr) * | 2014-02-21 | 2015-08-27 | Laing O'rourke Australia Pty Limited | Procédé destiné à la fabrication d'un élément de construction composite |
JP6769989B2 (ja) * | 2014-12-12 | 2020-10-14 | フンダシオ エウレカト | 複合材料から作られた部品を製造する方法及びシステム、並びに該方法により得られた複合材料から製造された部品 |
US20160271874A1 (en) * | 2015-03-20 | 2016-09-22 | EP Technologies LLC | 3d printers having plasma applicators and methods of using same |
JP2017071101A (ja) * | 2015-10-06 | 2017-04-13 | 独立行政法人国立高等専門学校機構 | 付加製造装置 |
RU169634U1 (ru) * | 2016-09-30 | 2017-03-27 | Автономная некоммерческая образовательная организация высшего образования "Сколковский институт науки и технологий" | Экструдер для аддитивного производства изделий из композитных материалов |
CN106927847B (zh) * | 2017-02-27 | 2020-08-18 | 西安交通大学 | 一种基于3d打印技术的纤维增强陶瓷基复合材料成形方法及装置 |
CN106863772A (zh) * | 2017-02-27 | 2017-06-20 | 上海大学 | 热塑性树脂基连续纤维预浸料的双喷头3d打印系统和方法 |
CN106915079A (zh) * | 2017-04-18 | 2017-07-04 | 中国科学院宁波材料技术与工程研究所 | 一种连续碳纤维3d打印装置 |
-
2017
- 2017-12-29 US US15/858,445 patent/US10081129B1/en active Active
-
2018
- 2018-05-31 US US15/995,027 patent/US10807303B2/en active Active
- 2018-05-31 US US15/995,035 patent/US11135764B2/en active Active
- 2018-07-05 AU AU2018204887A patent/AU2018204887B1/en not_active Ceased
- 2018-07-12 EP EP18183250.2A patent/EP3505331A1/fr not_active Withdrawn
- 2018-07-13 BR BR102018014351A patent/BR102018014351A8/pt active Search and Examination
- 2018-07-24 JP JP2018138337A patent/JP6546324B1/ja not_active Expired - Fee Related
- 2018-07-24 CA CA3012238A patent/CA3012238C/fr active Active
- 2018-07-25 RU RU2018127312A patent/RU2714813C2/ru active
- 2018-08-14 KR KR1020180095182A patent/KR101967105B1/ko active IP Right Grant
- 2018-08-23 CN CN201810969188.9A patent/CN109986777B/zh not_active Expired - Fee Related
Patent Citations (206)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3286305A (en) | 1964-09-03 | 1966-11-22 | Rexall Drug Chemical | Apparatus for continuous manufacture of hollow articles |
US3809514A (en) | 1971-11-13 | 1974-05-07 | Castro Nunez Elem Huecos | Machine for the continuous manufacture of hollow elements |
US3984271A (en) | 1973-06-25 | 1976-10-05 | Owens-Corning Fiberglas Corporation | Method of manufacturing large diameter tubular structures |
US3993726A (en) | 1974-01-16 | 1976-11-23 | Hercules Incorporated | Methods of making continuous length reinforced plastic articles |
US4671761A (en) | 1984-06-30 | 1987-06-09 | Fried. Krupp Gesellschaft Mit Beschrankter Haftung | Apparatus for producing reinforced elongate bodies |
US4643940A (en) | 1984-08-06 | 1987-02-17 | The Dow Chemical Company | Low density fiber-reinforced plastic composites |
US4851065A (en) | 1986-01-17 | 1989-07-25 | Tyee Aircraft, Inc. | Construction of hollow, continuously wound filament load-bearing structure |
US4822548A (en) | 1986-06-13 | 1989-04-18 | Firma Carl Freudenberg | Method and apparatus for manufacturing a thread-reinforced rubber hose |
US5037691A (en) | 1986-09-15 | 1991-08-06 | Compositech, Ltd. | Reinforced plastic laminates for use in the production of printed circuit boards and process for making such laminates and resulting products |
US5002712A (en) | 1988-10-19 | 1991-03-26 | Bayer Aktiengesellschaft | Manufacturing composite materials |
US5340433A (en) | 1989-10-30 | 1994-08-23 | Stratasys, Inc. | Modeling apparatus for three-dimensional objects |
DE4102257A1 (de) | 1991-01-23 | 1992-07-30 | Artos Med Produkte | Vorrichtung zur herstellung von kunststoffteilen |
US5296335A (en) | 1993-02-22 | 1994-03-22 | E-Systems, Inc. | Method for manufacturing fiber-reinforced parts utilizing stereolithography tooling |
US5746967A (en) | 1995-06-26 | 1998-05-05 | Fox Lite, Inc. | Method of curing thermoset resin with visible light |
US6459069B1 (en) | 1996-11-22 | 2002-10-01 | Joshua E. Rabinovich | Rapid manufacturing system for metal, metal matrix composite materials and ceramics |
US5866058A (en) | 1997-05-29 | 1999-02-02 | Stratasys Inc. | Method for rapid prototyping of solid models |
US6153034A (en) | 1997-08-03 | 2000-11-28 | Micromod R.P. Ltd | Rapid prototyping |
US5936861A (en) | 1997-08-15 | 1999-08-10 | Nanotek Instruments, Inc. | Apparatus and process for producing fiber reinforced composite objects |
US20020009935A1 (en) | 1999-03-23 | 2002-01-24 | Hexcel Corporation | Core-crush resistant fabric and prepreg for fiber reinforced composite sandwich structures |
US7795349B2 (en) | 1999-11-05 | 2010-09-14 | Z Corporation | Material systems and methods of three-dimensional printing |
US6501554B1 (en) | 2000-06-20 | 2002-12-31 | Ppt Vision, Inc. | 3D scanner and method for measuring heights and angles of manufactured parts |
US6799081B1 (en) | 2000-11-15 | 2004-09-28 | Mcdonnell Douglas Corporation | Fiber placement and fiber steering systems and corresponding software for composite structures |
US20020062909A1 (en) | 2000-11-29 | 2002-05-30 | Jang Bor Z. | Layer-additive method and apparatus for freeform fabrication of 3-D objects |
US6803003B2 (en) | 2000-12-04 | 2004-10-12 | Advanced Ceramics Research, Inc. | Compositions and methods for preparing multiple-component composite materials |
US20020165304A1 (en) | 2000-12-04 | 2002-11-07 | Mulligan Anthony C. | Methods and appratus for preparation of three-dimensional bodies |
US20020113331A1 (en) | 2000-12-20 | 2002-08-22 | Tan Zhang | Freeform fabrication method using extrusion of non-cross-linking reactive prepolymers |
US20050230029A1 (en) | 2001-01-02 | 2005-10-20 | Advanced Ceramics Research, Inc. | Continuous fiber reinforced composites and methods, apparatuses, and compositions for making the same |
US20030044539A1 (en) | 2001-02-06 | 2003-03-06 | Oswald Robert S. | Process for producing photovoltaic devices |
US20070003650A1 (en) | 2001-03-01 | 2007-01-04 | Schroeder Ernest C | Apparatus for fabricating fiber reinforced plastic parts |
US20050006803A1 (en) | 2001-05-17 | 2005-01-13 | Owens Charles R. | Preform for manufacturing a material having a plurality of voids and method of making the same |
US20080176092A1 (en) | 2001-05-17 | 2008-07-24 | Hexas Llc | Methods and systems for manufacturing a structure having organized areas |
US20030056870A1 (en) | 2001-09-21 | 2003-03-27 | Stratasys, Inc. | High-precision modeling filament |
US20030160970A1 (en) | 2002-01-30 | 2003-08-28 | Anup Basu | Method and apparatus for high resolution 3D scanning |
US20030236588A1 (en) | 2002-03-14 | 2003-12-25 | Jang Bor Z. | Nanotube fiber reinforced composite materials and method of producing fiber reinforced composites |
US6934600B2 (en) | 2002-03-14 | 2005-08-23 | Auburn University | Nanotube fiber reinforced composite materials and method of producing fiber reinforced composites |
US20030186042A1 (en) | 2002-05-07 | 2003-10-02 | Dunlap Earl N. | Process for tempering rapid prototype parts |
US20050104257A1 (en) | 2003-09-04 | 2005-05-19 | Peihua Gu | Multisource and multimaterial freeform fabrication |
US20050061422A1 (en) | 2003-09-22 | 2005-03-24 | Martin James P. | Multiple tape laying apparatus and method |
US20050109451A1 (en) | 2003-11-20 | 2005-05-26 | Hauber David E. | Composite tape laying apparatus and method |
US7039485B2 (en) | 2004-03-12 | 2006-05-02 | The Boeing Company | Systems and methods enabling automated return to and/or repair of defects with a material placement machine |
US20110032301A1 (en) | 2004-09-21 | 2011-02-10 | Z Corporation | Apparatus and methods for servicing 3d printers |
US20070228592A1 (en) | 2006-04-03 | 2007-10-04 | Stratasys, Inc. | Auto tip calibration in an extrusion apparatus |
US7555404B2 (en) | 2007-08-09 | 2009-06-30 | The Boeing Company | Methods and systems for automated ply boundary and orientation inspection |
US20090095410A1 (en) | 2007-10-16 | 2009-04-16 | Ingersoll Machine Tools, Inc. | Fiber Placement Machine Platform System Having Interchangeable Head and Creel Assemblies |
US20110143108A1 (en) | 2008-05-09 | 2011-06-16 | Fit Fruth Innovative Technologien Gmbh | Fibers and methods for use in solid freeform fabrication |
KR100995983B1 (ko) | 2008-07-04 | 2010-11-23 | 재단법인서울대학교산학협력재단 | 회로기판의 교차인쇄방법 및 장치 |
US20120159785A1 (en) | 2009-09-04 | 2012-06-28 | BayerMaerialScience LLC | Automated processes for the production of polyurethane wind turbine blades |
US8221669B2 (en) | 2009-09-30 | 2012-07-17 | Stratasys, Inc. | Method for building three-dimensional models in extrusion-based digital manufacturing systems using ribbon filaments |
US20120247655A1 (en) | 2009-11-13 | 2012-10-04 | Karlsruher Institut Fuer Technologie | Method for producing a component from a fiber-reinforced material |
US20120060468A1 (en) | 2010-09-13 | 2012-03-15 | Experimental Propulsion Lab, Llc | Additive manufactured propulsion system |
US20120231225A1 (en) | 2010-09-17 | 2012-09-13 | Stratasys, Inc. | Core-shell consumable materials for use in extrusion-based additive manufacturing systems |
KR101172859B1 (ko) | 2010-10-04 | 2012-08-09 | 서울대학교산학협력단 | 나노 스케일 3차원 프린팅을 사용한 초정밀 가공 장치 및 방법 |
WO2013017284A2 (fr) | 2011-08-04 | 2013-02-07 | Arburg Gmbh + Co. Kg | Procédé et dispositif de fabrication d'un objet tridimensionnel comprenant l'apport de fibres |
US9457521B2 (en) | 2011-09-01 | 2016-10-04 | The Boeing Company | Method, apparatus and material mixture for direct digital manufacturing of fiber reinforced parts |
EP2589481B1 (fr) | 2011-11-04 | 2016-01-20 | Ralph Peter Hegler | Dispositif de fabrication continue d'un tuyau composite doté d'un manchon de raccordement |
US20130164498A1 (en) | 2011-12-21 | 2013-06-27 | Adc Acquisition Company | Thermoplastic composite prepreg for automated fiber placement |
US20130209600A1 (en) | 2012-02-10 | 2013-08-15 | Adam Perry Tow | Multi-axis, multi-purpose robotics automation and quality adaptive additive manufacturing |
US20130233471A1 (en) | 2012-03-08 | 2013-09-12 | Randall A. Kappesser | Small flat composite placement system |
US20130292039A1 (en) | 2012-04-04 | 2013-11-07 | Massachusetts Institute Of Technology | Methods and Apparatus for Actuated Fabricator |
US9764378B2 (en) | 2012-04-04 | 2017-09-19 | Massachusetts Institute Of Technology | Methods and apparatus for actuated fabricator |
US9782926B2 (en) | 2012-04-13 | 2017-10-10 | Compositence Gmbh | Laying head and apparatus and method for manufacturing a three-dimensional pre-form for a structural component from a fiber composite material |
US20130337265A1 (en) | 2012-06-19 | 2013-12-19 | EADS UK Limited British | Thermoplastic polymer powder |
US20130337256A1 (en) | 2012-06-19 | 2013-12-19 | Eads Uk Limited | Extrusion-based additive manufacturing system |
US9770876B2 (en) | 2012-06-19 | 2017-09-26 | Airbus Group Limited | Method of manufacturing an object |
US9458955B2 (en) | 2012-07-20 | 2016-10-04 | Mag Aerospace Industries, Llc | Composite waste and water transport elements and methods of manufacture for use on aircraft |
US20140034214A1 (en) | 2012-07-31 | 2014-02-06 | Makerbot Industries, Llc | Build material switching |
US8962717B2 (en) | 2012-08-20 | 2015-02-24 | Basf Se | Long-fiber-reinforced flame-retardant polyesters |
US20140061974A1 (en) | 2012-08-29 | 2014-03-06 | Kenneth Tyler | Method and apparatus for continuous composite three-dimensional printing |
US20140159284A1 (en) | 2012-12-07 | 2014-06-12 | Stratasys, Inc. | Liquefier assembly for use in additive manufacturing system |
US20140232035A1 (en) | 2013-02-19 | 2014-08-21 | Hemant Bheda | Reinforced fused-deposition modeling |
US20170087768A1 (en) | 2013-02-19 | 2017-03-30 | Arevo, Inc. | Reinforced fused-deposition modeling |
US20140268604A1 (en) | 2013-03-14 | 2014-09-18 | Board Of Regents, The University Of Texas System | Methods and Systems For Embedding Filaments in 3D Structures, Structural Components, and Structural Electronic, Electromagnetic and Electromechanical Components/Devices |
US9381702B2 (en) | 2013-03-15 | 2016-07-05 | Seriforge Inc. | Composite preforms including three-dimensional interconnections |
US20170050340A1 (en) | 2013-03-15 | 2017-02-23 | Seriforge Inc. | Systems for three-dimensional weaving of composite preforms and products with varying cross-sectional topology |
US9527248B2 (en) | 2013-03-15 | 2016-12-27 | Seriforge Inc. | Systems for three-dimensional weaving of composite preforms and products with varying cross-sectional topology |
US20160107379A1 (en) | 2013-03-22 | 2016-04-21 | Markforged, Inc. | Composite filament 3d printing using complementary reinforcement formations |
US9156205B2 (en) | 2013-03-22 | 2015-10-13 | Markforged, Inc. | Three dimensional printer with composite filament fabrication |
US20170232674A1 (en) | 2013-03-22 | 2017-08-17 | Markforged, Inc. | Wear resistance in 3d printing of composites |
US20160361869A1 (en) | 2013-03-22 | 2016-12-15 | Markforged, Inc. | Three dimensional printer for fiber reinforced composite filament fabrication |
US9694544B2 (en) | 2013-03-22 | 2017-07-04 | Markforged, Inc. | Methods for fiber reinforced additive manufacturing |
US9186846B1 (en) | 2013-03-22 | 2015-11-17 | Markforged, Inc. | Methods for composite filament threading in three dimensional printing |
US20160368213A1 (en) | 2013-03-22 | 2016-12-22 | Markforged, Inc. | Methods for fiber reinforced additive manufacturing |
US9327453B2 (en) | 2013-03-22 | 2016-05-03 | Markforged, Inc. | Three dimensional printer for fiber reinforced composite filament fabrication |
US9327452B2 (en) | 2013-03-22 | 2016-05-03 | Markforged, Inc. | Methods for composite filament fabrication in three dimensional printing |
US9688028B2 (en) | 2013-03-22 | 2017-06-27 | Markforged, Inc. | Multilayer fiber reinforcement design for 3D printing |
US20160144565A1 (en) | 2013-03-22 | 2016-05-26 | Markforged, Inc. | Methods for composite filament threading in three dimensional printing |
US20160144566A1 (en) | 2013-03-22 | 2016-05-26 | Markforged, Inc. | Three dimensional printing of composite reinforced structures |
US20170173868A1 (en) | 2013-03-22 | 2017-06-22 | Markforged, Inc. | Continuous and random reinforcement in a 3d printed part |
US20170120519A1 (en) | 2013-03-22 | 2017-05-04 | Markforged, Inc. | Embedding 3d printed fiber reinforcement in molded articles |
US20140291886A1 (en) | 2013-03-22 | 2014-10-02 | Gregory Thomas Mark | Three dimensional printing |
US9186848B2 (en) | 2013-03-22 | 2015-11-17 | Markforged, Inc. | Three dimensional printing of composite reinforced structures |
US9149988B2 (en) | 2013-03-22 | 2015-10-06 | Markforged, Inc. | Three dimensional printing |
US20160200047A1 (en) | 2013-03-22 | 2016-07-14 | Markforged, Inc. | Three dimensional printer with composite filament fabrication |
US20170066187A1 (en) | 2013-03-22 | 2017-03-09 | Markforged, Inc. | Three dimensional printing |
US20160311165A1 (en) | 2013-03-22 | 2016-10-27 | Markforged, Inc. | Multiaxis fiber reinforcement for 3d printing |
US20160346998A1 (en) | 2013-03-22 | 2016-12-01 | Markforged, Inc. | Methods for composite filament fabrication in three dimensional printing |
US9579851B2 (en) | 2013-03-22 | 2017-02-28 | Markforged, Inc. | Apparatus for fiber reinforced additive manufacturing |
US9539762B2 (en) | 2013-03-22 | 2017-01-10 | Markforged, Inc. | 3D printing with kinematic coupling |
US9126365B1 (en) | 2013-03-22 | 2015-09-08 | Markforged, Inc. | Methods for composite filament fabrication in three dimensional printing |
US9126367B1 (en) | 2013-03-22 | 2015-09-08 | Markforged, Inc. | Three dimensional printer for fiber reinforced composite filament fabrication |
US20160114532A1 (en) | 2013-05-31 | 2016-04-28 | United Technologies Corporation | Continuous fiber-reinforced component fabrication |
US9370896B2 (en) | 2013-06-05 | 2016-06-21 | Markforged, Inc. | Methods for fiber reinforced additive manufacturing |
US20160263822A1 (en) | 2013-10-30 | 2016-09-15 | R. Platt Boyd, IV | Additive manufacturing of building and other structures |
US20160263806A1 (en) | 2013-10-30 | 2016-09-15 | Laing O'rourke Australia Pty Limited | Method for fabricating an object |
US20170217088A1 (en) | 2013-10-30 | 2017-08-03 | Branch Technology, Inc. | Cellular Fabrication and Apparatus for Additive Manufacturing |
US20150136455A1 (en) | 2013-11-15 | 2015-05-21 | Robert J. Fleming | Shape forming process and application thereof for creating structural elements and designed objects |
US20160243762A1 (en) | 2013-11-15 | 2016-08-25 | Fleming Robert J | Automated design, simulation, and shape forming process for creating structural elements and designed objects |
US20160297104A1 (en) | 2013-11-19 | 2016-10-13 | Guill Tool & Engineering | Coextruded, multilayer and multicomponent 3d printing inputs field |
US20160325491A1 (en) | 2013-12-26 | 2016-11-10 | Texas Tech University System | Microwave-induced localized heating of cnt filled polymer composites for enhanced inter-bead diffusive bonding of fused filament fabricated parts |
US20160339633A1 (en) | 2014-01-17 | 2016-11-24 | Graphene 3D Lab Inc. | Fused filament fabrication using multi-segment filament |
US20160332369A1 (en) | 2014-02-04 | 2016-11-17 | Samir Shah | Device and method of manufacturing customizable three-dimensional objects |
US20170036403A1 (en) | 2014-03-28 | 2017-02-09 | Ez Print, Llc | 3D Print Bed Having Permanent Coating |
US20170021565A1 (en) | 2014-04-30 | 2017-01-26 | Magna International Inc. | Apparatus and process for forming three-dimensional objects |
US20170210074A1 (en) | 2014-05-27 | 2017-07-27 | Nihon University | Three-dimensional printing system, three-dimensional printing method, molding device, fiber-containing object, and production method thereof |
US20160012935A1 (en) | 2014-07-11 | 2016-01-14 | Empire Technology Development Llc | Feedstocks for additive manufacturing and methods for their preparation and use |
US20160031155A1 (en) | 2014-07-29 | 2016-02-04 | Cc3D Llc | Method and Apparatus for Additive Mechanical Growth of Tubular Structures |
US20160046082A1 (en) | 2014-08-12 | 2016-02-18 | Airbus Operations Gmbh | Apparatus and method for manufacturing components from a fiber-reinforced composite material |
US20160052208A1 (en) | 2014-08-21 | 2016-02-25 | Mosaic Manufacturing Ltd. | Series enabled multi-material extrusion technology |
US20160082659A1 (en) | 2014-09-18 | 2016-03-24 | The Boeing Company | Extruded Deposition of Polymers Having Continuous Carbon Nanotube Reinforcements |
US20160082641A1 (en) | 2014-09-18 | 2016-03-24 | The Boeing Company | Extruded Deposition of Fiber Reinforced Polymers |
US20160136885A1 (en) | 2014-11-14 | 2016-05-19 | Cole Nielsen-Cole | Additive manufacturing techniques and systems to form composite materials |
US20170259507A1 (en) | 2014-12-01 | 2017-09-14 | Sabic Global Technologies B.V. | Additive manufacturing process automation systems and methods |
WO2016088048A1 (fr) | 2014-12-01 | 2016-06-09 | Sabic Global Technologies B.V. | Refroidissement rapide de buse pour la fabrication additive |
US20170266876A1 (en) | 2014-12-01 | 2017-09-21 | Sabic Global Technologies B.V. | Nozzle tool changing for material extrusion additive manufacturing |
WO2016088042A1 (fr) | 2014-12-01 | 2016-06-09 | Sabic Global Technologies B.V. | Systèmes et procédés d'automatisation de processus de fabrication additive |
US20160192741A1 (en) | 2015-01-05 | 2016-07-07 | Markforged, Inc. | Footwear fabrication by composite filament 3d printing |
WO2016110444A1 (fr) | 2015-01-09 | 2016-07-14 | Daher Aerospace | Procédé pour la fabrication d'un pièce composite complexe, notamment à matrice thermoplastique et pièce obtenue par un tel procédé |
US20160263823A1 (en) | 2015-03-09 | 2016-09-15 | Frederick Matthew Espiau | 3d printed radio frequency absorber |
US20160271876A1 (en) | 2015-03-22 | 2016-09-22 | Robert Bruce Lower | Apparatus and method of embedding cable in 3D printed objects |
WO2016159259A1 (fr) | 2015-03-31 | 2016-10-06 | キョーラク株式会社 | Moulage de résine filamenteuse, procédé de fabrication d'objet tridimensionnel, et procédé de fabrication de moulage de résine filamenteuse |
WO2016196382A1 (fr) | 2015-06-01 | 2016-12-08 | Velo3D, Inc. | Impression en trois dimensions et objets tridimensionnels formés au moyen de celle-ci |
US20160368255A1 (en) | 2015-06-19 | 2016-12-22 | Airbus Operations Gmbh | Method of manufacturing components, in particular elongated profile sections from band-shaped pre-impregnated fibers (prepreg) |
US20170007363A1 (en) | 2015-07-07 | 2017-01-12 | Align Technology, Inc. | Direct fabrication of power arms |
WO2017006178A1 (fr) | 2015-07-07 | 2017-01-12 | Align Technology, Inc. | Systèmes, appareils et procédés pour l'administration de substances par des appareils dentaires et pour réaliser des motifs décoratifs sur des appareils dentaires |
US20170007360A1 (en) | 2015-07-07 | 2017-01-12 | Align Technology, Inc. | Systems, apparatuses and methods for dental appliances with integrally formed features |
US20170007361A1 (en) | 2015-07-07 | 2017-01-12 | Align Technology, Inc. | Multi-material aligners |
US20170007359A1 (en) | 2015-07-07 | 2017-01-12 | Align Technology, Inc. | Direct fabrication of orthodontic appliances with variable properties |
US20170007366A1 (en) | 2015-07-07 | 2017-01-12 | Align Technology, Inc. | Direct fabrication of aligners for arch expansion |
US20170008333A1 (en) | 2015-07-07 | 2017-01-12 | Align Technology, Inc. | Dental appliance having ornamental design |
US20170007367A1 (en) | 2015-07-07 | 2017-01-12 | Align Technology, Inc. | Direct fabrication of aligners for palate expansion and other applications |
US20170007365A1 (en) | 2015-07-07 | 2017-01-12 | Align Technology, Inc. | Direct fabrication of aligners with interproximal force coupling |
US20170007368A1 (en) | 2015-07-07 | 2017-01-12 | Align Technology, Inc. | Direct fabrication of attachment templates with adhesive |
US20170007362A1 (en) | 2015-07-07 | 2017-01-12 | Align Technology, Inc. | Dental materials using thermoset polymers |
US20170007386A1 (en) | 2015-07-07 | 2017-01-12 | Align Technology, Inc. | Systems, apparatuses and methods for substance delivery from dental appliance |
WO2017006324A1 (fr) | 2015-07-09 | 2017-01-12 | Something3D Ltd. | Procédé et appareil d'impression tridimensionnelle |
US20170015059A1 (en) | 2015-07-17 | 2017-01-19 | Lawrence Livermore National Securty, Llc | High performance, rapid thermal/uv curing epoxy resin for additive manufacturing of short and continuous carbon fiber epoxy composites |
US20170015060A1 (en) | 2015-07-17 | 2017-01-19 | Lawrence Livermore National Security, Llc | Additive manufacturing continuous filament carbon fiber epoxy composites |
US20170030207A1 (en) | 2015-07-28 | 2017-02-02 | General Electric Company | Ply, method for manufacturing ply, and method for manufacturing article with ply |
US20170028434A1 (en) | 2015-07-31 | 2017-02-02 | The Boeing Company | Systems and methods for additively manufacturing composite parts |
US20170028619A1 (en) | 2015-07-31 | 2017-02-02 | The Boeing Company | Systems and methods for additively manufacturing composite parts |
US20170028625A1 (en) | 2015-07-31 | 2017-02-02 | The Boeing Company | Systems and methods for additively manufacturing composite parts |
US20170028620A1 (en) | 2015-07-31 | 2017-02-02 | The Boeing Company | Systems and methods for additively manufacturing composite parts |
US20170028628A1 (en) | 2015-07-31 | 2017-02-02 | The Boeing Company | Systems and methods for additively manufacturing composite parts |
US20170028644A1 (en) | 2015-07-31 | 2017-02-02 | The Boeing Company | Systems and methods for additively manufacturing composite parts |
US20170028634A1 (en) | 2015-07-31 | 2017-02-02 | The Boeing Company | Systems and methods for additively manufacturing composite parts |
US20170028627A1 (en) | 2015-07-31 | 2017-02-02 | The Boeing Company | Systems and methods for additively manufacturing composite parts |
US20170028633A1 (en) | 2015-07-31 | 2017-02-02 | The Boeing Company | Systems and methods for additively manufacturing composite parts |
US20170028638A1 (en) | 2015-07-31 | 2017-02-02 | The Boeing Company | Systems and methods for additively manufacturing composite parts |
US20170028639A1 (en) | 2015-07-31 | 2017-02-02 | The Boeing Company | Systems and methods for additively manufacturing composite parts |
US20170028588A1 (en) | 2015-07-31 | 2017-02-02 | The Boeing Company | Systems and methods for additively manufacturing composite parts |
US20170028623A1 (en) | 2015-07-31 | 2017-02-02 | The Boeing Company | Systems and methods for additively manufacturing composite parts |
US20170028637A1 (en) | 2015-07-31 | 2017-02-02 | The Boeing Company | Systems and methods for additively manufacturing composite parts |
US20170028636A1 (en) | 2015-07-31 | 2017-02-02 | The Boeing Company | Systems and methods for additively manufacturing composite parts |
US20170028621A1 (en) | 2015-07-31 | 2017-02-02 | The Boeing Company | Systems and methods for additively manufacturing composite parts |
US20170028635A1 (en) | 2015-07-31 | 2017-02-02 | Boeing Co | Systems and methods for additively manufacturing composite parts |
US20170028617A1 (en) | 2015-07-31 | 2017-02-02 | The Boeing Company | Systems and methods for additively manufacturing composite parts |
US20170028624A1 (en) | 2015-07-31 | 2017-02-02 | The Boeing Company | Systems and methods for additively manufacturing composite parts |
US20170064840A1 (en) | 2015-08-24 | 2017-03-02 | Board Of Regents, The University Of Texas System | Method and apparatus for wire handling and embedding on and within 3d printed parts |
US20170057167A1 (en) | 2015-08-25 | 2017-03-02 | University Of South Carolina | Integrated robotic 3d printing system for printing of fiber reinforced parts |
US20170057165A1 (en) | 2015-08-25 | 2017-03-02 | The Boeing Company | Composite feedstock strips for additive manufacturing and methods of forming thereof |
US20170057181A1 (en) | 2015-08-25 | 2017-03-02 | The Boeing Company | Composite feedstock strips for additive manufacturing and methods of forming thereof |
US20170057164A1 (en) | 2015-08-31 | 2017-03-02 | Colorado School Of Mines | Hybrid additive manufacturing method and apparatus made therefrom |
WO2017051202A1 (fr) | 2015-09-24 | 2017-03-30 | Victrex Manufacturing Limited | Matériaux polymères |
US20170106565A1 (en) | 2015-10-14 | 2017-04-20 | Northrop Grumman Systems Corporation | Continuous fiber filament for fused deposition modeling (fdm) additive manufactured (am) structures |
US20170129182A1 (en) | 2015-11-05 | 2017-05-11 | U.S.A. As Represented By The Administrator Of The National Aeronautics And Space Administration | Cutting mechanism for carbon nanotube yarns, tapes, sheets and polymer composites thereof |
US20170129186A1 (en) | 2015-11-06 | 2017-05-11 | U.S.A. As Represented By The Administrator Of The National Aeronautics And Space Administration | Adhesion test station in an extrusion apparatus and methods for using the same |
US20170129170A1 (en) | 2015-11-06 | 2017-05-11 | U.S.A. As Represented By The Administrator Of The National Aeronautics And Space Administration | Method for the free form fabrication of articles out of electrically conductive filaments using localized heating |
US20170129176A1 (en) | 2015-11-09 | 2017-05-11 | Nike, Inc. | Tack and Drag Printing |
US20170129171A1 (en) | 2015-11-09 | 2017-05-11 | U.S.A. As Represented By The Administrator Of The National Aeronautics And Space Administration | Devices and Methods for Additive Manufacturing Using Flexible Filaments |
WO2017081253A1 (fr) | 2015-11-12 | 2017-05-18 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Dispositif pour la fabrication additive d'une pièce |
WO2017085649A1 (fr) | 2015-11-17 | 2017-05-26 | Politecnico Di Milano | Appareil et procédé pour l'impression tridimensionnelle de matériaux composites en fibres continues |
WO2017087663A1 (fr) | 2015-11-17 | 2017-05-26 | Zephyros, Inc. | Systèmes pour des matériaux de fabrication additive |
US20170144375A1 (en) | 2015-11-20 | 2017-05-25 | The Boeing Company | System and method for cutting material in continuous fiber reinforced additive manufacturing |
US20170151728A1 (en) | 2015-11-30 | 2017-06-01 | Ut-Battelle, Llc | Machine and a Method for Additive Manufacturing with Continuous Fiber Reinforcements |
US20170157851A1 (en) | 2015-12-08 | 2017-06-08 | Northrop Grumman Systems Corporation | Device and method for 3d printing with long-fiber reinforcement |
US20170157831A1 (en) | 2015-12-08 | 2017-06-08 | Xerox Corporation | System and method for operation of multi-nozzle extrusion printheads in three-dimensional object printers |
US20170157828A1 (en) | 2015-12-08 | 2017-06-08 | Xerox Corporation | Three-dimensional object printer with multi-nozzle extruders and dispensers for multi-nozzle extruders and printheads |
US20170157844A1 (en) | 2015-12-08 | 2017-06-08 | Xerox Corporation | Extrusion printheads for three-dimensional object printers |
US20170165908A1 (en) | 2015-12-11 | 2017-06-15 | Massachusetts Institute Of Technology | Systems, devices, and methods for deposition-based three-dimensional printing |
WO2017108758A1 (fr) | 2015-12-22 | 2017-06-29 | Arburg Gmbh + Co Kg | Dispositif et procédé de fabrication d'un objet tridimensionnel présentant un dispositif d'alimentation en fibres |
US20170182712A1 (en) | 2015-12-28 | 2017-06-29 | Southwest Research Institute | Reinforcement System for Additive Manufacturing, Devices and Methods Using the Same |
WO2017123726A1 (fr) | 2016-01-12 | 2017-07-20 | Markforged, Inc. | Incorporation d'un renfort de fibres obtenu par impression 3d dans des articles moulés |
WO2017122942A1 (fr) | 2016-01-14 | 2017-07-20 | 주식회사 키스타 | Unité d'alimentation de tête et unité de tête permettant le réglage de l'éjection de matière comprenant de la matière plastique façonnable |
WO2017122943A1 (fr) | 2016-01-14 | 2017-07-20 | 주식회사 키스타 | Appareil d'alimentation en matériau pour apporter un matériau comprenant un matériau plastique modelable et robot de fabrication d'objet en 3d le comprenant |
WO2017122941A1 (fr) | 2016-01-14 | 2017-07-20 | 주식회사 키스타 | Transformateur pour commander le déplacement d'une unité de tête et la tension et la température d'une matière plastique façonnable |
WO2017124085A1 (fr) | 2016-01-15 | 2017-07-20 | Markforged, Inc. | Renforcement continu et aléatoire dans une pièce imprimée en 3d |
WO2017126477A1 (fr) | 2016-01-22 | 2017-07-27 | 三菱瓦斯化学株式会社 | Procédé de production de structures tridimensionnelles |
WO2017126476A1 (fr) | 2016-01-22 | 2017-07-27 | 三菱瓦斯化学株式会社 | Procédé de production de structures tridimensionnelles et filament pour imprimantes 3d |
WO2017137851A2 (fr) | 2016-02-11 | 2017-08-17 | Martin Kuster | Dispositifs d'impression mobiles pour imprimantes 3d |
WO2017142867A1 (fr) | 2016-02-15 | 2017-08-24 | Georgia-Pacific Chemicals Llc | Fabrication d'additif d'extrusion de granules ou filaments de résines thermodurcissables |
WO2017150186A1 (fr) | 2016-02-29 | 2017-09-08 | 学校法人日本大学 | Appareil et procédé d'impression 3d |
US20170259502A1 (en) | 2016-03-10 | 2017-09-14 | Mantis Composites Inc. | Additive manufacturing of composite materials |
EP3219474A1 (fr) | 2016-03-16 | 2017-09-20 | Airbus Operations GmbH | Procédé et dispositif a poser des bandes pour fabriquer en 3d un composant composite renforcé par des fibres |
US20170274585A1 (en) | 2016-03-28 | 2017-09-28 | Arevo, Inc. | Method and Apparatus for Additive Manufacturing Using Filament Shaping |
US20170284876A1 (en) | 2016-04-04 | 2017-10-05 | Xerox Corporation | 3d printed conductive compositions anticipating or indicating structural compromise |
US20180065300A1 (en) * | 2016-09-06 | 2018-03-08 | Cc3D Llc | Additive manufacturing system having in-head fiber teasing |
Non-Patent Citations (12)
Title |
---|
A. Di. Pietro & Paul Compston, Resin Hardness and Interlaminar Shear Strength of a Glass-Fibre/Vinylester Composite Cured with High Intensity Ultraviolet (UV) Light, Journal of Materials Science, vol. 44, pp. 4188-4190 (Apr. 2009). |
A. Endruweit, M. S. Johnson, & A. C. Long, Curing of Composite Components by Ultraviolet Radiation: A Review, Polymer Composites, pp. 119-128 (Apr. 2006). |
C. Fragassa, & G. Minak, Standard Characterization for Mechanical Properties of Photopolymer Resins for Rapid Prototyping, 1st Symposium on Multidisciplinary Studies of Design in Mechanical Engineering, Bertinoro, Italy (Jun. 25-28, 2008). |
Hyouk Ryeol Choi and Se-gon Roh, In-pipe Robot with Active Steering Capability for Moving Inside of Pipelines, Bioinspiration and Robotics: Walking and Climbing Robots, Sep. 2007, p. 544, I-Tech, Vienna, Austria. |
Kenneth C. Kennedy II & Robert P. Kusy, UV-Cured Pultrusion Processing of Glass-Reinforced Polymer Composites, Journal of Vinyl and Additive Technology, vol. 1, Issue 3, pp. 182-186 (Sep. 1995). |
M. Martin-Gallego et al., Epoxy-Graphene UV-Cured Nanocomposites, Polymer, vol. 52, Issue 21, pp. 4664-4669 (Sep. 2011). |
P. Compston, J. Schiemer, & A. Cvetanovska, Mechanical Properties and Styrene Emission Levels of a UV-Cured Glass-Fibre/Vinylester Composite, Composite Structures, vol. 86, pp. 22-26 (Mar. 2008). |
S Kumar & J.-P. Kruth, Composites by Rapid Prototyping Technology, Materials and Design, (Feb. 2009). |
S. L. Fan, F. Y. C. Boey, & M. J. M. Abadie, UV Curing of a Liquid Based Bismaleimide-Containing Polymer System, eXPRESS Polymer Letters, vol. 1, No. 6, pp. 397-405 (2007). |
T. M. Llewelly-Jones, Bruce W. Drinkwater, and Richard S. Trask; 3D Printed Components With Ultrasonically Arranged Microscale Structure, Smart Materials and Structures, 2016, pp. 1-6, vol. 25, IOP Publishing Ltd., UK. |
Vincent J. Lopata et al., Electron-Beam-Curable Epoxy Resins for the Manufacture of High-Performance Composites, Radiation Physics and Chemistry, vol. 56, pp. 405-415 (1999). |
Yugang Duan et al., Effects of Compaction and UV Exposure on Performance of Acrylate/Glass-Fiber Composites Cured Layer by Layer, Journal of Applied Polymer Science, vol. 123, Issue 6, pp. 3799-3805 (May 15, 2012). |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20180214909A1 (en) * | 2013-03-19 | 2018-08-02 | Airbus Group Limited | Extrusion-based additive manufacturing |
US11285649B2 (en) * | 2013-11-15 | 2022-03-29 | Makerbot Industries, Llc | Three-dimensional printer tool systems |
US12049038B2 (en) | 2013-11-15 | 2024-07-30 | Stratays, Inc. | Three-dimensional printer tool systems |
US11780156B2 (en) | 2013-11-15 | 2023-10-10 | Stratasys, Inc. | Three-dimensional printer tool systems |
US20190061948A1 (en) * | 2017-08-29 | 2019-02-28 | Goodrich Corporation | Conformable tank fabricated using additive manufacturing |
US10703481B2 (en) | 2017-08-29 | 2020-07-07 | Goodrich Corporation | Conformable tank with sandwich structure walls |
US11939105B2 (en) | 2017-08-29 | 2024-03-26 | Goodrich Corporation | 3D woven conformable tank |
US11091266B2 (en) * | 2017-08-29 | 2021-08-17 | Goodrich Corporation | Conformable tank fabricated using additive manufacturing |
US10816138B2 (en) | 2017-09-15 | 2020-10-27 | Goodrich Corporation | Manufacture of a conformable pressure vessel |
US11725779B2 (en) | 2017-09-15 | 2023-08-15 | Goodrich Corporation | Manufacture of a conformable pressure vessel |
WO2019157296A3 (fr) * | 2018-02-08 | 2020-04-30 | Essentium Materials, Llc | Filament à couches multiples et procédé de fabrication |
US11167375B2 (en) | 2018-08-10 | 2021-11-09 | The Research Foundation For The State University Of New York | Additive manufacturing processes and additively manufactured products |
US11426818B2 (en) | 2018-08-10 | 2022-08-30 | The Research Foundation for the State University | Additive manufacturing processes and additively manufactured products |
US11279085B2 (en) * | 2018-10-26 | 2022-03-22 | Continuous Composites Inc. | System for additive manufacturing |
CN112936862A (zh) * | 2019-03-05 | 2021-06-11 | 钟隆君 | 一种生物打印机用喷头组件及使用方法 |
CN112936862B (zh) * | 2019-03-05 | 2022-12-23 | 南京秦邦吉品农业开发有限公司 | 一种生物打印机用喷头组件及使用方法 |
CN111761844A (zh) * | 2020-06-30 | 2020-10-13 | 诺思贝瑞新材料科技(苏州)有限公司 | 一种3d打印用连续纤维复合材料及其制备方法及装置 |
US20230166450A1 (en) * | 2021-02-25 | 2023-06-01 | Caracol S.R.L. | Improved Method and Kit for Three-Dimensional Printing |
US11760021B2 (en) * | 2021-04-27 | 2023-09-19 | Continuous Composites Inc. | Additive manufacturing system |
US20220339871A1 (en) * | 2021-04-27 | 2022-10-27 | Continuous Composites Inc. | Additive manufacturing system |
US12128607B2 (en) | 2021-10-20 | 2024-10-29 | Continuous Composites Inc. | Systems and methods for additive manufacturing |
US12134226B2 (en) | 2022-10-18 | 2024-11-05 | Continuous Composites Inc. | Systems and methods of additive manufacturing |
Also Published As
Publication number | Publication date |
---|---|
RU2018127312A (ru) | 2020-01-27 |
US20190217530A1 (en) | 2019-07-18 |
US10807303B2 (en) | 2020-10-20 |
CA3012238A1 (fr) | 2019-06-05 |
CN109986777A (zh) | 2019-07-09 |
JP2019119198A (ja) | 2019-07-22 |
CA3012238C (fr) | 2019-10-08 |
JP6546324B1 (ja) | 2019-07-17 |
CN109986777B (zh) | 2020-09-22 |
RU2018127312A3 (fr) | 2020-01-27 |
US20190202110A1 (en) | 2019-07-04 |
AU2018204887B1 (en) | 2019-06-13 |
EP3505331A1 (fr) | 2019-07-03 |
US11135764B2 (en) | 2021-10-05 |
KR101967105B1 (ko) | 2019-04-08 |
RU2714813C2 (ru) | 2020-02-19 |
BR102018014351A8 (pt) | 2023-01-03 |
BR102018014351A2 (pt) | 2019-07-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10081129B1 (en) | Additive manufacturing system implementing hardener pre-impregnation | |
US10932325B2 (en) | Additive manufacturing system and method for discharging coated continuous composites | |
US11014290B2 (en) | Additive manufacturing system having automated reinforcement threading | |
US20220009165A1 (en) | Additive manufacturing method for discharging interlocking continuous reinforcement | |
US10933584B2 (en) | Additive manufacturing system having dynamically variable matrix supply | |
US10759114B2 (en) | System and print head for continuously manufacturing composite structure | |
US11247395B2 (en) | System for additive manufacturing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FEPP | Fee payment procedure |
Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 4 |