US10081129B1 - Additive manufacturing system implementing hardener pre-impregnation - Google Patents

Additive manufacturing system implementing hardener pre-impregnation Download PDF

Info

Publication number
US10081129B1
US10081129B1 US15/858,445 US201715858445A US10081129B1 US 10081129 B1 US10081129 B1 US 10081129B1 US 201715858445 A US201715858445 A US 201715858445A US 10081129 B1 US10081129 B1 US 10081129B1
Authority
US
United States
Prior art keywords
continuous reinforcement
matrix component
print head
matrix
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
US15/858,445
Other languages
English (en)
Inventor
Tyler B. Alvarado
Trevor David Budge
Ryan C Stockett
John Swallow
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Continuous Composites Inc
Original Assignee
CC3D LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CC3D LLC filed Critical CC3D LLC
Assigned to CC3D LLC reassignment CC3D LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ALVARADO, TYLER B., BUDGE, TREVOR DAVID, STOCKETT, RYAN C, SWALLOW, JOHN
Priority to US15/858,445 priority Critical patent/US10081129B1/en
Priority to US15/995,027 priority patent/US10807303B2/en
Priority to US15/995,035 priority patent/US11135764B2/en
Priority to AU2018204887A priority patent/AU2018204887B1/en
Priority to EP18183250.2A priority patent/EP3505331A1/fr
Priority to BR102018014351A priority patent/BR102018014351A8/pt
Priority to CA3012238A priority patent/CA3012238C/fr
Priority to JP2018138337A priority patent/JP6546324B1/ja
Priority to RU2018127312A priority patent/RU2714813C2/ru
Priority to KR1020180095182A priority patent/KR101967105B1/ko
Priority to CN201810969188.9A priority patent/CN109986777B/zh
Publication of US10081129B1 publication Critical patent/US10081129B1/en
Application granted granted Critical
Assigned to CONTINUOUS COMPOSITES INC. reassignment CONTINUOUS COMPOSITES INC. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: CC3D LLC
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/307Handling of material to be used in additive manufacturing
    • B29C64/314Preparation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F299/00Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers
    • C08F299/02Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates
    • C08F299/04Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates from polyesters
    • C08F299/0407Processes of polymerisation
    • C08F299/0421Polymerisation initiated by wave energy or particle radiation
    • C08F299/0428Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/10Formation of a green body
    • B22F10/18Formation of a green body by mixing binder with metal in filament form, e.g. fused filament fabrication [FFF]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/34Process control of powder characteristics, e.g. density, oxidation or flowability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/50Means for feeding of material, e.g. heads
    • B22F12/53Nozzles
    • B22F3/008
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B15/00Pretreatment of the material to be shaped, not covered by groups B29B7/00 - B29B13/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B15/00Pretreatment of the material to be shaped, not covered by groups B29B7/00 - B29B13/00
    • B29B15/08Pretreatment of the material to be shaped, not covered by groups B29B7/00 - B29B13/00 of reinforcements or fillers
    • B29B15/10Coating or impregnating independently of the moulding or shaping step
    • B29B15/12Coating or impregnating independently of the moulding or shaping step of reinforcements of indefinite length
    • B29B15/122Coating or impregnating independently of the moulding or shaping step of reinforcements of indefinite length with a matrix in liquid form, e.g. as melt, solution or latex
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C31/00Handling, e.g. feeding of the material to be shaped, storage of plastics material before moulding; Automation, i.e. automated handling lines in plastics processing plants, e.g. using manipulators or robots
    • B29C31/04Feeding of the material to be moulded, e.g. into a mould cavity
    • B29C31/042Feeding of the material to be moulded, e.g. into a mould cavity using dispensing heads, e.g. extruders, placed over or apart from the moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C31/00Handling, e.g. feeding of the material to be shaped, storage of plastics material before moulding; Automation, i.e. automated handling lines in plastics processing plants, e.g. using manipulators or robots
    • B29C31/04Feeding of the material to be moulded, e.g. into a mould cavity
    • B29C31/042Feeding of the material to be moulded, e.g. into a mould cavity using dispensing heads, e.g. extruders, placed over or apart from the moulds
    • B29C31/044Feeding of the material to be moulded, e.g. into a mould cavity using dispensing heads, e.g. extruders, placed over or apart from the moulds with moving heads for distributing liquid or viscous material into the moulds
    • B29C31/045Feeding of the material to be moulded, e.g. into a mould cavity using dispensing heads, e.g. extruders, placed over or apart from the moulds with moving heads for distributing liquid or viscous material into the moulds moving along predetermined circuits or distributing the material according to predetermined patterns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C31/00Handling, e.g. feeding of the material to be shaped, storage of plastics material before moulding; Automation, i.e. automated handling lines in plastics processing plants, e.g. using manipulators or robots
    • B29C31/04Feeding of the material to be moulded, e.g. into a mould cavity
    • B29C31/042Feeding of the material to be moulded, e.g. into a mould cavity using dispensing heads, e.g. extruders, placed over or apart from the moulds
    • B29C31/048Feeding of the material to be moulded, e.g. into a mould cavity using dispensing heads, e.g. extruders, placed over or apart from the moulds the material being severed at the dispensing head exit, e.g. as ring, drop or gob, and transported immediately into the mould, e.g. by gravity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/15Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor incorporating preformed parts or layers, e.g. extrusion moulding around inserts
    • B29C48/154Coating solid articles, i.e. non-hollow articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/118Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using filamentary material being melted, e.g. fused deposition modelling [FDM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/165Processes of additive manufacturing using a combination of solid and fluid materials, e.g. a powder selectively bound by a liquid binder, catalyst, inhibitor or energy absorber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/205Means for applying layers
    • B29C64/209Heads; Nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/264Arrangements for irradiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/295Heating elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing
    • B29C64/393Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/10Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres
    • B29C70/16Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length
    • B29C70/20Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length oriented in a single direction, e.g. roofing or other parallel fibres
    • B29C70/205Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length oriented in a single direction, e.g. roofing or other parallel fibres the structure being shaped to form a three-dimensional configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/10Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres
    • B29C70/16Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length
    • B29C70/24Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length oriented in at least three directions forming a three dimensional structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/30Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core
    • B29C70/38Automated lay-up, e.g. using robots, laying filaments according to predetermined patterns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • B33Y70/10Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F299/00Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers
    • C08F299/02Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates
    • C08F299/04Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates from polyesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F299/00Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers
    • C08F299/02Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates
    • C08F299/04Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates from polyesters
    • C08F299/0407Processes of polymerisation
    • C08F299/0421Polymerisation initiated by wave energy or particle radiation
    • C08F299/0428Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • C08F299/0435Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light with sensitising agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2207/00Aspects of the compositions, gradients
    • B22F2207/01Composition gradients
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • B33Y40/10Pre-treatment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present disclosure relates generally to a manufacturing system and, more particularly, to an additive manufacturing system implementing hardener pre-impregnation.
  • FDM fused deposition modeling
  • a recently developed improvement over traditional FDM manufacturing involves the use of continuous fibers embedded within material discharging from the print head (a.k.a., Continuous Fiber 3D Printing—CF3DTM).
  • a matrix is supplied to the print head and discharged (e.g., extruded and/or pultruded) along with one or more continuous fibers also passing through the same head at the same time.
  • the matrix can be a traditional thermoplastic, a powdered metal, a liquid matrix (e.g., a UV curable and/or two-part resin), or a combination of any of these and other known matrixes.
  • a cure enhancer e.g., a UV light, an ultrasonic emitter, a heat source, a catalyst supply, etc.
  • a cure enhancer e.g., a UV light, an ultrasonic emitter, a heat source, a catalyst supply, etc.
  • the matrix material located at a center of the corresponding fiber bundle can receive sufficient cure enhancement (e.g., sufficient cure energy, catalyst, etc.). If unaccounted for, the resulting structure may lack strength and/or sag undesirably.
  • sufficient cure enhancement e.g., sufficient cure energy, catalyst, etc.
  • the disclosed system is directed to addressing one or more of the problems set forth above and/or other problems of the prior art.
  • the present disclosure is directed to a method of additively manufacturing a composite structure.
  • the method may include directing a continuous reinforcement into a print head, and coating the continuous reinforcement with a first matrix component inside of the print head.
  • the method may further include coating the continuous reinforcement with a second matrix component, discharging the continuous reinforcement through a nozzle of the print head, and moving the print head in multiple dimensions during the discharging.
  • the first and second matrix components interact to cause hardening of a matrix around the continuous reinforcement.
  • the present disclosure is directed to a system for additively manufacturing a composite structure.
  • the system may include a support, and a print head connected to an end of the support.
  • the print head may have a body with a chamber, in which a continuous reinforcement is coated with one of a resin and a catalyst.
  • the print head may also include a nozzle connected to a discharge end of the body and configured to discharge the continuous reinforcement coated in both the resin and the catalyst.
  • the system may further include a controller in communication with the support and the head. The controller may be configured to selectively cause the support to move the head in multiple dimensions during discharge of the continuous reinforcement from the nozzle, according to specifications for the composite structure.
  • the present disclosure is directed to a prepreg material for use in additively manufacturing a composite structure.
  • the prepreg material may include a continuous reinforcement, and a catalyst of a multi-part matrix.
  • the multi-part matrix which also includes at least a resin, is curable around the continuous reinforcement to form the composite structure.
  • the reinforcement is at least partially saturated with the catalyst and substantially free of the resin prior to manufacture of the composite structure, and the reinforcement makes up about 35-70% of the composite structure.
  • the catalyst makes up about 0.1-10% of the composite structure.
  • FIG. 1 is a diagrammatic illustration of an exemplary disclosed manufacturing system
  • FIGS. 2-4 are diagrammatic illustrations an exemplary disclosed heads that may be used in conjunction with the manufacturing system of FIG. 1 .
  • FIG. 1 illustrates an exemplary system 10 , which may be used to continuously manufacture a composite structure 12 having any desired cross-sectional shape (e.g., circular, polygonal, etc.).
  • System 10 may include at least a support 14 and a head 16 .
  • Head 16 may have a body 18 that is coupled to and moved by support 14 , and a nozzle 20 located at an opposing discharge end of body 18 .
  • support 14 is a robotic arm capable of moving head 16 in multiple directions during fabrication of structure 12 , such that a resulting longitudinal axis of structure 12 is three-dimensional.
  • support 14 could alternatively be an overhead gantry or a hybrid gantry/arm also capable of moving head 16 in multiple directions during fabrication of structure 12 .
  • support 14 is shown as being capable of 6-axis movements, it is contemplated that any other type of support 14 capable of moving head 16 in the same or in a different manner could also be utilized, if desired.
  • a drive may mechanically couple head 16 to support 14 , and may include components that cooperate to move and/or supply power or materials to head 16 .
  • Body 18 may be configured to receive or otherwise contain a matrix material.
  • the matrix material may include any type of matrix material (e.g., a liquid resin, such as a zero volatile organic compound resin; a powdered metal; etc.) that is curable.
  • exemplary resins include thermosets, single- or multi-part epoxy resins, polyester resins, cationic epoxies, acrylated epoxies, urethanes, esters, thermoplastics, photopolymers, polyepoxides, thiols, alkenes, thiol-enes, and more.
  • the matrix material inside body 18 may be pressurized, for example by an external device (e.g., an extruder or another type of pump—not shown) that is fluidly connected to head 16 via a corresponding conduit (not shown). In another embodiment, however, the pressure may be generated completely inside of body 18 by a similar type of device. In yet other embodiments, the matrix material may be gravity-fed through and/or mixed within body 18 . In some instances, the matrix material inside body 18 may need to be kept cool and/or dark to inhibit premature curing; while in other instances, the matrix material may need to be kept warm for the same reason. In either situation, body 18 may be specially configured (e.g., insulated, chilled, and/or warmed) to provide for these needs.
  • an external device e.g., an extruder or another type of pump—not shown
  • the pressure may be generated completely inside of body 18 by a similar type of device.
  • the matrix material may be gravity-fed through and/or mixed within body 18 .
  • the matrix material inside body 18 may need
  • the matrix material may be used to coat, encase, or otherwise surround any number of continuous reinforcements (e.g., separate fibers, tows, rovings, and/or sheets of material) and, together with the reinforcements, make up at least a portion (e.g., a wall) of composite structure 12 .
  • the reinforcements may be stored within (e.g., on separate internal spools—not shown) or otherwise passed through body 18 (e.g., fed from external spools 21 —See FIGS. 2-4 ).
  • the reinforcements may be of the same type and have the same diameter and cross-sectional shape (e.g., circular, square, flat, etc.), or of a different type with different diameters and/or cross-sectional shapes.
  • the reinforcements may include, for example, carbon fibers, vegetable fibers, wood fibers, mineral fibers, glass fibers, metallic wires, optical tubes, etc. It should be noted that the term “reinforcement” is meant to encompass both structural and non-structural types of continuous materials that can be at least partially encased in the matrix material discharging from nozzle 20 .
  • the reinforcements may be exposed to (e.g., coated with) the matrix material while the reinforcements are passing through body 18 .
  • the matrix material, dry reinforcements, and/or reinforcements that are already exposed to the matrix material may be transported into body 18 in any manner apparent to one skilled in the art.
  • the matrix material and reinforcement may be discharged from nozzle 20 via at least two different modes of operation.
  • a first mode of operation the matrix material and reinforcement are extruded (e.g., pushed under pressure and/or mechanical force) from nozzle 20 , as head 16 is moved by support 14 to create the 3-dimensional shape of structure 12 .
  • a second mode of operation at least the reinforcement is pulled from nozzle 20 , such that a tensile stress is created in the reinforcement during discharge.
  • the matrix material may cling to the reinforcement and thereby also be pulled from nozzle 20 along with the reinforcement, and/or the matrix material may be discharged from nozzle 20 under pressure along with the pulled reinforcement.
  • the resulting tension in the reinforcement may increase a strength of structure 12 , while also allowing for a greater length of unsupported material to have a straighter trajectory (i.e., the tension may act against the force of gravity to provide free-standing support for structure 12 ).
  • the reinforcement may be pulled from nozzle 20 as a result of head 16 moving away from an anchor point 22 .
  • a length of matrix-impregnated reinforcement may be pulled and/or pushed from nozzle 20 , deposited onto anchor point 22 , and cured, such that the discharged material adheres to anchor point 22 .
  • head 16 may be moved away from anchor point 22 , and the relative movement may cause the reinforcement to be pulled from nozzle 20 .
  • the movement of reinforcement through body 18 could be assisted (e.g., via one or more internal and/or external feed mechanisms—not shown), if desired.
  • the discharge rate of reinforcement from nozzle 20 may primarily be the result of relative movement between head 16 and anchor point 22 , such that tension is created and maintained within the reinforcement. It is contemplated that anchor point 22 could be moved away from head 16 instead of or in addition to head 16 being moved away from anchor point 22 .
  • One or more cure enhancers (e.g., a UV light, an ultrasonic emitter, a laser, a heater, a catalyst dispenser, etc.) 24 may be mounted proximate (e.g., within, on, and/or trailing from) head 16 (e.g., at a base of body 18 , inside of body 18 , outside of body 18 , or otherwise adjacent nozzle 20 ) and configured to enhance a cure rate and/or quality of the matrix material as it is discharged from head 16 .
  • a UV light e.g., an ultrasonic emitter, a laser, a heater, a catalyst dispenser, etc.
  • Cure enhancer 24 may be controlled to selectively expose internal and/or external surfaces of structure 12 to energy (e.g., UV light, electromagnetic radiation, vibrations, heat, a chemical catalyst, hardener, or initiator, etc.) during the formation of structure 12 .
  • energy e.g., UV light, electromagnetic radiation, vibrations, heat, a chemical catalyst, hardener, or initiator, etc.
  • the energy may increase a rate of chemical reaction occurring within the matrix material, sinter the material, harden the material, or otherwise cause the material to cure as it discharges from head 16 .
  • a controller 26 may be provided and communicatively coupled with support 14 , head 16 , and any number and type of cure enhancers 24 .
  • Controller 26 may embody a single processor or multiple processors that include a means for controlling an operation of system(s) 10 and/or 12 .
  • Controller 26 may include one or more general- or special-purpose processors or microprocessors.
  • Controller 26 may further include or be associated with a memory for storing data such as, for example, design limits, performance characteristics, operational instructions, matrix characteristics, reinforcement characteristics, characteristics of structure 12 , and corresponding parameters of each component of system 10 .
  • Various other known circuits may be associated with controller 26 , including power supply circuitry, signal-conditioning circuitry, solenoid/motor driver circuitry, communication circuitry, and other appropriate circuitry.
  • controller 26 may be capable of communicating with other components of system 10 via wired and/or wireless transmission.
  • One or more maps may be stored in the memory of controller 26 and used during fabrication of structure 12 .
  • Each of these maps may include a collection of data in the form of lookup tables, graphs, and/or equations.
  • the maps are used by controller 26 to determine desired characteristics of cure enhancers 24 , the associated matrix, and/or the associated reinforcements at different locations within structure 12 .
  • the characteristics may include, among others, a type, quantity, and/or configuration of reinforcement and/or matrix to be discharged at a particular location within structure 12 , and/or an amount, shape, and/or location of desired curing.
  • Controller 26 may then correlate operation of support 14 (e.g., the location and/or orientation of head 16 ) and/or the discharge of material from nozzle 20 (a type of material, desired performance of the material, cross-linking requirements of the material, a discharge rate, etc.) with the operation of cure enhancers 24 such that structure 12 is produced in a desired manner.
  • support 14 e.g., the location and/or orientation of head 16
  • discharge of material from nozzle 20 a type of material, desired performance of the material, cross-linking requirements of the material, a discharge rate, etc.
  • the fibers may be exposed to the matrix material during travel through one or more chambers 28 that are located inside of body 18 .
  • the matrix material being applied to the reinforcement inside of head 16 is a multi-part matrix.
  • the matrix includes a first matrix component (e.g., an epoxy resin, a polyester resin, a vinylester resin, or another type of resin) and at least a second matrix component (e.g., a hardener, a catalyst, or another initiator) that, under controlled conditions, together react or causes a reaction to form a cured and hardened matrix encasing the associated reinforcements.
  • At least two separate chambers 28 are located inside of body 18 of FIG. 2 , for separately coating the reinforcements with the first and second matrix components.
  • These chambers 28 include a first chamber 28 a that is sequentially arranged with a second chamber 28 b , in relation to a travel direction of the reinforcement(s) through head 16 (e.g., from spool 21 to nozzle 20 ).
  • first chamber 28 a contains one of the first and second matrix components
  • second chamber 28 b contains the other of the first and second matrix components. It should be noted that both sequential orders of the first and second matrix components within body 18 are contemplated in this disclosure.
  • the first and/or second matrix components may be supplied to the corresponding chamber(s) 28 a , 28 b in several different ways.
  • one or both of the first and second matrix components may be provided as a gas-, a liquid-, or a powder-stream via a jet 30 (see FIG. 4 ); as a liquid bath via a supply inlet 32 or jet 30 ; as a suspended powder via a pressurized conduit 34 , supply inlet 32 , or jet 30 ; or in another manner known in the art.
  • a regulating device 36 e.g., opposing rollers, a squeegee, a wiper, a brush, an air jet, etc.
  • first and second chambers 28 a and 28 b and/or downstream of second chamber 28 b ) to remove excess matrix component from the reinforcements prior to the coated reinforcements entering second chamber 28 b (and/or just prior to the coated reinforcement entering nozzle 20 ).
  • a regulating device 36 e.g., opposing rollers, a squeegee, a wiper, a brush, an air jet, etc.
  • a mechanical means e.g., a tube surrounding the catalyst-coated reinforcement and extending to jet(s) 30
  • curing of the matrix components may primarily initiate or proceed rapidly only when a temperature of the matrix components exceeds a minimum threshold, regardless of undesired mixing inside second chamber 28 b .
  • body 18 of head 16 may be maintained below the minimum threshold, to inhibit premature curing.
  • jet(s) 30 could be utilized and oriented at a different angle, if desired.
  • jet(s) 30 could be tilted downward toward nozzle 20 and at an oblique angle relative to the axis of the reinforcement. This may help to reduce splashing and contamination of catalyst within matrix reservoir 28 , in some applications.
  • a purge fluid e.g., mineral oil
  • a purge fluid could be periodically (e.g., at a start and/or end of a fabrication event) passed through jet(s) 30 , if desired.
  • the reinforcements may be coated with overlapping inner and outer layers of the first and second matrix components. In some embodiments, the layers remain substantially separated until the reinforcements reach nozzle 20 . In other embodiments, some mixing of the first and second matrix components at their corresponding boundaries occurs, prior to the reinforcements reaching nozzle 20 . Regardless of how much mixing occurs upstream of nozzle 20 , the mechanical motion of the coated reinforcements converging and being discharged through nozzle 20 may enhance mixing of the first and second matrix components. And upon exiting nozzle 20 , curing may begin or speed up as both a result of the increased mixing and exposure to energy from cure enhancers 24 .
  • cure enhancers 24 may be unnecessary, as the mixing of the two matrix components (and/or exposure of the mixed components to ambient conditions) at nozzle 20 may be sufficient for complete curing. It is further contemplated that nozzle 20 (e.g., a tip end of nozzle 20 ) could be energized (e.g., heated, vibrated, etc.) to increase a rate of cure, if desired.
  • an additive or third matrix component may be mixed into one or both of the first and second matrix components.
  • the additive may include, for example, a filler and/or an additional or different catalyst.
  • a UV cure initiator e.g., different from the second matrix component
  • the UV cure initiator may be sufficient to raise a temperature of the matrix mixture coating the reinforcements to the minimum threshold temperature discussed above, upon exposure to light energy from cure enhancers 24 . Thereafter, the second matrix component in the mixture coating the reinforcements may be triggered to cause full and complete curing of the first matrix component in the mixture.
  • the reinforcements being fed into head 16 may include many (e.g., thousands) of individual fibers that are bound, woven, twisted or otherwise gathered together. In these situations, it can be difficult to ensure that a sufficient amount of the first and/or second matrix components coats each of the individual fibers. This may be even more difficult when large tows or thick ribbons of fibers are passed through head 16 at high speeds. For this reason, head 16 may be equipped with one or more fiber-teasing mechanisms 38 that help to separate and/or flatten the tows or ribbons, such that the matrix components can penetrate to the centermost fibers more thoroughly and/or quicker. Mechanisms 38 may be located inside and/or outside of body 18 , at a position upstream of and/or between chamber(s) 28 . Mechanisms 38 may include, for example, brushes, a tortuous path of protrusions (e.g., rollers, fingers, or stationary bumps), air and/or resin jets, and other similar devices.
  • Mechanisms 38 may include, for example, brushes, a tort
  • FIG. 3 illustrates an alternative embodiment of head 16 that is also configured to discharge reinforcements coated in a multi-part matrix.
  • body 18 includes a single chamber 28 .
  • the single chamber 28 may hold either the first matrix component or the second matrix component discussed above, with or without the additive.
  • the remaining matrix component may already coat the reinforcement and be supplied to head 16 as a prepreg material (e.g., from spool 21 and/or from an upstream and offboard coating chamber—not shown).
  • head 16 may be configured to apply only part of the multi-part matrix, with the remaining part(s) already being applied to the reinforcements at an earlier time and/or upstream location.
  • FIG. 4 illustrates another embodiment having a single-chamber head 16 , which is also configured to discharge reinforcements coated in a multi-part matrix.
  • the single chamber 28 of FIG. 4 may hold either the first matrix component or the second matrix component discussed above (with or without the additive).
  • the remaining matrix component may be injected, sprayed, or otherwise advanced (e.g., via jet 30 , inlet 32 , and/or conduit 34 ) into head 16 at a discharge end.
  • the remaining matrix component is advanced into body 18 at a discharge end of chamber 28 , just upstream of nozzle 20 .
  • the remaining matrix component is advanced directly into nozzle 20 .
  • the location of the matrix component advancement should be far enough upstream of the tip end of nozzle 20 to ensure adequate mixing of the matrix components, yet downstream enough to inhibit premature curing inside of nozzle 20 .
  • the reinforcements fed into head 16 may include dry fibers or fibers pre-impregnated with another material (e.g., the additive), if desired.
  • structure 12 may be comprised of at least three primary constituents.
  • these constituents may include the reinforcement (e.g., the continuous fibers, tows, ribbons, sheets, etc.), the first matrix component (e.g., the resin, such as an epoxy resin), and the second matrix component (e.g., the hardener, catalyst, initiator, etc.).
  • the additive e.g., the UV cure initiator
  • the reinforcement may comprise about (e.g., within engineering tolerances) 35-70% (e.g., by weight and/or volume) of structure 12 ; the first matrix component may comprise about 30-50% of structure 12 , and the second matrix component may comprise about 0.1-10% of structure 12 . In embodiments including the additive, the additive may comprise about 0-10%.
  • the disclosed system may be used to continuously manufacture composite structures having any desired cross-sectional shape, length, density, and/or strength.
  • the composite structures may include any number of different reinforcements of the same or different types, diameters, shapes, configurations, and consists, and/or any number of different matrixes. Operation of system 10 will now be described in detail.
  • information regarding a desired structure 12 may be loaded into system 10 (e.g., into controller 26 that is responsible for regulating operation of support 14 , cure enhancer(s) 24 , jet(s) 30 , regulating device(s) 36 , fiber-teasing mechanism(s) 38 , and/or any other associated components).
  • This information may include, among other things, a size (e.g., diameter, wall thickness, length, etc.), a contour (e.g., a trajectory), surface features (e.g., ridge size, location, thickness, length; flange size, location, thickness, length; etc.), connection geometry (e.g., locations and sizes of couplings, tees, splices, etc.), location-specific matrix stipulations, location-specific reinforcement stipulations, desired cure rates, cure locations, cure shapes, cure amounts, etc. It should be noted that this information may alternatively or additionally be loaded into system 10 at different times and/or continuously during the manufacturing event, if desired.
  • a size e.g., diameter, wall thickness, length, etc.
  • a contour e.g., a trajectory
  • surface features e.g., ridge size, location, thickness, length; flange size, location, thickness, length; etc.
  • connection geometry e.g., locations and sizes of couplings
  • a specific nozzle 20 and/or cure enhancer configuration may be connected to head 16 (e.g., to the discharge end of body 18 ), and one or more different (e.g., different sizes, shapes, and/or types of) reinforcements and/or matrix materials may be selectively installed within system 10 and/or continuously supplied into nozzle 20 .
  • the corresponding reinforcements may be passed through one or more fiber-teasing mechanisms 38 (e.g., between the bristles of adjacent brushes, and/or over or around protrusions, etc.) and nozzle 20 , and thereafter connected to a pulling machine (not shown) and/or to a mounting fixture (e.g., to anchor point 22 ).
  • Installation of the matrix material may include filling chamber(s) 28 and/or coupling of an extruder (not shown) to head 16 .
  • Head 16 may be moved by support 14 under the regulation of controller 26 to cause matrix-coated reinforcements to be placed against or on a corresponding anchor point 22 .
  • Cure enhancers 24 may then be selectively activated (e.g., turned on/off and/or intensity-adjusted by controller 26 ) to cause hardening of the matrix material surrounding the reinforcements, thereby bonding the reinforcements to anchor point 22 .
  • the component information may then be used to control operation of system 10 .
  • the reinforcements may be pulled through fiber-teasing mechanism(s) 38 ; separated and/or flattened; submerged within the first matrix component, wrung out by regulating device 36 ; submerged within the second matrix component; and then discharged from nozzle 20 .
  • Controller 26 selectively cause support 14 to move head 16 in a desired manner at this time, such that an axis of the resulting structure 12 follows a desired trajectory (e.g., a free-space, unsupported, 3-D trajectory).
  • cure enhancers 24 may be selectively activated by controller 26 during material discharge to initiate, speed up, or complete hardening of the liquid matrix mixture.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Composite Materials (AREA)
  • Automation & Control Theory (AREA)
  • Robotics (AREA)
  • Ceramic Engineering (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Textile Engineering (AREA)
  • Toxicology (AREA)
  • Moulding By Coating Moulds (AREA)
  • Reinforced Plastic Materials (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
US15/858,445 2017-12-29 2017-12-29 Additive manufacturing system implementing hardener pre-impregnation Active US10081129B1 (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
US15/858,445 US10081129B1 (en) 2017-12-29 2017-12-29 Additive manufacturing system implementing hardener pre-impregnation
US15/995,027 US10807303B2 (en) 2017-12-29 2018-05-31 Additive manufacturing system implementing hardener pre-impregnation
US15/995,035 US11135764B2 (en) 2017-12-29 2018-05-31 Additive manufacturing system implementing hardener pre-impregnation
AU2018204887A AU2018204887B1 (en) 2017-12-29 2018-07-05 Additive manufacturing system implementing hardener pre-impregnation
EP18183250.2A EP3505331A1 (fr) 2017-12-29 2018-07-12 Système ainsi que procédé de fabrication additive mettant en oeuvre une préimprégnation de durcisseur et matériau préimprégné
BR102018014351A BR102018014351A8 (pt) 2017-12-29 2018-07-13 Métodos de fabricação aditiva de uma estrutura composta
CA3012238A CA3012238C (fr) 2017-12-29 2018-07-24 Systeme de fabrication additive mettant en oeuvre la preimpregnation de durcisseur
JP2018138337A JP6546324B1 (ja) 2017-12-29 2018-07-24 硬化剤の予備含浸を実施する付加製造システム
RU2018127312A RU2714813C2 (ru) 2017-12-29 2018-07-25 Система аддитивного производства, реализующая предварительную пропитку отвердителя
KR1020180095182A KR101967105B1 (ko) 2017-12-29 2018-08-14 경화제 사전 함침을 구현하는 적층 가공 시스템
CN201810969188.9A CN109986777B (zh) 2017-12-29 2018-08-23 实施硬化剂预浸渍的增材制造系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US15/858,445 US10081129B1 (en) 2017-12-29 2017-12-29 Additive manufacturing system implementing hardener pre-impregnation

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/995,035 Division US11135764B2 (en) 2017-12-29 2018-05-31 Additive manufacturing system implementing hardener pre-impregnation
US15/995,027 Division US10807303B2 (en) 2017-12-29 2018-05-31 Additive manufacturing system implementing hardener pre-impregnation

Publications (1)

Publication Number Publication Date
US10081129B1 true US10081129B1 (en) 2018-09-25

Family

ID=62948054

Family Applications (3)

Application Number Title Priority Date Filing Date
US15/858,445 Active US10081129B1 (en) 2017-12-29 2017-12-29 Additive manufacturing system implementing hardener pre-impregnation
US15/995,027 Active 2038-04-06 US10807303B2 (en) 2017-12-29 2018-05-31 Additive manufacturing system implementing hardener pre-impregnation
US15/995,035 Active 2039-06-27 US11135764B2 (en) 2017-12-29 2018-05-31 Additive manufacturing system implementing hardener pre-impregnation

Family Applications After (2)

Application Number Title Priority Date Filing Date
US15/995,027 Active 2038-04-06 US10807303B2 (en) 2017-12-29 2018-05-31 Additive manufacturing system implementing hardener pre-impregnation
US15/995,035 Active 2039-06-27 US11135764B2 (en) 2017-12-29 2018-05-31 Additive manufacturing system implementing hardener pre-impregnation

Country Status (9)

Country Link
US (3) US10081129B1 (fr)
EP (1) EP3505331A1 (fr)
JP (1) JP6546324B1 (fr)
KR (1) KR101967105B1 (fr)
CN (1) CN109986777B (fr)
AU (1) AU2018204887B1 (fr)
BR (1) BR102018014351A8 (fr)
CA (1) CA3012238C (fr)
RU (1) RU2714813C2 (fr)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180214909A1 (en) * 2013-03-19 2018-08-02 Airbus Group Limited Extrusion-based additive manufacturing
US20190061948A1 (en) * 2017-08-29 2019-02-28 Goodrich Corporation Conformable tank fabricated using additive manufacturing
WO2019157296A3 (fr) * 2018-02-08 2020-04-30 Essentium Materials, Llc Filament à couches multiples et procédé de fabrication
US10703481B2 (en) 2017-08-29 2020-07-07 Goodrich Corporation Conformable tank with sandwich structure walls
CN111761844A (zh) * 2020-06-30 2020-10-13 诺思贝瑞新材料科技(苏州)有限公司 一种3d打印用连续纤维复合材料及其制备方法及装置
US10816138B2 (en) 2017-09-15 2020-10-27 Goodrich Corporation Manufacture of a conformable pressure vessel
CN112936862A (zh) * 2019-03-05 2021-06-11 钟隆君 一种生物打印机用喷头组件及使用方法
US11167375B2 (en) 2018-08-10 2021-11-09 The Research Foundation For The State University Of New York Additive manufacturing processes and additively manufactured products
US11279085B2 (en) * 2018-10-26 2022-03-22 Continuous Composites Inc. System for additive manufacturing
US11285649B2 (en) * 2013-11-15 2022-03-29 Makerbot Industries, Llc Three-dimensional printer tool systems
US20220339871A1 (en) * 2021-04-27 2022-10-27 Continuous Composites Inc. Additive manufacturing system
US20230166450A1 (en) * 2021-02-25 2023-06-01 Caracol S.R.L. Improved Method and Kit for Three-Dimensional Printing
US11939105B2 (en) 2017-08-29 2024-03-26 Goodrich Corporation 3D woven conformable tank
US12128607B2 (en) 2021-10-20 2024-10-29 Continuous Composites Inc. Systems and methods for additive manufacturing
US12134226B2 (en) 2022-10-18 2024-11-05 Continuous Composites Inc. Systems and methods of additive manufacturing

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3797904A1 (fr) * 2019-09-27 2021-03-31 Flender GmbH Procédé de fabrication additive avec durcissement
US20210178659A1 (en) * 2019-12-17 2021-06-17 Saudi Arabian Oil Company Grooved die for manufacturing unidirectional tape
JPWO2022118581A1 (fr) * 2020-12-04 2022-06-09
RU206982U1 (ru) * 2020-12-30 2021-10-05 Общество с ограниченной ответственностью "МайтиТех" Печатающая головка для 3D-принтера
CN112895425B (zh) * 2021-01-15 2022-07-19 浙江大学 偏心多辊子浸渍复合的纤维丝熔融沉积挤出打印喷头装置
CN113601836B (zh) * 2021-07-22 2022-02-11 浙江大学 机器人辅助大尺度纤维增强异质多材料原位增材制造系统

Citations (173)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3286305A (en) 1964-09-03 1966-11-22 Rexall Drug Chemical Apparatus for continuous manufacture of hollow articles
US3809514A (en) 1971-11-13 1974-05-07 Castro Nunez Elem Huecos Machine for the continuous manufacture of hollow elements
US3984271A (en) 1973-06-25 1976-10-05 Owens-Corning Fiberglas Corporation Method of manufacturing large diameter tubular structures
US3993726A (en) 1974-01-16 1976-11-23 Hercules Incorporated Methods of making continuous length reinforced plastic articles
US4643940A (en) 1984-08-06 1987-02-17 The Dow Chemical Company Low density fiber-reinforced plastic composites
US4671761A (en) 1984-06-30 1987-06-09 Fried. Krupp Gesellschaft Mit Beschrankter Haftung Apparatus for producing reinforced elongate bodies
US4822548A (en) 1986-06-13 1989-04-18 Firma Carl Freudenberg Method and apparatus for manufacturing a thread-reinforced rubber hose
US4851065A (en) 1986-01-17 1989-07-25 Tyee Aircraft, Inc. Construction of hollow, continuously wound filament load-bearing structure
US5002712A (en) 1988-10-19 1991-03-26 Bayer Aktiengesellschaft Manufacturing composite materials
US5037691A (en) 1986-09-15 1991-08-06 Compositech, Ltd. Reinforced plastic laminates for use in the production of printed circuit boards and process for making such laminates and resulting products
DE4102257A1 (de) 1991-01-23 1992-07-30 Artos Med Produkte Vorrichtung zur herstellung von kunststoffteilen
US5296335A (en) 1993-02-22 1994-03-22 E-Systems, Inc. Method for manufacturing fiber-reinforced parts utilizing stereolithography tooling
US5340433A (en) 1989-10-30 1994-08-23 Stratasys, Inc. Modeling apparatus for three-dimensional objects
US5746967A (en) 1995-06-26 1998-05-05 Fox Lite, Inc. Method of curing thermoset resin with visible light
US5866058A (en) 1997-05-29 1999-02-02 Stratasys Inc. Method for rapid prototyping of solid models
US5936861A (en) 1997-08-15 1999-08-10 Nanotek Instruments, Inc. Apparatus and process for producing fiber reinforced composite objects
US6153034A (en) 1997-08-03 2000-11-28 Micromod R.P. Ltd Rapid prototyping
US20020009935A1 (en) 1999-03-23 2002-01-24 Hexcel Corporation Core-crush resistant fabric and prepreg for fiber reinforced composite sandwich structures
US20020062909A1 (en) 2000-11-29 2002-05-30 Jang Bor Z. Layer-additive method and apparatus for freeform fabrication of 3-D objects
US20020113331A1 (en) 2000-12-20 2002-08-22 Tan Zhang Freeform fabrication method using extrusion of non-cross-linking reactive prepolymers
US6459069B1 (en) 1996-11-22 2002-10-01 Joshua E. Rabinovich Rapid manufacturing system for metal, metal matrix composite materials and ceramics
US20020165304A1 (en) 2000-12-04 2002-11-07 Mulligan Anthony C. Methods and appratus for preparation of three-dimensional bodies
US6501554B1 (en) 2000-06-20 2002-12-31 Ppt Vision, Inc. 3D scanner and method for measuring heights and angles of manufactured parts
US20030044539A1 (en) 2001-02-06 2003-03-06 Oswald Robert S. Process for producing photovoltaic devices
US20030056870A1 (en) 2001-09-21 2003-03-27 Stratasys, Inc. High-precision modeling filament
US20030160970A1 (en) 2002-01-30 2003-08-28 Anup Basu Method and apparatus for high resolution 3D scanning
US20030186042A1 (en) 2002-05-07 2003-10-02 Dunlap Earl N. Process for tempering rapid prototype parts
US20030236588A1 (en) 2002-03-14 2003-12-25 Jang Bor Z. Nanotube fiber reinforced composite materials and method of producing fiber reinforced composites
US6799081B1 (en) 2000-11-15 2004-09-28 Mcdonnell Douglas Corporation Fiber placement and fiber steering systems and corresponding software for composite structures
US6803003B2 (en) 2000-12-04 2004-10-12 Advanced Ceramics Research, Inc. Compositions and methods for preparing multiple-component composite materials
US20050006803A1 (en) 2001-05-17 2005-01-13 Owens Charles R. Preform for manufacturing a material having a plurality of voids and method of making the same
US20050061422A1 (en) 2003-09-22 2005-03-24 Martin James P. Multiple tape laying apparatus and method
US20050104257A1 (en) 2003-09-04 2005-05-19 Peihua Gu Multisource and multimaterial freeform fabrication
US20050109451A1 (en) 2003-11-20 2005-05-26 Hauber David E. Composite tape laying apparatus and method
US20050230029A1 (en) 2001-01-02 2005-10-20 Advanced Ceramics Research, Inc. Continuous fiber reinforced composites and methods, apparatuses, and compositions for making the same
US7039485B2 (en) 2004-03-12 2006-05-02 The Boeing Company Systems and methods enabling automated return to and/or repair of defects with a material placement machine
US20070003650A1 (en) 2001-03-01 2007-01-04 Schroeder Ernest C Apparatus for fabricating fiber reinforced plastic parts
US20070228592A1 (en) 2006-04-03 2007-10-04 Stratasys, Inc. Auto tip calibration in an extrusion apparatus
US20090095410A1 (en) 2007-10-16 2009-04-16 Ingersoll Machine Tools, Inc. Fiber Placement Machine Platform System Having Interchangeable Head and Creel Assemblies
US7555404B2 (en) 2007-08-09 2009-06-30 The Boeing Company Methods and systems for automated ply boundary and orientation inspection
US7795349B2 (en) 1999-11-05 2010-09-14 Z Corporation Material systems and methods of three-dimensional printing
KR100995983B1 (ko) 2008-07-04 2010-11-23 재단법인서울대학교산학협력재단 회로기판의 교차인쇄방법 및 장치
US20110032301A1 (en) 2004-09-21 2011-02-10 Z Corporation Apparatus and methods for servicing 3d printers
US20110143108A1 (en) 2008-05-09 2011-06-16 Fit Fruth Innovative Technologien Gmbh Fibers and methods for use in solid freeform fabrication
US20120060468A1 (en) 2010-09-13 2012-03-15 Experimental Propulsion Lab, Llc Additive manufactured propulsion system
US20120159785A1 (en) 2009-09-04 2012-06-28 BayerMaerialScience LLC Automated processes for the production of polyurethane wind turbine blades
US8221669B2 (en) 2009-09-30 2012-07-17 Stratasys, Inc. Method for building three-dimensional models in extrusion-based digital manufacturing systems using ribbon filaments
KR101172859B1 (ko) 2010-10-04 2012-08-09 서울대학교산학협력단 나노 스케일 3차원 프린팅을 사용한 초정밀 가공 장치 및 방법
US20120231225A1 (en) 2010-09-17 2012-09-13 Stratasys, Inc. Core-shell consumable materials for use in extrusion-based additive manufacturing systems
US20120247655A1 (en) 2009-11-13 2012-10-04 Karlsruher Institut Fuer Technologie Method for producing a component from a fiber-reinforced material
WO2013017284A2 (fr) 2011-08-04 2013-02-07 Arburg Gmbh + Co. Kg Procédé et dispositif de fabrication d'un objet tridimensionnel comprenant l'apport de fibres
US20130164498A1 (en) 2011-12-21 2013-06-27 Adc Acquisition Company Thermoplastic composite prepreg for automated fiber placement
US20130209600A1 (en) 2012-02-10 2013-08-15 Adam Perry Tow Multi-axis, multi-purpose robotics automation and quality adaptive additive manufacturing
US20130233471A1 (en) 2012-03-08 2013-09-12 Randall A. Kappesser Small flat composite placement system
US20130292039A1 (en) 2012-04-04 2013-11-07 Massachusetts Institute Of Technology Methods and Apparatus for Actuated Fabricator
US20130337265A1 (en) 2012-06-19 2013-12-19 EADS UK Limited British Thermoplastic polymer powder
US20130337256A1 (en) 2012-06-19 2013-12-19 Eads Uk Limited Extrusion-based additive manufacturing system
US20140034214A1 (en) 2012-07-31 2014-02-06 Makerbot Industries, Llc Build material switching
US20140061974A1 (en) 2012-08-29 2014-03-06 Kenneth Tyler Method and apparatus for continuous composite three-dimensional printing
US20140159284A1 (en) 2012-12-07 2014-06-12 Stratasys, Inc. Liquefier assembly for use in additive manufacturing system
US20140232035A1 (en) 2013-02-19 2014-08-21 Hemant Bheda Reinforced fused-deposition modeling
US20140268604A1 (en) 2013-03-14 2014-09-18 Board Of Regents, The University Of Texas System Methods and Systems For Embedding Filaments in 3D Structures, Structural Components, and Structural Electronic, Electromagnetic and Electromechanical Components/Devices
US20140291886A1 (en) 2013-03-22 2014-10-02 Gregory Thomas Mark Three dimensional printing
US8962717B2 (en) 2012-08-20 2015-02-24 Basf Se Long-fiber-reinforced flame-retardant polyesters
US20150136455A1 (en) 2013-11-15 2015-05-21 Robert J. Fleming Shape forming process and application thereof for creating structural elements and designed objects
US9126367B1 (en) 2013-03-22 2015-09-08 Markforged, Inc. Three dimensional printer for fiber reinforced composite filament fabrication
US9126365B1 (en) 2013-03-22 2015-09-08 Markforged, Inc. Methods for composite filament fabrication in three dimensional printing
US9149988B2 (en) 2013-03-22 2015-10-06 Markforged, Inc. Three dimensional printing
US9156205B2 (en) 2013-03-22 2015-10-13 Markforged, Inc. Three dimensional printer with composite filament fabrication
US9186846B1 (en) 2013-03-22 2015-11-17 Markforged, Inc. Methods for composite filament threading in three dimensional printing
US9186848B2 (en) 2013-03-22 2015-11-17 Markforged, Inc. Three dimensional printing of composite reinforced structures
US20160012935A1 (en) 2014-07-11 2016-01-14 Empire Technology Development Llc Feedstocks for additive manufacturing and methods for their preparation and use
EP2589481B1 (fr) 2011-11-04 2016-01-20 Ralph Peter Hegler Dispositif de fabrication continue d'un tuyau composite doté d'un manchon de raccordement
US20160031155A1 (en) 2014-07-29 2016-02-04 Cc3D Llc Method and Apparatus for Additive Mechanical Growth of Tubular Structures
US20160046082A1 (en) 2014-08-12 2016-02-18 Airbus Operations Gmbh Apparatus and method for manufacturing components from a fiber-reinforced composite material
US20160052208A1 (en) 2014-08-21 2016-02-25 Mosaic Manufacturing Ltd. Series enabled multi-material extrusion technology
US20160082659A1 (en) 2014-09-18 2016-03-24 The Boeing Company Extruded Deposition of Polymers Having Continuous Carbon Nanotube Reinforcements
US20160082641A1 (en) 2014-09-18 2016-03-24 The Boeing Company Extruded Deposition of Fiber Reinforced Polymers
US20160107379A1 (en) 2013-03-22 2016-04-21 Markforged, Inc. Composite filament 3d printing using complementary reinforcement formations
US20160114532A1 (en) 2013-05-31 2016-04-28 United Technologies Corporation Continuous fiber-reinforced component fabrication
US20160136885A1 (en) 2014-11-14 2016-05-19 Cole Nielsen-Cole Additive manufacturing techniques and systems to form composite materials
WO2016088048A1 (fr) 2014-12-01 2016-06-09 Sabic Global Technologies B.V. Refroidissement rapide de buse pour la fabrication additive
WO2016088042A1 (fr) 2014-12-01 2016-06-09 Sabic Global Technologies B.V. Systèmes et procédés d'automatisation de processus de fabrication additive
US9370896B2 (en) 2013-06-05 2016-06-21 Markforged, Inc. Methods for fiber reinforced additive manufacturing
US9381702B2 (en) 2013-03-15 2016-07-05 Seriforge Inc. Composite preforms including three-dimensional interconnections
US20160192741A1 (en) 2015-01-05 2016-07-07 Markforged, Inc. Footwear fabrication by composite filament 3d printing
WO2016110444A1 (fr) 2015-01-09 2016-07-14 Daher Aerospace Procédé pour la fabrication d'un pièce composite complexe, notamment à matrice thermoplastique et pièce obtenue par un tel procédé
US20160243762A1 (en) 2013-11-15 2016-08-25 Fleming Robert J Automated design, simulation, and shape forming process for creating structural elements and designed objects
US20160263806A1 (en) 2013-10-30 2016-09-15 Laing O'rourke Australia Pty Limited Method for fabricating an object
US20160263823A1 (en) 2015-03-09 2016-09-15 Frederick Matthew Espiau 3d printed radio frequency absorber
US20160263822A1 (en) 2013-10-30 2016-09-15 R. Platt Boyd, IV Additive manufacturing of building and other structures
US20160271876A1 (en) 2015-03-22 2016-09-22 Robert Bruce Lower Apparatus and method of embedding cable in 3D printed objects
US9458955B2 (en) 2012-07-20 2016-10-04 Mag Aerospace Industries, Llc Composite waste and water transport elements and methods of manufacture for use on aircraft
US9457521B2 (en) 2011-09-01 2016-10-04 The Boeing Company Method, apparatus and material mixture for direct digital manufacturing of fiber reinforced parts
WO2016159259A1 (fr) 2015-03-31 2016-10-06 キョーラク株式会社 Moulage de résine filamenteuse, procédé de fabrication d'objet tridimensionnel, et procédé de fabrication de moulage de résine filamenteuse
US20160297104A1 (en) 2013-11-19 2016-10-13 Guill Tool & Engineering Coextruded, multilayer and multicomponent 3d printing inputs field
US20160311165A1 (en) 2013-03-22 2016-10-27 Markforged, Inc. Multiaxis fiber reinforcement for 3d printing
US20160325491A1 (en) 2013-12-26 2016-11-10 Texas Tech University System Microwave-induced localized heating of cnt filled polymer composites for enhanced inter-bead diffusive bonding of fused filament fabricated parts
US20160332369A1 (en) 2014-02-04 2016-11-17 Samir Shah Device and method of manufacturing customizable three-dimensional objects
US20160339633A1 (en) 2014-01-17 2016-11-24 Graphene 3D Lab Inc. Fused filament fabrication using multi-segment filament
WO2016196382A1 (fr) 2015-06-01 2016-12-08 Velo3D, Inc. Impression en trois dimensions et objets tridimensionnels formés au moyen de celle-ci
US20160361869A1 (en) 2013-03-22 2016-12-15 Markforged, Inc. Three dimensional printer for fiber reinforced composite filament fabrication
US20160368255A1 (en) 2015-06-19 2016-12-22 Airbus Operations Gmbh Method of manufacturing components, in particular elongated profile sections from band-shaped pre-impregnated fibers (prepreg)
US9539762B2 (en) 2013-03-22 2017-01-10 Markforged, Inc. 3D printing with kinematic coupling
US20170007360A1 (en) 2015-07-07 2017-01-12 Align Technology, Inc. Systems, apparatuses and methods for dental appliances with integrally formed features
US20170007361A1 (en) 2015-07-07 2017-01-12 Align Technology, Inc. Multi-material aligners
US20170008333A1 (en) 2015-07-07 2017-01-12 Align Technology, Inc. Dental appliance having ornamental design
WO2017006324A1 (fr) 2015-07-09 2017-01-12 Something3D Ltd. Procédé et appareil d'impression tridimensionnelle
US20170007365A1 (en) 2015-07-07 2017-01-12 Align Technology, Inc. Direct fabrication of aligners with interproximal force coupling
WO2017006178A1 (fr) 2015-07-07 2017-01-12 Align Technology, Inc. Systèmes, appareils et procédés pour l'administration de substances par des appareils dentaires et pour réaliser des motifs décoratifs sur des appareils dentaires
US20170007362A1 (en) 2015-07-07 2017-01-12 Align Technology, Inc. Dental materials using thermoset polymers
US20170007367A1 (en) 2015-07-07 2017-01-12 Align Technology, Inc. Direct fabrication of aligners for palate expansion and other applications
US20170015060A1 (en) 2015-07-17 2017-01-19 Lawrence Livermore National Security, Llc Additive manufacturing continuous filament carbon fiber epoxy composites
US20170015059A1 (en) 2015-07-17 2017-01-19 Lawrence Livermore National Securty, Llc High performance, rapid thermal/uv curing epoxy resin for additive manufacturing of short and continuous carbon fiber epoxy composites
US20170021565A1 (en) 2014-04-30 2017-01-26 Magna International Inc. Apparatus and process for forming three-dimensional objects
US20170028628A1 (en) 2015-07-31 2017-02-02 The Boeing Company Systems and methods for additively manufacturing composite parts
US20170028620A1 (en) 2015-07-31 2017-02-02 The Boeing Company Systems and methods for additively manufacturing composite parts
US20170030207A1 (en) 2015-07-28 2017-02-02 General Electric Company Ply, method for manufacturing ply, and method for manufacturing article with ply
US20170028635A1 (en) 2015-07-31 2017-02-02 Boeing Co Systems and methods for additively manufacturing composite parts
US20170028623A1 (en) 2015-07-31 2017-02-02 The Boeing Company Systems and methods for additively manufacturing composite parts
US20170028633A1 (en) 2015-07-31 2017-02-02 The Boeing Company Systems and methods for additively manufacturing composite parts
US20170028644A1 (en) 2015-07-31 2017-02-02 The Boeing Company Systems and methods for additively manufacturing composite parts
US20170028638A1 (en) 2015-07-31 2017-02-02 The Boeing Company Systems and methods for additively manufacturing composite parts
US20170036403A1 (en) 2014-03-28 2017-02-09 Ez Print, Llc 3D Print Bed Having Permanent Coating
US9579851B2 (en) 2013-03-22 2017-02-28 Markforged, Inc. Apparatus for fiber reinforced additive manufacturing
US20170057165A1 (en) 2015-08-25 2017-03-02 The Boeing Company Composite feedstock strips for additive manufacturing and methods of forming thereof
US20170057181A1 (en) 2015-08-25 2017-03-02 The Boeing Company Composite feedstock strips for additive manufacturing and methods of forming thereof
US20170064840A1 (en) 2015-08-24 2017-03-02 Board Of Regents, The University Of Texas System Method and apparatus for wire handling and embedding on and within 3d printed parts
US20170057167A1 (en) 2015-08-25 2017-03-02 University Of South Carolina Integrated robotic 3d printing system for printing of fiber reinforced parts
US20170057164A1 (en) 2015-08-31 2017-03-02 Colorado School Of Mines Hybrid additive manufacturing method and apparatus made therefrom
WO2017051202A1 (fr) 2015-09-24 2017-03-30 Victrex Manufacturing Limited Matériaux polymères
US20170106565A1 (en) 2015-10-14 2017-04-20 Northrop Grumman Systems Corporation Continuous fiber filament for fused deposition modeling (fdm) additive manufactured (am) structures
US20170120519A1 (en) 2013-03-22 2017-05-04 Markforged, Inc. Embedding 3d printed fiber reinforcement in molded articles
US20170129171A1 (en) 2015-11-09 2017-05-11 U.S.A. As Represented By The Administrator Of The National Aeronautics And Space Administration Devices and Methods for Additive Manufacturing Using Flexible Filaments
US20170129186A1 (en) 2015-11-06 2017-05-11 U.S.A. As Represented By The Administrator Of The National Aeronautics And Space Administration Adhesion test station in an extrusion apparatus and methods for using the same
US20170129170A1 (en) 2015-11-06 2017-05-11 U.S.A. As Represented By The Administrator Of The National Aeronautics And Space Administration Method for the free form fabrication of articles out of electrically conductive filaments using localized heating
US20170129182A1 (en) 2015-11-05 2017-05-11 U.S.A. As Represented By The Administrator Of The National Aeronautics And Space Administration Cutting mechanism for carbon nanotube yarns, tapes, sheets and polymer composites thereof
US20170129176A1 (en) 2015-11-09 2017-05-11 Nike, Inc. Tack and Drag Printing
WO2017081253A1 (fr) 2015-11-12 2017-05-18 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Dispositif pour la fabrication additive d'une pièce
US20170144375A1 (en) 2015-11-20 2017-05-25 The Boeing Company System and method for cutting material in continuous fiber reinforced additive manufacturing
WO2017085649A1 (fr) 2015-11-17 2017-05-26 Politecnico Di Milano Appareil et procédé pour l'impression tridimensionnelle de matériaux composites en fibres continues
WO2017087663A1 (fr) 2015-11-17 2017-05-26 Zephyros, Inc. Systèmes pour des matériaux de fabrication additive
US20170151728A1 (en) 2015-11-30 2017-06-01 Ut-Battelle, Llc Machine and a Method for Additive Manufacturing with Continuous Fiber Reinforcements
US20170157831A1 (en) 2015-12-08 2017-06-08 Xerox Corporation System and method for operation of multi-nozzle extrusion printheads in three-dimensional object printers
US20170157828A1 (en) 2015-12-08 2017-06-08 Xerox Corporation Three-dimensional object printer with multi-nozzle extruders and dispensers for multi-nozzle extruders and printheads
US20170157851A1 (en) 2015-12-08 2017-06-08 Northrop Grumman Systems Corporation Device and method for 3d printing with long-fiber reinforcement
US20170157844A1 (en) 2015-12-08 2017-06-08 Xerox Corporation Extrusion printheads for three-dimensional object printers
US20170165908A1 (en) 2015-12-11 2017-06-15 Massachusetts Institute Of Technology Systems, devices, and methods for deposition-based three-dimensional printing
US20170173868A1 (en) 2013-03-22 2017-06-22 Markforged, Inc. Continuous and random reinforcement in a 3d printed part
US9688028B2 (en) 2013-03-22 2017-06-27 Markforged, Inc. Multilayer fiber reinforcement design for 3D printing
US20170182712A1 (en) 2015-12-28 2017-06-29 Southwest Research Institute Reinforcement System for Additive Manufacturing, Devices and Methods Using the Same
WO2017108758A1 (fr) 2015-12-22 2017-06-29 Arburg Gmbh + Co Kg Dispositif et procédé de fabrication d'un objet tridimensionnel présentant un dispositif d'alimentation en fibres
US9694544B2 (en) 2013-03-22 2017-07-04 Markforged, Inc. Methods for fiber reinforced additive manufacturing
WO2017122943A1 (fr) 2016-01-14 2017-07-20 주식회사 키스타 Appareil d'alimentation en matériau pour apporter un matériau comprenant un matériau plastique modelable et robot de fabrication d'objet en 3d le comprenant
WO2017124085A1 (fr) 2016-01-15 2017-07-20 Markforged, Inc. Renforcement continu et aléatoire dans une pièce imprimée en 3d
WO2017122941A1 (fr) 2016-01-14 2017-07-20 주식회사 키스타 Transformateur pour commander le déplacement d'une unité de tête et la tension et la température d'une matière plastique façonnable
WO2017122942A1 (fr) 2016-01-14 2017-07-20 주식회사 키스타 Unité d'alimentation de tête et unité de tête permettant le réglage de l'éjection de matière comprenant de la matière plastique façonnable
WO2017123726A1 (fr) 2016-01-12 2017-07-20 Markforged, Inc. Incorporation d'un renfort de fibres obtenu par impression 3d dans des articles moulés
US20170210074A1 (en) 2014-05-27 2017-07-27 Nihon University Three-dimensional printing system, three-dimensional printing method, molding device, fiber-containing object, and production method thereof
WO2017126476A1 (fr) 2016-01-22 2017-07-27 三菱瓦斯化学株式会社 Procédé de production de structures tridimensionnelles et filament pour imprimantes 3d
WO2017126477A1 (fr) 2016-01-22 2017-07-27 三菱瓦斯化学株式会社 Procédé de production de structures tridimensionnelles
US20170217088A1 (en) 2013-10-30 2017-08-03 Branch Technology, Inc. Cellular Fabrication and Apparatus for Additive Manufacturing
WO2017137851A2 (fr) 2016-02-11 2017-08-17 Martin Kuster Dispositifs d'impression mobiles pour imprimantes 3d
US20170232674A1 (en) 2013-03-22 2017-08-17 Markforged, Inc. Wear resistance in 3d printing of composites
WO2017142867A1 (fr) 2016-02-15 2017-08-24 Georgia-Pacific Chemicals Llc Fabrication d'additif d'extrusion de granules ou filaments de résines thermodurcissables
WO2017150186A1 (fr) 2016-02-29 2017-09-08 学校法人日本大学 Appareil et procédé d'impression 3d
US20170259502A1 (en) 2016-03-10 2017-09-14 Mantis Composites Inc. Additive manufacturing of composite materials
EP3219474A1 (fr) 2016-03-16 2017-09-20 Airbus Operations GmbH Procédé et dispositif a poser des bandes pour fabriquer en 3d un composant composite renforcé par des fibres
US20170266876A1 (en) 2014-12-01 2017-09-21 Sabic Global Technologies B.V. Nozzle tool changing for material extrusion additive manufacturing
US20170274585A1 (en) 2016-03-28 2017-09-28 Arevo, Inc. Method and Apparatus for Additive Manufacturing Using Filament Shaping
US20170284876A1 (en) 2016-04-04 2017-10-05 Xerox Corporation 3d printed conductive compositions anticipating or indicating structural compromise
US9782926B2 (en) 2012-04-13 2017-10-10 Compositence Gmbh Laying head and apparatus and method for manufacturing a three-dimensional pre-form for a structural component from a fiber composite material
US20180065300A1 (en) * 2016-09-06 2018-03-08 Cc3D Llc Additive manufacturing system having in-head fiber teasing

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR91622E (fr) * 1965-06-19 1968-07-19 Tubes stratifiés étanches
US5207850A (en) * 1990-07-17 1993-05-04 General Electric Company Process for making thermoplastic composites with cyclics oligomers and composites made thereby
KR100214153B1 (ko) * 1993-02-25 1999-08-02 로톤 렌들 더블유. 강성의 3차원 구조 예비 성형체의 제조 방법
JP3554570B2 (ja) * 1993-12-28 2004-08-18 株式会社アイペック 結晶性熱可塑性樹脂シート又はフイルムの製造方法
US20040119188A1 (en) 2002-12-20 2004-06-24 Lowe Kenneth A. Impregnated fiber precursors and methods and systems for producing impregnated fibers and fabricating composite structures
US7093638B2 (en) 2003-04-21 2006-08-22 Lignum Vitae Limited Apparatus and method for manufacture and use of composite fiber components
US20070023975A1 (en) * 2005-08-01 2007-02-01 Buckley Daniel T Method for making three-dimensional preforms using anaerobic binders
CN101474868B (zh) * 2008-10-15 2011-02-02 上海杰事杰新材料股份有限公司 连续纤维增强热塑性树脂复合材料预浸带制备设备及应用
CN103847111B (zh) * 2012-12-01 2016-05-11 北京化工大学 一种连续纤维增强热塑性树脂片材的成型方法
US9855680B2 (en) 2013-06-11 2018-01-02 Johns Manville Fiber-reinforced composite articles and methods of making them
US9725563B2 (en) * 2014-02-05 2017-08-08 Johns Manville Fiber reinforced thermoset composites and methods of making
WO2015123732A1 (fr) * 2014-02-21 2015-08-27 Laing O'rourke Australia Pty Limited Procédé destiné à la fabrication d'un élément de construction composite
JP6769989B2 (ja) * 2014-12-12 2020-10-14 フンダシオ エウレカト 複合材料から作られた部品を製造する方法及びシステム、並びに該方法により得られた複合材料から製造された部品
US20160271874A1 (en) * 2015-03-20 2016-09-22 EP Technologies LLC 3d printers having plasma applicators and methods of using same
JP2017071101A (ja) * 2015-10-06 2017-04-13 独立行政法人国立高等専門学校機構 付加製造装置
RU169634U1 (ru) * 2016-09-30 2017-03-27 Автономная некоммерческая образовательная организация высшего образования "Сколковский институт науки и технологий" Экструдер для аддитивного производства изделий из композитных материалов
CN106927847B (zh) * 2017-02-27 2020-08-18 西安交通大学 一种基于3d打印技术的纤维增强陶瓷基复合材料成形方法及装置
CN106863772A (zh) * 2017-02-27 2017-06-20 上海大学 热塑性树脂基连续纤维预浸料的双喷头3d打印系统和方法
CN106915079A (zh) * 2017-04-18 2017-07-04 中国科学院宁波材料技术与工程研究所 一种连续碳纤维3d打印装置

Patent Citations (206)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3286305A (en) 1964-09-03 1966-11-22 Rexall Drug Chemical Apparatus for continuous manufacture of hollow articles
US3809514A (en) 1971-11-13 1974-05-07 Castro Nunez Elem Huecos Machine for the continuous manufacture of hollow elements
US3984271A (en) 1973-06-25 1976-10-05 Owens-Corning Fiberglas Corporation Method of manufacturing large diameter tubular structures
US3993726A (en) 1974-01-16 1976-11-23 Hercules Incorporated Methods of making continuous length reinforced plastic articles
US4671761A (en) 1984-06-30 1987-06-09 Fried. Krupp Gesellschaft Mit Beschrankter Haftung Apparatus for producing reinforced elongate bodies
US4643940A (en) 1984-08-06 1987-02-17 The Dow Chemical Company Low density fiber-reinforced plastic composites
US4851065A (en) 1986-01-17 1989-07-25 Tyee Aircraft, Inc. Construction of hollow, continuously wound filament load-bearing structure
US4822548A (en) 1986-06-13 1989-04-18 Firma Carl Freudenberg Method and apparatus for manufacturing a thread-reinforced rubber hose
US5037691A (en) 1986-09-15 1991-08-06 Compositech, Ltd. Reinforced plastic laminates for use in the production of printed circuit boards and process for making such laminates and resulting products
US5002712A (en) 1988-10-19 1991-03-26 Bayer Aktiengesellschaft Manufacturing composite materials
US5340433A (en) 1989-10-30 1994-08-23 Stratasys, Inc. Modeling apparatus for three-dimensional objects
DE4102257A1 (de) 1991-01-23 1992-07-30 Artos Med Produkte Vorrichtung zur herstellung von kunststoffteilen
US5296335A (en) 1993-02-22 1994-03-22 E-Systems, Inc. Method for manufacturing fiber-reinforced parts utilizing stereolithography tooling
US5746967A (en) 1995-06-26 1998-05-05 Fox Lite, Inc. Method of curing thermoset resin with visible light
US6459069B1 (en) 1996-11-22 2002-10-01 Joshua E. Rabinovich Rapid manufacturing system for metal, metal matrix composite materials and ceramics
US5866058A (en) 1997-05-29 1999-02-02 Stratasys Inc. Method for rapid prototyping of solid models
US6153034A (en) 1997-08-03 2000-11-28 Micromod R.P. Ltd Rapid prototyping
US5936861A (en) 1997-08-15 1999-08-10 Nanotek Instruments, Inc. Apparatus and process for producing fiber reinforced composite objects
US20020009935A1 (en) 1999-03-23 2002-01-24 Hexcel Corporation Core-crush resistant fabric and prepreg for fiber reinforced composite sandwich structures
US7795349B2 (en) 1999-11-05 2010-09-14 Z Corporation Material systems and methods of three-dimensional printing
US6501554B1 (en) 2000-06-20 2002-12-31 Ppt Vision, Inc. 3D scanner and method for measuring heights and angles of manufactured parts
US6799081B1 (en) 2000-11-15 2004-09-28 Mcdonnell Douglas Corporation Fiber placement and fiber steering systems and corresponding software for composite structures
US20020062909A1 (en) 2000-11-29 2002-05-30 Jang Bor Z. Layer-additive method and apparatus for freeform fabrication of 3-D objects
US6803003B2 (en) 2000-12-04 2004-10-12 Advanced Ceramics Research, Inc. Compositions and methods for preparing multiple-component composite materials
US20020165304A1 (en) 2000-12-04 2002-11-07 Mulligan Anthony C. Methods and appratus for preparation of three-dimensional bodies
US20020113331A1 (en) 2000-12-20 2002-08-22 Tan Zhang Freeform fabrication method using extrusion of non-cross-linking reactive prepolymers
US20050230029A1 (en) 2001-01-02 2005-10-20 Advanced Ceramics Research, Inc. Continuous fiber reinforced composites and methods, apparatuses, and compositions for making the same
US20030044539A1 (en) 2001-02-06 2003-03-06 Oswald Robert S. Process for producing photovoltaic devices
US20070003650A1 (en) 2001-03-01 2007-01-04 Schroeder Ernest C Apparatus for fabricating fiber reinforced plastic parts
US20050006803A1 (en) 2001-05-17 2005-01-13 Owens Charles R. Preform for manufacturing a material having a plurality of voids and method of making the same
US20080176092A1 (en) 2001-05-17 2008-07-24 Hexas Llc Methods and systems for manufacturing a structure having organized areas
US20030056870A1 (en) 2001-09-21 2003-03-27 Stratasys, Inc. High-precision modeling filament
US20030160970A1 (en) 2002-01-30 2003-08-28 Anup Basu Method and apparatus for high resolution 3D scanning
US20030236588A1 (en) 2002-03-14 2003-12-25 Jang Bor Z. Nanotube fiber reinforced composite materials and method of producing fiber reinforced composites
US6934600B2 (en) 2002-03-14 2005-08-23 Auburn University Nanotube fiber reinforced composite materials and method of producing fiber reinforced composites
US20030186042A1 (en) 2002-05-07 2003-10-02 Dunlap Earl N. Process for tempering rapid prototype parts
US20050104257A1 (en) 2003-09-04 2005-05-19 Peihua Gu Multisource and multimaterial freeform fabrication
US20050061422A1 (en) 2003-09-22 2005-03-24 Martin James P. Multiple tape laying apparatus and method
US20050109451A1 (en) 2003-11-20 2005-05-26 Hauber David E. Composite tape laying apparatus and method
US7039485B2 (en) 2004-03-12 2006-05-02 The Boeing Company Systems and methods enabling automated return to and/or repair of defects with a material placement machine
US20110032301A1 (en) 2004-09-21 2011-02-10 Z Corporation Apparatus and methods for servicing 3d printers
US20070228592A1 (en) 2006-04-03 2007-10-04 Stratasys, Inc. Auto tip calibration in an extrusion apparatus
US7555404B2 (en) 2007-08-09 2009-06-30 The Boeing Company Methods and systems for automated ply boundary and orientation inspection
US20090095410A1 (en) 2007-10-16 2009-04-16 Ingersoll Machine Tools, Inc. Fiber Placement Machine Platform System Having Interchangeable Head and Creel Assemblies
US20110143108A1 (en) 2008-05-09 2011-06-16 Fit Fruth Innovative Technologien Gmbh Fibers and methods for use in solid freeform fabrication
KR100995983B1 (ko) 2008-07-04 2010-11-23 재단법인서울대학교산학협력재단 회로기판의 교차인쇄방법 및 장치
US20120159785A1 (en) 2009-09-04 2012-06-28 BayerMaerialScience LLC Automated processes for the production of polyurethane wind turbine blades
US8221669B2 (en) 2009-09-30 2012-07-17 Stratasys, Inc. Method for building three-dimensional models in extrusion-based digital manufacturing systems using ribbon filaments
US20120247655A1 (en) 2009-11-13 2012-10-04 Karlsruher Institut Fuer Technologie Method for producing a component from a fiber-reinforced material
US20120060468A1 (en) 2010-09-13 2012-03-15 Experimental Propulsion Lab, Llc Additive manufactured propulsion system
US20120231225A1 (en) 2010-09-17 2012-09-13 Stratasys, Inc. Core-shell consumable materials for use in extrusion-based additive manufacturing systems
KR101172859B1 (ko) 2010-10-04 2012-08-09 서울대학교산학협력단 나노 스케일 3차원 프린팅을 사용한 초정밀 가공 장치 및 방법
WO2013017284A2 (fr) 2011-08-04 2013-02-07 Arburg Gmbh + Co. Kg Procédé et dispositif de fabrication d'un objet tridimensionnel comprenant l'apport de fibres
US9457521B2 (en) 2011-09-01 2016-10-04 The Boeing Company Method, apparatus and material mixture for direct digital manufacturing of fiber reinforced parts
EP2589481B1 (fr) 2011-11-04 2016-01-20 Ralph Peter Hegler Dispositif de fabrication continue d'un tuyau composite doté d'un manchon de raccordement
US20130164498A1 (en) 2011-12-21 2013-06-27 Adc Acquisition Company Thermoplastic composite prepreg for automated fiber placement
US20130209600A1 (en) 2012-02-10 2013-08-15 Adam Perry Tow Multi-axis, multi-purpose robotics automation and quality adaptive additive manufacturing
US20130233471A1 (en) 2012-03-08 2013-09-12 Randall A. Kappesser Small flat composite placement system
US20130292039A1 (en) 2012-04-04 2013-11-07 Massachusetts Institute Of Technology Methods and Apparatus for Actuated Fabricator
US9764378B2 (en) 2012-04-04 2017-09-19 Massachusetts Institute Of Technology Methods and apparatus for actuated fabricator
US9782926B2 (en) 2012-04-13 2017-10-10 Compositence Gmbh Laying head and apparatus and method for manufacturing a three-dimensional pre-form for a structural component from a fiber composite material
US20130337265A1 (en) 2012-06-19 2013-12-19 EADS UK Limited British Thermoplastic polymer powder
US20130337256A1 (en) 2012-06-19 2013-12-19 Eads Uk Limited Extrusion-based additive manufacturing system
US9770876B2 (en) 2012-06-19 2017-09-26 Airbus Group Limited Method of manufacturing an object
US9458955B2 (en) 2012-07-20 2016-10-04 Mag Aerospace Industries, Llc Composite waste and water transport elements and methods of manufacture for use on aircraft
US20140034214A1 (en) 2012-07-31 2014-02-06 Makerbot Industries, Llc Build material switching
US8962717B2 (en) 2012-08-20 2015-02-24 Basf Se Long-fiber-reinforced flame-retardant polyesters
US20140061974A1 (en) 2012-08-29 2014-03-06 Kenneth Tyler Method and apparatus for continuous composite three-dimensional printing
US20140159284A1 (en) 2012-12-07 2014-06-12 Stratasys, Inc. Liquefier assembly for use in additive manufacturing system
US20140232035A1 (en) 2013-02-19 2014-08-21 Hemant Bheda Reinforced fused-deposition modeling
US20170087768A1 (en) 2013-02-19 2017-03-30 Arevo, Inc. Reinforced fused-deposition modeling
US20140268604A1 (en) 2013-03-14 2014-09-18 Board Of Regents, The University Of Texas System Methods and Systems For Embedding Filaments in 3D Structures, Structural Components, and Structural Electronic, Electromagnetic and Electromechanical Components/Devices
US9381702B2 (en) 2013-03-15 2016-07-05 Seriforge Inc. Composite preforms including three-dimensional interconnections
US20170050340A1 (en) 2013-03-15 2017-02-23 Seriforge Inc. Systems for three-dimensional weaving of composite preforms and products with varying cross-sectional topology
US9527248B2 (en) 2013-03-15 2016-12-27 Seriforge Inc. Systems for three-dimensional weaving of composite preforms and products with varying cross-sectional topology
US20160107379A1 (en) 2013-03-22 2016-04-21 Markforged, Inc. Composite filament 3d printing using complementary reinforcement formations
US9156205B2 (en) 2013-03-22 2015-10-13 Markforged, Inc. Three dimensional printer with composite filament fabrication
US20170232674A1 (en) 2013-03-22 2017-08-17 Markforged, Inc. Wear resistance in 3d printing of composites
US20160361869A1 (en) 2013-03-22 2016-12-15 Markforged, Inc. Three dimensional printer for fiber reinforced composite filament fabrication
US9694544B2 (en) 2013-03-22 2017-07-04 Markforged, Inc. Methods for fiber reinforced additive manufacturing
US9186846B1 (en) 2013-03-22 2015-11-17 Markforged, Inc. Methods for composite filament threading in three dimensional printing
US20160368213A1 (en) 2013-03-22 2016-12-22 Markforged, Inc. Methods for fiber reinforced additive manufacturing
US9327453B2 (en) 2013-03-22 2016-05-03 Markforged, Inc. Three dimensional printer for fiber reinforced composite filament fabrication
US9327452B2 (en) 2013-03-22 2016-05-03 Markforged, Inc. Methods for composite filament fabrication in three dimensional printing
US9688028B2 (en) 2013-03-22 2017-06-27 Markforged, Inc. Multilayer fiber reinforcement design for 3D printing
US20160144565A1 (en) 2013-03-22 2016-05-26 Markforged, Inc. Methods for composite filament threading in three dimensional printing
US20160144566A1 (en) 2013-03-22 2016-05-26 Markforged, Inc. Three dimensional printing of composite reinforced structures
US20170173868A1 (en) 2013-03-22 2017-06-22 Markforged, Inc. Continuous and random reinforcement in a 3d printed part
US20170120519A1 (en) 2013-03-22 2017-05-04 Markforged, Inc. Embedding 3d printed fiber reinforcement in molded articles
US20140291886A1 (en) 2013-03-22 2014-10-02 Gregory Thomas Mark Three dimensional printing
US9186848B2 (en) 2013-03-22 2015-11-17 Markforged, Inc. Three dimensional printing of composite reinforced structures
US9149988B2 (en) 2013-03-22 2015-10-06 Markforged, Inc. Three dimensional printing
US20160200047A1 (en) 2013-03-22 2016-07-14 Markforged, Inc. Three dimensional printer with composite filament fabrication
US20170066187A1 (en) 2013-03-22 2017-03-09 Markforged, Inc. Three dimensional printing
US20160311165A1 (en) 2013-03-22 2016-10-27 Markforged, Inc. Multiaxis fiber reinforcement for 3d printing
US20160346998A1 (en) 2013-03-22 2016-12-01 Markforged, Inc. Methods for composite filament fabrication in three dimensional printing
US9579851B2 (en) 2013-03-22 2017-02-28 Markforged, Inc. Apparatus for fiber reinforced additive manufacturing
US9539762B2 (en) 2013-03-22 2017-01-10 Markforged, Inc. 3D printing with kinematic coupling
US9126365B1 (en) 2013-03-22 2015-09-08 Markforged, Inc. Methods for composite filament fabrication in three dimensional printing
US9126367B1 (en) 2013-03-22 2015-09-08 Markforged, Inc. Three dimensional printer for fiber reinforced composite filament fabrication
US20160114532A1 (en) 2013-05-31 2016-04-28 United Technologies Corporation Continuous fiber-reinforced component fabrication
US9370896B2 (en) 2013-06-05 2016-06-21 Markforged, Inc. Methods for fiber reinforced additive manufacturing
US20160263822A1 (en) 2013-10-30 2016-09-15 R. Platt Boyd, IV Additive manufacturing of building and other structures
US20160263806A1 (en) 2013-10-30 2016-09-15 Laing O'rourke Australia Pty Limited Method for fabricating an object
US20170217088A1 (en) 2013-10-30 2017-08-03 Branch Technology, Inc. Cellular Fabrication and Apparatus for Additive Manufacturing
US20150136455A1 (en) 2013-11-15 2015-05-21 Robert J. Fleming Shape forming process and application thereof for creating structural elements and designed objects
US20160243762A1 (en) 2013-11-15 2016-08-25 Fleming Robert J Automated design, simulation, and shape forming process for creating structural elements and designed objects
US20160297104A1 (en) 2013-11-19 2016-10-13 Guill Tool & Engineering Coextruded, multilayer and multicomponent 3d printing inputs field
US20160325491A1 (en) 2013-12-26 2016-11-10 Texas Tech University System Microwave-induced localized heating of cnt filled polymer composites for enhanced inter-bead diffusive bonding of fused filament fabricated parts
US20160339633A1 (en) 2014-01-17 2016-11-24 Graphene 3D Lab Inc. Fused filament fabrication using multi-segment filament
US20160332369A1 (en) 2014-02-04 2016-11-17 Samir Shah Device and method of manufacturing customizable three-dimensional objects
US20170036403A1 (en) 2014-03-28 2017-02-09 Ez Print, Llc 3D Print Bed Having Permanent Coating
US20170021565A1 (en) 2014-04-30 2017-01-26 Magna International Inc. Apparatus and process for forming three-dimensional objects
US20170210074A1 (en) 2014-05-27 2017-07-27 Nihon University Three-dimensional printing system, three-dimensional printing method, molding device, fiber-containing object, and production method thereof
US20160012935A1 (en) 2014-07-11 2016-01-14 Empire Technology Development Llc Feedstocks for additive manufacturing and methods for their preparation and use
US20160031155A1 (en) 2014-07-29 2016-02-04 Cc3D Llc Method and Apparatus for Additive Mechanical Growth of Tubular Structures
US20160046082A1 (en) 2014-08-12 2016-02-18 Airbus Operations Gmbh Apparatus and method for manufacturing components from a fiber-reinforced composite material
US20160052208A1 (en) 2014-08-21 2016-02-25 Mosaic Manufacturing Ltd. Series enabled multi-material extrusion technology
US20160082659A1 (en) 2014-09-18 2016-03-24 The Boeing Company Extruded Deposition of Polymers Having Continuous Carbon Nanotube Reinforcements
US20160082641A1 (en) 2014-09-18 2016-03-24 The Boeing Company Extruded Deposition of Fiber Reinforced Polymers
US20160136885A1 (en) 2014-11-14 2016-05-19 Cole Nielsen-Cole Additive manufacturing techniques and systems to form composite materials
US20170259507A1 (en) 2014-12-01 2017-09-14 Sabic Global Technologies B.V. Additive manufacturing process automation systems and methods
WO2016088048A1 (fr) 2014-12-01 2016-06-09 Sabic Global Technologies B.V. Refroidissement rapide de buse pour la fabrication additive
US20170266876A1 (en) 2014-12-01 2017-09-21 Sabic Global Technologies B.V. Nozzle tool changing for material extrusion additive manufacturing
WO2016088042A1 (fr) 2014-12-01 2016-06-09 Sabic Global Technologies B.V. Systèmes et procédés d'automatisation de processus de fabrication additive
US20160192741A1 (en) 2015-01-05 2016-07-07 Markforged, Inc. Footwear fabrication by composite filament 3d printing
WO2016110444A1 (fr) 2015-01-09 2016-07-14 Daher Aerospace Procédé pour la fabrication d'un pièce composite complexe, notamment à matrice thermoplastique et pièce obtenue par un tel procédé
US20160263823A1 (en) 2015-03-09 2016-09-15 Frederick Matthew Espiau 3d printed radio frequency absorber
US20160271876A1 (en) 2015-03-22 2016-09-22 Robert Bruce Lower Apparatus and method of embedding cable in 3D printed objects
WO2016159259A1 (fr) 2015-03-31 2016-10-06 キョーラク株式会社 Moulage de résine filamenteuse, procédé de fabrication d'objet tridimensionnel, et procédé de fabrication de moulage de résine filamenteuse
WO2016196382A1 (fr) 2015-06-01 2016-12-08 Velo3D, Inc. Impression en trois dimensions et objets tridimensionnels formés au moyen de celle-ci
US20160368255A1 (en) 2015-06-19 2016-12-22 Airbus Operations Gmbh Method of manufacturing components, in particular elongated profile sections from band-shaped pre-impregnated fibers (prepreg)
US20170007363A1 (en) 2015-07-07 2017-01-12 Align Technology, Inc. Direct fabrication of power arms
WO2017006178A1 (fr) 2015-07-07 2017-01-12 Align Technology, Inc. Systèmes, appareils et procédés pour l'administration de substances par des appareils dentaires et pour réaliser des motifs décoratifs sur des appareils dentaires
US20170007360A1 (en) 2015-07-07 2017-01-12 Align Technology, Inc. Systems, apparatuses and methods for dental appliances with integrally formed features
US20170007361A1 (en) 2015-07-07 2017-01-12 Align Technology, Inc. Multi-material aligners
US20170007359A1 (en) 2015-07-07 2017-01-12 Align Technology, Inc. Direct fabrication of orthodontic appliances with variable properties
US20170007366A1 (en) 2015-07-07 2017-01-12 Align Technology, Inc. Direct fabrication of aligners for arch expansion
US20170008333A1 (en) 2015-07-07 2017-01-12 Align Technology, Inc. Dental appliance having ornamental design
US20170007367A1 (en) 2015-07-07 2017-01-12 Align Technology, Inc. Direct fabrication of aligners for palate expansion and other applications
US20170007365A1 (en) 2015-07-07 2017-01-12 Align Technology, Inc. Direct fabrication of aligners with interproximal force coupling
US20170007368A1 (en) 2015-07-07 2017-01-12 Align Technology, Inc. Direct fabrication of attachment templates with adhesive
US20170007362A1 (en) 2015-07-07 2017-01-12 Align Technology, Inc. Dental materials using thermoset polymers
US20170007386A1 (en) 2015-07-07 2017-01-12 Align Technology, Inc. Systems, apparatuses and methods for substance delivery from dental appliance
WO2017006324A1 (fr) 2015-07-09 2017-01-12 Something3D Ltd. Procédé et appareil d'impression tridimensionnelle
US20170015059A1 (en) 2015-07-17 2017-01-19 Lawrence Livermore National Securty, Llc High performance, rapid thermal/uv curing epoxy resin for additive manufacturing of short and continuous carbon fiber epoxy composites
US20170015060A1 (en) 2015-07-17 2017-01-19 Lawrence Livermore National Security, Llc Additive manufacturing continuous filament carbon fiber epoxy composites
US20170030207A1 (en) 2015-07-28 2017-02-02 General Electric Company Ply, method for manufacturing ply, and method for manufacturing article with ply
US20170028434A1 (en) 2015-07-31 2017-02-02 The Boeing Company Systems and methods for additively manufacturing composite parts
US20170028619A1 (en) 2015-07-31 2017-02-02 The Boeing Company Systems and methods for additively manufacturing composite parts
US20170028625A1 (en) 2015-07-31 2017-02-02 The Boeing Company Systems and methods for additively manufacturing composite parts
US20170028620A1 (en) 2015-07-31 2017-02-02 The Boeing Company Systems and methods for additively manufacturing composite parts
US20170028628A1 (en) 2015-07-31 2017-02-02 The Boeing Company Systems and methods for additively manufacturing composite parts
US20170028644A1 (en) 2015-07-31 2017-02-02 The Boeing Company Systems and methods for additively manufacturing composite parts
US20170028634A1 (en) 2015-07-31 2017-02-02 The Boeing Company Systems and methods for additively manufacturing composite parts
US20170028627A1 (en) 2015-07-31 2017-02-02 The Boeing Company Systems and methods for additively manufacturing composite parts
US20170028633A1 (en) 2015-07-31 2017-02-02 The Boeing Company Systems and methods for additively manufacturing composite parts
US20170028638A1 (en) 2015-07-31 2017-02-02 The Boeing Company Systems and methods for additively manufacturing composite parts
US20170028639A1 (en) 2015-07-31 2017-02-02 The Boeing Company Systems and methods for additively manufacturing composite parts
US20170028588A1 (en) 2015-07-31 2017-02-02 The Boeing Company Systems and methods for additively manufacturing composite parts
US20170028623A1 (en) 2015-07-31 2017-02-02 The Boeing Company Systems and methods for additively manufacturing composite parts
US20170028637A1 (en) 2015-07-31 2017-02-02 The Boeing Company Systems and methods for additively manufacturing composite parts
US20170028636A1 (en) 2015-07-31 2017-02-02 The Boeing Company Systems and methods for additively manufacturing composite parts
US20170028621A1 (en) 2015-07-31 2017-02-02 The Boeing Company Systems and methods for additively manufacturing composite parts
US20170028635A1 (en) 2015-07-31 2017-02-02 Boeing Co Systems and methods for additively manufacturing composite parts
US20170028617A1 (en) 2015-07-31 2017-02-02 The Boeing Company Systems and methods for additively manufacturing composite parts
US20170028624A1 (en) 2015-07-31 2017-02-02 The Boeing Company Systems and methods for additively manufacturing composite parts
US20170064840A1 (en) 2015-08-24 2017-03-02 Board Of Regents, The University Of Texas System Method and apparatus for wire handling and embedding on and within 3d printed parts
US20170057167A1 (en) 2015-08-25 2017-03-02 University Of South Carolina Integrated robotic 3d printing system for printing of fiber reinforced parts
US20170057165A1 (en) 2015-08-25 2017-03-02 The Boeing Company Composite feedstock strips for additive manufacturing and methods of forming thereof
US20170057181A1 (en) 2015-08-25 2017-03-02 The Boeing Company Composite feedstock strips for additive manufacturing and methods of forming thereof
US20170057164A1 (en) 2015-08-31 2017-03-02 Colorado School Of Mines Hybrid additive manufacturing method and apparatus made therefrom
WO2017051202A1 (fr) 2015-09-24 2017-03-30 Victrex Manufacturing Limited Matériaux polymères
US20170106565A1 (en) 2015-10-14 2017-04-20 Northrop Grumman Systems Corporation Continuous fiber filament for fused deposition modeling (fdm) additive manufactured (am) structures
US20170129182A1 (en) 2015-11-05 2017-05-11 U.S.A. As Represented By The Administrator Of The National Aeronautics And Space Administration Cutting mechanism for carbon nanotube yarns, tapes, sheets and polymer composites thereof
US20170129186A1 (en) 2015-11-06 2017-05-11 U.S.A. As Represented By The Administrator Of The National Aeronautics And Space Administration Adhesion test station in an extrusion apparatus and methods for using the same
US20170129170A1 (en) 2015-11-06 2017-05-11 U.S.A. As Represented By The Administrator Of The National Aeronautics And Space Administration Method for the free form fabrication of articles out of electrically conductive filaments using localized heating
US20170129176A1 (en) 2015-11-09 2017-05-11 Nike, Inc. Tack and Drag Printing
US20170129171A1 (en) 2015-11-09 2017-05-11 U.S.A. As Represented By The Administrator Of The National Aeronautics And Space Administration Devices and Methods for Additive Manufacturing Using Flexible Filaments
WO2017081253A1 (fr) 2015-11-12 2017-05-18 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Dispositif pour la fabrication additive d'une pièce
WO2017085649A1 (fr) 2015-11-17 2017-05-26 Politecnico Di Milano Appareil et procédé pour l'impression tridimensionnelle de matériaux composites en fibres continues
WO2017087663A1 (fr) 2015-11-17 2017-05-26 Zephyros, Inc. Systèmes pour des matériaux de fabrication additive
US20170144375A1 (en) 2015-11-20 2017-05-25 The Boeing Company System and method for cutting material in continuous fiber reinforced additive manufacturing
US20170151728A1 (en) 2015-11-30 2017-06-01 Ut-Battelle, Llc Machine and a Method for Additive Manufacturing with Continuous Fiber Reinforcements
US20170157851A1 (en) 2015-12-08 2017-06-08 Northrop Grumman Systems Corporation Device and method for 3d printing with long-fiber reinforcement
US20170157831A1 (en) 2015-12-08 2017-06-08 Xerox Corporation System and method for operation of multi-nozzle extrusion printheads in three-dimensional object printers
US20170157828A1 (en) 2015-12-08 2017-06-08 Xerox Corporation Three-dimensional object printer with multi-nozzle extruders and dispensers for multi-nozzle extruders and printheads
US20170157844A1 (en) 2015-12-08 2017-06-08 Xerox Corporation Extrusion printheads for three-dimensional object printers
US20170165908A1 (en) 2015-12-11 2017-06-15 Massachusetts Institute Of Technology Systems, devices, and methods for deposition-based three-dimensional printing
WO2017108758A1 (fr) 2015-12-22 2017-06-29 Arburg Gmbh + Co Kg Dispositif et procédé de fabrication d'un objet tridimensionnel présentant un dispositif d'alimentation en fibres
US20170182712A1 (en) 2015-12-28 2017-06-29 Southwest Research Institute Reinforcement System for Additive Manufacturing, Devices and Methods Using the Same
WO2017123726A1 (fr) 2016-01-12 2017-07-20 Markforged, Inc. Incorporation d'un renfort de fibres obtenu par impression 3d dans des articles moulés
WO2017122942A1 (fr) 2016-01-14 2017-07-20 주식회사 키스타 Unité d'alimentation de tête et unité de tête permettant le réglage de l'éjection de matière comprenant de la matière plastique façonnable
WO2017122943A1 (fr) 2016-01-14 2017-07-20 주식회사 키스타 Appareil d'alimentation en matériau pour apporter un matériau comprenant un matériau plastique modelable et robot de fabrication d'objet en 3d le comprenant
WO2017122941A1 (fr) 2016-01-14 2017-07-20 주식회사 키스타 Transformateur pour commander le déplacement d'une unité de tête et la tension et la température d'une matière plastique façonnable
WO2017124085A1 (fr) 2016-01-15 2017-07-20 Markforged, Inc. Renforcement continu et aléatoire dans une pièce imprimée en 3d
WO2017126477A1 (fr) 2016-01-22 2017-07-27 三菱瓦斯化学株式会社 Procédé de production de structures tridimensionnelles
WO2017126476A1 (fr) 2016-01-22 2017-07-27 三菱瓦斯化学株式会社 Procédé de production de structures tridimensionnelles et filament pour imprimantes 3d
WO2017137851A2 (fr) 2016-02-11 2017-08-17 Martin Kuster Dispositifs d'impression mobiles pour imprimantes 3d
WO2017142867A1 (fr) 2016-02-15 2017-08-24 Georgia-Pacific Chemicals Llc Fabrication d'additif d'extrusion de granules ou filaments de résines thermodurcissables
WO2017150186A1 (fr) 2016-02-29 2017-09-08 学校法人日本大学 Appareil et procédé d'impression 3d
US20170259502A1 (en) 2016-03-10 2017-09-14 Mantis Composites Inc. Additive manufacturing of composite materials
EP3219474A1 (fr) 2016-03-16 2017-09-20 Airbus Operations GmbH Procédé et dispositif a poser des bandes pour fabriquer en 3d un composant composite renforcé par des fibres
US20170274585A1 (en) 2016-03-28 2017-09-28 Arevo, Inc. Method and Apparatus for Additive Manufacturing Using Filament Shaping
US20170284876A1 (en) 2016-04-04 2017-10-05 Xerox Corporation 3d printed conductive compositions anticipating or indicating structural compromise
US20180065300A1 (en) * 2016-09-06 2018-03-08 Cc3D Llc Additive manufacturing system having in-head fiber teasing

Non-Patent Citations (12)

* Cited by examiner, † Cited by third party
Title
A. Di. Pietro & Paul Compston, Resin Hardness and Interlaminar Shear Strength of a Glass-Fibre/Vinylester Composite Cured with High Intensity Ultraviolet (UV) Light, Journal of Materials Science, vol. 44, pp. 4188-4190 (Apr. 2009).
A. Endruweit, M. S. Johnson, & A. C. Long, Curing of Composite Components by Ultraviolet Radiation: A Review, Polymer Composites, pp. 119-128 (Apr. 2006).
C. Fragassa, & G. Minak, Standard Characterization for Mechanical Properties of Photopolymer Resins for Rapid Prototyping, 1st Symposium on Multidisciplinary Studies of Design in Mechanical Engineering, Bertinoro, Italy (Jun. 25-28, 2008).
Hyouk Ryeol Choi and Se-gon Roh, In-pipe Robot with Active Steering Capability for Moving Inside of Pipelines, Bioinspiration and Robotics: Walking and Climbing Robots, Sep. 2007, p. 544, I-Tech, Vienna, Austria.
Kenneth C. Kennedy II & Robert P. Kusy, UV-Cured Pultrusion Processing of Glass-Reinforced Polymer Composites, Journal of Vinyl and Additive Technology, vol. 1, Issue 3, pp. 182-186 (Sep. 1995).
M. Martin-Gallego et al., Epoxy-Graphene UV-Cured Nanocomposites, Polymer, vol. 52, Issue 21, pp. 4664-4669 (Sep. 2011).
P. Compston, J. Schiemer, & A. Cvetanovska, Mechanical Properties and Styrene Emission Levels of a UV-Cured Glass-Fibre/Vinylester Composite, Composite Structures, vol. 86, pp. 22-26 (Mar. 2008).
S Kumar & J.-P. Kruth, Composites by Rapid Prototyping Technology, Materials and Design, (Feb. 2009).
S. L. Fan, F. Y. C. Boey, & M. J. M. Abadie, UV Curing of a Liquid Based Bismaleimide-Containing Polymer System, eXPRESS Polymer Letters, vol. 1, No. 6, pp. 397-405 (2007).
T. M. Llewelly-Jones, Bruce W. Drinkwater, and Richard S. Trask; 3D Printed Components With Ultrasonically Arranged Microscale Structure, Smart Materials and Structures, 2016, pp. 1-6, vol. 25, IOP Publishing Ltd., UK.
Vincent J. Lopata et al., Electron-Beam-Curable Epoxy Resins for the Manufacture of High-Performance Composites, Radiation Physics and Chemistry, vol. 56, pp. 405-415 (1999).
Yugang Duan et al., Effects of Compaction and UV Exposure on Performance of Acrylate/Glass-Fiber Composites Cured Layer by Layer, Journal of Applied Polymer Science, vol. 123, Issue 6, pp. 3799-3805 (May 15, 2012).

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180214909A1 (en) * 2013-03-19 2018-08-02 Airbus Group Limited Extrusion-based additive manufacturing
US11285649B2 (en) * 2013-11-15 2022-03-29 Makerbot Industries, Llc Three-dimensional printer tool systems
US12049038B2 (en) 2013-11-15 2024-07-30 Stratays, Inc. Three-dimensional printer tool systems
US11780156B2 (en) 2013-11-15 2023-10-10 Stratasys, Inc. Three-dimensional printer tool systems
US20190061948A1 (en) * 2017-08-29 2019-02-28 Goodrich Corporation Conformable tank fabricated using additive manufacturing
US10703481B2 (en) 2017-08-29 2020-07-07 Goodrich Corporation Conformable tank with sandwich structure walls
US11939105B2 (en) 2017-08-29 2024-03-26 Goodrich Corporation 3D woven conformable tank
US11091266B2 (en) * 2017-08-29 2021-08-17 Goodrich Corporation Conformable tank fabricated using additive manufacturing
US10816138B2 (en) 2017-09-15 2020-10-27 Goodrich Corporation Manufacture of a conformable pressure vessel
US11725779B2 (en) 2017-09-15 2023-08-15 Goodrich Corporation Manufacture of a conformable pressure vessel
WO2019157296A3 (fr) * 2018-02-08 2020-04-30 Essentium Materials, Llc Filament à couches multiples et procédé de fabrication
US11167375B2 (en) 2018-08-10 2021-11-09 The Research Foundation For The State University Of New York Additive manufacturing processes and additively manufactured products
US11426818B2 (en) 2018-08-10 2022-08-30 The Research Foundation for the State University Additive manufacturing processes and additively manufactured products
US11279085B2 (en) * 2018-10-26 2022-03-22 Continuous Composites Inc. System for additive manufacturing
CN112936862A (zh) * 2019-03-05 2021-06-11 钟隆君 一种生物打印机用喷头组件及使用方法
CN112936862B (zh) * 2019-03-05 2022-12-23 南京秦邦吉品农业开发有限公司 一种生物打印机用喷头组件及使用方法
CN111761844A (zh) * 2020-06-30 2020-10-13 诺思贝瑞新材料科技(苏州)有限公司 一种3d打印用连续纤维复合材料及其制备方法及装置
US20230166450A1 (en) * 2021-02-25 2023-06-01 Caracol S.R.L. Improved Method and Kit for Three-Dimensional Printing
US11760021B2 (en) * 2021-04-27 2023-09-19 Continuous Composites Inc. Additive manufacturing system
US20220339871A1 (en) * 2021-04-27 2022-10-27 Continuous Composites Inc. Additive manufacturing system
US12128607B2 (en) 2021-10-20 2024-10-29 Continuous Composites Inc. Systems and methods for additive manufacturing
US12134226B2 (en) 2022-10-18 2024-11-05 Continuous Composites Inc. Systems and methods of additive manufacturing

Also Published As

Publication number Publication date
RU2018127312A (ru) 2020-01-27
US20190217530A1 (en) 2019-07-18
US10807303B2 (en) 2020-10-20
CA3012238A1 (fr) 2019-06-05
CN109986777A (zh) 2019-07-09
JP2019119198A (ja) 2019-07-22
CA3012238C (fr) 2019-10-08
JP6546324B1 (ja) 2019-07-17
CN109986777B (zh) 2020-09-22
RU2018127312A3 (fr) 2020-01-27
US20190202110A1 (en) 2019-07-04
AU2018204887B1 (en) 2019-06-13
EP3505331A1 (fr) 2019-07-03
US11135764B2 (en) 2021-10-05
KR101967105B1 (ko) 2019-04-08
RU2714813C2 (ru) 2020-02-19
BR102018014351A8 (pt) 2023-01-03
BR102018014351A2 (pt) 2019-07-16

Similar Documents

Publication Publication Date Title
US10081129B1 (en) Additive manufacturing system implementing hardener pre-impregnation
US10932325B2 (en) Additive manufacturing system and method for discharging coated continuous composites
US11014290B2 (en) Additive manufacturing system having automated reinforcement threading
US20220009165A1 (en) Additive manufacturing method for discharging interlocking continuous reinforcement
US10933584B2 (en) Additive manufacturing system having dynamically variable matrix supply
US10759114B2 (en) System and print head for continuously manufacturing composite structure
US11247395B2 (en) System for additive manufacturing

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4