US10065157B2 - Mixer and processes incorporating the same - Google Patents

Mixer and processes incorporating the same Download PDF

Info

Publication number
US10065157B2
US10065157B2 US14/436,604 US201314436604A US10065157B2 US 10065157 B2 US10065157 B2 US 10065157B2 US 201314436604 A US201314436604 A US 201314436604A US 10065157 B2 US10065157 B2 US 10065157B2
Authority
US
United States
Prior art keywords
chamber
mixer
inner diameter
zone
inlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related, expires
Application number
US14/436,604
Other versions
US20160158715A1 (en
Inventor
Max M. Tirtowidjojo
Hua Bai
Edward M. Calverley
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Blue Cube IP LLC
Original Assignee
Blue Cube IP LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Blue Cube IP LLC filed Critical Blue Cube IP LLC
Priority to US14/436,604 priority Critical patent/US10065157B2/en
Assigned to DOW GLOBAL TECHNOLOGIES LLC reassignment DOW GLOBAL TECHNOLOGIES LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BAI, HUA, CALVERLEY, EDWARD M., TIRTOWIDJOJO, MAX M.
Assigned to DOW GLOBAL TECHNOLOGIES LLC reassignment DOW GLOBAL TECHNOLOGIES LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BAI, HUA, CALVERLEY, EDWARD M., TIRTOWIDJOJO, MAX M.
Assigned to BLUE CUBE IP LLC reassignment BLUE CUBE IP LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: DOW GLOBAL TECHNOLOGIES LLC
Publication of US20160158715A1 publication Critical patent/US20160158715A1/en
Application granted granted Critical
Publication of US10065157B2 publication Critical patent/US10065157B2/en
Expired - Fee Related legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • B01F5/0653
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/433Mixing tubes wherein the shape of the tube influences the mixing, e.g. mixing tubes with varying cross-section or provided with inwardly extending profiles
    • B01F25/4335Mixers with a converging-diverging cross-section
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/433Mixing tubes wherein the shape of the tube influences the mixing, e.g. mixing tubes with varying cross-section or provided with inwardly extending profiles
    • B01F25/4336Mixers with a diverging cross-section
    • B01F5/0652
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J4/00Feed or outlet devices; Feed or outlet control devices
    • B01J4/001Feed or outlet devices as such, e.g. feeding tubes
    • B01J4/002Nozzle-type elements
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/013Preparation of halogenated hydrocarbons by addition of halogens
    • C07C17/04Preparation of halogenated hydrocarbons by addition of halogens to unsaturated halogenated hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/10Mixing by creating a vortex flow, e.g. by tangential introduction of flow components
    • B01F25/102Mixing by creating a vortex flow, e.g. by tangential introduction of flow components wherein the vortex is created by two or more jets introduced tangentially in separate mixing chambers or consecutively in the same mixing chamber
    • B01F5/0062
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/19Details relating to the geometry of the reactor
    • B01J2219/194Details relating to the geometry of the reactor round
    • B01J2219/1941Details relating to the geometry of the reactor round circular or disk-shaped
    • B01J2219/1943Details relating to the geometry of the reactor round circular or disk-shaped cylindrical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside

Definitions

  • the present invention relates to an efficient and effective mixer, an apparatus comprising the mixer and a reactor, and processes incorporating the same.
  • Hydrofluorocarbon (HFC) products are widely utilized in many applications, including refrigeration, air conditioning, foam expansion, and as propellants for aerosol products including medical aerosol devices. Although HFC's have proven to be more climate friendly than the chlorofluorocarbon and hydrochlorofluorocarbon products that they replaced, it has now been discovered that they exhibit an appreciable global warming potential (GWP).
  • GWP global warming potential
  • HFO hydrofluoroolefin
  • HFO cyclopentafluoroprop-1-ene
  • a desirable HFO compound e.g., such as 2,3,3,3-tetrafluoroprop-1-ene or 1,3,3,3-tetrafluoroprop-1-ene
  • feedstocks of chlorocarbons or chlorofluorocarbons, and in particular, chlorinated propenes may typically be produced utilizing feedstocks of chlorocarbons or chlorofluorocarbons, and in particular, chlorinated propenes.
  • chlorinated propenes may have limited commercial availability, and/or may only be available at potentially prohibitively high cost, due at least in part to the propensity of the conventional processes typically utilized in their manufacture to result in the production of large quantities of secondary products, i.e., waste and/or by-products. Any such secondary products produced not only have to be separated from the final product and disposed of, but also, can result in system fouling prior to doing so. Both of these outcomes can introduce substantial expense, further limiting the commercial potential of processes in which the production of such secondary products is not reduced or eliminated. Further, these problems become exacerbated on process scale-up, so that large scale processes can become cost prohibitive quickly.
  • mixers have been developed in efforts to minimize backmixing of reactants that may occur prior to entry into the reactor; however, none of these are without detriment.
  • mixers have been provided having the same diameter as the reactor so that backmixing zones are not created at the junction there between. When coupled with appropriate introduction of reactants, these mixers have proven effective, but can yet be suboptimal.
  • mixers for use in methods wherein limiting reactants are desirably utilized. More particularly, mixers that provide quick and thorough mixing of two or more reactants, while yet also minimizing back mixing of the mixed feed stream and thus providing a reduction in the amount of secondary products that are produced would be welcomed in the art. Further advantage would be seen if such mixers could be provided cost effectively, i.e., on a smaller scale than the reactors with which they are desirably utilized.
  • the mixer incorporates an expander zone, wherein the inner diameter thereof expands outwardly at an angle of less than 90° relative to a longitudinal axis of the expander zone.
  • a mixer can be provided having an inlet diameter smaller than its exit diameter, so that when coupled to a reactor, any backmixing zone that may otherwise be provided by disparate geometries between the mixer outlet and reactor inlet can be minimized or eliminated.
  • the mixer may also incorporate one or more chambers, flow pattern development zones, and/or mixing zones that can act alone or together to improve the flow and/or mixing of the reactants therein so that uniform and efficient mixing is provided by the mixer.
  • a mixer comprising at least one inlet to at least one chamber, and an expander zone.
  • the angle created by a longitudinal axis of the chamber and a longitudinal axis of the inlet (hereinafter the ‘chamber-inlet angle’, or a in FIG. 1A ) is less than 90°, or may be from 30° to 80°.
  • the inner diameter of the expander zone (D e ) expands outwardly at an angle (hereinafter the ‘expander angle’ or ⁇ in FIG. 1A ) less than 90°, or less than 45°, or less than 20°, or less than 15°, or even less than 10° relative to a longitudinal axis of the expander zone.
  • the chamber has an inner diameter (D c ) that is at least 1.25, or at least 2 times greater than the inner diameter of its inlet (D ci ). In some embodiments, the inner diameter of the chamber (D c ) may be from 2-10 times greater than the inner diameter of its inlet (D ci ).
  • the chamber also desirably comprises an outlet, and in those embodiments wherein multiple chambers/inlets are utilized, the outlets thereof are desirably arranged concentrically, i.e., so that two concentrically placed outlets create an annular space there between.
  • the ratio of the cross sectional area of each annular space (A a ) to the area of the inner most chamber outlet (A co , innermost) is desirably between 1 and 3, i.e., A a /A co is between 1 and 3.
  • the chamber inner diameter (D c ) may taper to the inner diameter of the chamber outlet (D co ), or, the chamber inner diameter (D c ) may decrease at a 90° angle to provide the chamber outlet.
  • the chamber outlet has an inner diameter (D co ) that is at least 2 times greater than the inner diameter of the chamber inlet (D ci ).
  • the outlet has an inner diameter (D co ) that is less than the chamber inner diameter (D c ), e.g., the ratio of the chamber inner diameter (D c ) to the outlet inner diameter (D co ) may be at least 1, or at least 1.1, or at least 1.2. Desirably, the ratio of the inner diameter of the chamber (D c ) to the inner diameter of its outlet (D co ) is less than 10, or less than 8, or less than 6, or less than 5, or less than 4.
  • the ratio of the inner diameter of the chamber (D c ) to the inner diameter of its outlet (D co ) is from 1.1 to 8 or from 1.2-4. In some embodiments, the inner diameter of the chamber (D c ) and the inner diameter of its outlet (D co ) may be approximately the same.
  • the mixer may additionally comprise a flow pattern development zone and/or a mixing zone.
  • the flow pattern development zone may be an extension of the chamber outlet(s), i.e., may be a series of concentrically placed tubes creating an inner tube and a series of annular spaces.
  • the length of any flow pattern development zone (L fpd ) may desirably be substantially the same as, or greater than, the diameter of the outermost tube (D fpd ) within the flow development zone. If both a mixing zone and a flow pattern development zone are utilized, the mixing zone is desirably downstream of the flow pattern development zone.
  • the mixing zone may desirably comprise a single tube having an inner diameter (D m ) less than or equal to that of the outermost chamber outlet (D co , outermost), or the outermost tube of the flow pattern development zone (D fpd ), as the case may be.
  • the combined mixing zone and flow pattern development zone if any, has a length (L fpd +L m ) 3 times greater, or 9 times greater, than the inner diameter (D m ) of the mixing zone.
  • an apparatus comprising a reactor having an inlet with an inner diameter (D r ) and a mixer comprising at least one inlet to at least one chamber, wherein the chamber outlet inner diameter (D co ), flow pattern development zone inner diameter (D fpd ) and/or mixing zone inner diameter (D m ) is/are less than that of the reactor inlet inner diameter (D r ).
  • the ratio of the inner diameter of the reactor (D r ) to the chamber outlet inner diameter (D cp ), flow pattern development zone inner diameter (D fpd ) and/or mixing zone inner diameter (D m ) is desirably from 2 to 5, or from 3 to 4.
  • the mixer also comprises an expander zone having an inner diameter (D e ) that expands outwardly at an angle of less than 90°, or less than 45°, or less than 20°, or less than 10°.
  • the reactor may have an inner diameter of more or less than 4 feet.
  • the reactor and/or mixer may comprise one or more bends of 90 degrees or greater, to accommodate the desired design and length thereof easily in the available manufacturing space.
  • processes for mixing at least two reagents for a chemical process comprise providing the at least two reactants to an apparatus comprising a reactor having an inner diameter (D r ) and a mixer comprising at least one inlet to at least one chamber, wherein the chamber outlet inner diameter (D co ), flow pattern development zone inner diameter (D fpd ) and/or mixing zone inner diameter (D m ) is/are less than that of the reactor inlet inner diameter (D r ).
  • the ratio the inner diameter of the reactor (D r ) to the outermost chamber outlet inner diameter D co and/or the mixing zone inner diameter (D m ) is desirably from 2 to 6, or from 3 to 5.
  • the mixer also comprises an expander zone having an inner diameter (D e ) that expands outwardly at an angle of less than 90°, or less than 45°, or less than 20°, or less than 10°.
  • FIG. 1A is a schematic representation (not to scale) of one embodiment of the mixer comprising one inlet/chamber and an expander zone;
  • FIG. 1B is a top view of the schematic representation of the embodiment shown in FIG. 1A ;
  • FIG. 1C is a schematic representation (not to scale) of the mixer shown in FIG. 1 , further comprising a taper from the chamber inner diameter to provide the chamber outlet;
  • FIG. 2A is a schematic representation (not to scale) of one embodiment of the mixer comprising two inlets/chambers and an expander zone;
  • FIG. 2B is a top view of one arrangement of the chamber inlets of the embodiment shown in FIG. 2A ;
  • FIG. 2C is a top view of a further arrangement of the chamber inlets of the embodiment shown in FIG. 2A ;
  • FIG. 3A is a schematic representation (not to scale) of one embodiment of the mixer comprising two inlets/chambers, a mixing zone and an expander zone;
  • FIG. 3B is a schematic representation (not to scale) of one embodiment of the mixer comprising two inlets/chambers, a flow pattern development zone and an expander zone;
  • FIG. 3C is a schematic representation (not to scale) of one embodiment of the mixer comprising two inlets/chambers, a flow pattern development zone, a mixing zone and an expander zone;
  • FIG. 4A is a schematic representation (not to scale) of one embodiment of the mixer comprising three inlets and two chambers, a flow pattern development zone, a mixing zone and an expander zone, wherein two inlets are provided on one chamber;
  • FIG. 4B is a schematic representation (not to scale) of one embodiment of the mixer comprising three inlets/chambers, a flow pattern development zone, a mixing zone and an expander zone, wherein a third chamber is provided within the second chamber; and
  • FIG. 4C is a schematic representation (not to scale) of one embodiment of the mixer comprising three inlets/chambers, a flow pattern development zone, a mixing zone and an expander zone, wherein a third chamber and corresponding inlet is provided between the flow pattern development zone and the mixing zone.
  • FIG. 5A shows results of a computational fluid dynamic simulation for a mixer according to one embodiment, having two inlets/chambers, a flow pattern development zone, a mixing zone and an expander zone;
  • FIG. 5B shows results of a computational fluid dynamic simulation for a mixer according to one embodiment, having one inlet/chamber, a flow pattern development zone, a mixing zone and an expander zone.
  • first”, “second”, and the like, as used herein do not denote any order, quantity, or importance, but rather are used to distinguish one element from another.
  • the terms “a” and “an” do not denote a limitation of quantity, but rather denote the presence of at least one of the referenced item, and the terms “front”, “back”, “bottom”, and/or “top”, unless otherwise noted, are merely used for convenience of description, and are not intended to limit the part being described limited to any one position or spatial orientation.
  • ranges are inclusive and independently combinable (e.g., ranges of “up to 25 wt. %, or, more specifically, 5 wt. % to 20 wt. %,” is inclusive of the endpoints and all intermediate values of the ranges of “5 wt. % to 25 wt. %,” etc.).
  • percent (%) conversion is meant to indicate change in molar or mass flow of reactant in a reactor in ratio to the incoming flow
  • percent (%) selectivity means the change in molar flow rate of product in a reactor in ratio to the change of molar flow rate of a reactant.
  • the mixer provided herein may incorporate one or more angles between components, zones, or longitudinal axes thereof that provide the mixer with improved performance relative to mixers not incorporating the angle.
  • the angles are defined as the lesser angle of the linear pair created by, or that would be created by, the intersection of the components, zones, or axes.
  • the chamber-inlet angle (denoted “ ⁇ ” in FIG. 1A ) is defined as the lesser angle of the linear pair created by the intersection of the longitudinal axes of the chamber and the longitudinal axes of its inlet.
  • the expander angle (denoted “ ⁇ ” in FIG.
  • the transverse chamber-inlet angle (denoted “ ⁇ ” in FIG. 1B ) is defined as the lesser angle of the linear pair created by the intersection of the longitudinal axis of the inlet and a line tangential to the chamber projected on a cross sectional plane to the chamber intersecting the point where the longitudinal axis of the inlet line meets the chamber's wall.
  • the present invention provides a mixer for use in a gas-phase process, such as processes for the production of chlorinated propenes and/or higher alkenes.
  • the mixer incorporates one or more design features that can i) provide for reduced backmixing of the reactants, and/or ii) minimize or eliminate plugging within the mixer. As a result, desired conversions may be substantially maintained, formation of secondary products may be minimized and/or fouling may be reduced or eliminated. Further, the advantages provided by one design feature may be leveraged, perhaps even synergistically, by combining the same with others.
  • the mixer comprises an inlet fluidly connected to a chamber, wherein the chamber-inlet angle ( ⁇ ) is less than 90°.
  • the chamber-inlet angle, ⁇ is less than 15°, or less than 80°.
  • the chamber-inlet angle ( ⁇ ) may be greater than 20°, or greater than 30°.
  • the chamber-inlet angle ( ⁇ ) may be from 30°-80°.
  • the mixer also comprises an expander zone, wherein the inner diameter thereof expands outwardly along the length thereof at an expander angle ( ⁇ ) of less than 90°, or less than 45°, or less than 20°, or less than 15°, or less than 10°.
  • expander angle ⁇ is greater than 1°, or greater than 2°, or greater than 3°, or greater than 4°, or greater than 5°. In some embodiments, expander angle ⁇ may be from 1° to 90°, or from 2° to 45°, or from 3° to 20°, or from 4° to 15°, or from 5° to 10°.
  • the expander may have an inner diameter (D e ) of less than 100 feet, or less than 80 feet, or less than 50 feet, or less than 20 feet. In some embodiments, the expander zone outlet inner diameter (D e ) may be substantially equal to the reactor inlet inner diameter (D r )
  • the chamber may exhibit substantially the same geometry as the inlet, and the geometries thereof may be selected to encourage a desired flow pattern. Any flow pattern can be established and encouraged by the mixer (with the exception of back mixed flow).
  • the mixer is desirably utilized to produce a swirling flow pattern. Swirling flow patterns can be advantageous for use in many chemical processes, but in particular in processes where backmixing can be an issue. This is because swirling flow patterns tend to produce high shear at internal surfaces that can assist in the prevention of the accumulation of solids thereon. Swirling flow patterns may also only require a small head mixing chamber in comparison to the reactor diameter in order to be established.
  • a swirling flow pattern can be induced by introduction of a feedstream into a generally cylindrical inlet, and thereafter into a generally cylindrical chamber.
  • the inlet and chamber may have the same, or a different, inner diameter.
  • advantage can be seen by providing the chamber with an inner diameter (D c ) at least 1.25 times greater, or at least two times greater, than the inner diameter of the inlet (D ci ).
  • the inner diameter of the chamber (D c ) is desirably less than 20 times, or less than 10 times, the inner diameter of the chamber inlet (D ci ).
  • the ratio of the inner diameter of the chamber (D c ) to the inner diameter of the inlet (D ci ) is from 2-10.
  • the chamber also desirably comprises an outlet, which may desirably be of the same geometry as the chamber and/or inlet.
  • the outlet may also have the same diameter, or cross sectional area, as the case may be, as the chamber and/or chamber inlet, or may have a different diameter.
  • the chamber outlet has an inner diameter (D co ) that is at least 2 times greater than the inner diameter of the chamber inlet (D ci ).
  • the outlet has an inner diameter (D co ) that is less than the chamber inner diameter (D c ), e.g., the ratio of the chamber inner diameter (D c ) to the outlet inner diameter (D co ) may be at least 1, or at least 1.1, or at least 1.2.
  • the ratio of the inner diameter of the chamber (D c ) to the inner diameter of its outlet (D co ) is less than 10, or less than 8, or less than 6, or less than 5, or less than 4.
  • the ratio of the inner diameter of the chamber (D c ) to the inner diameter of its outlet (D co ) is from 1.1 to 8 or from 1.2-4.
  • the outlets of any provided proximate to each other are desirably provided as concentric rings.
  • the innermost chamber outlet would act as an egress for one reactant.
  • Each subsequent chamber outlet would provide an annular space between it and the chamber outlet immediately interior to it, through which an additional reactant may flow, and so forth.
  • the ratio of the cross sectional area of each annular space (A a ) to the area of the inner most chamber outlet (A co , innermost) is desirably between 1 and 3, i.e., A a /A co is between 1 and 3.
  • inlet(s)/chamber(s) are provided. In some embodiments, at least two inlets/chambers are provided. In other embodiments, more than one inlet may be provided on one or more chambers. In such embodiments, the additional inlet(s) and/or chamber(s) can have the same configuration, i.e., shape, inner dimension, chamber inlet angle, tangential chamber inlet angle, or one or more different configuration(s). For purposes of manufacturing efficacy, in those embodiments wherein multiple inlets/chambers are used, they may have the same configuration, but this is not necessary to appreciate the advantages of the invention.
  • the mixer may be provided with additional features and/or dimensional relationships that further enhance its suitability for use in connection with processes comprising a limiting reagent. More particularly, in some embodiments, the mixer may further comprise an advantageous tangential chamber-inlet angle and/or a flow pattern development zone and/or a mixing zone.
  • an angle ⁇ between the chamber inlet and a line tangential to the chamber projected on a cross sectional plane to the chamber intersecting the point where the longitudinal axis of the inlet line meets the chamber's wall of less than 90°, or less than 80°, or less than 70°, or less than 60° provides a beneficial flow to the reactant provided through the inlet.
  • the tangential chamber inlet angle ⁇ is greater than 5°, or greater than 10°, or greater than 15°, or greater than 20°.
  • the tangential chamber inlet angle ⁇ is from 5° to 90°, or 10° to 80°, or 15° to 70°, or 20° to 60°.
  • the flow pattern development zone if provided, will desirably be of a shape and/or dimension that further encourages the formation and/or maintenance of the desired flow pattern of the reactant provided by the at least one inlet.
  • the flow pattern development zone may comprise a tube within a tube design, wherein the number of tubes correspond to the number of reactants introduced via inlets/chambers upstream of the flow pattern development zone.
  • the flow development zone may simply be a tube having an inner diameter (D fpd ) approximately the same as the inner diameter of the chamber outlet (D co ) and be fluidly connected thereto.
  • D fpd inner diameter of the chamber outlet
  • D co inner diameter of the chamber outlet
  • the innermost tube could be fluidly connected to a first chamber outlet
  • the annular space provided between the innermost tube and the next outlying tube could be fluidly connected to a second chamber outlet
  • the annular space created by the middle tube and the outermost tube could be fluidly connected to a third chamber outlet.
  • two may be introduced via two inlet/chambers, and a third may be introduced according to any method known to those of ordinary skill in the art, and may be introduced, e.g., after a flow pattern development zone.
  • This embodiment may be advantageous when a desired reactant has a lesser residence time within the mixer for any reason, e.g., the reactant is highly reactive, unstable at the temperature(s) at which the other reactants are introduced to the mixer, etc.
  • a flow pattern development zone in embodiments wherein a flow pattern development zone is desirably included, it can have any suitable length (L fpd ) and inner diameter (D fpd ). Desirably, the length and inner diameter of the flow pattern development zone will facilitate and/or accommodate the desired flow rate of the reactants, while also encouraging or enhancing the desired flow pattern.
  • the inner diameter (D fpd ) of the innermost tube of the flow pattern development zone may be greater than 0.25 inch, or greater than 0.5 inch, or greater than 0.75 inches, or greater than 1 inch.
  • the inner diameter (D fpd ) of the outermost tube of the flow pattern development zone may be less than 60′′ or less than 30′′ or less than 24′′ or less than 18′′. In some embodiments, the inner diameter (D fpd ) of the innermost tube of the flow pattern development zone is from 0.25 to 60′′ of from 0.5-30′′, or from 0.75 to 24 inches, or from 1′′ to 18′′.
  • Any flow pattern development zone can have a length (L fpd ) such that the ratio of its length (L fpd ) to the inner diameter (D fpd ) of the innermost tube thereof is greater than 0.5, or greater than 0.75, or greater than 1.0, or greater than 1.25, or greater than 1.5.
  • the ratio L fpd to D fpd, innermost may be less than 50, or less than 40, or less than 30, or less than 20, and in some embodiments, may be less than 10.
  • L fpd /D fpd, innermost may be from 0.25-50, or from 0.5 to 40, or from 0.75 to 30, or from 1.0 to 20, or from 1.25 to 10.
  • a mixing zone may also be provided in some embodiments, and can be used to mix one or more reactants prior to entry into the expander zone.
  • the mixing zone may be fluidly connected to the chamber outlet, or the flow pattern development zone, at the upstream end thereof, and is desirably fluidly connected to the expander zone at its downstream end.
  • the mixing zone may be used to bring the reactants, previously introduced into separate inlets, and in some embodiments, passed through the flow pattern development zone, into contact with each other.
  • the mixing zone is desirably of a geometry that will allow the flow pattern to be substantially maintained, and in some embodiments, may be cylindrical.
  • the mixing zone may advantageously have the same, or a lesser, inner diameter (D m ) as the largest immediately preceding inner diameter, i.e., if fluidly connected to one or more chamber outlets, the mixing zone is desirably substantially the same or smaller, diameter as the outermost chamber outlet. If the mixing zone is fluidly connected to a flow pattern development zone, the mixing zone will desirably be of the same geometry, and have an inner diameter, or cross sectional area, as the case may be, substantially the same as the outermost tube of the flow pattern development zone.
  • Any mixing zone may be of any suitable length (L m ), which may be chosen based upon the flow rate and reactivity of the reactants.
  • Any mixing zone may have a length, L m , of greater than 1 foot, or greater than 10 feet, or greater than 20 feet, or greater than 30 feet.
  • Mixing zone length Lm may be less than 60 feet, or less than 50 feet, or less than 40 feet. In some embodiments, mixing zone length may be from 1 to 60 feet, or from 10 feet to 50 feet, or from 20 feet to 40 feet.
  • the ratio of mixing zone length L m to D m may, e.g., be 1, or 2, or 6, or 10. Desirably, the ratio of mixing zone length L m to mixing zone diameter D m will be from 2 to 8.
  • the mixer may have an chamber-inlet angle ⁇ of less than 90°, an expander zone having an expander angle ⁇ of ⁇ 45°, and/or i) a chamber inner diameter (D c ) at least 1.25 times greater than the inner diameter of the chamber inlet (D ci ), and/or ii) a chamber inner diameter (D c ) that is at least the same or greater than the inner diameter of the chamber outlet (D co ), and/or iii) a tangential chamber-inlet angle ⁇ of less than 90°, and/or iv) a flow pattern development zone, having a ratio of length (L fpd ) to the inner diameter (D fpd ) of at least 0.5 and/or a mixing zone having a
  • Tables 1 and 2 show the possible dimensional relationships that may be optimized in the present mixer and possible values/ranges for each. More particularly, Table 1 contemplates the addition of any number of reactants to the mixer, and Table 2 is directed to those embodiments wherein 2 reactants are introduced via inlets/chambers (although others may be introduced by other means, into other sections of the mixer, e.g., as via injection into a port, etc.)
  • Embodiment 1 Embodiment 2 Embodiment 3 Number of 2 or greater 2-10 2-5 inlets/chambers D c (inches) 0.5-120 0.75-90 1.25-60 D c /(D ci ) 1.25-20 1.5-20 2-10 Chamber-inlet angle, ⁇ 90° 5°-85° 10°-80° ⁇ Tangential chamber- 0° or greater 60° to 85° 70° to 80° inlet angle, ⁇ D c /D co 1-10 1.2-8 1.2-4 D fpd, innermost 0.5-60 0.5-30 1-24 L fpd /D fpd, innermost 0.5-30 1-20 1-10 D fpd, outermost NA-60 NA-50 NA-40 L m (feet) 0-60 0-50 0-40 D m (inches) 0.5-120 1.0-60 1.0-36 Expander angle ( ⁇ ) ⁇ 90° 2-45° 3-25° D e (feet) ⁇ 100 ⁇ 50 ⁇ 20
  • mixer 100 includes chamber 102 , inlet 104 , and expander 106 , wherein chamber inlet angle, a, is from 10-80°, or 60° and expander angle ⁇ that is desirably >0° but is ⁇ 25°.
  • FIG. 1B shows a top view of the mixer shown in FIG. 1A , showing the tangential chamber-inlet angle ⁇ , which is desirably from 10° to 80°.
  • chamber outlet 108 is provided by a decrease of 90° in the chamber inner diameter.
  • FIG. 1C shows an embodiment wherein the chamber inner diameter is tapered to provide chamber outlet 108 .
  • Mixer 100 may accommodate the introduction of one or more reagents/reactants via inlet 104 . Additional reactants/reagents may be introduced at other conventional inlets provided in mixer 100 , such as injection ports (not shown).
  • FIG. 2 Another embodiment of the mixer is shown in FIG. 2 .
  • Mixer 200 includes two chambers 202 and 203 and inlets 204 and 205 , wherein both chambers are tapered to provide chamber outlets 208 and 209 , respectively.
  • FIG. 2B shows a top view of mixer 200 , wherein inlets 204 and 205 are arranged so as to appear superimposed when viewed from the top of mixer 200 .
  • FIG. 2C shows an alternative arrangement of inlets 204 and 205 to that shown in FIGS. 2A and 2B .
  • Mixer 200 can accommodate the introduction of one or more reactants via inlet 204 , one or more reactants via inlet 205 , and any number of additional reactants introduced by, e.g., injection ports (not shown) as may be provided in mixer 200 .
  • FIG. 3 Additional embodiments of the mixer are shown in FIG. 3 .
  • the embodiment of mixer 300 shown in FIG. 3A incorporates mixing zone 310 .
  • the outlet 308 of chamber 302 and outlet 309 of chamber 303 are arranged concentrically, both ending at the inlet of mixing zone 310 .
  • Mixing zone 310 is fluidly connected to expander zone 306 .
  • mixer 300 comprises includes flow pattern development zone 312 .
  • outlet 308 and outlet 309 are arranged concentrically, with outlet 308 providing the innermost tube of flow pattern development zone 312 .
  • Outlet 309 in combination with outlet 308 , provides annular space 313 .
  • Outlet 308 , outlet 309 , and annular space 313 each terminate at, and are fluidly connected with, expander zone 306 . In this case, mixing occurs in the expander zone.
  • Mixer 300 can accommodate the introduction of one or more reactants via inlet 304 , one or more reactants via inlet 305 , and any number of additional reactants introduced by, e.g., injection ports (not shown) as may be provided in mixer 300 .
  • mixer 300 includes both flow pattern development zone and mixing zone 310 .
  • the outlets of chambers 302 and 303 are arranged as shown and described in connection with FIG. 3B . And so, in operation of mixer 300 shown in FIG. 3C , one or more reactants may be injected through inlet 304 and one or more reactants may be provided through inlet 305 .
  • the desired flow pattern as may be encouraged by the chamber inlet angle ⁇ and tangential chamber-inlet angle ⁇ , may further develop within flow pattern development zone 312 . The reactants would then be mixed within mixing zone 310 .
  • FIG. 4A-4C show additional embodiments of the mixer, comprising three inlets.
  • mixer 400 includes three inlets and two chambers, with two inlets 405 and 414 being provided to chamber 403 .
  • FIG. 4B shows a further embodiment wherein a third chamber 415 is provided, arranged about the same concentric axis as chambers 402 and 403 , but lying within chamber 403 .
  • FIG. 4C shows an embodiment of mixer 400 including a third chamber 415 , wherein chamber 415 is arranged about the same concentric axis as chambers 402 and 403 , and between flow pattern development zone 412 and mixing zone 410 .
  • third chamber 415 could be provided downstream from, and about the same concentric axis as, chambers 402 and 403 , but upstream from flow pattern development zone 412 .
  • Mixer 400 as shown in FIG. 4A-4C include both flow pattern development zone 412 and mixing zone 410 , although this need not be the case, and any of the embodiments of mixer 400 shown in FIG. 4A-4C may be provided only with chambers 402 , 403 and 415 and expander zone 406 .
  • the outlet of the mixer may desirably be operably disposed relative to the reactor that would desirably receive the mixed reactants, i.e., the mixer outlet may be directly coupled to a reactor inlet, or may be coupled to any other conduit capable of fluidly coupling the mixer outlet with the reactor inlet.
  • Any such conduit is desirably configured so as to be substantially the same shape as the fluid flow from the reactor, e.g., to be substantially tubular or conical. Any such conduit will also desirably be placed about the same longitudinal axis as the outlet of the mixer.
  • the advantages provided may be realized or enhanced by using certain reactor features and/or dimensions to assist in the design of the mixer.
  • the incorporation of the expander into the present mixer allows an advantageous inlet arrangement to be used, having an inner diameter that more closely approximates the inner diameter of the feedstream source line, while yet having an outlet that more closely approximates the reactor inlet inner diameter.
  • Table 2 below, provides a correlation between dimensions and features of the mixer with common reactor sizes with which the mixer may advantageously be used, for an exemplary process wherein two reactants are introduced to two inlet/chambers.
  • Table 2 is by no means exhaustive, and those of ordinary skill will be able to extrapolate the dimensions and ranges given to any type of reactor, having any dimensions, and to any type of process.
  • the mixer can be attached to a reactor with various configurations.
  • a reactor for the production or chlorinated propenes may typically be quite long, and so one or more sections of the reactor and/or mixer may be nonlinear, i.e., one or more zones thereof may comprise bends of 45° or greater, or 90° or greater, or even 135° or greater.
  • the reactor and/or mixer may comprise multiple bends, and in such embodiments, may even take the form of a serpentine pattern. Incorporating bends into the reactor and/or mixer allows the desired lengths to be utilized for each zone, while yet minimizing the manufacturing footprint required for the reactor and the mixer.
  • the present mixer/reactor apparatus provides significant advantages when used in connection with chemical processes comprising a limiting reagent for which it was designed, and such processes are also provided. Incorporating the present mixer or mixer/reactor apparatus into such a process can reduce, or even eliminate backmixing that may occur in conventional mixers, so that substantial variances in conversions are not seen. Indeed, processes performed using the present mixer and/or apparatus can be provided with minimized production of secondary products and/or decomposition products such that variances of less than 2%, or even less than 1%, from the desired conversion, are seen.
  • a reactor provided with such mixer described here may be operated at substantially longer run-time and hence allowed larger capacity than otherwise. Selectivity may also be substantially maintained, or is expected to decrease by no more than 2%.
  • Such reactions may also typically include at least one limiting reactant having desired conversions that are far from exhaustion, e.g., conversions of less than 80%, or less than 40%, or even less than 20%.
  • the efficiencies provided by the present mixers and apparatus can be further leveraged by providing the chlorinated and/or fluorinated propene and higher alkenes produced therein to further downstream processes.
  • 1,1,2,3-tetrachloropropene produced using the described reactors can be processed to provide further downstream products including hydrofluoroolefins, such as, for example, 2,3,3,3-tetrafluoroprop-1-ene (HFO-1234yf) or 1,3,3,3-tetrafluoroprop-1-ene (HFO-1234ze).
  • HFO-1234yf 2,3,3,3-tetrafluoroprop-1-ene
  • HFO-1234ze 1,3,3,3-tetrafluoroprop-1-ene
  • the conversion of chlorinated and/or fluorinated propene and higher alkenes to provide hydrofluoroolefins may broadly comprise a single reaction or two or more reactions involving fluorination of a compound of the formula C(X) m CCl(Y) n (C)(X) m to at least one compound of the formula CF 3 CF ⁇ CHZ, where each X, Y and Z is independently H, F, Cl, I or Br, and each m is independently 1, 2 or 3 and n is 0 or 1.
  • a more specific example might involve a multi-step process wherein a feedstock of 1,1,2,3 tetrachloropropene is fluorinated in a catalyzed, gas phase reaction to form a compound such as 2-chloro-3,3,3-tri-fluoropropene.
  • the 2-chloro-2,3,3,3-tetrafluoropropane is then dehydrochlorinated to 2,3,3,3-tetrafluoropropene via a catalyzed, gas phase reaction.
  • FIGS. 5A and 5B shows two mixers designed to provide a swirling flow pattern to the reactants provided thereto.
  • mixer 500 incorporates angle ⁇ of 45°, angle ⁇ of 7°, and angle ⁇ of 60°.
  • the flow rate of the reactant provided via inlet 504 is 215.4 kg/hr, while the flow rates of the reactant mixture provided via inlet 505 in the embodiment of mixer 500 shown in FIG. 5A , carbon tetrachloride and perchloroethylene, are 236.5 kg/hr and 10.2 kg/hr, respectively.
  • the reactant mixture provided via inlet 505 in FIG. 5A is provided via an injection port (not shown) in FIG.
  • the inner diameter of the outermost chamber outlet (D co ), the outermost tube of the flow pattern development zone, and the mixing zone is 1.5′′.
  • the flow development zone length (L fpd ) is 8 inches and the mixing zone (L m ) is 12 inches.
  • FIGS. 5A and 5B The results of a computational fluid dynamic simulation are also shown in FIGS. 5A and 5B . More specifically, as shown in FIG. 5A , the embodiment of mixer 500 comprising 2 inlets and chambers results in only the formation of a small area of backmixing, indicated by the shaded area within expander zone 506 . Although the backmixing area produced by the embodiment of mixer 500 shown in FIG. 5B is larger, the embodiment of mixer 500 is nonetheless advantageous due to the inclusion of expander zone 506 . That is, mixer 500 shown in FIG. 5B is expected to be much less expensive to manufacture than a mixer not comprising an expander zone, i.e., wherein the mixer outlet closely approximates the inner diameter of a reactor inlet.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Accessories For Mixers (AREA)

Abstract

The present invention relates to a mixer, an apparatus comprising the mixer and a reactor, and processes incorporating the same. The mixer comprises an inlet (104) to a chamber (102), wherein the chamber inlet angle is less than 90°. The mixer further comprises an expander zone (106) that expands outwardly at an expander angle of less than 90°. The mixer may be coupled to a reactor at its outlet, which may closely approximate the size of the reactor inlet due to the expander (106).

Description

FIELD
The present invention relates to an efficient and effective mixer, an apparatus comprising the mixer and a reactor, and processes incorporating the same.
BACKGROUND
Hydrofluorocarbon (HFC) products are widely utilized in many applications, including refrigeration, air conditioning, foam expansion, and as propellants for aerosol products including medical aerosol devices. Although HFC's have proven to be more climate friendly than the chlorofluorocarbon and hydrochlorofluorocarbon products that they replaced, it has now been discovered that they exhibit an appreciable global warming potential (GWP).
The search for more acceptable alternatives to current fluorocarbon products has led to the emergence of hydrofluoroolefin (HFO) products. Relative to their predecessors, HFOs are expected to exert less impact on the atmosphere in the form of a lesser or no detrimental impact on the ozone layer and their much lower GWP as compared to HFC's. Advantageously, HFO's also exhibit low flammability and low toxicity.
As the environmental, and thus, economic importance of HFO's has developed, so has the demand for precursors utilized in their production. Many desirable HFO compounds, e.g., such as 2,3,3,3-tetrafluoroprop-1-ene or 1,3,3,3-tetrafluoroprop-1-ene, may typically be produced utilizing feedstocks of chlorocarbons or chlorofluorocarbons, and in particular, chlorinated propenes.
Unfortunately, many chlorinated propenes may have limited commercial availability, and/or may only be available at potentially prohibitively high cost, due at least in part to the propensity of the conventional processes typically utilized in their manufacture to result in the production of large quantities of secondary products, i.e., waste and/or by-products. Any such secondary products produced not only have to be separated from the final product and disposed of, but also, can result in system fouling prior to doing so. Both of these outcomes can introduce substantial expense, further limiting the commercial potential of processes in which the production of such secondary products is not reduced or eliminated. Further, these problems become exacerbated on process scale-up, so that large scale processes can become cost prohibitive quickly.
In many conventional processes for the production of chlorinated propenes, formation of excessive secondary products can be difficult to avoid since many such processes require only partial conversion of the limiting reagents. Greater conversions can result in the production of large quantities of secondary products. Excessive conversion, in turn, can be caused by backmixing of reactants and/or products.
Various mixers have been developed in efforts to minimize backmixing of reactants that may occur prior to entry into the reactor; however, none of these are without detriment. For example, mixers have been provided having the same diameter as the reactor so that backmixing zones are not created at the junction there between. When coupled with appropriate introduction of reactants, these mixers have proven effective, but can yet be suboptimal.
First, building a mixer with the same large diameter, e.g., up to 8 feet, as many reactors for the production of chlorinated propenes can be costly. Furthermore, the use of large diameter mixers can make the desired flow distribution within the mixer difficult to obtain due to the drop in pressure and velocity of the reactants upon entry into the mixer from their respective feed lines.
It would thus be desirable to provide improved mixers for use in methods wherein limiting reactants are desirably utilized. More particularly, mixers that provide quick and thorough mixing of two or more reactants, while yet also minimizing back mixing of the mixed feed stream and thus providing a reduction in the amount of secondary products that are produced would be welcomed in the art. Further advantage would be seen if such mixers could be provided cost effectively, i.e., on a smaller scale than the reactors with which they are desirably utilized.
BRIEF DESCRIPTION
A mixer that provides such advantages is provided herein. More specifically, the mixer incorporates an expander zone, wherein the inner diameter thereof expands outwardly at an angle of less than 90° relative to a longitudinal axis of the expander zone. In this way, a mixer can be provided having an inlet diameter smaller than its exit diameter, so that when coupled to a reactor, any backmixing zone that may otherwise be provided by disparate geometries between the mixer outlet and reactor inlet can be minimized or eliminated. The mixer may also incorporate one or more chambers, flow pattern development zones, and/or mixing zones that can act alone or together to improve the flow and/or mixing of the reactants therein so that uniform and efficient mixing is provided by the mixer. As a result, desired conversions may be substantially maintained, formation of secondary products may be minimized and/or fouling may be reduced or eliminated. And so, in addition to the cost savings that may be provided by manufacturing a mixer having a smaller inlet diameter than a reactor inlet diameter, savings are further provided by minimizing, or avoiding entirely, the costs associated with separating and disposing of, secondary products and/or process downtime to clean foulants from the system.
In one aspect of the present invention, a mixer is provided. The mixer comprises at least one inlet to at least one chamber, and an expander zone. The angle created by a longitudinal axis of the chamber and a longitudinal axis of the inlet (hereinafter the ‘chamber-inlet angle’, or a in FIG. 1A) is less than 90°, or may be from 30° to 80°. The inner diameter of the expander zone (De) expands outwardly at an angle (hereinafter the ‘expander angle’ or β in FIG. 1A) less than 90°, or less than 45°, or less than 20°, or less than 15°, or even less than 10° relative to a longitudinal axis of the expander zone. The chamber has an inner diameter (Dc) that is at least 1.25, or at least 2 times greater than the inner diameter of its inlet (Dci). In some embodiments, the inner diameter of the chamber (Dc) may be from 2-10 times greater than the inner diameter of its inlet (Dci).
The chamber also desirably comprises an outlet, and in those embodiments wherein multiple chambers/inlets are utilized, the outlets thereof are desirably arranged concentrically, i.e., so that two concentrically placed outlets create an annular space there between. The ratio of the cross sectional area of each annular space (Aa) to the area of the inner most chamber outlet (Aco, innermost) is desirably between 1 and 3, i.e., Aa/Aco is between 1 and 3. The chamber inner diameter (Dc) may taper to the inner diameter of the chamber outlet (Dco), or, the chamber inner diameter (Dc) may decrease at a 90° angle to provide the chamber outlet.
The chamber outlet has an inner diameter (Dco) that is at least 2 times greater than the inner diameter of the chamber inlet (Dci). The outlet has an inner diameter (Dco) that is less than the chamber inner diameter (Dc), e.g., the ratio of the chamber inner diameter (Dc) to the outlet inner diameter (Dco) may be at least 1, or at least 1.1, or at least 1.2. Desirably, the ratio of the inner diameter of the chamber (Dc) to the inner diameter of its outlet (Dco) is less than 10, or less than 8, or less than 6, or less than 5, or less than 4. In some embodiments, the ratio of the inner diameter of the chamber (Dc) to the inner diameter of its outlet (Dco) is from 1.1 to 8 or from 1.2-4. In some embodiments, the inner diameter of the chamber (Dc) and the inner diameter of its outlet (Dco) may be approximately the same.
In some embodiments, the mixer may additionally comprise a flow pattern development zone and/or a mixing zone. If utilized, the flow pattern development zone may be an extension of the chamber outlet(s), i.e., may be a series of concentrically placed tubes creating an inner tube and a series of annular spaces. The length of any flow pattern development zone (Lfpd) may desirably be substantially the same as, or greater than, the diameter of the outermost tube (Dfpd) within the flow development zone. If both a mixing zone and a flow pattern development zone are utilized, the mixing zone is desirably downstream of the flow pattern development zone. In any case, the mixing zone may desirably comprise a single tube having an inner diameter (Dm) less than or equal to that of the outermost chamber outlet (Dco, outermost), or the outermost tube of the flow pattern development zone (Dfpd), as the case may be. The combined mixing zone and flow pattern development zone, if any, has a length (Lfpd+Lm) 3 times greater, or 9 times greater, than the inner diameter (Dm) of the mixing zone.
The advantageous features and dimensional relationships of the mixer may be taken advantage of when the mixer is utilized in connection with a reactor, and indeed, additional dimensional relationships between the mixer and reactor inlet have been discovered that further assist in realizing, or further leveraging, the full benefits of both. And so, in another aspect, there is provided an apparatus comprising a reactor having an inlet with an inner diameter (Dr) and a mixer comprising at least one inlet to at least one chamber, wherein the chamber outlet inner diameter (Dco), flow pattern development zone inner diameter (Dfpd) and/or mixing zone inner diameter (Dm) is/are less than that of the reactor inlet inner diameter (Dr). The ratio of the inner diameter of the reactor (Dr) to the chamber outlet inner diameter (Dcp), flow pattern development zone inner diameter (Dfpd) and/or mixing zone inner diameter (Dm) is desirably from 2 to 5, or from 3 to 4. The mixer also comprises an expander zone having an inner diameter (De) that expands outwardly at an angle of less than 90°, or less than 45°, or less than 20°, or less than 10°. The reactor may have an inner diameter of more or less than 4 feet. The reactor and/or mixer may comprise one or more bends of 90 degrees or greater, to accommodate the desired design and length thereof easily in the available manufacturing space.
Since the present apparatus are expected to provide time and cost savings to the gaseous processes in which they are utilized, such processes are also provided. Processes comprising a limiting reagent find particular benefit.
In another aspect, processes for mixing at least two reagents for a chemical process are provided. The processes comprise providing the at least two reactants to an apparatus comprising a reactor having an inner diameter (Dr) and a mixer comprising at least one inlet to at least one chamber, wherein the chamber outlet inner diameter (Dco), flow pattern development zone inner diameter (Dfpd) and/or mixing zone inner diameter (Dm) is/are less than that of the reactor inlet inner diameter (Dr). The ratio the inner diameter of the reactor (Dr) to the outermost chamber outlet inner diameter Dco and/or the mixing zone inner diameter (Dm) is desirably from 2 to 6, or from 3 to 5. The mixer also comprises an expander zone having an inner diameter (De) that expands outwardly at an angle of less than 90°, or less than 45°, or less than 20°, or less than 10°.
BRIEF DESCRIPTION OF THE DRAWINGS
These and other features, aspects, and advantages of the present invention will become better understood when the following detailed description is read with reference to the accompanying drawings, wherein:
FIG. 1A is a schematic representation (not to scale) of one embodiment of the mixer comprising one inlet/chamber and an expander zone;
FIG. 1B is a top view of the schematic representation of the embodiment shown in FIG. 1A;
FIG. 1C is a schematic representation (not to scale) of the mixer shown in FIG. 1, further comprising a taper from the chamber inner diameter to provide the chamber outlet;
FIG. 2A is a schematic representation (not to scale) of one embodiment of the mixer comprising two inlets/chambers and an expander zone;
FIG. 2B is a top view of one arrangement of the chamber inlets of the embodiment shown in FIG. 2A;
FIG. 2C is a top view of a further arrangement of the chamber inlets of the embodiment shown in FIG. 2A;
FIG. 3A is a schematic representation (not to scale) of one embodiment of the mixer comprising two inlets/chambers, a mixing zone and an expander zone;
FIG. 3B is a schematic representation (not to scale) of one embodiment of the mixer comprising two inlets/chambers, a flow pattern development zone and an expander zone;
FIG. 3C is a schematic representation (not to scale) of one embodiment of the mixer comprising two inlets/chambers, a flow pattern development zone, a mixing zone and an expander zone;
FIG. 4A is a schematic representation (not to scale) of one embodiment of the mixer comprising three inlets and two chambers, a flow pattern development zone, a mixing zone and an expander zone, wherein two inlets are provided on one chamber;
FIG. 4B is a schematic representation (not to scale) of one embodiment of the mixer comprising three inlets/chambers, a flow pattern development zone, a mixing zone and an expander zone, wherein a third chamber is provided within the second chamber; and
FIG. 4C is a schematic representation (not to scale) of one embodiment of the mixer comprising three inlets/chambers, a flow pattern development zone, a mixing zone and an expander zone, wherein a third chamber and corresponding inlet is provided between the flow pattern development zone and the mixing zone.
FIG. 5A shows results of a computational fluid dynamic simulation for a mixer according to one embodiment, having two inlets/chambers, a flow pattern development zone, a mixing zone and an expander zone; and
FIG. 5B shows results of a computational fluid dynamic simulation for a mixer according to one embodiment, having one inlet/chamber, a flow pattern development zone, a mixing zone and an expander zone.
DETAILED DESCRIPTION
The present specification provides certain definitions and methods to better define the present invention and to guide those of ordinary skill in the art in the practice of the present invention. Provision, or lack of the provision, of a definition for a particular term or phrase is not meant to imply any particular importance, or lack thereof. Rather, and unless otherwise noted, terms are to be understood according to conventional usage by those of ordinary skill in the relevant art.
The terms “first”, “second”, and the like, as used herein do not denote any order, quantity, or importance, but rather are used to distinguish one element from another. Also, the terms “a” and “an” do not denote a limitation of quantity, but rather denote the presence of at least one of the referenced item, and the terms “front”, “back”, “bottom”, and/or “top”, unless otherwise noted, are merely used for convenience of description, and are not intended to limit the part being described limited to any one position or spatial orientation.
If ranges are disclosed, the endpoints of all ranges directed to the same component or property are inclusive and independently combinable (e.g., ranges of “up to 25 wt. %, or, more specifically, 5 wt. % to 20 wt. %,” is inclusive of the endpoints and all intermediate values of the ranges of “5 wt. % to 25 wt. %,” etc.). As used herein, percent (%) conversion is meant to indicate change in molar or mass flow of reactant in a reactor in ratio to the incoming flow, while percent (%) selectivity means the change in molar flow rate of product in a reactor in ratio to the change of molar flow rate of a reactant.
The mixer provided herein may incorporate one or more angles between components, zones, or longitudinal axes thereof that provide the mixer with improved performance relative to mixers not incorporating the angle. In each instance, the angles are defined as the lesser angle of the linear pair created by, or that would be created by, the intersection of the components, zones, or axes. For example, the chamber-inlet angle (denoted “α” in FIG. 1A) is defined as the lesser angle of the linear pair created by the intersection of the longitudinal axes of the chamber and the longitudinal axes of its inlet. Similarly, the expander angle (denoted “β” in FIG. 1A) is defined as the lesser angle of the linear pair created by the intersection of the longitudinal axis of the expander zone and a line extended from the inner diameter of the expander zone to intersect with the longitudinal axis of the expander zone. Finally, the transverse chamber-inlet angle (denoted “γ” in FIG. 1B) is defined as the lesser angle of the linear pair created by the intersection of the longitudinal axis of the inlet and a line tangential to the chamber projected on a cross sectional plane to the chamber intersecting the point where the longitudinal axis of the inlet line meets the chamber's wall.
The present invention provides a mixer for use in a gas-phase process, such as processes for the production of chlorinated propenes and/or higher alkenes. The mixer incorporates one or more design features that can i) provide for reduced backmixing of the reactants, and/or ii) minimize or eliminate plugging within the mixer. As a result, desired conversions may be substantially maintained, formation of secondary products may be minimized and/or fouling may be reduced or eliminated. Further, the advantages provided by one design feature may be leveraged, perhaps even synergistically, by combining the same with others.
More specifically, the mixer comprises an inlet fluidly connected to a chamber, wherein the chamber-inlet angle (α) is less than 90°. Desirably, the chamber-inlet angle, α, is less than 15°, or less than 80°. In some embodiments, the chamber-inlet angle (α) may be greater than 20°, or greater than 30°. In some embodiments, the chamber-inlet angle (α) may be from 30°-80°. The mixer also comprises an expander zone, wherein the inner diameter thereof expands outwardly along the length thereof at an expander angle (β) of less than 90°, or less than 45°, or less than 20°, or less than 15°, or less than 10°. Desirably, expander angle β is greater than 1°, or greater than 2°, or greater than 3°, or greater than 4°, or greater than 5°. In some embodiments, expander angle β may be from 1° to 90°, or from 2° to 45°, or from 3° to 20°, or from 4° to 15°, or from 5° to 10°. At its outlet, the expander may have an inner diameter (De) of less than 100 feet, or less than 80 feet, or less than 50 feet, or less than 20 feet. In some embodiments, the expander zone outlet inner diameter (De) may be substantially equal to the reactor inlet inner diameter (Dr)
The combination of these two features has been discovered to provide a mixer that not only provides the desired flow pattern and efficient mixing, but also is inexpensive to manufacture and robust in the challenging environments created by processes for the production of chlorinated propenes. More particularly, the provision of a chamber inlet angle α less than 90°, or from 30°-80° has been found to render the mixer more robust against fouling from contaminants and secondary products that may already be present in the reactants as they are presented to the mixer. And, the provision of an expander zone, incorporating an expander angle β of less than 90°, allows the mixer to include an inlet close in size to the typical size of feedstreams used in commercial chemical processes, but yet, an outlet that may more closely approximate the size of the inlet of a reactor to which the mixer may be coupled. As such, the pressure drop and/or backmixing that may otherwise be seen between mixers and feedstreams, or mixers and reactors, of disparate sizes can be minimized or avoided.
In some embodiments, the chamber may exhibit substantially the same geometry as the inlet, and the geometries thereof may be selected to encourage a desired flow pattern. Any flow pattern can be established and encouraged by the mixer (with the exception of back mixed flow). In some embodiments, the mixer is desirably utilized to produce a swirling flow pattern. Swirling flow patterns can be advantageous for use in many chemical processes, but in particular in processes where backmixing can be an issue. This is because swirling flow patterns tend to produce high shear at internal surfaces that can assist in the prevention of the accumulation of solids thereon. Swirling flow patterns may also only require a small head mixing chamber in comparison to the reactor diameter in order to be established. A swirling flow pattern can be induced by introduction of a feedstream into a generally cylindrical inlet, and thereafter into a generally cylindrical chamber.
The inlet and chamber may have the same, or a different, inner diameter. In some embodiments, advantage can be seen by providing the chamber with an inner diameter (Dc) at least 1.25 times greater, or at least two times greater, than the inner diameter of the inlet (Dci). In some embodiments, the inner diameter of the chamber (Dc) is desirably less than 20 times, or less than 10 times, the inner diameter of the chamber inlet (Dci). In some embodiments, the ratio of the inner diameter of the chamber (Dc) to the inner diameter of the inlet (Dci) is from 2-10. Providing the chamber and inlet with such a dimensional relationship has been found to render the chamber and inlet robust to the presence of the particulates and/or secondary products that may be present in the feedstreams as introduced therein.
The chamber also desirably comprises an outlet, which may desirably be of the same geometry as the chamber and/or inlet. The outlet may also have the same diameter, or cross sectional area, as the case may be, as the chamber and/or chamber inlet, or may have a different diameter. In some embodiments, the chamber outlet has an inner diameter (Dco) that is at least 2 times greater than the inner diameter of the chamber inlet (Dci). The outlet has an inner diameter (Dco) that is less than the chamber inner diameter (Dc), e.g., the ratio of the chamber inner diameter (Dc) to the outlet inner diameter (Dco) may be at least 1, or at least 1.1, or at least 1.2. Desirably, the ratio of the inner diameter of the chamber (Dc) to the inner diameter of its outlet (Dco) is less than 10, or less than 8, or less than 6, or less than 5, or less than 4. In some embodiments, the ratio of the inner diameter of the chamber (Dc) to the inner diameter of its outlet (Dco) is from 1.1 to 8 or from 1.2-4.
If two or more inlets/chambers are provided, the outlets of any provided proximate to each other are desirably provided as concentric rings. In this way, the innermost chamber outlet would act as an egress for one reactant. Each subsequent chamber outlet would provide an annular space between it and the chamber outlet immediately interior to it, through which an additional reactant may flow, and so forth. The ratio of the cross sectional area of each annular space (Aa) to the area of the inner most chamber outlet (Aco, innermost) is desirably between 1 and 3, i.e., Aa/Aco is between 1 and 3.
In some embodiments more than one, more than two, or more than three, or even more than 4, inlet(s)/chamber(s) are provided. In some embodiments, at least two inlets/chambers are provided. In other embodiments, more than one inlet may be provided on one or more chambers. In such embodiments, the additional inlet(s) and/or chamber(s) can have the same configuration, i.e., shape, inner dimension, chamber inlet angle, tangential chamber inlet angle, or one or more different configuration(s). For purposes of manufacturing efficacy, in those embodiments wherein multiple inlets/chambers are used, they may have the same configuration, but this is not necessary to appreciate the advantages of the invention.
In some embodiments, the mixer may be provided with additional features and/or dimensional relationships that further enhance its suitability for use in connection with processes comprising a limiting reagent. More particularly, in some embodiments, the mixer may further comprise an advantageous tangential chamber-inlet angle and/or a flow pattern development zone and/or a mixing zone.
That is, it has now been discovered that an angle γ between the chamber inlet and a line tangential to the chamber projected on a cross sectional plane to the chamber intersecting the point where the longitudinal axis of the inlet line meets the chamber's wall of less than 90°, or less than 80°, or less than 70°, or less than 60°, provides a beneficial flow to the reactant provided through the inlet. Desirably, the tangential chamber inlet angle γ is greater than 5°, or greater than 10°, or greater than 15°, or greater than 20°. In some embodiments, the tangential chamber inlet angle γ is from 5° to 90°, or 10° to 80°, or 15° to 70°, or 20° to 60°.
The flow pattern development zone, if provided, will desirably be of a shape and/or dimension that further encourages the formation and/or maintenance of the desired flow pattern of the reactant provided by the at least one inlet. In those embodiments wherein a swirling pattern is developed, the flow pattern development zone may comprise a tube within a tube design, wherein the number of tubes correspond to the number of reactants introduced via inlets/chambers upstream of the flow pattern development zone.
If, for example, only one reactant is provided via an inlet/chamber upstream of the flow pattern development zone, the flow development zone may simply be a tube having an inner diameter (Dfpd) approximately the same as the inner diameter of the chamber outlet (Dco) and be fluidly connected thereto. As another example, if three reactants are to be used in the process, and all three are desirably introduced upstream of the flow pattern development zone, three tubes of differing inner diameters would be provided about the same longitudinal axis. The innermost tube could be fluidly connected to a first chamber outlet, the annular space provided between the innermost tube and the next outlying tube could be fluidly connected to a second chamber outlet, and the annular space created by the middle tube and the outermost tube could be fluidly connected to a third chamber outlet.
In another embodiment wherein three reactants are used, two may be introduced via two inlet/chambers, and a third may be introduced according to any method known to those of ordinary skill in the art, and may be introduced, e.g., after a flow pattern development zone. This embodiment may be advantageous when a desired reactant has a lesser residence time within the mixer for any reason, e.g., the reactant is highly reactive, unstable at the temperature(s) at which the other reactants are introduced to the mixer, etc.
In embodiments wherein a flow pattern development zone is desirably included, it can have any suitable length (Lfpd) and inner diameter (Dfpd). Desirably, the length and inner diameter of the flow pattern development zone will facilitate and/or accommodate the desired flow rate of the reactants, while also encouraging or enhancing the desired flow pattern. The inner diameter (Dfpd) of the innermost tube of the flow pattern development zone may be greater than 0.25 inch, or greater than 0.5 inch, or greater than 0.75 inches, or greater than 1 inch. The inner diameter (Dfpd) of the outermost tube of the flow pattern development zone may be less than 60″ or less than 30″ or less than 24″ or less than 18″. In some embodiments, the inner diameter (Dfpd) of the innermost tube of the flow pattern development zone is from 0.25 to 60″ of from 0.5-30″, or from 0.75 to 24 inches, or from 1″ to 18″.
Any flow pattern development zone can have a length (Lfpd) such that the ratio of its length (Lfpd) to the inner diameter (Dfpd) of the innermost tube thereof is greater than 0.5, or greater than 0.75, or greater than 1.0, or greater than 1.25, or greater than 1.5. The ratio Lfpd to Dfpd, innermost, may be less than 50, or less than 40, or less than 30, or less than 20, and in some embodiments, may be less than 10. In some embodiments, Lfpd/Dfpd, innermost may be from 0.25-50, or from 0.5 to 40, or from 0.75 to 30, or from 1.0 to 20, or from 1.25 to 10.
A mixing zone may also be provided in some embodiments, and can be used to mix one or more reactants prior to entry into the expander zone. The mixing zone may be fluidly connected to the chamber outlet, or the flow pattern development zone, at the upstream end thereof, and is desirably fluidly connected to the expander zone at its downstream end. The mixing zone may be used to bring the reactants, previously introduced into separate inlets, and in some embodiments, passed through the flow pattern development zone, into contact with each other. The mixing zone is desirably of a geometry that will allow the flow pattern to be substantially maintained, and in some embodiments, may be cylindrical.
The mixing zone may advantageously have the same, or a lesser, inner diameter (Dm) as the largest immediately preceding inner diameter, i.e., if fluidly connected to one or more chamber outlets, the mixing zone is desirably substantially the same or smaller, diameter as the outermost chamber outlet. If the mixing zone is fluidly connected to a flow pattern development zone, the mixing zone will desirably be of the same geometry, and have an inner diameter, or cross sectional area, as the case may be, substantially the same as the outermost tube of the flow pattern development zone.
Any mixing zone may be of any suitable length (Lm), which may be chosen based upon the flow rate and reactivity of the reactants. Any mixing zone may have a length, Lm, of greater than 1 foot, or greater than 10 feet, or greater than 20 feet, or greater than 30 feet. Mixing zone length Lm may be less than 60 feet, or less than 50 feet, or less than 40 feet. In some embodiments, mixing zone length may be from 1 to 60 feet, or from 10 feet to 50 feet, or from 20 feet to 40 feet. The ratio of mixing zone length Lm to Dm may, e.g., be 1, or 2, or 6, or 10. Desirably, the ratio of mixing zone length Lm to mixing zone diameter Dm will be from 2 to 8.
One or more of the described features and/or dimensions may advantageously be employed in the mixer, wherein their advantages are expected to be cumulative, and perhaps synergistic. Any two, any three, any four, any five or all of the design concepts may be employed. For example, the mixer may have an chamber-inlet angle α of less than 90°, an expander zone having an expander angle β of ≤45°, and/or i) a chamber inner diameter (Dc) at least 1.25 times greater than the inner diameter of the chamber inlet (Dci), and/or ii) a chamber inner diameter (Dc) that is at least the same or greater than the inner diameter of the chamber outlet (Dco), and/or iii) a tangential chamber-inlet angle α of less than 90°, and/or iv) a flow pattern development zone, having a ratio of length (Lfpd) to the inner diameter (Dfpd) of at least 0.5 and/or a mixing zone having a ratio of length (Lm) and inner diameter (Dm) of at least 1.0.
Tables 1 and 2 show the possible dimensional relationships that may be optimized in the present mixer and possible values/ranges for each. More particularly, Table 1 contemplates the addition of any number of reactants to the mixer, and Table 2 is directed to those embodiments wherein 2 reactants are introduced via inlets/chambers (although others may be introduced by other means, into other sections of the mixer, e.g., as via injection into a port, etc.)
TABLE 1
Dimension Embodiment 1 Embodiment 2 Embodiment 3
Number of 2 or greater 2-10 2-5 
inlets/chambers
Dc (inches)  0.5-120 0.75-90   1.25-60  
Dc/(Dci) 1.25-20  1.5-20 2-10
Chamber-inlet angle, ≠90° 5°-85° 10°-80° 
α
Tangential chamber- 0° or greater 60° to 85° 70° to 80°
inlet angle, γ
Dc/Dco 1-10 1.2-8   1.2-4  
Dfpd, innermost 0.5-60 0.5-30 1-24
Lfpd/Dfpd, innermost 0.5-30 1-20 1-10
Dfpd, outermost NA-60 NA-50  NA-40 
Lm (feet) 0-60 0-50 0-40
Dm (inches)  0.5-120 1.0-60 1.0-36
Expander angle (β) ≤90° 2-45° 3-25°
De (feet) ≤100  ≤50 ≤20
One exemplary embodiment of the mixer is shown in FIG. 1. As shown, mixer 100 includes chamber 102, inlet 104, and expander 106, wherein chamber inlet angle, a, is from 10-80°, or 60° and expander angle β that is desirably >0° but is <25°. FIG. 1B shows a top view of the mixer shown in FIG. 1A, showing the tangential chamber-inlet angle γ, which is desirably from 10° to 80°. In the embodiment shown in FIG. 1A, chamber outlet 108 is provided by a decrease of 90° in the chamber inner diameter. FIG. 1C shows an embodiment wherein the chamber inner diameter is tapered to provide chamber outlet 108. Mixer 100 may accommodate the introduction of one or more reagents/reactants via inlet 104. Additional reactants/reagents may be introduced at other conventional inlets provided in mixer 100, such as injection ports (not shown).
Another embodiment of the mixer is shown in FIG. 2. Mixer 200 includes two chambers 202 and 203 and inlets 204 and 205, wherein both chambers are tapered to provide chamber outlets 208 and 209, respectively. FIG. 2B shows a top view of mixer 200, wherein inlets 204 and 205 are arranged so as to appear superimposed when viewed from the top of mixer 200. FIG. 2C shows an alternative arrangement of inlets 204 and 205 to that shown in FIGS. 2A and 2B. Mixer 200 can accommodate the introduction of one or more reactants via inlet 204, one or more reactants via inlet 205, and any number of additional reactants introduced by, e.g., injection ports (not shown) as may be provided in mixer 200.
Additional embodiments of the mixer are shown in FIG. 3. In addition to the features shown in FIG. 2, the embodiment of mixer 300 shown in FIG. 3A incorporates mixing zone 310. The outlet 308 of chamber 302 and outlet 309 of chamber 303 are arranged concentrically, both ending at the inlet of mixing zone 310. Mixing zone 310 is fluidly connected to expander zone 306.
As shown in FIG. 3B, mixer 300 comprises includes flow pattern development zone 312. As with the embodiment shown in FIG. 3A, outlet 308 and outlet 309 are arranged concentrically, with outlet 308 providing the innermost tube of flow pattern development zone 312. Outlet 309, in combination with outlet 308, provides annular space 313. Outlet 308, outlet 309, and annular space 313 each terminate at, and are fluidly connected with, expander zone 306. In this case, mixing occurs in the expander zone. Mixer 300 can accommodate the introduction of one or more reactants via inlet 304, one or more reactants via inlet 305, and any number of additional reactants introduced by, e.g., injection ports (not shown) as may be provided in mixer 300.
In the embodiment shown in FIG. 3C, mixer 300 includes both flow pattern development zone and mixing zone 310. The outlets of chambers 302 and 303 are arranged as shown and described in connection with FIG. 3B. And so, in operation of mixer 300 shown in FIG. 3C, one or more reactants may be injected through inlet 304 and one or more reactants may be provided through inlet 305. The desired flow pattern, as may be encouraged by the chamber inlet angle α and tangential chamber-inlet angle γ, may further develop within flow pattern development zone 312. The reactants would then be mixed within mixing zone 310.
FIG. 4A-4C show additional embodiments of the mixer, comprising three inlets. In the embodiment shown in FIG. 4A, mixer 400 includes three inlets and two chambers, with two inlets 405 and 414 being provided to chamber 403. FIG. 4B shows a further embodiment wherein a third chamber 415 is provided, arranged about the same concentric axis as chambers 402 and 403, but lying within chamber 403. FIG. 4C shows an embodiment of mixer 400 including a third chamber 415, wherein chamber 415 is arranged about the same concentric axis as chambers 402 and 403, and between flow pattern development zone 412 and mixing zone 410. In other embodiments, third chamber 415 could be provided downstream from, and about the same concentric axis as, chambers 402 and 403, but upstream from flow pattern development zone 412. Mixer 400 as shown in FIG. 4A-4C include both flow pattern development zone 412 and mixing zone 410, although this need not be the case, and any of the embodiments of mixer 400 shown in FIG. 4A-4C may be provided only with chambers 402, 403 and 415 and expander zone 406.
In some embodiments, the outlet of the mixer may desirably be operably disposed relative to the reactor that would desirably receive the mixed reactants, i.e., the mixer outlet may be directly coupled to a reactor inlet, or may be coupled to any other conduit capable of fluidly coupling the mixer outlet with the reactor inlet. Any such conduit is desirably configured so as to be substantially the same shape as the fluid flow from the reactor, e.g., to be substantially tubular or conical. Any such conduit will also desirably be placed about the same longitudinal axis as the outlet of the mixer.
Whether directly attached to the reactor, or to a conduit there between, the advantages provided may be realized or enhanced by using certain reactor features and/or dimensions to assist in the design of the mixer. The incorporation of the expander into the present mixer allows an advantageous inlet arrangement to be used, having an inner diameter that more closely approximates the inner diameter of the feedstream source line, while yet having an outlet that more closely approximates the reactor inlet inner diameter.
Table 2, below, provides a correlation between dimensions and features of the mixer with common reactor sizes with which the mixer may advantageously be used, for an exemplary process wherein two reactants are introduced to two inlet/chambers. Table 2 is by no means exhaustive, and those of ordinary skill will be able to extrapolate the dimensions and ranges given to any type of reactor, having any dimensions, and to any type of process.
TABLE 2
Approximate Reactor ID 4″ 8′
Reactor Dimensions
ID (Dr), in 3.826 96
Length, in 70.87 231
Mixer Dimensions
Chamber/inlet number 2 2
Mixer head ID (inch) 2 28
Inlet 1 ID (0.1-0.5) (4-12)
Chamber 1 (central) outlet
ID 0.25-0.75 4-12
Inlet 2 ID 0.1-0.5 4-12
Chamber 2 (outer) outlet
ID 0.6-1.4 9-27
Flow pattern development zone, 3-9 12-48 
Length (in)
Mixing zone, Length (in)  6-18 12-72 
Expander Zone
Angle from longitudinal axis  1-20 1-20
The mixer can be attached to a reactor with various configurations. In order to provide a desired residence time, a reactor for the production or chlorinated propenes may typically be quite long, and so one or more sections of the reactor and/or mixer may be nonlinear, i.e., one or more zones thereof may comprise bends of 45° or greater, or 90° or greater, or even 135° or greater. In some embodiments, the reactor and/or mixer may comprise multiple bends, and in such embodiments, may even take the form of a serpentine pattern. Incorporating bends into the reactor and/or mixer allows the desired lengths to be utilized for each zone, while yet minimizing the manufacturing footprint required for the reactor and the mixer.
The present mixer/reactor apparatus provides significant advantages when used in connection with chemical processes comprising a limiting reagent for which it was designed, and such processes are also provided. Incorporating the present mixer or mixer/reactor apparatus into such a process can reduce, or even eliminate backmixing that may occur in conventional mixers, so that substantial variances in conversions are not seen. Indeed, processes performed using the present mixer and/or apparatus can be provided with minimized production of secondary products and/or decomposition products such that variances of less than 2%, or even less than 1%, from the desired conversion, are seen. A reactor provided with such mixer described here may be operated at substantially longer run-time and hence allowed larger capacity than otherwise. Selectivity may also be substantially maintained, or is expected to decrease by no more than 2%. Such reactions may also typically include at least one limiting reactant having desired conversions that are far from exhaustion, e.g., conversions of less than 80%, or less than 40%, or even less than 20%.
The efficiencies provided by the present mixers and apparatus can be further leveraged by providing the chlorinated and/or fluorinated propene and higher alkenes produced therein to further downstream processes. For example, 1,1,2,3-tetrachloropropene produced using the described reactors can be processed to provide further downstream products including hydrofluoroolefins, such as, for example, 2,3,3,3-tetrafluoroprop-1-ene (HFO-1234yf) or 1,3,3,3-tetrafluoroprop-1-ene (HFO-1234ze). Improved methods for the production of hydrofluoroolefins, 2,3,3,3-tetrafluoroprop-1-ene (HFO-1234yf) or 1,3,3,3-tetrafluoroprop-1-ene (HFO-1234ze), are thus also provided herein.
The conversion of chlorinated and/or fluorinated propene and higher alkenes to provide hydrofluoroolefins may broadly comprise a single reaction or two or more reactions involving fluorination of a compound of the formula C(X)mCCl(Y)n(C)(X)m to at least one compound of the formula CF3CF═CHZ, where each X, Y and Z is independently H, F, Cl, I or Br, and each m is independently 1, 2 or 3 and n is 0 or 1. A more specific example might involve a multi-step process wherein a feedstock of 1,1,2,3 tetrachloropropene is fluorinated in a catalyzed, gas phase reaction to form a compound such as 2-chloro-3,3,3-tri-fluoropropene. The 2-chloro-2,3,3,3-tetrafluoropropane is then dehydrochlorinated to 2,3,3,3-tetrafluoropropene via a catalyzed, gas phase reaction.
EXAMPLE 1
FIGS. 5A and 5B shows two mixers designed to provide a swirling flow pattern to the reactants provided thereto. In both embodiments, mixer 500 incorporates angle α of 45°, angle β of 7°, and angle γ of 60°. The flow rate of the reactant provided via inlet 504, methyl chloride, is 215.4 kg/hr, while the flow rates of the reactant mixture provided via inlet 505 in the embodiment of mixer 500 shown in FIG. 5A, carbon tetrachloride and perchloroethylene, are 236.5 kg/hr and 10.2 kg/hr, respectively. In the embodiment of mixer 500 shown in FIG. 5B, the reactant mixture provided via inlet 505 in FIG. 5A is provided via an injection port (not shown) in FIG. 5B upstream of the flow pattern development zone. The inner diameter of the outermost chamber outlet (Dco), the outermost tube of the flow pattern development zone, and the mixing zone is 1.5″. The flow development zone length (Lfpd) is 8 inches and the mixing zone (Lm) is 12 inches.
The results of a computational fluid dynamic simulation are also shown in FIGS. 5A and 5B. More specifically, as shown in FIG. 5A, the embodiment of mixer 500 comprising 2 inlets and chambers results in only the formation of a small area of backmixing, indicated by the shaded area within expander zone 506. Although the backmixing area produced by the embodiment of mixer 500 shown in FIG. 5B is larger, the embodiment of mixer 500 is nonetheless advantageous due to the inclusion of expander zone 506. That is, mixer 500 shown in FIG. 5B is expected to be much less expensive to manufacture than a mixer not comprising an expander zone, i.e., wherein the mixer outlet closely approximates the inner diameter of a reactor inlet.

Claims (11)

What is claimed is:
1. A mixer for use in a chemical process comprising;
A first chamber having a first chamber inlet and a first chamber outlet
A second chamber having a second chamber inlet and a second chamber outlet;
A flow pattern development zone comprising a first tube within a second tube wherein the first tube is fluidly connected to the a first chamber outlet and the second tube is fluidly connected to the a second chamber outlet; and
An expander zone having an outer diameter substantially equal to that of the second chamber outlet and/or second tube of the flow pattern development zone and an inner diameter that expands outwardly at an expander angle (β) of less than 90°;
Wherein the chamber inlet angle (α) of at least one of the first or second chamber inlet(s) is less than 90°, the first chamber outlet is arranged concentrically within the second chamber outlet, the flow pattern development zone is upstream of the expander zone and the first tube of the flow pattern development zone ends at an inlet of the expander zone;
wherein the chamber-inlet angle (α) is from 30 to 80°;
wherein the angle (γ) between the chamber inlet and a line tangential to the chamber projected on a cross sectional plane to the chamber intersecting the point where the longitudinal axis of the inlet line meets the chamber's wall is 20° to 60°; and
wherein the mixer further comprising a mixing zone downstream of the flow pattern development zone and upstream of the expander zone, wherein the mixing zone has an outer diameter substantially equal to that of the flow pattern development zone and the first tube of the flow pattern development zone ends at the outlet of the mixing zone.
2. The mixer of claim 1, wherein the expander angle (β) is less than 20°.
3. The mixer of claim 1, wherein the inner diameter of the at least one of the first or second chambers is at least 1.25 times greater than the inner diameter of its respective chamber inlet.
4. The mixer of claim 1, wherein the inner diameter of at least one of the first or second chamber is greater than the inner diameter of its respective outlet.
5. The mixer of claim 1, wherein an annular space is created by the first and second chamber outlets and the ratio of the cross sectional area of the first chamber outlet to the cross sectional area of the annular space is between 1 and 3.
6. The mixer of claim 1, wherein the length of the flow pattern development zone is at least 0.5 times the diameter of the second chamber outlet.
7. The mixer of claim 1, wherein the inner diameter of the mixing zone is less than or equal to the inner diameter of the second tube of the flow pattern development zone.
8. The mixer of claim 4, wherein the inner chamber of at least one of the first or second chambers is tapered to provide its respective chamber outlet.
9. The mixer of claim 1, wherein the mixing zone comprises a single tube fluidly connected to the outermost chamber outlet and/or outermost tube of the flow pattern development zone, wherein the length of the mixing zone is substantially the same as or greater than the inner diameter of the mixing zone.
10. An apparatus comprising
A reactor having an inner diameter of greater than 0.1 feet and less than 36 feet; and the mixer according to claim 1 having an inlet with an inner diameter of less than the reactor inner diameter.
11. The apparatus of claim 10, wherein the ratio of the inner diameter of the chamber outlet of the mixer to the inner diameter of the reactor is from 2 to 5.
US14/436,604 2012-10-26 2013-10-14 Mixer and processes incorporating the same Expired - Fee Related US10065157B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/436,604 US10065157B2 (en) 2012-10-26 2013-10-14 Mixer and processes incorporating the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201261718920P 2012-10-26 2012-10-26
PCT/US2013/064825 WO2014066083A1 (en) 2012-10-26 2013-10-14 Mixer and reactor and process incorporating the same
US14/436,604 US10065157B2 (en) 2012-10-26 2013-10-14 Mixer and processes incorporating the same

Publications (2)

Publication Number Publication Date
US20160158715A1 US20160158715A1 (en) 2016-06-09
US10065157B2 true US10065157B2 (en) 2018-09-04

Family

ID=49514047

Family Applications (1)

Application Number Title Priority Date Filing Date
US14/436,604 Expired - Fee Related US10065157B2 (en) 2012-10-26 2013-10-14 Mixer and processes incorporating the same

Country Status (7)

Country Link
US (1) US10065157B2 (en)
EP (1) EP2911773B1 (en)
JP (1) JP6363610B2 (en)
CN (1) CN104902989B (en)
CA (1) CA2887559A1 (en)
IN (1) IN2015DN03949A (en)
WO (1) WO2014066083A1 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3366661A1 (en) 2011-08-07 2018-08-29 Blue Cube IP LLC Process for the production of chlorinated propenes
CN103717559A (en) 2011-08-07 2014-04-09 陶氏环球技术有限责任公司 Process for the production of chlorinated propenes
IN2014CN04029A (en) 2011-12-02 2015-10-23 Dow Global Technologies Llc
EP2785670B1 (en) 2011-12-02 2017-10-25 Blue Cube IP LLC Process for the production of chlorinated alkanes
US9512049B2 (en) 2011-12-23 2016-12-06 Dow Global Technologies Llc Process for the production of alkenes and/or aromatic compounds
US9321707B2 (en) 2012-09-20 2016-04-26 Blue Cube Ip Llc Process for the production of chlorinated propenes
JP2015529247A (en) 2012-09-20 2015-10-05 ダウ グローバル テクノロジーズ エルエルシー Process for the production of chlorinated propene
JP6272878B2 (en) 2012-09-30 2018-01-31 ブルー キューブ アイピー エルエルシー Cough quench and method incorporating it
JP6363610B2 (en) 2012-10-26 2018-07-25 ブルー キューブ アイピー エルエルシー Mixer and process incorporating it
EP2935165A1 (en) 2012-12-18 2015-10-28 Blue Cube IP LLC Process for the production of chlorinated propenes
CN104918904B (en) 2012-12-19 2017-10-31 蓝立方知识产权有限责任公司 Method for producing propylene dichloride
US9382176B2 (en) 2013-02-27 2016-07-05 Blue Cube Ip Llc Process for the production of chlorinated propenes
WO2014164368A1 (en) 2013-03-09 2014-10-09 Dow Global Technologies Llc Process for the production of chlorinated alkanes
RU185689U1 (en) * 2018-07-24 2018-12-13 Федеральное государственное бюджетное образовательное учреждение высшего образования "Ивановский государственный политехнический университет" MEANS FOR MIXING GAS FLOWS

Citations (234)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1504443A (en) 1923-08-25 1924-08-12 James W Gibbons Paint-spraying apparatus
GB471187A (en) 1936-02-28 1937-08-30 Du Pont Improvements in or relating to the manufacture of chlorinated hydrocarbons
GB471188A (en) 1936-02-28 1937-08-30 Du Pont Improvements in or relating to the manufacture of chlorinated hydrocarbons
GB471186A (en) 1936-02-28 1937-08-30 Du Pont Improvements in or relating to the manufacture of chlorine derivatives of unsaturated hydrocarbons
US2119484A (en) 1935-05-06 1938-05-31 Du Pont Chlorination of propylene dichloride
US2179378A (en) 1936-07-18 1939-11-07 Air Reduction Production of acetylene
US2207193A (en) 1937-09-14 1940-07-09 Shell Dev Production of allyl type halides
US2299441A (en) 1939-09-02 1942-10-20 Shell Dev Catalytic halo-substitution of saturated organic compounds
US2302228A (en) 1940-04-02 1942-11-17 Du Pont Method of chlorination with sulphuryl chloride and production of monochloro-trimethyl acetic acid
US2370342A (en) 1940-04-30 1945-02-27 Tide Water Associated Oil Comp Halogenation
US2378859A (en) 1941-08-08 1945-06-19 Distillers Co Yeast Ltd Splitting-off of hydrogen halide from halogenated hydrocarbons
US2379551A (en) * 1944-04-27 1945-07-03 Talley Henry Alfred Ernest Apparatus for mixing gases
US2435983A (en) 1945-12-01 1948-02-17 Universal Oil Prod Co Production of liquid hydrocarbons
US2449286A (en) 1945-07-16 1948-09-14 Shell Dev Production of 1, 3-dihalopropylenes
US2588867A (en) 1948-10-25 1952-03-11 Dow Chemical Co Pyrolytic production of chlorohydrocarbons
DE857955C (en) 1951-03-23 1952-12-04 Basf Ag Process for the production of tetrachlorethylene in addition to carbon tetrachloride
US2630461A (en) 1953-03-03 Production of acetylene by incom
US2688592A (en) 1950-10-21 1954-09-07 Diamond Alkali Co Photochemical process for preparing carbon tetrachloride
US2762611A (en) 1952-02-28 1956-09-11 Pfaudler Co Inc Tubular heat exchangers
US2765359A (en) 1953-02-10 1956-10-02 Hydrocarbon Research Inc Production of acetylene
US2964579A (en) 1958-10-09 1960-12-13 Houdry Process Corp Selective hydrogenation of diolefins with copper chromite catalyst
GB857086A (en) 1956-08-30 1960-12-29 Hoechst Ag Process for the manufacture of carbon tetrachloride
US2973393A (en) 1958-10-02 1961-02-28 Dow Chemical Co Chlorination of acetylenes
US3000980A (en) 1958-04-07 1961-09-19 Dow Chemical Co Preparation of alkyl bromides
US3094567A (en) 1960-02-25 1963-06-18 Monsanto Chemicals Chlorination of propynes
US3112988A (en) 1960-02-26 1963-12-03 Sheil Oil Company Mixing gases at supersonic velocity
LU52247A1 (en) 1966-06-07 1966-12-28
FR1546709A (en) 1967-10-10 1968-11-22 Mini Ind Chimice Method and apparatus for the continuous system manufacture of hydrocarbon nitroso-derivatives
GB1134585A (en) 1966-07-22 1968-11-27 Knapsack Ag Process for the joint manufacture of 2,2,3-trichlorobutane and 1,2,3-trichlorobutane
US3444263A (en) 1966-11-09 1969-05-13 Gulf Research Development Co Method for converting ethylene to alpha olefins in the presence of an organic sulfide
US3446859A (en) 1962-06-11 1969-05-27 Hooker Chemical Corp Vapor phase condensation process
US3502734A (en) 1966-05-11 1970-03-24 Du Pont Process for partially chlorinating methyl chloride and/or methylene chloride
US3525595A (en) 1967-05-19 1970-08-25 Bayer Ag Concentric cross flow nozzle apparatus for carrying out reactions between gases
US3551512A (en) 1968-11-01 1970-12-29 Diamond Shamrock Corp Pressure process for preparing acetylene
US3558438A (en) 1968-10-30 1971-01-26 Du Pont Distillation process and apparatus
US3615202A (en) * 1969-11-28 1971-10-26 David R Stern Process for the manufacture of titanium dioxide
US3651019A (en) 1961-09-28 1972-03-21 Yeda Res & Dev Production of adducts of carbon tetrachloride or chloroform with olefinically unsaturated substances
US3676508A (en) 1969-01-30 1972-07-11 Hornig Anneliese Process for the manufacture of carbon tetrachloride
US3819731A (en) 1960-03-23 1974-06-25 Stauffer Chemical Co Production of chlorinated unsaturated hydrocarbons
US3823195A (en) 1971-12-27 1974-07-09 Monsanto Co Preparation of 1,1,2,3-tetrachloropropene from 1,2,3-trichloropropane
GB1381619A (en) 1971-12-17 1975-01-22 Monsanto Co Process for the production of 1,2,3-trichloropropene
US3872664A (en) 1973-10-15 1975-03-25 United Aircraft Corp Swirl combustor with vortex burning and mixing
US3914167A (en) 1974-08-26 1975-10-21 Dow Chemical Co Process for making cis-1,3-dichloropropene
US3920757A (en) 1971-08-25 1975-11-18 Dow Chemical Co Chlorination with sulfuryl chloride
US3926758A (en) 1971-12-27 1975-12-16 Monsanto Co Preparation of 1,1,2,3-tetrachloropropene from 2,3-trichloropropane
US3948858A (en) 1973-09-22 1976-04-06 Akzo N.V. Polymerization of ethylenically unsaturated compounds
US3954410A (en) 1972-11-21 1976-05-04 Merck Patent Gesellschaft Mit Beschraenkter Haftung Solvents for NMR spectroscopy
US4038372A (en) 1976-05-05 1977-07-26 The United States Of America As Represented By The Secretary Of The Navy Process for manufacturing chloramine
US4043766A (en) * 1975-11-20 1977-08-23 Dr. C. Otto & Comp. G.M.B.H. Slag bath generator
US4046656A (en) 1976-12-06 1977-09-06 The Dow Chemical Company Photochlorination process for methyl aromatic compounds
US4051182A (en) 1976-04-12 1977-09-27 Stauffer Chemical Company Process for the manufacture of α-chloropropionyl chloride
JPS544869A (en) 1977-06-15 1979-01-13 Babcock Hitachi Kk Mixer for reducing agent and diluting agent
CH609022A5 (en) 1973-06-12 1979-02-15 Monsanto Co Process for the preparation of 1,2,3-trichloropropene from 1,2,3-trichloropropane
US4145187A (en) * 1974-03-21 1979-03-20 Matthey Rustenburg Refiners (Pty.) Ltd. Treatment of material with hydrogen chloride
JPS5479207A (en) 1977-12-05 1979-06-25 Showa Denko Kk Preparation of 1,3-dichloropropene
GB1548277A (en) 1971-07-30 1979-07-11 Allied Chem Process for chlorination of hydrocarbons
JPS54135712A (en) 1978-04-13 1979-10-22 Osaka Soda Co Ltd Prepartion of 3-chloropropene
SU899523A1 (en) 1979-07-03 1982-01-23 Уфимский Нефтяной Институт Process for producing 1,1,2,3-tetrachloropropene
US4319062A (en) 1976-08-02 1982-03-09 The Dow Chemical Company Allyl chloride process
WO1982001728A1 (en) 1980-11-17 1982-05-27 Manders Petrus G A method for conveying a flexible thread by means of a pressurized gas
US4381187A (en) * 1980-03-24 1983-04-26 United Technologies Corporation Process for gasifying liquid hydrocarbon fuels
DD209184A1 (en) 1982-07-02 1984-04-25 Buna Chem Werke Veb PROCESS FOR THE PREPARATION OF CHLOROPROPENES
US4513154A (en) 1971-07-30 1985-04-23 Allied Corporation Process for consecutive competitive gas phase reaction
US4535194A (en) 1983-07-06 1985-08-13 Monsanto Co. Process for producing 1,1,2,3-tetrachloropropene
EP0164798A1 (en) 1981-09-01 1985-12-18 George Andrew Olah Process for the preparation of methyl monohalides
DD235631A1 (en) 1985-03-25 1986-05-14 Buna Chem Werke Veb PROCESS FOR THE PREPARATION OF CHLOROPROPENES FROM 1,2-DICHLORPROPANE
US4614572A (en) 1985-07-08 1986-09-30 The Dow Chemical Company Liquid phase chlorination of chlorinated methanes
US4644907A (en) 1985-11-29 1987-02-24 Hunter Edward H Boiler tubes of enhanced efficiency and method of producing same
US4650914A (en) 1983-07-06 1987-03-17 Monsanto Company Process for producing 1,1,2,3-tetrachloropropene
US4661648A (en) 1984-08-20 1987-04-28 Solvay & Cie (Societe Anonyme) Process for carrying out substitution chlorination reactions of organic compounds by means of molecular chlorine in the presence of a chlorinated product serving as a radical initiator, and radical initiators used in such a process
US4702809A (en) 1984-04-25 1987-10-27 Huels Aktiengesellschaft Process for the production of 1,2,3-trichloro-2-methylpropane
US4714792A (en) 1984-09-06 1987-12-22 Huels Aktiengesellschaft Process for the production of 1,2,3-trichloropropane
US4716255A (en) 1983-08-25 1987-12-29 Huels Aktiengesellschaft Process for the production of 3,3-dichloro-2-methylpropene
US4727181A (en) 1986-04-21 1988-02-23 The Dow Chemical Company Process for the preparation of α-halocinnamate esters
US4726686A (en) 1985-07-30 1988-02-23 Hartmut Wolf Swirl chamber
US4849554A (en) 1987-04-10 1989-07-18 Imperial Chemical Industries Plc Production of tetrafluoroethylene and hexafluoropropylene
US4894205A (en) 1987-09-18 1990-01-16 Shell Oil Company Multitube reactor
US4902393A (en) 1983-08-25 1990-02-20 Huels Aktiengesellschaft Process for the production of 1,1,2-trichloro-2-methylpropane
US4999102A (en) 1988-12-16 1991-03-12 The Amalgamated Sugar Company Liquid transfer manifold system for maintaining plug flow
US5057634A (en) 1989-12-19 1991-10-15 E. I. Du Pont De Nemours And Company Multistep synthesis of hexafluoropropylene
EP0453818A1 (en) 1990-04-13 1991-10-30 Ec Erdölchemie Gmbh Process for the reductive dehalogenation of halogenated hydrocarbons and halogenated ethers
US5132473A (en) 1988-05-17 1992-07-21 Daikin Industries, Ltd. Process for production of 1,1,1-trifluoro-2,2-dichloroethane
US5171899A (en) 1988-05-17 1992-12-15 Daikin Industries Ltd. Process for production of 1,1,1-trifluoro-2,2-dichloroethane
US5178844A (en) 1990-04-03 1993-01-12 Phillips Petroleum Company Method and apparatus for producing nitride products
US5246903A (en) 1987-05-26 1993-09-21 The Dow Chemical Company Process and catalyst for the dehydrohalogenation of halogenated hydrocarbons or alkylene halohydrins
US5254772A (en) 1991-03-12 1993-10-19 Imperial Chemical Industries Plc Chemical process
US5254771A (en) 1989-07-14 1993-10-19 Hoechst Aktiengesellschaft Process for the preparation of 1,1,1-trifluoro-2-2-dichloroethane under elevated pressure
US5254788A (en) 1991-09-10 1993-10-19 Stone And Webster Engineering Corporation Process for the production of olefins from light paraffins
US5262575A (en) 1992-08-04 1993-11-16 The Dow Chemical Company Production of allylic chlorides
US5367105A (en) 1992-10-23 1994-11-22 Tokuyama Corporation Process and device for production of allyl chloride
US5414166A (en) 1993-11-29 1995-05-09 Korea Institute Of Science And Technology Process for the preparation of 1,1,1-trifluoro-2,2-dichloroethane
US5504266A (en) 1995-05-24 1996-04-02 The Dow Chemical Company Process to make allyl chloride and reactor useful in that process
JPH08119885A (en) 1994-10-25 1996-05-14 Central Glass Co Ltd Production of fluorinated hydrocarbon
US5684219A (en) 1995-08-28 1997-11-04 Laroche Industries Inc. Process for preparing fluorinated aliphatic compounds
US5689020A (en) 1996-03-11 1997-11-18 Laroche Industries Inc. High temperature chlorination process for the preparation of polychloroolefins
US5811605A (en) 1997-02-19 1998-09-22 Ppg Industries, Inc. Preparation of 1,2,3,3-tetrachloropropene
WO1999006314A1 (en) 1997-07-31 1999-02-11 E.I. Du Pont De Nemours And Company Air jet piddling
US5895825A (en) 1997-12-01 1999-04-20 Elf Atochem North America, Inc. Preparation of 1,1,1,3,3-pentafluoropropane
US5986151A (en) 1997-02-05 1999-11-16 Alliedsignal Inc. Fluorinated propenes from pentafluoropropane
US6111150A (en) 1996-06-20 2000-08-29 Central Glass Company, Limited Method for producing 1,1,1,3,3,-pentafluoropropane
US6118018A (en) 1999-12-06 2000-09-12 Occidental Chemical Corporation Chlorination and bromination of aromatic compounds at atmospheric pressure
US6160187A (en) 1997-12-18 2000-12-12 The Dow Chemical Company Method for making glycol in an adiabatic reactor system
US6187976B1 (en) 1998-04-09 2001-02-13 Alliedsignal Inc. Process for the preparation of fluorine containing hydrohalocarbons
US6229057B1 (en) 1993-07-26 2001-05-08 Zeneca Limited Chlorination process
EP1097984A2 (en) 1999-11-02 2001-05-09 Noell-KRC Energie- und Umwelttechnik GmbH Process and plant for the cooling and cleaning of gasification gases
US6235951B1 (en) 1996-01-17 2001-05-22 Central Glass Company, Limited Method for producing 1,1,1,3,3-pentafluoropropane
WO2001038275A1 (en) 1999-11-22 2001-05-31 The Dow Chemical Company Dehydrohalogenation of halogenated alkanes using rare earth halide or oxyhalide catalyst
JP2001151708A (en) 1999-11-22 2001-06-05 Central Glass Co Ltd Method for producing 1,1,1,3,3-pentachloropropane
JP2001213820A (en) 2000-01-31 2001-08-07 Central Glass Co Ltd Method of producing 1,1,1,3,3-pentachloro-propane
US20010018962A1 (en) 1998-12-23 2001-09-06 American Air Liquide Inc. Heat exchanger for preheating an oxidizing gas
US20020087039A1 (en) 2000-12-29 2002-07-04 Tung Hsueh Sung Method of making hydrofluorocarbons and hydrochlorofluorocarbons
US20020110711A1 (en) 2000-11-04 2002-08-15 Stefan Boneberg Method and device for starting a reacator in a gas-generating system
US6472573B1 (en) 1998-03-23 2002-10-29 Daikin Industries, Ltd. Process for producing 1,1,1,3,3-pentafluoropropane
US6538167B1 (en) 1996-10-02 2003-03-25 Exxonmobil Chemical Patents Inc. Process for producing light olefins
US6545176B1 (en) 1998-11-04 2003-04-08 Rohm And Haas Company Apparatus and process for the high yield production of methyl methacrylate or methacrylic acid
US6551469B1 (en) 2001-11-27 2003-04-22 Honeywell International Photochlorination of 1,1,1,3,3-pentafluoropropane
US6613127B1 (en) 2000-05-05 2003-09-02 Dow Global Technologies Inc. Quench apparatus and method for the reformation of organic materials
US6683216B1 (en) 2002-11-06 2004-01-27 Eastman Chemical Company Continuous process for the preparation of amines
US6825383B1 (en) 2003-09-22 2004-11-30 Council Of Scientific And Industrial Research Catalytic process for regiospecific chlorination of alkanes, alkenes and arenes
WO2005016509A1 (en) 2003-07-31 2005-02-24 Dow Global Technologies Inc. Oxidation process and reactor with modified feed system
US6924403B2 (en) 2002-06-26 2005-08-02 E. I. Du Pont De Nemours And Company Synthesis of hexafluoropropylene
US6958135B1 (en) 1999-06-15 2005-10-25 Methanol Casale S.A. Isothermal reactor for exothermic or endothermic heterogeneous reactions
US20060150445A1 (en) 2003-01-24 2006-07-13 Redding John H Underwater sediment management
US7117934B2 (en) 2002-03-15 2006-10-10 H2Gen Innovations, Inc. Method and apparatus for minimizing adverse effects of thermal expansion in a heat exchange reactor
JP2006272267A (en) 2005-03-30 2006-10-12 Fuji Photo Film Co Ltd Method of operating microchemical device
US7140558B2 (en) * 2003-03-24 2006-11-28 Irene Base, legal representative Mixing arrangement for atomizing nozzle in multi-phase flow
US20060292046A1 (en) 2003-07-31 2006-12-28 Dow Global Technologies Inc. Oxidation process and reactor with modified feed system
JP2007021396A (en) 2005-07-19 2007-02-01 Japan Science & Technology Agency Method for removing heavy metal
US7172733B2 (en) * 2002-05-06 2007-02-06 Institut Francais Du Petrole Device for injection of hydrocarbons into a fluidized chamber
US7189884B2 (en) 2004-04-29 2007-03-13 Honeywell International Processes for synthesis of tetrafluoropropene
DE102005044501A1 (en) 2005-09-16 2007-03-22 Roquette, Eberhard, Dipl.-Ing. Preparation of ester containing alcohol and fatty acid by nozzle system (venturi principle) comprising nozzle fitter or holder, mixing tube, diffuser and two chamber mixing system
US7226567B1 (en) 1999-03-16 2007-06-05 Basf Aktiengesellschaft Multi-tube fixed-bed reactor, especially for catalytic gas phase reactions
WO2007079435A2 (en) 2006-01-03 2007-07-12 Honeywell International Inc. Method for producing fluorinated organic compounds
WO2007079431A2 (en) 2006-01-03 2007-07-12 Honeywell International Inc. Method for producing fluorinated organic compounds
US20070197841A1 (en) 2004-04-29 2007-08-23 Honeywell International Inc. Method for producing fluorinated organic compounds
US20070197842A1 (en) 2004-04-29 2007-08-23 Honeywell International Inc. Method for producing fluorinated organic compounds
WO2007096383A1 (en) 2006-02-21 2007-08-30 Sachtleben Chemie Gmbh Method for carrying out chemical and physical processes and reaction cells
US7282120B2 (en) 1999-06-16 2007-10-16 Solvay Fluor Gmbh UV-activated chlorination process
US20070259296A1 (en) * 2004-12-23 2007-11-08 Knoepfel Hans P Premix Burner With Mixing Section
US20070265368A1 (en) 2004-12-22 2007-11-15 Velliyur Nott Mallikarjuna Rao Functionalized Copolymers of Terminally Functionalized Perfluoro (Alkyl Vinyl Ether) Reactor Wall for Photochemical Reactions, Process for Increasing Fluorine Content in Hydrocaebons and Halohydrocarbons and Olefin Production
US7297814B2 (en) 2002-01-11 2007-11-20 Mitsubishi Chemical Corporation Multitube reactor, vapor phase catalytic oxidation method using the multitube reactor, and start up method applied to the multitube reactor
US20080021229A1 (en) 2004-05-21 2008-01-24 Maughon Bob R Process for Preparing Epichlorhydrin from Ethane
US7345209B2 (en) 2004-04-29 2008-03-18 Honeywell International Inc. Processes for synthesis of 1,3,3,3-tetrafluoropropene
JP2008063314A (en) 2006-09-04 2008-03-21 Tokyo Kasei Kogyo Kk Environment-conscious hypervalent iodine reagent
US20080073063A1 (en) 2006-06-23 2008-03-27 Exxonmobil Research And Engineering Company Reduction of fouling in heat exchangers
WO2008054781A1 (en) 2006-10-31 2008-05-08 E. I. Du Pont De Nemours And Company Processes for the production of fluoropropanes and halopropenes and azeotropic compositions of 2-chloro-3,3,3-trifluoro-1-propene with hf and of 1,1,1,2,2-pentafluoropropane with hf
US7371904B2 (en) 2004-04-29 2008-05-13 Honeywell International Inc. Processes for synthesis of 1,3,3,3-tetrafluoropropene
US20080118018A1 (en) 2004-12-10 2008-05-22 Schrauwen Franciscus Johannes Reactor Tube Apparatus
US7378559B2 (en) 2003-03-07 2008-05-27 Dow Global Technologies Inc. Continuous process and system of producing polyether polyols
US7396965B2 (en) 2005-05-12 2008-07-08 Honeywell International Inc. Method for producing fluorinated organic compounds
CN101215220A (en) 2008-01-16 2008-07-09 西安近代化学研究所 Preparation method for 1,1,1,3-tetrafluoropropene
US20080207962A1 (en) 2007-02-23 2008-08-28 Velliyur Nott Mallikarjuna Rao Compositions containing chromium, oxygen, and at least two modifier metals selected the group consisting of gold, silver, and palladium, their preparation, and their use as catalysts and catalyst precursors
JP2009000592A (en) 2007-06-19 2009-01-08 Hitachi Ltd Reactor and reaction system
US20090018377A1 (en) 2007-07-09 2009-01-15 Boyce C Bradford Catalytic process for the preparation of fluorinated halocarbons
US20090030249A1 (en) 2007-07-25 2009-01-29 Honeywell International Inc. Processes for preparing 1,1,2,3-tetrachloropropene
JP2009046653A (en) 2007-07-24 2009-03-05 Nagase Chemtex Corp Method for producing polymer of aromatic compound and heterocyclic aromatic compound by using hypervalent iodine reagent
US7511101B2 (en) 2005-05-13 2009-03-31 Fina Technology, Inc. Plug flow reactor and polymers prepared therewith
US20090088547A1 (en) 2006-10-17 2009-04-02 Rpo Pty Limited Process for producing polysiloxanes and use of the same
US20090099396A1 (en) 2007-10-15 2009-04-16 Honeywell International Inc. Process for synthesis of fluorinated olefins
US7521029B2 (en) 2003-01-31 2009-04-21 Man Dwe Gmbh Shell-and-tube type reactor for carrying out catalytic gaseous phase reactions and a procedure for operating the same
US20090117014A1 (en) 2007-11-06 2009-05-07 Quantumsphere, Inc. System and method for ammonia synthesis
WO2009067571A1 (en) 2007-11-20 2009-05-28 E. I. Du Pont De Nemours And Company Synthesis of hydrofluoroalkanols and hydrofluoroalkenes
WO2009087423A1 (en) 2008-01-11 2009-07-16 John Redding Improvements in or relating to jet nozzles
CN101492341A (en) 2009-03-05 2009-07-29 杨海珍 Process for producing saturated polychloralkane
US20090203945A1 (en) 2007-08-22 2009-08-13 Honeywell International Inc. Method for producing fluorinated organic compounds
US7588739B2 (en) 2003-07-14 2009-09-15 Mitsubishi Rayon Co., Ltd. Fixed bed multitube reactor
CN101544535A (en) 2009-05-01 2009-09-30 浙江三美化工股份有限公司 Method for preparing synthetic 1,1,1,3,3-pentachloro propane
US20090270568A1 (en) 2006-06-26 2009-10-29 Solvay (Société Anonyme) Process for the Manufacture of 1,2-Dichloroethane
CN101597209A (en) 2008-03-20 2009-12-09 霍尼韦尔国际公司 Be used to prepare 2,3,3, the integrated process of 3-tetrafluoeopropene
US7659434B2 (en) 2004-04-29 2010-02-09 Honeywell International Inc. Method for producing fluorinated organic compounds
US20100041864A1 (en) 2007-04-10 2010-02-18 Asahi Glass Company, Limited Double metal cyanide complex catalyst having organic ligand, process for its production and method for producing polyether polyol
US7674939B2 (en) 2004-04-29 2010-03-09 Honeywell International Inc. Method for producing fluorinated organic compounds
US7687670B2 (en) 2006-03-31 2010-03-30 E.I. Du Pont De Nemours And Company Coproduction of hydrofluoroolefins
US7695695B2 (en) 2006-01-18 2010-04-13 Lg Chem, Ltd. Reactor or heat exchanger with improved heat transfer performance
US20100185029A1 (en) 2007-06-27 2010-07-22 Arkema Inc. Two step process for the manufacture of hydrofluoroolefins
US20100263278A1 (en) 2007-09-18 2010-10-21 Uhde Gmbh Gasification reactor and process for entrained-flow gasification
US7836941B2 (en) 2006-05-19 2010-11-23 Exxonmobil Research And Engineering Company Mitigation of in-tube fouling in heat exchangers using controlled mechanical vibration
CN101913979A (en) 2010-09-07 2010-12-15 西安近代化学研究所 Production method of 1,1,1,3,3-pentachlorobutane
CN101913980A (en) 2010-09-07 2010-12-15 西安近代化学研究所 Production method of 1,1,1,3,3-pentachloropropane
CN101955414A (en) 2010-04-20 2011-01-26 南通泰禾化工有限公司 Technology for preparing 1, 1, 2, 3-tetrachloropropene
US7880040B2 (en) 2004-04-29 2011-02-01 Honeywell International Inc. Method for producing fluorinated organic compounds
CN101982227A (en) 2010-09-15 2011-03-02 山东东岳高分子材料有限公司 Rapid gas hybrid reactor for high temperature cracking and application thereof
CN102001911A (en) 2010-09-20 2011-04-06 西安近代化学研究所 Method for preparing 2,3,3,3-tetrafluoropropene
US20110087056A1 (en) 2009-10-09 2011-04-14 Dow Global Technologies Adiabatic plug flow reactors and processes incorporating the same
WO2011060211A1 (en) 2009-11-16 2011-05-19 Arkema Inc. Method to purify and stabilize chloroolefins
US7951982B2 (en) 2004-04-29 2011-05-31 Honeywell International Inc. Method for producing fluorinated organic compounds
WO2011065574A1 (en) 2009-11-27 2011-06-03 Daikin Industries, Ltd. Process for preparing 1,1,2,3-tetrachloropropene
US20110155942A1 (en) 2009-12-23 2011-06-30 Arkema France Catalytic Gas Phase Fluorination of 1230xa to 1234yf
US20110172472A1 (en) 2008-09-25 2011-07-14 Central Glass Company, Limited Process for Producing 1,3,3,3-Tetrafluoropropene
JP2011144148A (en) 2010-01-18 2011-07-28 Nippon Zeon Co Ltd Hydrogen-containing halogenated cyclopentane, and method for producing heptafluorocyclopentene
US20110218369A1 (en) 2008-11-19 2011-09-08 Arkema Inc. Process for the manufacture of hydrofluoroolefins
US20110251425A1 (en) 2008-08-07 2011-10-13 Basf Se Process for preparing aromatic isocyanates
US8058486B2 (en) 2004-04-29 2011-11-15 Honeywell International Inc. Integrated process to produce 2,3,3,3-tetrafluoropropene
CN102249846A (en) 2011-05-31 2011-11-23 浙江师范大学 Co-production preparation method of 2-chloro-3,3,3-trifluoropropene and 2,3-dichloro-1,1-difluoro propylene
DE102010022414A1 (en) 2010-06-01 2011-12-01 Günther Kramb jun. Emulsifying device for emulsifying two or multiple substances used in beverage industry, chemical industry, pharmaceutical industry and medicines, has housing which encloses reaction chamber that has inlets for both mediums
US8071825B2 (en) 2006-01-03 2011-12-06 Honeywell International Inc. Method for producing fluorinated organic compounds
US8071826B2 (en) 2008-04-04 2011-12-06 Honeywell International Inc. Process for the preparation of 2,3,3,3-tetrafluoropropene (HFO-1234yf)
US8076521B2 (en) 2007-06-27 2011-12-13 Arkema Inc. Process for the manufacture of hydrofluoroolefins
WO2012011844A1 (en) 2010-07-21 2012-01-26 Открытое Акционерное Общество "Научно-Исследовательский И Проектный Институт Карбамида И Продуктов Органического Синтеза" (Оао Ниик) Gas-liquid reactor (variant embodiments)
US8115038B2 (en) 2007-12-19 2012-02-14 Occidental Chemical Corporation Methods of making chlorinated hydrocarbons
CN102351637A (en) 2011-08-31 2012-02-15 浙江师范大学 Method for preparing 2,3,3,3-tetrafluoropropene
US8123398B2 (en) 2005-08-09 2012-02-28 Canon Kabushiki Kaisha Fluid-processing device
US20120065434A1 (en) 2009-05-13 2012-03-15 Masatoshi Nose Process for preparing chlorine-containing fluorocarbon compound
WO2012081482A1 (en) 2010-12-16 2012-06-21 株式会社トクヤマ Method for producing c3 chlorinated hydrocarbon
US8232435B2 (en) 2006-09-05 2012-07-31 E I Du Pont De Nemours And Company 1,2,3,3,3-pentafluoropropene production processes
US8258353B2 (en) 2008-10-13 2012-09-04 Dow Global Technologies, Llc Process for the production of chlorinated and/or fluorinated propenes
WO2012166393A1 (en) 2011-05-31 2012-12-06 Dow Global Technologies, Llc Process for the production of chlorinated propenes
WO2012166394A1 (en) 2011-05-31 2012-12-06 Dow Global Technologies, Llc Process for the production of chlorinated propenes
US8357828B2 (en) 2008-12-25 2013-01-22 Asahi Glass Company, Limited Processes for producing 1,1-dichloro-2,3,3,3-tetrafluoropropene and 2,3,3,3-tetrafluoropropene
US8367867B2 (en) 2007-10-04 2013-02-05 Urea Casale S.A. Process and plant for urea production
US8383867B2 (en) 2004-04-29 2013-02-26 Honeywell International Inc. Method for producing fluorinated organic compounds
WO2013082410A1 (en) 2011-12-02 2013-06-06 Dow Global Technologies, Llc Process for the production of chlorinated alkanes
US8558041B2 (en) 2009-10-09 2013-10-15 Dow Global Technologies, Llc Isothermal multitube reactors and processes incorporating the same
US8581012B2 (en) 2009-10-09 2013-11-12 Dow Global Technologies, Llc Processes for the production of chlorinated and/or fluorinated propenes and higher alkenes
US8581011B2 (en) 2009-10-09 2013-11-12 Dow Global Technologies, Llc Process for the production of chlorinated and/or fluorinated propenes
US8614361B2 (en) 2009-04-23 2013-12-24 Daikin Industries, Ltd. Process for preparation of 2,3,3,3-tetrafluoropropene
WO2014046970A1 (en) 2012-09-20 2014-03-27 Dow Global Technologies, Llc Process for the production of chlorinated propenes
WO2014046977A1 (en) 2012-09-20 2014-03-27 Dow Global Technologies, Llc Process for the production of chlorinated propenes
WO2014066083A1 (en) 2012-10-26 2014-05-01 Dow Global Technologies, Llc Mixer and reactor and process incorporating the same
US20140163266A1 (en) 2011-08-07 2014-06-12 Dow Global Technologies Llc Process for the production of chlorinated propenes
US20140179962A1 (en) 2011-08-07 2014-06-26 Dow Global Technologies Llc Process for the production of chlorinated propenes
WO2014100039A1 (en) 2012-12-19 2014-06-26 Dow Global Technologies, Llc Process for the production of chlorinated propenes
WO2014100066A1 (en) 2012-12-18 2014-06-26 Dow Global Technologies, Llc Process for the production of chlorinated propenes
WO2014134233A2 (en) 2013-02-27 2014-09-04 Dow Global Technologies Llc Process for the production of chlorinated propenes
WO2014134377A2 (en) 2013-02-28 2014-09-04 Dow Global Technologies Llc Process for the production of chlorinated propanes
WO2014164368A1 (en) 2013-03-09 2014-10-09 Dow Global Technologies Llc Process for the production of chlorinated alkanes
US20140323775A1 (en) 2011-12-02 2014-10-30 Dow Global Technologies Llc Process for the production of chlorinated alkanes
US20140336431A1 (en) 2011-12-23 2014-11-13 Dow Global Technologies Llc Process for the production of alkenes and/or aromatic compounds
US20140336425A1 (en) 2011-12-22 2014-11-13 Dow Global Technologies Llc Process for the production of tetrachloromethane
US20140371494A1 (en) 2011-12-13 2014-12-18 Dow Global Technologies Llc Process for the production of chlorinated propanes and propenes
US20150045592A1 (en) 2011-11-21 2015-02-12 Dow Global Technologies Llc Process for the production of chlorinated alkanes
US8957258B2 (en) 2012-01-24 2015-02-17 Kanto Denka Kogyo Co., Ltd. BIS(1,1-Dichloro-3,3,3-trifluoropropyl) ether and process for preparing the same
US20150057471A1 (en) 2011-12-23 2015-02-26 Dow Global Technologies Llc Chlorinating agents
US20150217256A1 (en) 2012-09-30 2015-08-06 Dow Global Technologies Llc Weir quench and processes incorporating the same

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4837648Y1 (en) * 1967-03-04 1973-11-08
ATE723T1 (en) * 1978-09-20 1982-03-15 Jacques G. Kempf PROCESS AND EQUIPMENT FOR ENERGY RECOVERY IN THE PRODUCTION OF POLYMER FROM MONOMER GAS.
DE3115391A1 (en) * 1981-04-16 1982-12-30 Bergwerksverband Gmbh, 4300 Essen "METHOD AND DEVICE FOR THE PRODUCTION OF HYDROGEN AND CARBON OXIDE GASES FROM RAW CARBON DISTILLATION GASES
SU1042784A1 (en) * 1981-07-31 1983-09-23 Уральский Филиал Всесоюзного Научно-Исследовательского И Проектного Института Алюминиевой,Магниевой И Электродной Промышленности Spray apparatus
CN2202583Y (en) * 1994-09-21 1995-07-05 中国科学院声学研究所 Sound resonant cavity jet current emulsator
GB0113735D0 (en) * 2001-06-05 2001-07-25 Holset Engineering Co Mixing fluid streams
DE10133729A1 (en) * 2001-07-11 2003-01-23 Bayer Ag Process for the preparation of (cyclo) aliphatic diisocyanates
CN102317254B (en) * 2008-07-23 2014-11-19 巴斯夫欧洲公司 Method for producing isocyanates
CN101708438B (en) * 2009-12-04 2011-12-28 天津大学 Mixer and method for preparing organic isocyanate
CN201921642U (en) * 2010-12-04 2011-08-10 金川集团有限公司 Gas-liquid mixing device

Patent Citations (258)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2630461A (en) 1953-03-03 Production of acetylene by incom
US1504443A (en) 1923-08-25 1924-08-12 James W Gibbons Paint-spraying apparatus
US2119484A (en) 1935-05-06 1938-05-31 Du Pont Chlorination of propylene dichloride
GB471187A (en) 1936-02-28 1937-08-30 Du Pont Improvements in or relating to the manufacture of chlorinated hydrocarbons
GB471188A (en) 1936-02-28 1937-08-30 Du Pont Improvements in or relating to the manufacture of chlorinated hydrocarbons
GB471186A (en) 1936-02-28 1937-08-30 Du Pont Improvements in or relating to the manufacture of chlorine derivatives of unsaturated hydrocarbons
US2179378A (en) 1936-07-18 1939-11-07 Air Reduction Production of acetylene
US2207193A (en) 1937-09-14 1940-07-09 Shell Dev Production of allyl type halides
US2299441A (en) 1939-09-02 1942-10-20 Shell Dev Catalytic halo-substitution of saturated organic compounds
US2302228A (en) 1940-04-02 1942-11-17 Du Pont Method of chlorination with sulphuryl chloride and production of monochloro-trimethyl acetic acid
US2370342A (en) 1940-04-30 1945-02-27 Tide Water Associated Oil Comp Halogenation
US2378859A (en) 1941-08-08 1945-06-19 Distillers Co Yeast Ltd Splitting-off of hydrogen halide from halogenated hydrocarbons
US2379551A (en) * 1944-04-27 1945-07-03 Talley Henry Alfred Ernest Apparatus for mixing gases
US2449286A (en) 1945-07-16 1948-09-14 Shell Dev Production of 1, 3-dihalopropylenes
US2435983A (en) 1945-12-01 1948-02-17 Universal Oil Prod Co Production of liquid hydrocarbons
US2588867A (en) 1948-10-25 1952-03-11 Dow Chemical Co Pyrolytic production of chlorohydrocarbons
US2688592A (en) 1950-10-21 1954-09-07 Diamond Alkali Co Photochemical process for preparing carbon tetrachloride
DE857955C (en) 1951-03-23 1952-12-04 Basf Ag Process for the production of tetrachlorethylene in addition to carbon tetrachloride
US2762611A (en) 1952-02-28 1956-09-11 Pfaudler Co Inc Tubular heat exchangers
US2765359A (en) 1953-02-10 1956-10-02 Hydrocarbon Research Inc Production of acetylene
GB857086A (en) 1956-08-30 1960-12-29 Hoechst Ag Process for the manufacture of carbon tetrachloride
US3000980A (en) 1958-04-07 1961-09-19 Dow Chemical Co Preparation of alkyl bromides
US2973393A (en) 1958-10-02 1961-02-28 Dow Chemical Co Chlorination of acetylenes
US2964579A (en) 1958-10-09 1960-12-13 Houdry Process Corp Selective hydrogenation of diolefins with copper chromite catalyst
US3094567A (en) 1960-02-25 1963-06-18 Monsanto Chemicals Chlorination of propynes
US3112988A (en) 1960-02-26 1963-12-03 Sheil Oil Company Mixing gases at supersonic velocity
US3819731A (en) 1960-03-23 1974-06-25 Stauffer Chemical Co Production of chlorinated unsaturated hydrocarbons
US3651019A (en) 1961-09-28 1972-03-21 Yeda Res & Dev Production of adducts of carbon tetrachloride or chloroform with olefinically unsaturated substances
US3446859A (en) 1962-06-11 1969-05-27 Hooker Chemical Corp Vapor phase condensation process
US3502734A (en) 1966-05-11 1970-03-24 Du Pont Process for partially chlorinating methyl chloride and/or methylene chloride
LU52247A1 (en) 1966-06-07 1966-12-28
GB1134585A (en) 1966-07-22 1968-11-27 Knapsack Ag Process for the joint manufacture of 2,2,3-trichlorobutane and 1,2,3-trichlorobutane
US3444263A (en) 1966-11-09 1969-05-13 Gulf Research Development Co Method for converting ethylene to alpha olefins in the presence of an organic sulfide
US3525595A (en) 1967-05-19 1970-08-25 Bayer Ag Concentric cross flow nozzle apparatus for carrying out reactions between gases
FR1546709A (en) 1967-10-10 1968-11-22 Mini Ind Chimice Method and apparatus for the continuous system manufacture of hydrocarbon nitroso-derivatives
US3558438A (en) 1968-10-30 1971-01-26 Du Pont Distillation process and apparatus
US3551512A (en) 1968-11-01 1970-12-29 Diamond Shamrock Corp Pressure process for preparing acetylene
US3676508A (en) 1969-01-30 1972-07-11 Hornig Anneliese Process for the manufacture of carbon tetrachloride
US3615202A (en) * 1969-11-28 1971-10-26 David R Stern Process for the manufacture of titanium dioxide
US4513154A (en) 1971-07-30 1985-04-23 Allied Corporation Process for consecutive competitive gas phase reaction
GB1548277A (en) 1971-07-30 1979-07-11 Allied Chem Process for chlorination of hydrocarbons
US3920757A (en) 1971-08-25 1975-11-18 Dow Chemical Co Chlorination with sulfuryl chloride
GB1381619A (en) 1971-12-17 1975-01-22 Monsanto Co Process for the production of 1,2,3-trichloropropene
US3926758A (en) 1971-12-27 1975-12-16 Monsanto Co Preparation of 1,1,2,3-tetrachloropropene from 2,3-trichloropropane
US3823195A (en) 1971-12-27 1974-07-09 Monsanto Co Preparation of 1,1,2,3-tetrachloropropene from 1,2,3-trichloropropane
US3954410A (en) 1972-11-21 1976-05-04 Merck Patent Gesellschaft Mit Beschraenkter Haftung Solvents for NMR spectroscopy
CH609022A5 (en) 1973-06-12 1979-02-15 Monsanto Co Process for the preparation of 1,2,3-trichloropropene from 1,2,3-trichloropropane
US3948858A (en) 1973-09-22 1976-04-06 Akzo N.V. Polymerization of ethylenically unsaturated compounds
US3872664A (en) 1973-10-15 1975-03-25 United Aircraft Corp Swirl combustor with vortex burning and mixing
US4145187A (en) * 1974-03-21 1979-03-20 Matthey Rustenburg Refiners (Pty.) Ltd. Treatment of material with hydrogen chloride
US3914167A (en) 1974-08-26 1975-10-21 Dow Chemical Co Process for making cis-1,3-dichloropropene
US4043766A (en) * 1975-11-20 1977-08-23 Dr. C. Otto & Comp. G.M.B.H. Slag bath generator
US4051182A (en) 1976-04-12 1977-09-27 Stauffer Chemical Company Process for the manufacture of α-chloropropionyl chloride
US4038372A (en) 1976-05-05 1977-07-26 The United States Of America As Represented By The Secretary Of The Navy Process for manufacturing chloramine
US4319062A (en) 1976-08-02 1982-03-09 The Dow Chemical Company Allyl chloride process
US4046656A (en) 1976-12-06 1977-09-06 The Dow Chemical Company Photochlorination process for methyl aromatic compounds
JPS544869A (en) 1977-06-15 1979-01-13 Babcock Hitachi Kk Mixer for reducing agent and diluting agent
JPS5479207A (en) 1977-12-05 1979-06-25 Showa Denko Kk Preparation of 1,3-dichloropropene
JPS54135712A (en) 1978-04-13 1979-10-22 Osaka Soda Co Ltd Prepartion of 3-chloropropene
SU899523A1 (en) 1979-07-03 1982-01-23 Уфимский Нефтяной Институт Process for producing 1,1,2,3-tetrachloropropene
US4381187A (en) * 1980-03-24 1983-04-26 United Technologies Corporation Process for gasifying liquid hydrocarbon fuels
WO1982001728A1 (en) 1980-11-17 1982-05-27 Manders Petrus G A method for conveying a flexible thread by means of a pressurized gas
US4550752A (en) * 1980-11-17 1985-11-05 Ruti-Te Strake B.V. Method for conveying a flexible thread by means of pressurized gas
EP0164798A1 (en) 1981-09-01 1985-12-18 George Andrew Olah Process for the preparation of methyl monohalides
DD209184A1 (en) 1982-07-02 1984-04-25 Buna Chem Werke Veb PROCESS FOR THE PREPARATION OF CHLOROPROPENES
US4650914A (en) 1983-07-06 1987-03-17 Monsanto Company Process for producing 1,1,2,3-tetrachloropropene
US4535194A (en) 1983-07-06 1985-08-13 Monsanto Co. Process for producing 1,1,2,3-tetrachloropropene
US4902393A (en) 1983-08-25 1990-02-20 Huels Aktiengesellschaft Process for the production of 1,1,2-trichloro-2-methylpropane
US4716255A (en) 1983-08-25 1987-12-29 Huels Aktiengesellschaft Process for the production of 3,3-dichloro-2-methylpropene
US4702809A (en) 1984-04-25 1987-10-27 Huels Aktiengesellschaft Process for the production of 1,2,3-trichloro-2-methylpropane
US4661648A (en) 1984-08-20 1987-04-28 Solvay & Cie (Societe Anonyme) Process for carrying out substitution chlorination reactions of organic compounds by means of molecular chlorine in the presence of a chlorinated product serving as a radical initiator, and radical initiators used in such a process
US4714792A (en) 1984-09-06 1987-12-22 Huels Aktiengesellschaft Process for the production of 1,2,3-trichloropropane
DD235631A1 (en) 1985-03-25 1986-05-14 Buna Chem Werke Veb PROCESS FOR THE PREPARATION OF CHLOROPROPENES FROM 1,2-DICHLORPROPANE
US4614572A (en) 1985-07-08 1986-09-30 The Dow Chemical Company Liquid phase chlorination of chlorinated methanes
US4726686A (en) 1985-07-30 1988-02-23 Hartmut Wolf Swirl chamber
US4644907A (en) 1985-11-29 1987-02-24 Hunter Edward H Boiler tubes of enhanced efficiency and method of producing same
US4727181A (en) 1986-04-21 1988-02-23 The Dow Chemical Company Process for the preparation of α-halocinnamate esters
US4849554A (en) 1987-04-10 1989-07-18 Imperial Chemical Industries Plc Production of tetrafluoroethylene and hexafluoropropylene
US5246903A (en) 1987-05-26 1993-09-21 The Dow Chemical Company Process and catalyst for the dehydrohalogenation of halogenated hydrocarbons or alkylene halohydrins
US4894205A (en) 1987-09-18 1990-01-16 Shell Oil Company Multitube reactor
US5132473A (en) 1988-05-17 1992-07-21 Daikin Industries, Ltd. Process for production of 1,1,1-trifluoro-2,2-dichloroethane
US5171899A (en) 1988-05-17 1992-12-15 Daikin Industries Ltd. Process for production of 1,1,1-trifluoro-2,2-dichloroethane
US5315044A (en) 1988-05-17 1994-05-24 Daikin Industries Ltd. Process for production of 1,1,1-trifluoro-2,2-dichloroethane
US4999102A (en) 1988-12-16 1991-03-12 The Amalgamated Sugar Company Liquid transfer manifold system for maintaining plug flow
US5254771A (en) 1989-07-14 1993-10-19 Hoechst Aktiengesellschaft Process for the preparation of 1,1,1-trifluoro-2-2-dichloroethane under elevated pressure
US5057634A (en) 1989-12-19 1991-10-15 E. I. Du Pont De Nemours And Company Multistep synthesis of hexafluoropropylene
US5178844A (en) 1990-04-03 1993-01-12 Phillips Petroleum Company Method and apparatus for producing nitride products
EP0453818A1 (en) 1990-04-13 1991-10-30 Ec Erdölchemie Gmbh Process for the reductive dehalogenation of halogenated hydrocarbons and halogenated ethers
US5254772A (en) 1991-03-12 1993-10-19 Imperial Chemical Industries Plc Chemical process
US5254788A (en) 1991-09-10 1993-10-19 Stone And Webster Engineering Corporation Process for the production of olefins from light paraffins
US5262575A (en) 1992-08-04 1993-11-16 The Dow Chemical Company Production of allylic chlorides
US5367105A (en) 1992-10-23 1994-11-22 Tokuyama Corporation Process and device for production of allyl chloride
US6229057B1 (en) 1993-07-26 2001-05-08 Zeneca Limited Chlorination process
US5414166A (en) 1993-11-29 1995-05-09 Korea Institute Of Science And Technology Process for the preparation of 1,1,1-trifluoro-2,2-dichloroethane
JPH08119885A (en) 1994-10-25 1996-05-14 Central Glass Co Ltd Production of fluorinated hydrocarbon
US5504266A (en) 1995-05-24 1996-04-02 The Dow Chemical Company Process to make allyl chloride and reactor useful in that process
EP1018366A2 (en) 1995-05-24 2000-07-12 The Dow Chemical Company Spherical, egg-shaped or oval reactor
US5684219A (en) 1995-08-28 1997-11-04 Laroche Industries Inc. Process for preparing fluorinated aliphatic compounds
US6235951B1 (en) 1996-01-17 2001-05-22 Central Glass Company, Limited Method for producing 1,1,1,3,3-pentafluoropropane
US5689020A (en) 1996-03-11 1997-11-18 Laroche Industries Inc. High temperature chlorination process for the preparation of polychloroolefins
US6111150A (en) 1996-06-20 2000-08-29 Central Glass Company, Limited Method for producing 1,1,1,3,3,-pentafluoropropane
US6538167B1 (en) 1996-10-02 2003-03-25 Exxonmobil Chemical Patents Inc. Process for producing light olefins
US5986151A (en) 1997-02-05 1999-11-16 Alliedsignal Inc. Fluorinated propenes from pentafluoropropane
US5811605A (en) 1997-02-19 1998-09-22 Ppg Industries, Inc. Preparation of 1,2,3,3-tetrachloropropene
WO1999006314A1 (en) 1997-07-31 1999-02-11 E.I. Du Pont De Nemours And Company Air jet piddling
US5895825A (en) 1997-12-01 1999-04-20 Elf Atochem North America, Inc. Preparation of 1,1,1,3,3-pentafluoropropane
US6160187A (en) 1997-12-18 2000-12-12 The Dow Chemical Company Method for making glycol in an adiabatic reactor system
US6472573B1 (en) 1998-03-23 2002-10-29 Daikin Industries, Ltd. Process for producing 1,1,1,3,3-pentafluoropropane
US6187976B1 (en) 1998-04-09 2001-02-13 Alliedsignal Inc. Process for the preparation of fluorine containing hydrohalocarbons
US6545176B1 (en) 1998-11-04 2003-04-08 Rohm And Haas Company Apparatus and process for the high yield production of methyl methacrylate or methacrylic acid
US6610177B2 (en) 1998-11-04 2003-08-26 Rohm And Haas Company Apparatus and process for the high yield production of methyl methacrylate or methacrylic acid
US20010018962A1 (en) 1998-12-23 2001-09-06 American Air Liquide Inc. Heat exchanger for preheating an oxidizing gas
US7226567B1 (en) 1999-03-16 2007-06-05 Basf Aktiengesellschaft Multi-tube fixed-bed reactor, especially for catalytic gas phase reactions
US6958135B1 (en) 1999-06-15 2005-10-25 Methanol Casale S.A. Isothermal reactor for exothermic or endothermic heterogeneous reactions
US7282120B2 (en) 1999-06-16 2007-10-16 Solvay Fluor Gmbh UV-activated chlorination process
EP1097984A2 (en) 1999-11-02 2001-05-09 Noell-KRC Energie- und Umwelttechnik GmbH Process and plant for the cooling and cleaning of gasification gases
JP2001151708A (en) 1999-11-22 2001-06-05 Central Glass Co Ltd Method for producing 1,1,1,3,3-pentachloropropane
WO2001038275A1 (en) 1999-11-22 2001-05-31 The Dow Chemical Company Dehydrohalogenation of halogenated alkanes using rare earth halide or oxyhalide catalyst
WO2001038271A1 (en) 1999-11-22 2001-05-31 The Dow Chemical Company Oxyhalogenation process using catalyst having porous rare earth halide support
US6118018A (en) 1999-12-06 2000-09-12 Occidental Chemical Corporation Chlorination and bromination of aromatic compounds at atmospheric pressure
JP2001213820A (en) 2000-01-31 2001-08-07 Central Glass Co Ltd Method of producing 1,1,1,3,3-pentachloro-propane
US6613127B1 (en) 2000-05-05 2003-09-02 Dow Global Technologies Inc. Quench apparatus and method for the reformation of organic materials
US20020110711A1 (en) 2000-11-04 2002-08-15 Stefan Boneberg Method and device for starting a reacator in a gas-generating system
US6518467B2 (en) 2000-12-29 2003-02-11 Honeywell International Inc. Method of making hydrofluorocarbons and hydrochlorofluorocarbons
US20020087039A1 (en) 2000-12-29 2002-07-04 Tung Hsueh Sung Method of making hydrofluorocarbons and hydrochlorofluorocarbons
US6551469B1 (en) 2001-11-27 2003-04-22 Honeywell International Photochlorination of 1,1,1,3,3-pentafluoropropane
US7297814B2 (en) 2002-01-11 2007-11-20 Mitsubishi Chemical Corporation Multitube reactor, vapor phase catalytic oxidation method using the multitube reactor, and start up method applied to the multitube reactor
US7117934B2 (en) 2002-03-15 2006-10-10 H2Gen Innovations, Inc. Method and apparatus for minimizing adverse effects of thermal expansion in a heat exchange reactor
US7172733B2 (en) * 2002-05-06 2007-02-06 Institut Francais Du Petrole Device for injection of hydrocarbons into a fluidized chamber
US6924403B2 (en) 2002-06-26 2005-08-02 E. I. Du Pont De Nemours And Company Synthesis of hexafluoropropylene
US6683216B1 (en) 2002-11-06 2004-01-27 Eastman Chemical Company Continuous process for the preparation of amines
US20060150445A1 (en) 2003-01-24 2006-07-13 Redding John H Underwater sediment management
US7521029B2 (en) 2003-01-31 2009-04-21 Man Dwe Gmbh Shell-and-tube type reactor for carrying out catalytic gaseous phase reactions and a procedure for operating the same
US7378559B2 (en) 2003-03-07 2008-05-27 Dow Global Technologies Inc. Continuous process and system of producing polyether polyols
US7140558B2 (en) * 2003-03-24 2006-11-28 Irene Base, legal representative Mixing arrangement for atomizing nozzle in multi-phase flow
US7588739B2 (en) 2003-07-14 2009-09-15 Mitsubishi Rayon Co., Ltd. Fixed bed multitube reactor
US20060292046A1 (en) 2003-07-31 2006-12-28 Dow Global Technologies Inc. Oxidation process and reactor with modified feed system
WO2005016509A1 (en) 2003-07-31 2005-02-24 Dow Global Technologies Inc. Oxidation process and reactor with modified feed system
US6825383B1 (en) 2003-09-22 2004-11-30 Council Of Scientific And Industrial Research Catalytic process for regiospecific chlorination of alkanes, alkenes and arenes
US7714177B2 (en) 2004-04-29 2010-05-11 Honeywell International Inc. Processes for synthesis of 1,3,3,3-tetrafluoropropene
US7345209B2 (en) 2004-04-29 2008-03-18 Honeywell International Inc. Processes for synthesis of 1,3,3,3-tetrafluoropropene
US20070197842A1 (en) 2004-04-29 2007-08-23 Honeywell International Inc. Method for producing fluorinated organic compounds
US7951982B2 (en) 2004-04-29 2011-05-31 Honeywell International Inc. Method for producing fluorinated organic compounds
US7880040B2 (en) 2004-04-29 2011-02-01 Honeywell International Inc. Method for producing fluorinated organic compounds
US7189884B2 (en) 2004-04-29 2007-03-13 Honeywell International Processes for synthesis of tetrafluoropropene
US8084653B2 (en) 2004-04-29 2011-12-27 Honeywell International, Inc. Method for producing fluorinated organic compounds
US8395000B2 (en) 2004-04-29 2013-03-12 Honeywell International Inc. Method for producing fluorinated organic compounds
US8383867B2 (en) 2004-04-29 2013-02-26 Honeywell International Inc. Method for producing fluorinated organic compounds
US20070197841A1 (en) 2004-04-29 2007-08-23 Honeywell International Inc. Method for producing fluorinated organic compounds
US7674939B2 (en) 2004-04-29 2010-03-09 Honeywell International Inc. Method for producing fluorinated organic compounds
US7659434B2 (en) 2004-04-29 2010-02-09 Honeywell International Inc. Method for producing fluorinated organic compounds
US8058486B2 (en) 2004-04-29 2011-11-15 Honeywell International Inc. Integrated process to produce 2,3,3,3-tetrafluoropropene
US7371904B2 (en) 2004-04-29 2008-05-13 Honeywell International Inc. Processes for synthesis of 1,3,3,3-tetrafluoropropene
US20080021229A1 (en) 2004-05-21 2008-01-24 Maughon Bob R Process for Preparing Epichlorhydrin from Ethane
US20080118018A1 (en) 2004-12-10 2008-05-22 Schrauwen Franciscus Johannes Reactor Tube Apparatus
US20070265368A1 (en) 2004-12-22 2007-11-15 Velliyur Nott Mallikarjuna Rao Functionalized Copolymers of Terminally Functionalized Perfluoro (Alkyl Vinyl Ether) Reactor Wall for Photochemical Reactions, Process for Increasing Fluorine Content in Hydrocaebons and Halohydrocarbons and Olefin Production
US20070259296A1 (en) * 2004-12-23 2007-11-08 Knoepfel Hans P Premix Burner With Mixing Section
JP2006272267A (en) 2005-03-30 2006-10-12 Fuji Photo Film Co Ltd Method of operating microchemical device
US7396965B2 (en) 2005-05-12 2008-07-08 Honeywell International Inc. Method for producing fluorinated organic compounds
US7511101B2 (en) 2005-05-13 2009-03-31 Fina Technology, Inc. Plug flow reactor and polymers prepared therewith
JP2007021396A (en) 2005-07-19 2007-02-01 Japan Science & Technology Agency Method for removing heavy metal
US8123398B2 (en) 2005-08-09 2012-02-28 Canon Kabushiki Kaisha Fluid-processing device
DE102005044501A1 (en) 2005-09-16 2007-03-22 Roquette, Eberhard, Dipl.-Ing. Preparation of ester containing alcohol and fatty acid by nozzle system (venturi principle) comprising nozzle fitter or holder, mixing tube, diffuser and two chamber mixing system
US8071825B2 (en) 2006-01-03 2011-12-06 Honeywell International Inc. Method for producing fluorinated organic compounds
WO2007079435A2 (en) 2006-01-03 2007-07-12 Honeywell International Inc. Method for producing fluorinated organic compounds
WO2007079431A2 (en) 2006-01-03 2007-07-12 Honeywell International Inc. Method for producing fluorinated organic compounds
US7695695B2 (en) 2006-01-18 2010-04-13 Lg Chem, Ltd. Reactor or heat exchanger with improved heat transfer performance
WO2007096383A1 (en) 2006-02-21 2007-08-30 Sachtleben Chemie Gmbh Method for carrying out chemical and physical processes and reaction cells
US7687670B2 (en) 2006-03-31 2010-03-30 E.I. Du Pont De Nemours And Company Coproduction of hydrofluoroolefins
US7836941B2 (en) 2006-05-19 2010-11-23 Exxonmobil Research And Engineering Company Mitigation of in-tube fouling in heat exchangers using controlled mechanical vibration
US20080073063A1 (en) 2006-06-23 2008-03-27 Exxonmobil Research And Engineering Company Reduction of fouling in heat exchangers
US20090270568A1 (en) 2006-06-26 2009-10-29 Solvay (Société Anonyme) Process for the Manufacture of 1,2-Dichloroethane
US8058490B2 (en) 2006-06-26 2011-11-15 Solvay (Societé Anonyme) Process for the manufacture of 1,2-dichloroethane
JP2008063314A (en) 2006-09-04 2008-03-21 Tokyo Kasei Kogyo Kk Environment-conscious hypervalent iodine reagent
US8232435B2 (en) 2006-09-05 2012-07-31 E I Du Pont De Nemours And Company 1,2,3,3,3-pentafluoropropene production processes
US20090088547A1 (en) 2006-10-17 2009-04-02 Rpo Pty Limited Process for producing polysiloxanes and use of the same
WO2008054781A1 (en) 2006-10-31 2008-05-08 E. I. Du Pont De Nemours And Company Processes for the production of fluoropropanes and halopropenes and azeotropic compositions of 2-chloro-3,3,3-trifluoro-1-propene with hf and of 1,1,1,2,2-pentafluoropropane with hf
US8398882B2 (en) 2006-10-31 2013-03-19 E I Du Pont De Nemours And Company Processes for the production of fluoropropanes and halopropenes and azeotropic compositions of 2-chloro-3,3,3-trifluoro-1-propene with HF and of 1,1,1,2,2-pentafluoropropane with HF
US20080207962A1 (en) 2007-02-23 2008-08-28 Velliyur Nott Mallikarjuna Rao Compositions containing chromium, oxygen, and at least two modifier metals selected the group consisting of gold, silver, and palladium, their preparation, and their use as catalysts and catalyst precursors
US20100041864A1 (en) 2007-04-10 2010-02-18 Asahi Glass Company, Limited Double metal cyanide complex catalyst having organic ligand, process for its production and method for producing polyether polyol
JP2009000592A (en) 2007-06-19 2009-01-08 Hitachi Ltd Reactor and reaction system
US8076521B2 (en) 2007-06-27 2011-12-13 Arkema Inc. Process for the manufacture of hydrofluoroolefins
US20100185029A1 (en) 2007-06-27 2010-07-22 Arkema Inc. Two step process for the manufacture of hydrofluoroolefins
US20090018377A1 (en) 2007-07-09 2009-01-15 Boyce C Bradford Catalytic process for the preparation of fluorinated halocarbons
JP2009046653A (en) 2007-07-24 2009-03-05 Nagase Chemtex Corp Method for producing polymer of aromatic compound and heterocyclic aromatic compound by using hypervalent iodine reagent
US20090030249A1 (en) 2007-07-25 2009-01-29 Honeywell International Inc. Processes for preparing 1,1,2,3-tetrachloropropene
US8258355B2 (en) 2007-07-25 2012-09-04 Honeywell International Inc. Processes for preparing 1,1,2,3-tetrachloropropene
WO2009015304A1 (en) 2007-07-25 2009-01-29 Honeywell International Inc. Processes for preparing 1,1,2,3-tetrachloropropene
CN101754941A (en) 2007-07-25 2010-06-23 霍尼韦尔国际公司 Processes for preparing 1,1,2,3-tetrachloropropene
US20090203945A1 (en) 2007-08-22 2009-08-13 Honeywell International Inc. Method for producing fluorinated organic compounds
US20100263278A1 (en) 2007-09-18 2010-10-21 Uhde Gmbh Gasification reactor and process for entrained-flow gasification
US8367867B2 (en) 2007-10-04 2013-02-05 Urea Casale S.A. Process and plant for urea production
US20090099396A1 (en) 2007-10-15 2009-04-16 Honeywell International Inc. Process for synthesis of fluorinated olefins
US20090117014A1 (en) 2007-11-06 2009-05-07 Quantumsphere, Inc. System and method for ammonia synthesis
WO2009067571A1 (en) 2007-11-20 2009-05-28 E. I. Du Pont De Nemours And Company Synthesis of hydrofluoroalkanols and hydrofluoroalkenes
US8487146B2 (en) 2007-12-19 2013-07-16 Occidental Chemical Corporation Methods of making chlorinated hydrocarbons
US8115038B2 (en) 2007-12-19 2012-02-14 Occidental Chemical Corporation Methods of making chlorinated hydrocarbons
US8614363B2 (en) 2007-12-19 2013-12-24 Occidental Chemical Corporation Methods of making chlorinated hydrocarbons
WO2009087423A1 (en) 2008-01-11 2009-07-16 John Redding Improvements in or relating to jet nozzles
CN101215220A (en) 2008-01-16 2008-07-09 西安近代化学研究所 Preparation method for 1,1,1,3-tetrafluoropropene
CN101597209A (en) 2008-03-20 2009-12-09 霍尼韦尔国际公司 Be used to prepare 2,3,3, the integrated process of 3-tetrafluoeopropene
US8071826B2 (en) 2008-04-04 2011-12-06 Honeywell International Inc. Process for the preparation of 2,3,3,3-tetrafluoropropene (HFO-1234yf)
US20110251425A1 (en) 2008-08-07 2011-10-13 Basf Se Process for preparing aromatic isocyanates
US20110172472A1 (en) 2008-09-25 2011-07-14 Central Glass Company, Limited Process for Producing 1,3,3,3-Tetrafluoropropene
US8258353B2 (en) 2008-10-13 2012-09-04 Dow Global Technologies, Llc Process for the production of chlorinated and/or fluorinated propenes
US20110218369A1 (en) 2008-11-19 2011-09-08 Arkema Inc. Process for the manufacture of hydrofluoroolefins
US8357828B2 (en) 2008-12-25 2013-01-22 Asahi Glass Company, Limited Processes for producing 1,1-dichloro-2,3,3,3-tetrafluoropropene and 2,3,3,3-tetrafluoropropene
CN101492341A (en) 2009-03-05 2009-07-29 杨海珍 Process for producing saturated polychloralkane
US8614361B2 (en) 2009-04-23 2013-12-24 Daikin Industries, Ltd. Process for preparation of 2,3,3,3-tetrafluoropropene
CN101544535A (en) 2009-05-01 2009-09-30 浙江三美化工股份有限公司 Method for preparing synthetic 1,1,1,3,3-pentachloro propane
US20120065434A1 (en) 2009-05-13 2012-03-15 Masatoshi Nose Process for preparing chlorine-containing fluorocarbon compound
US8581011B2 (en) 2009-10-09 2013-11-12 Dow Global Technologies, Llc Process for the production of chlorinated and/or fluorinated propenes
US8558041B2 (en) 2009-10-09 2013-10-15 Dow Global Technologies, Llc Isothermal multitube reactors and processes incorporating the same
US8581012B2 (en) 2009-10-09 2013-11-12 Dow Global Technologies, Llc Processes for the production of chlorinated and/or fluorinated propenes and higher alkenes
US20110087056A1 (en) 2009-10-09 2011-04-14 Dow Global Technologies Adiabatic plug flow reactors and processes incorporating the same
US8926918B2 (en) 2009-10-09 2015-01-06 Dow Global Technologies Llc Isothermal multitube reactors
US8933280B2 (en) 2009-10-09 2015-01-13 Dow Global Technologies Llc Processes for the production of hydrofluoroolefins
WO2011060211A1 (en) 2009-11-16 2011-05-19 Arkema Inc. Method to purify and stabilize chloroolefins
WO2011065574A1 (en) 2009-11-27 2011-06-03 Daikin Industries, Ltd. Process for preparing 1,1,2,3-tetrachloropropene
US8158836B2 (en) 2009-12-23 2012-04-17 Arkema France Catalytic gas phase fluorination of 1230xa to 1234yf
US20110155942A1 (en) 2009-12-23 2011-06-30 Arkema France Catalytic Gas Phase Fluorination of 1230xa to 1234yf
JP2011144148A (en) 2010-01-18 2011-07-28 Nippon Zeon Co Ltd Hydrogen-containing halogenated cyclopentane, and method for producing heptafluorocyclopentene
CN101955414A (en) 2010-04-20 2011-01-26 南通泰禾化工有限公司 Technology for preparing 1, 1, 2, 3-tetrachloropropene
DE102010022414A1 (en) 2010-06-01 2011-12-01 Günther Kramb jun. Emulsifying device for emulsifying two or multiple substances used in beverage industry, chemical industry, pharmaceutical industry and medicines, has housing which encloses reaction chamber that has inlets for both mediums
WO2012011844A1 (en) 2010-07-21 2012-01-26 Открытое Акционерное Общество "Научно-Исследовательский И Проектный Институт Карбамида И Продуктов Органического Синтеза" (Оао Ниик) Gas-liquid reactor (variant embodiments)
CN101913980A (en) 2010-09-07 2010-12-15 西安近代化学研究所 Production method of 1,1,1,3,3-pentachloropropane
CN101913979A (en) 2010-09-07 2010-12-15 西安近代化学研究所 Production method of 1,1,1,3,3-pentachlorobutane
CN101982227A (en) 2010-09-15 2011-03-02 山东东岳高分子材料有限公司 Rapid gas hybrid reactor for high temperature cracking and application thereof
CN102001911A (en) 2010-09-20 2011-04-06 西安近代化学研究所 Method for preparing 2,3,3,3-tetrafluoropropene
WO2012081482A1 (en) 2010-12-16 2012-06-21 株式会社トクヤマ Method for producing c3 chlorinated hydrocarbon
WO2012166394A1 (en) 2011-05-31 2012-12-06 Dow Global Technologies, Llc Process for the production of chlorinated propenes
WO2012166393A1 (en) 2011-05-31 2012-12-06 Dow Global Technologies, Llc Process for the production of chlorinated propenes
US9056808B2 (en) 2011-05-31 2015-06-16 Dow Global Technologies, Llc Process for the production of chlorinated propenes
CN102249846A (en) 2011-05-31 2011-11-23 浙江师范大学 Co-production preparation method of 2-chloro-3,3,3-trifluoropropene and 2,3-dichloro-1,1-difluoro propylene
US20140081055A1 (en) 2011-05-31 2014-03-20 Dow Global Technologies, Llc Process for the production of chlorinated propenes
US8907148B2 (en) 2011-08-07 2014-12-09 Dow Global Technologies Llc Process for the production of chlorinated propenes
US20140163266A1 (en) 2011-08-07 2014-06-12 Dow Global Technologies Llc Process for the production of chlorinated propenes
US20140179962A1 (en) 2011-08-07 2014-06-26 Dow Global Technologies Llc Process for the production of chlorinated propenes
CN102351637A (en) 2011-08-31 2012-02-15 浙江师范大学 Method for preparing 2,3,3,3-tetrafluoropropene
US9067855B2 (en) 2011-11-21 2015-06-30 Dow Global Technologies Llc Process for the production of chlorinated alkanes
US20150045592A1 (en) 2011-11-21 2015-02-12 Dow Global Technologies Llc Process for the production of chlorinated alkanes
WO2013082410A1 (en) 2011-12-02 2013-06-06 Dow Global Technologies, Llc Process for the production of chlorinated alkanes
US20140323776A1 (en) 2011-12-02 2014-10-30 Dow Global Technologies Llc Process for the production of chlorinated alkanes
US20140323775A1 (en) 2011-12-02 2014-10-30 Dow Global Technologies Llc Process for the production of chlorinated alkanes
US20140371494A1 (en) 2011-12-13 2014-12-18 Dow Global Technologies Llc Process for the production of chlorinated propanes and propenes
US20140336425A1 (en) 2011-12-22 2014-11-13 Dow Global Technologies Llc Process for the production of tetrachloromethane
US20140336431A1 (en) 2011-12-23 2014-11-13 Dow Global Technologies Llc Process for the production of alkenes and/or aromatic compounds
US20150057471A1 (en) 2011-12-23 2015-02-26 Dow Global Technologies Llc Chlorinating agents
US8957258B2 (en) 2012-01-24 2015-02-17 Kanto Denka Kogyo Co., Ltd. BIS(1,1-Dichloro-3,3,3-trifluoropropyl) ether and process for preparing the same
WO2014046977A1 (en) 2012-09-20 2014-03-27 Dow Global Technologies, Llc Process for the production of chlorinated propenes
WO2014046970A1 (en) 2012-09-20 2014-03-27 Dow Global Technologies, Llc Process for the production of chlorinated propenes
US20150217256A1 (en) 2012-09-30 2015-08-06 Dow Global Technologies Llc Weir quench and processes incorporating the same
WO2014066083A1 (en) 2012-10-26 2014-05-01 Dow Global Technologies, Llc Mixer and reactor and process incorporating the same
WO2014100066A1 (en) 2012-12-18 2014-06-26 Dow Global Technologies, Llc Process for the production of chlorinated propenes
WO2014100039A1 (en) 2012-12-19 2014-06-26 Dow Global Technologies, Llc Process for the production of chlorinated propenes
WO2014134233A2 (en) 2013-02-27 2014-09-04 Dow Global Technologies Llc Process for the production of chlorinated propenes
WO2014134377A2 (en) 2013-02-28 2014-09-04 Dow Global Technologies Llc Process for the production of chlorinated propanes
WO2014164368A1 (en) 2013-03-09 2014-10-09 Dow Global Technologies Llc Process for the production of chlorinated alkanes

Non-Patent Citations (45)

* Cited by examiner, † Cited by third party
Title
Bai, et al., "Isomerization of Tetrachloropropene to Promote Utilization Ratio of Triallate Raw Materials", Petrochemical Technology & Application, 2007, 25(1).
Boualy, et al., "Kharasch Addition of Tetrachloromethane to Alkenes Catalyzed by Metal Acetylacetonates", "Kharasch Addition of Tetrachloromethane to Alkenes Catalyzed by Metal Acetylacetonates".
Chai, et al., "Study of Preparation of 1,1,1,3-tetrachloropropane", Zhejiang Chemical Industry, 2010, pp. 1-3, 41(5).
Cristiano, et al., "Tetraalkylphosphonium Trihalides. Room Temperature Ionic Liquids As Halogenation Reagents", J. Org. Chem., 2009, pp. 9027-9033, 74.
Evstigneev, et al., "Initiated Chlorination of Tetrachloropropane", Khim. Prom., 1984, pp. 393-394, 16(7).
Fields, et al., "Thermal Isomerization of 1,1-dichlorocyclopropanes", Chemical Communications, Jan. 1, 1967, p. 1081, 21.
Galitzenstein, et al., "The Dehydrochlorination of Propylene Dichloride", Journal of the Society of Chemical Industry, 1950, pp. 298-304, 69.
Gault, et al., "Chlorination of Chloroform", Comptes Rendus Des Seances De L'Academie des Sciences, 1924, pp. 467-469, 179.
Gerding, et al., "Raman Spectra of aliphatic chlorine compounds: chloroethenes an chloropropenes", Recueil Jan. 1, 1955, pp. 957-975, 74.
Hatch, et al., "Allylic Chlorides. XV. Preparation and Properties of the 1,2,3Trichloropropenes", JACS, Jan. 5, 1952, pp. 123-126, 74.
Hatch, et al., "Allylic Chlorides. XVIII. Preparation and Properties of 1,1,3-tricholoro-2-fluoro-1-propene and 1,1,2,3-tetrachloro-1-propene", JACS, Jul. 5, 1952, pp. 3328-3330, 74(13).
Herzfelder, "Substitution in the Aliphatic Series", Berichte Der Deutschen Chemischen Gesellschaft, May-Aug. 1893, pp. 1257-1261, 26(2).
Huaping, et al., "Procress in Synthesis of 1,1,1,3-tetrachloropropane", Guangzhou Chemicals, 2011, , pp. 41-42, 39 (5).
Ivanov, et al., "Metal phthalocyanine-Catalyzed Addition of polychlorine-Containing Organic Compounds to C=C Bonds", Russian Chemical Bulletin, International Edition, Nov. 2009, pp. 2393-2396, 58(11).
Japanese Publication No. 2015-536816 Office Action dated Jan. 9, 2018.
Kang, et al., "Kinetics of Synthesis of 1,1,1,3,3-pentachlorobutane Catalyzed by Fe-FeCl3", Chemical Research and Application, Jun. 2011, pp. 657-660, 23(6).
Kang, et al., "Kinetics of Synthesis of 1,1,1,3,3-pentachlorobutane Catalyzed by Fe—FeCl3", Chemical Research and Application, Jun. 2011, pp. 657-660, 23(6).
Kharasch, et al., "Chlorinations with Sulfuryl Chloride.I. The Peroxide-Catalyzed Chlorination of Hydrocarbons", JACS, 1939, pp. 2142-2150, 61.
Khusnutdinov, et al., "CCI4 Attachment to Olefins Catalyzed by Chromium and Ruthenium Complexes. Impact of Water as a Nucleophilic Admixture", Oil Chemistry, 2009, pp. 349-356, vol. 4.
Kruper, et al., "Synthesis of alpha-Halocinnamate Esters via Solvolytic Rearrangement of Trichloroallyl Alcohols", J Org Chem, 1991, pp. 3323-3329, 56.
Leitch, "Organic Deuterium Compounds: V. The chlorination of propyne and propyne D-4", Canadian Journal of Chemistry, Apr. 1, 1953, pp. 385-386, 30(4).
Levanova, et al., "Cholorination of Chloroolefins C3-C4", 2002, 496-498.
Levanova, et al., "Thermocatalytic Reactions of Bromochloropropanes", Russian Journal of Physical Chemistry, Jan. 1, 1983, pp. 1142-1146, 57.
Levanova, et al., "Cholorination of Chloroolefins C3—C4", 2002, 496-498.
McBee, et al., "Utilization of Polychloropropanes and Hexachloroethane", Industrial and Engineering Chemistry, Feb. 1, 1941, pp. 176-181, 33(2).
Michigan Technological Univ., "Free-Radical Chlorination with Sulfuryl Chloride", Nov. 15, 2001, 1-7.
Mouneyrat, "Effect of Chlorine on Propyl Chloride in the Presence of Anhydrous Aluminum Chloride", Bulletin de la Societe chimique de france, Societe francaise de chimie, Jan. 1, 1899, pp. 616-623, 21(3).
Munoz-Molina, et al., "An Efficient, Selective and Reducing Agent-Free Copper Catalyst for the Atom-Transfer Radical Addition of Halo Compounds to Activated Olefins", Inorg. Chem., 2010, pp. 643-645, 49.
Nair, et al., "Atom Transfer Radical Addition (ATRA) of Carbon Tetrachloride and Chlorinated Esters to Various Olefins Catalyzed by CP/Ru(PPh3)(PR3)CI Complexes", Inorganica Chimica Acta, 2012, pp. 96-103, 380.
Nguyen, et al., "Condensation de chloroforme avec des olefins fluorees en milieu basique", Journal of Fluorine Chemistry, Dec. 1, 1991, pp. 241-248, 55(3).
Nikishin, et al., "Reactions of Methanol and Ethanol with Tetrachloroethylene", Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, Dec. 1966, pp. 2188-2192, 12.
Ochi, et al., "Preparation of Chloropropenes by Photochemical Dehydrochlorination of 1,2-Dichloropropane", Chemical Abstracts, Jul. 17, 1989, p. 574, 111(3).
Pozdnev, et al., "Chlorination of chloroform and the conversion of methylene chloride manufacture still residues", Khim., Khim. Tekhnol., 1970, 70(4).
Rotshtein, et al., "Isomer Distribution on Chlorination of Chloropropanes", Z. Organicheskoi Khimii, 1966, pp. 1539-1542, 2(9).
Semenov, "Selectivity of Photochemical Chlorination of Chloromethane in the Liquid Phase", Prikladnei Khimii, 1985, pp. 840-845, 58(4).
Shelton, et al., "Addition of Halogens and Halogen Compounds to Allylic Chlorides. I. Addition of Hydrogen Halides", Journal of Organic Chemistry, 1958, pp. 1876-1880, 23.
Skell, et al., "Reactions of BrCl with alkyl radicals", Tetrahedron letters, 1986 pp. 5181-5184, 27(43).
Skell, et al., "Selectivities of pi and sigma succinimidyl radicals in substitution and addition reactions, Response to Walling, Wl-Taliawi and Zhao", JACS, Jul. 1, 1983, pp. 5125-5131, 105(15).
Stevens, "Some New Cyclopropanes with a Note on the Exterior Valence Angles of Cyclopropane", JACS, Vo. 68, No. 4, 1945, 620-622.
Tanuma, et al., "Partially Fluorinated Metal Oxide Catalysts for a Friedel-Crafts-type Reaction of Dichlorofluoromethane with Tetrafluoroethylene", Catal. Lett., 2010, pp. 77-82, 136.
Tobey, et al., "Pentachlorocyclopropane", Journal of the American Chemical Society, Jun. 1, 1996, pp. 2478-2481, 88 (11).
Urry, et al., "Free Radical Reactions of Diazomethane with Reactive Bromopolychloroalkane", JACS, May 5, 1964, pp. 1815-1819, 86(9.
Wang Chin-Hsien, "Elimination Reactions of polyhalopropanes under emulsion catalytic conditions to give Halopropenes", Synthesis, Jan. 1, 1982, pp. 494-496, 1982(6).
Zhao, et al., "Research Progress on Preparation Technology of 1,1,2,3-Tetrachloropropene", Zhejiang Chemical Industry, 2010, pp. 8-10, 41(6).
Zheng, et al., "Preparation of the low GWP alternative 1,3,3,3-tetrafluoropropene", Zhejiang Huagong, 2010, pp. 5-7, 41(3).

Also Published As

Publication number Publication date
CN104902989B (en) 2017-09-08
JP6363610B2 (en) 2018-07-25
WO2014066083A1 (en) 2014-05-01
CN104902989A (en) 2015-09-09
CA2887559A1 (en) 2014-05-01
EP2911773B1 (en) 2017-10-04
JP2015536816A (en) 2015-12-24
US20160158715A1 (en) 2016-06-09
EP2911773A1 (en) 2015-09-02
IN2015DN03949A (en) 2015-10-02

Similar Documents

Publication Publication Date Title
US10065157B2 (en) Mixer and processes incorporating the same
CN102665890B (en) The adiabatic plug flow reactor of production chlorination and/or fluorinated acrylamide and higher alkene and method
US9795941B2 (en) Weir quench and processes incorporating the same
CN102596387B (en) The isothermal multitubular reactor of production chlorination and/or fluorinated acrylamide and higher alkene and method
US9199899B2 (en) Process for the production of chlorinated alkanes
KR20120084729A (en) Process for the production of chlorinated and/or fluorinated propenes and higher alkenes
EP2782889A1 (en) Process for the production of chlorinated alkanes
CN101133008A (en) Non-catalytic manufacture of 1,1,3,3,3-pentafluoropropene from 1,1,1,3,3,3-hexafluoropropane
JP6908596B2 (en) Method for producing C3 chlorinated alkane and alkene compound
CN104011000A (en) Process For The Production Of Tetrachloromethane
JP2015529247A (en) Process for the production of chlorinated propene
TW202216645A (en) A process for producing highly pure chlorinated alkane
CN103717558A (en) Process for production of chlorinated propenes
JP2023552168A (en) reactor
CN111138292A (en) Method for producing 1,1, 1-trifluoro-2-chloroethane and/or trifluoroethylamine
CN104125939A (en) Process for reactor passivation
de Weerd Process intensification: Choosing the right tools

Legal Events

Date Code Title Description
AS Assignment

Owner name: DOW GLOBAL TECHNOLOGIES LLC, MICHIGAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:TIRTOWIDJOJO, MAX M.;BAI, HUA;CALVERLEY, EDWARD M.;REEL/FRAME:035765/0535

Effective date: 20130109

AS Assignment

Owner name: DOW GLOBAL TECHNOLOGIES LLC, MICHIGAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:TIRTOWIDJOJO, MAX M.;BAI, HUA;CALVERLEY, EDWARD M.;REEL/FRAME:036205/0041

Effective date: 20130109

AS Assignment

Owner name: BLUE CUBE IP LLC, MICHIGAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:DOW GLOBAL TECHNOLOGIES LLC;REEL/FRAME:036254/0315

Effective date: 20150804

STCF Information on status: patent grant

Free format text: PATENTED CASE

FEPP Fee payment procedure

Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

LAPS Lapse for failure to pay maintenance fees

Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20220904