UA81221C2 - Process and plant for the heterogeneous synthesis of chemical compounds - Google Patents
Process and plant for the heterogeneous synthesis of chemical compounds Download PDFInfo
- Publication number
- UA81221C2 UA81221C2 UA2003098878A UA2003098878A UA81221C2 UA 81221 C2 UA81221 C2 UA 81221C2 UA 2003098878 A UA2003098878 A UA 2003098878A UA 2003098878 A UA2003098878 A UA 2003098878A UA 81221 C2 UA81221 C2 UA 81221C2
- Authority
- UA
- Ukraine
- Prior art keywords
- reaction zone
- reaction
- heat exchange
- fed
- differs
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 30
- 238000003786 synthesis reaction Methods 0.000 title claims abstract description 22
- 230000015572 biosynthetic process Effects 0.000 title claims abstract description 21
- 150000001875 compounds Chemical class 0.000 title abstract description 9
- 238000006243 chemical reaction Methods 0.000 claims abstract description 113
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims abstract description 66
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims abstract description 32
- 239000003054 catalyst Substances 0.000 claims abstract description 18
- 229910021529 ammonia Inorganic materials 0.000 claims abstract description 16
- 239000000376 reactant Substances 0.000 claims abstract description 15
- 230000003197 catalytic effect Effects 0.000 claims abstract description 5
- 239000003153 chemical reaction reagent Substances 0.000 claims description 18
- 238000009434 installation Methods 0.000 claims description 14
- 239000011541 reaction mixture Substances 0.000 claims description 13
- 239000002826 coolant Substances 0.000 claims description 12
- 239000007788 liquid Substances 0.000 claims description 9
- 239000000203 mixture Substances 0.000 claims 2
- 239000012530 fluid Substances 0.000 abstract description 7
- 238000010586 diagram Methods 0.000 description 5
- 239000000126 substance Substances 0.000 description 4
- -1 methanol and ammonia Chemical class 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 238000009826 distribution Methods 0.000 description 2
- 238000005265 energy consumption Methods 0.000 description 2
- 238000009776 industrial production Methods 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01C—AMMONIA; CYANOGEN; COMPOUNDS THEREOF
- C01C1/00—Ammonia; Compounds thereof
- C01C1/02—Preparation, purification or separation of ammonia
- C01C1/04—Preparation of ammonia by synthesis in the gas phase
- C01C1/0405—Preparation of ammonia by synthesis in the gas phase from N2 and H2 in presence of a catalyst
- C01C1/0417—Preparation of ammonia by synthesis in the gas phase from N2 and H2 in presence of a catalyst characterised by the synthesis reactor, e.g. arrangement of catalyst beds and heat exchangers in the reactor
- C01C1/0423—Cold wall reactors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J8/00—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
- B01J8/02—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
- B01J8/0207—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid flow within the bed being predominantly horizontal
- B01J8/0214—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid flow within the bed being predominantly horizontal in a cylindrical annular shaped bed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J8/00—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
- B01J8/02—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
- B01J8/0285—Heating or cooling the reactor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J8/00—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
- B01J8/02—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
- B01J8/04—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
- B01J8/0403—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the fluid flow within the beds being predominantly horizontal
- B01J8/0407—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the fluid flow within the beds being predominantly horizontal through two or more cylindrical annular shaped beds
- B01J8/0415—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the fluid flow within the beds being predominantly horizontal through two or more cylindrical annular shaped beds the beds being superimposed one above the other
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J8/00—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
- B01J8/02—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
- B01J8/04—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
- B01J8/0496—Heating or cooling the reactor
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01C—AMMONIA; CYANOGEN; COMPOUNDS THEREOF
- C01C1/00—Ammonia; Compounds thereof
- C01C1/02—Preparation, purification or separation of ammonia
- C01C1/04—Preparation of ammonia by synthesis in the gas phase
- C01C1/0405—Preparation of ammonia by synthesis in the gas phase from N2 and H2 in presence of a catalyst
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C29/00—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
- C07C29/15—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively
- C07C29/151—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases
- C07C29/152—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by the reactor used
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D9/00—Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
- F28D9/0006—Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the plate-like or laminated conduits being enclosed within a pressure vessel
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2208/00—Processes carried out in the presence of solid particles; Reactors therefor
- B01J2208/00008—Controlling the process
- B01J2208/00017—Controlling the temperature
- B01J2208/00106—Controlling the temperature by indirect heat exchange
- B01J2208/00115—Controlling the temperature by indirect heat exchange with heat exchange elements inside the bed of solid particles
- B01J2208/0015—Plates; Cylinders
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2208/00—Processes carried out in the presence of solid particles; Reactors therefor
- B01J2208/00008—Controlling the process
- B01J2208/00017—Controlling the temperature
- B01J2208/00106—Controlling the temperature by indirect heat exchange
- B01J2208/00309—Controlling the temperature by indirect heat exchange with two or more reactions in heat exchange with each other, such as an endothermic reaction in heat exchange with an exothermic reaction
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/19—Details relating to the geometry of the reactor
- B01J2219/194—Details relating to the geometry of the reactor round
- B01J2219/1941—Details relating to the geometry of the reactor round circular or disk-shaped
- B01J2219/1943—Details relating to the geometry of the reactor round circular or disk-shaped cylindrical
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/582—Recycling of unreacted starting or intermediate materials
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Inorganic Chemistry (AREA)
- Analytical Chemistry (AREA)
- Fluid Mechanics (AREA)
- Engineering & Computer Science (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
Description
Даний винахід стосується способу гетерогенного синтезу хімічних сполук, таких як метанол і аміак.
Винахід стосується, зокрема, способу гетерогенного синтезу хімічних сполук, у якому використовують дві послідовно з'єднані зони реакції, у яких у так званих псевдоізотермічних умовах у шарі каталізатора відбуваються хімічні реакції, температуру яких контролюють у вузькому діапазоні значень біля попередньо заданого оптимального значення. Даний винахід стосується також установки для гетерогенного синтезу хімічних сполук таким способом.
Промислове одержання хімічних сполук, таких як метанол і аміак, потребує, як відомо, розробки способів гетерогенного синтезу з високим конверсійним виходом реагентів і створення установок великої продуктивності, що не потребують великих капіталовкладень і споживають порівняно мало енергії. Для вирішення цієї задачі був запропонований спосіб синтезу метанолу в двох послідовно з'єднаних зонах реакції, які працюють у псевдоізотермічних умовах, тобто з відведенням тепла, яке виділяється в процесі реакції, при цьому надлишок тепла, що виділяється в другій зоні реакції, відбирають з неї непрямим теплообміном з потоком свіжих газоподібних реагентів, які повертаються в першу зону реакції.
Такий спосіб синтезу метанолу описаний у (ЕР-А 0790226). Для більш точного підтримання оптимального режиму роботи й одержання дешевого метанолу запропонованим у цій публікації способом у першій зоні реакції необхідно установити трубчастий теплообмінник із заповненими відповідним каталізатором трубками.
Через заповнені каталізатором трубки теплообмінника пропускають газоподібні реагенти (Нео і СО), а зовні трубки охолоджують потоком води (одержуючи при цьому водяну пару), яку використовують як робочий текучий теплоносій. Реактор з теплообмінником подібного типу описаний, наприклад, у 05 4559207.
Необхідність використання такого специфічного реактора в першій зоні реакції при двоступінчастому синтезі метанолу підтверджується також у (2В-А 2203427).
При усіх своїх безсумнівних перевагах описаний вище спосіб синтезу метанолу має й один істотний і технічно значимий недолік, який при промисловому одержанні метанолу перешкоджає розвитку або знижує повноту хімічної реакції (конверсійний вихід) і обмежує продуктивність відповідної установки.
Дійсно, згадані вище реактори з пучком теплообмінних труб мають порівняно складну конструкцію і вимагають ретельного обслуговування і тому не придатні, як випливає з (ЕР-А 0790226), для створення установок з великим об'ємом зони реакції, що мають високий конверсійний вихід і високу продуктивність.
Створення установок з великим об'ємом зони реакції в реакторах із трубним пучком не просто пов'язано з дуже великими і реально нерозв'язними труднощами, але і вимагає настільки великих інвестицій, що весь процес синтезу з двоступінчастою реакцією стає економічно неефективним.
Для усунення цього недоліку в (48В-А 2203427| було запропоновано використовувати високоефективний каталізатор, який, частково підвищуючи конверсійний вихід реакторів із трубним пучком і збільшуючи їх продуктивтсть, має дуже високу вартість.
Таким чином, відомі в даний час способи, які мають ті чи інші вказані вище недоліки, не дозволяють знайти порівняно дешевий і технічно простий і надійний шлях створення установок, які мають високий конверсійний вихід і високу продуктивність.
В основу даного винаходу була покладена задача розробити позбавлений згаданих вище недоліків спосіб гетерогенного синтезу хімічних сполук, таких як метанол і аміак, який був би простим у здійсненні при високому конверсійному виході на хімічних установках великої продуктивності при низьких капіталовкладеннях і низькій витраті енергії.
Вказана вище задача вирішується за допомогою запропонованого у винаході способу гетерогенного синтезу хімічних сполук, таких як метанол і аміак, шляхом каталітичної конверсії відповідних газоподібних реагентів у псевдоізотермічних умовах у двох послідовно розташованих зонах реакції, який відрізняється тим, що в першій зоні реакції газоподібні реагенти пропускають через нерухому масу відповідного каталізатора, у який занурені розташовані поруч один з одним по суті коробчасті теплообмінники, які мають форму пластин, через які пропускають робочий текучий теплоносій.
На відміну від загальноприйнятої думки було встановлено, що запропоновані рішення дозволили досить простим, надійним і дешевим шляхом істотно збільшити конверсійний вихід і продуктивність першої зони реакції в описаному вище процесі.
Запропоновані в даному винаході рішення дозволяють одержувати згадані вище хімічні сполуки у великих кількостях і з високим конверсійним виходом на великих хімічних установках, які мають високу продуктивність, досить простих у виготовленні, які споживають порівняно невелику кількість енергії і дешевих в експлуатації.
У даному винаході пропонується також хімічна установка, на якій завдяки її відповідним конструктивним і функціональним особливостям можна здійснити вказаний вище спосіб.
Інші відмінні риси і переваги запропонованого у винаході способу більш докладно розглянуті нижче на прикладі варіанта його можливого здійснення, що ілюструє, але не обмежує обсяг винаходу, з посиланням на додані креслення.
Короткий опис креслень
На доданих до опису кресленнях показано: на фіг.1 - загальна принципова схема установки для здійснення одного з варіантів запропонованого у винаході способу і на фіг.2 - схематичне зображення в поздовжньому розрізі одного з реакторів установки, схема якої показана на фіг.1.
Кращий варіант здійснення винаходу
На фіг.1 схематично показані основні компоненти позначеної на схемі позицією 1 установки для одержання метанолу або аміаку запропонованим у даному винаході способом.
Установка 1 містить першу зону 2 реакції і з'єднану з нею послідовно другу зону З реакції.
У кожній із зон 2, З реакції є розташований в корпусі добре відомим способом реакційний простір 4, у якому знаходиться не показана на схемі нерухома маса відповідного каталізатора.
Реакція в зонах 2, З реакції відбувається в псевдоізотермічних умовах, які підтримуються за допомогою теплообмінників 5 і 6, занурених у каталізатор, що знаходиться в реакційному просторі 4.
Температура реакції в реакційному просторі 4 першої зони 2 реакції контролюється непрямим теплообміном реагентів з робочим текучим теплоносієм, який протікає через теплообмінник 5 у напрямку, позначеному стрілками. При регулюванні температури екзотермічних реакцій, таких як реакції синтезу метанолу або аміаку, як робочий текучий теплоносій, який прокачується через теплообмінник, використовують звичайно воду. Всередині теплообмінника вода, яка нагрівається в ньому, перетворюється у водяну пару або попередньо нагрівається до певної температури і потім використовується для одержання водяної пари в спеціально призначених для цієї мети парогенераторах (котлах), розташованих поза зоною реакції і на кресленні не показаних.
Температура реакції в реакційному просторі 4 другої зони З реакції також контролюється за рахунок непрямого теплообміну з використанням як робочого текучого теплоносія в теплообміннику 6 газоподібних реагентів, які подаються у першу зону 2 реакції. Для цього газоподібні реагенти по трубі 7 спочатку пропускають через розташований у другій зоні З реакції теплообмінник 6 і лише потім подають у реакційний простір 4 першої зони 2 реакції.
По трубі 7 у теплообмінник 6 подають не лише свіжі, але і газоподібні реагенти, які повертаються в зону реакції зокрема Не» і СО при синтезі метанолу і Не і М2 при синтезі аміаку.
Труба, яка позначена на схемі позицією 8 і яка з'єднує вихід реакційного простору 4 першої зони 2 реакції з входом реакційного простору 4 другої зони реакції, призначена для подачі в реакційний простір другої зони реакції отриманої в першій зоні 2 реакції реакційної суміші, яка містить метанол або аміак і газоподібні реагенти, які не вступили в реакцію.
Отриману в реакторі реакційну суміш, у якій крім метанолу або аміаку також міститься деяка кількість газоподібних реагентів, які не вступили в реакцію, виводять з реакційного простору 4 другої зони З реакції по трубі 9.
У звичайної, не зображеної на кресленні частини показаної на фіг.1 установки, з'єднаної з другою зоною З реакції трубою 9, з отриманої реакційної суміші виділяють метанол або аміак, а газоподібні реагенти, які містяться в ній і які не вступили в реакції, повертають назад у першу зону 2 реакції по трубі 7 разом зі свіжими газоподібними реагентами.
На фіг.2 показаний теплообмінник 5, який використовується у запропонованій у винаході установці, занурений у каталізатор, що знаходиться в реакційному просторі 4, і зібраний з множини окремих розташованих поруч один з одним коробчастих, пластинчастих теплообмінних елементів, через які проходить робочий текучий теплоносій.
Показана на фіг.2 перша зона 2 реакції являє собою докладно описаний нижче псевдоізотермічний реактор з циліндричним корпусом 10, закритим із протилежних кінців відповідно верхнім 11 ії нижнім 12 днищами, всередині якого розташований зібраний з окремих пластинчастих теплообмінних елементів теплообмінник 5.
На верхньому днищі 12 реактора 2 розташований патрубок 13, через який у реактор по показаній на фіг.1 трубі 7 подаються газоподібні реагенти, і патрубки 14, 15 відповідно для підведення в теплообмінник 5 і відведення з нього робочого текучого теплоносія.
На нижньому днищі 11 розташований з'єднаний з показаною на фіг.1 трубою 8 патрубок 16, через який з реактора 2 виходить реакційна суміш, яка утворилася в ньому.
У реакційному просторі 4 всередині корпуса 10 реактора 2 знаходиться по суті відомий відкритий зверху кільцевий шар 17 каталізатора з перфорованими бічними стінками, через які в радіальному і радіально- осьовому напрямку проходять газоподібні реагенти.
Внутрішня бічна стінка шару 17 каталізатора утворює отвір 18, який зверху закритий кришкою 19 і з'єднаний трубою 20 з патрубком 16, через який з реактора виходить реакційна суміш, яка утворилася в ньому.
У реакційному просторі 4 і, зокрема, у шарі 17 каталізатора розташований закріплений звичайним способом теплообмінник 5, занурений у масу відповідного, не показаного на кресленні каталізатора.
У цьому варіанті теплообмінник 5 має по суті циліндричну форму і складається з множини розташованих поруч один з одним на одній осі концентричних (по суті радіальних) плоских, коробчастих, пластинчастих теплообмінних елементів 21, що мають форму паралелепіпеда.
Кожен такий окремо не показаний на кресленні теплообмінний елемент 21 переважно складається з двох металевих пластин, які прилягають одна до одної і з'єднані одна з одною по зовнішньому краї паянням, які утворюють розташовану між ними внутрішню порожнину 21а (зображену пунктирними лініями), через яку проходить робочий текучий теплоносій.
Кожен теплообмінний елемент 21 має розташовані уздовж його довгих сторін 22 розподільну трубу 23 і виконаний у вигляді труби колектор 24 для робочого текучого теплоносія. Труби 23 і 24 з'єднані з однієї сторони з внутрішньою порожниною 21а теплообмінного елемента принаймні через одне, переважно через декілька вікон або отворів (на кресленнях не показані), розташованих уздовж однієї або декількох утворюючих, а з іншої сторони впускними і випускними трубками 25 і 26 відповідно з'єднані з розташованим поза теплообмінним елементом 21 контуром, по якому проходить робочий текучий теплоносій. Трубки 25 і 26 з'єднані з відповідними патрубками 14 і 15.
Для формування в теплообміннику 6 радіального або по суті радіального потоку робочого текучого теплоносія порожнини 21а теплообмінних елементів переважно розділені на множину більш дрібних порожнин, які не сполучаються напряму одна з одною і утворених, наприклад, множиною зварних швів або роздільних перегородок (зображених на кресленні пунктирними лініями), які проходять перпендикулярно до розподільної труби 23 і виконаного у вигляді труби колектору 24 теплообмінного елемента 21.
Завдяки такому виконанню першої зони 2 реакції створюється можливість одержувати метанол або аміак запропонованим у винаході способом, у якому газоподібні реагенти пропускають через нерухому масу розташованого в цій зоні реакції відповідного каталізатора, у який занурено множина розташованих поруч один з одним по суті коробчастих теплообмінників, які мають форму пластин, через які проходить робочий текучий теплоносій.
Запропоноване в даному винаході рішення являє собою досить простий, надійний, економічно вигідний і не пов'язаний з великою витратою енергії шлях для створення першої зони 2 реакції з великим за розмірами (об'ємом) реакційним простором.
Іншими словами, пластинчасті теплообмінники, занурені в масу каталізатора, не лише є ефективним засобами непрямого теплообміну, але і дозволяють оптимальним чином вибирати розміри першої зони 2 реакції й істотно підвищити її конверсійний вихід і продуктивність, а також конверсійний вихід і продуктивність всієї установки.
Даний винахід не виключає можливості внесення в розглянутий вище варіант різних змін і удосконалень, які не виходять за обсяг винаходу, який визначається наведеною нижче формулою винаходу.
Так, наприклад, в одному з переважних варіантів реакційну суміш, яку з першої зони 2 реакції по трубі 8 подають у другу зону З реакції, охолоджують шляхом непрямого теплообміну в теплообміннику 27 звичайного типу, зображеному на фіг.1 пунктирними лініями. Наявність такого теплообмінника не лише дозволяє використовувати тепло, що міститься в реакційній суміші, яка відбирається з першої зони реакції, наприклад для одержання водяної пари, яку можна використовувати в інших місцях (паросилової) установки, але і регулювати температуру на вході в другу зону З реакції для підвищення її конверсійного виходу.
Альтернативно до розглянутого вище варіанту частину "свіжих" газоподібних реагентів і/або повторно синтезованих реагентів можна подавати безпосередньо в першу зону 2 реакції по трубі 28 в обхід другої зони
З реакції.
Як теплообмінник 6 можна використовувати звичайний теплообмінник, наприклад теплообмінник з пучком труб або трубчастим змійовиком, однак більш переважно використовувати теплообмінник, зібраний з множини пластинчастих теплообмінних елементів описаного вище і показаного на фіг.2 типу. Використання такого теплообмінника дозволяє додатково збільшити конверсійний вихід і продуктивність усієї хімічної установки.
В іншому, не показаному на кресленнях варіанті першу і другу зони 2, З реакції пропонується виконати не у вигляді двох показаних на фіг.1 окремих реакторів, а у вигляді одного реактора синтезу.
Температурний режим у зонах реакції підтримують на рівні, звичайному для синтезу метанолу або аміаку.
Що стосується робочого тиску, то найкращих результатів можна домогтися по суті при рівному в обох зонах 2 і
З реакції тиску, який при синтезі метанолу повинен переважно становити від 50 до 100бар, а при синтезі аміаку - від 50 до 300, переважно від 80 до 150бар. 75 7 і Н 2 тот ниви ді 1 шШишає
І і і | я» 1 шо
М
І Фік.
о. й щ 5 ТИ; що п б М ко с и г
Не Е я й щі ву ,
КНИШ 25 дк зві я 25 і І х
ШИ Ше
І Пе 7 ще ! ОО й ЩО БВ
Й ві Ї. ло за | | ІБ ! рол орі А Я
ГАК ї п ЕН, н- 5
ОН -- | І - | НІ все ря і і І Щ в; ш- НУ В.
Я
ПО осв
ЩО Я в з
НА ЩШ лишив
Кк Ей и ї 2 і
КО х | і й о 7 рено ше щі 0 я
Осо
Адв і
Фіг.
Claims (11)
1. Спосіб гетерогенного синтезу метанолу шляхом каталітичної конверсії газоподібних реагентів у псевдоізотермічних умовах у двох послідовно розташованих зонах реакції (2) та (3), який відрізняється тим, що в зоні реакції (2) газоподібні реагенти пропускають через нерухому масу відповідного каталізатора, у який занурені розташовані поруч один з одним коробчасті теплообмінні елементи (21), які мають форму пластин, через які пропускають робочий текучий теплоносій.
2. Спосіб за п. 1, який відрізняється тим, що тиск у зоні реакції (2) дорівнює тиску у зоні реакції (3).
3. Спосіб за п. 1, який відрізняється тим, що газоподібні реагенти подають у зону реакції (2) після непрямого теплообміну у зоні реакції (3) з реакційною сумішшю, яку подають у зону реакції (3) з зони реакції(2).
4. Спосіб за п. 1, який відрізняється тим, що у зону реакції (3) подають реакційну суміш з зони реакції (2) після регулювання температури на вході у зону реакції (3) в процесі непрямого теплообміну.
5. Спосіб за п. 1, який відрізняється тим, що у зону реакції (2) подають суміш газоподібних реагентів, яка складається з "свіжих" газоподібних реагентів і газоподібних реагентів, виділених з реакційної суміші, одержаної у зоні реакції (3).
6. Спосіб гетерогенного синтезу аміаку шляхом каталітичної конверсії газоподібних реагентів у псевдоізотермічних умовах у двох послідовно розташованих зонах реакції (2) та (3), який відрізняється тим, що в зоні реакції (2) газоподібні реагенти пропускають через нерухому масу відповідного каталізатора, у який занурені розташовані поруч один з одним коробчасті теплообмінні елементи (21), які мають форму пластин, через які пропускають робочий текучий теплоносій.
7. Спосіб за п. 6, який відрізняється тим, що тиск у зоні реакції (2) дорівнює тиску у зоні реакції (3).
8. Спосіб за п. 6, який відрізняється тим, що газоподібні реагенти подають у зону реакції (2) після непрямого теплообміну у зоні реакції (3) з реакційною сумішшю, яку подають у зону реакції (3) з зони реакції (2).
9. Спосіб за п. 6, який відрізняється тим, що у зону реакції (3) подають реакційну суміш з зони реакції (2) після регулювання температури на вході у зону реакції (3) в процесі непрямого теплообміну.
10. Спосіб за п. 6, який відрізняється тим, що у зону реакції (2) подають суміш газоподібних реагентів, яка складається з "свіжих" газоподібних реагентів і газоподібних реагентів, виділених з реакційної суміші, одержаної у зоні реакції (3).
11. Установка для гетерогенного синтезу метанолу або аміаку шляхом каталітичної конверсії газоподібних реагентів, яка містить з'єднані послідовно зони реакції (2) та (3), відповідні теплообмінники (5) та (6), встановлені в зонах (2) та ( 3) реакції, яка відрізняється тим, що в зоні реакції (2) теплообмінник (5) занурений у масу каталізатора і складається з множини розташованих поруч один з одним коробчастих, пластинчастих теплообмінних елементів (21), через які проходить робочий текучий теплоносій.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP01126840A EP1310475A1 (en) | 2001-11-11 | 2001-11-11 | Process and plant for the heterogeneous synthesis of chemical compounds |
PCT/EP2002/011027 WO2003042143A1 (en) | 2001-11-11 | 2002-10-02 | Process and plant for the heterogeneous synthesis of chemical compounds |
Publications (1)
Publication Number | Publication Date |
---|---|
UA81221C2 true UA81221C2 (en) | 2007-12-25 |
Family
ID=8179218
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
UA2003098878A UA81221C2 (en) | 2001-11-11 | 2002-02-10 | Process and plant for the heterogeneous synthesis of chemical compounds |
Country Status (15)
Country | Link |
---|---|
US (1) | US6946494B2 (uk) |
EP (2) | EP1310475A1 (uk) |
CN (1) | CN1305822C (uk) |
AR (1) | AR037344A1 (uk) |
AT (1) | ATE468312T1 (uk) |
AU (1) | AU2002363759B2 (uk) |
BR (2) | BR0209799A (uk) |
CA (1) | CA2433846C (uk) |
DE (1) | DE60236448D1 (uk) |
EG (1) | EG23247A (uk) |
MX (1) | MXPA03006821A (uk) |
MY (1) | MY131898A (uk) |
RU (1) | RU2310641C2 (uk) |
UA (1) | UA81221C2 (uk) |
WO (1) | WO2003042143A1 (uk) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1153653A1 (en) * | 2000-05-11 | 2001-11-14 | Methanol Casale S.A. | Reactor for exothermic or endothermic heterogeneous reactions |
EP1221339A1 (en) * | 2001-01-05 | 2002-07-10 | Methanol Casale S.A. | Catalytic reactor with heat exchanger for exothermic and endothermic heterogeneous chemical reactions |
EP1236505A1 (en) * | 2001-02-27 | 2002-09-04 | Methanol Casale S.A. | Method for carrying out chemical reactions in pseudo-isothermal conditions |
MX2007001173A (es) * | 2004-01-15 | 2007-09-25 | Methanol Casale Sa | Reactor catalitico de lecho fijo. |
CN102247792A (zh) * | 2011-04-30 | 2011-11-23 | 甘肃银光聚银化工有限公司 | 一种新型多相搅拌反应器 |
EP3212319A1 (en) * | 2014-10-30 | 2017-09-06 | SABIC Global Technologies B.V. | Reactor comprising radially placed cooling plates and methods of using same |
EP3050849A1 (en) | 2015-01-27 | 2016-08-03 | Casale SA | A process for the synthesis of ammonia |
MX2018015211A (es) * | 2016-06-21 | 2019-04-25 | Topsoe Haldor As | Convertidor de flujo axial/radial. |
EP3401006A1 (en) * | 2017-05-11 | 2018-11-14 | Casale Sa | Multi-bed catalytic converter with inter-bed cooling |
AR113649A1 (es) * | 2017-12-20 | 2020-05-27 | Haldor Topsoe As | Convertidor de flujo axial enfriado |
AR113648A1 (es) | 2017-12-20 | 2020-05-27 | Haldor Topsoe As | Convertidor de flujo axial adiabático |
WO2020156994A1 (en) * | 2019-02-01 | 2020-08-06 | Haldor Topsøe A/S | Use of plate heat exchangers in combination with exothermal reactors |
CN109999749A (zh) * | 2019-03-15 | 2019-07-12 | 中国煤层气集团有限公司 | 两相或多相反应容器 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2153437B2 (de) | 1971-10-27 | 1974-11-21 | Metallgesellschaft Ag, 6000 Frankfurt | Reaktor zur Herstellung von Methanol |
DE3201776A1 (de) * | 1982-01-21 | 1983-09-08 | Krupp-Koppers Gmbh, 4300 Essen | Verfahren zur gleichzeitigen erzeugung von methanol- und ammoniak-synthesegas. |
GB2203427B (en) | 1986-07-24 | 1990-05-09 | Inst Neftechimicheskogo Sintez | Method of preparing methanol |
DE19605572A1 (de) * | 1996-02-15 | 1997-08-21 | Metallgesellschaft Ag | Verfahren zum Erzeugen von Methanol |
-
2001
- 2001-11-11 EP EP01126840A patent/EP1310475A1/en not_active Withdrawn
-
2002
- 2002-02-10 UA UA2003098878A patent/UA81221C2/uk unknown
- 2002-09-23 MY MYPI20023523A patent/MY131898A/en unknown
- 2002-10-02 BR BR0209799-0A patent/BR0209799A/pt not_active IP Right Cessation
- 2002-10-02 AU AU2002363759A patent/AU2002363759B2/en not_active Ceased
- 2002-10-02 CA CA2433846A patent/CA2433846C/en not_active Expired - Fee Related
- 2002-10-02 MX MXPA03006821A patent/MXPA03006821A/es active IP Right Grant
- 2002-10-02 WO PCT/EP2002/011027 patent/WO2003042143A1/en not_active Application Discontinuation
- 2002-10-02 EP EP02802977A patent/EP1444186B1/en not_active Expired - Lifetime
- 2002-10-02 BR BRPI0209799-0A patent/BRPI0209799B1/pt unknown
- 2002-10-02 AT AT02802977T patent/ATE468312T1/de not_active IP Right Cessation
- 2002-10-02 DE DE60236448T patent/DE60236448D1/de not_active Expired - Lifetime
- 2002-10-02 RU RU2003128885/04A patent/RU2310641C2/ru not_active IP Right Cessation
- 2002-10-02 CN CNB028039122A patent/CN1305822C/zh not_active Expired - Fee Related
- 2002-10-02 US US10/471,350 patent/US6946494B2/en not_active Expired - Lifetime
- 2002-11-08 AR ARP020104290A patent/AR037344A1/es active IP Right Grant
- 2002-11-10 EG EG2002111228A patent/EG23247A/xx active
Also Published As
Publication number | Publication date |
---|---|
CA2433846C (en) | 2010-08-17 |
US6946494B2 (en) | 2005-09-20 |
EG23247A (en) | 2004-09-29 |
MY131898A (en) | 2007-09-28 |
ATE468312T1 (de) | 2010-06-15 |
DE60236448D1 (de) | 2010-07-01 |
EP1310475A1 (en) | 2003-05-14 |
CA2433846A1 (en) | 2003-05-22 |
BR0209799A (pt) | 2004-06-01 |
MXPA03006821A (es) | 2003-12-04 |
AU2002363759B2 (en) | 2008-06-05 |
RU2310641C2 (ru) | 2007-11-20 |
CN1498199A (zh) | 2004-05-19 |
BRPI0209799B1 (pt) | 2019-07-02 |
WO2003042143A1 (en) | 2003-05-22 |
CN1305822C (zh) | 2007-03-21 |
RU2003128885A (ru) | 2005-04-10 |
US20040204507A1 (en) | 2004-10-14 |
EP1444186B1 (en) | 2010-05-19 |
EP1444186A1 (en) | 2004-08-11 |
AR037344A1 (es) | 2004-11-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2298432C2 (ru) | Теплообменник для изотермических химических реакторов | |
EP2066435B1 (en) | Isothermal reactor | |
RU2265480C2 (ru) | Реактор для проведения экзотермических или эндотермических гетерогенных реакций и способ его изготовления | |
UA81221C2 (en) | Process and plant for the heterogeneous synthesis of chemical compounds | |
EP0222069A2 (en) | Converter for heterogeneous synthesis more particularly for ammonia, methanol and higher alcohols | |
RU2403084C2 (ru) | Изотермический химический реактор | |
US7842255B2 (en) | Carbamate condensation method and unit for carrying out such a method | |
RU2346734C2 (ru) | Химический реактор | |
EP2292326A1 (en) | Vertical isothermal shell-and-tube reactor | |
AU2002363759A1 (en) | Process and plant for the heterogeneous synthesis of chemical compounds | |
RU2306173C2 (ru) | Способ и реактор для проведения химических реакций в псевдоизотермических условиях | |
RU2321456C2 (ru) | Способ проведения высокоэкзотермических окислительных реакций в псевдоизотермических условиях | |
US7186389B2 (en) | Method for carrying out chemical reactions in pseudo-isothermal conditions | |
RU2005102067A (ru) | Установка для получения мочевины | |
RU2418627C2 (ru) | Способ управления температурой экзотермических химических реакций | |
EP1761329B1 (en) | Method for controlling the temperature of exothermic catalytic reactions | |
SU1169728A1 (ru) | Конвертор газов |