TWM633563U - 製膜系統及製膜裝置 - Google Patents

製膜系統及製膜裝置 Download PDF

Info

Publication number
TWM633563U
TWM633563U TW111201737U TW111201737U TWM633563U TW M633563 U TWM633563 U TW M633563U TW 111201737 U TW111201737 U TW 111201737U TW 111201737 U TW111201737 U TW 111201737U TW M633563 U TWM633563 U TW M633563U
Authority
TW
Taiwan
Prior art keywords
mixed gas
channel plate
substrate
film
raw material
Prior art date
Application number
TW111201737U
Other languages
English (en)
Inventor
橋上洋
Original Assignee
日商信越化學工業股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商信越化學工業股份有限公司 filed Critical 日商信越化學工業股份有限公司
Publication of TWM633563U publication Critical patent/TWM633563U/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/4486Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by producing an aerosol and subsequent evaporation of the droplets or particles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45502Flow conditions in reaction chamber
    • C23C16/45504Laminar flow
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45587Mechanical means for changing the gas flow
    • C23C16/45591Fixed means, e.g. wings, baffles
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/14Feed and outlet means for the gases; Modifying the flow of the reactive gases

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Chemical Vapour Deposition (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Abstract

本實用新型是一種製膜系統及製膜裝置,其特徵在於,在基體上進行製膜的步驟與利用排氣單元排氣的步驟中,在基體上以隔著空間與基體相向的方式配置通道板,形成在基體上的空間中混合氣以沿著基體的主表面的至少一部分的方式從混合氣供給單元朝向排氣單元線性流動的混合氣流,以遮擋混合氣流偏離從混合氣供給單元朝向排氣單元的方向的方式在通道板的一部分和/或載台的一部分形成凸部,以形成比通道板與基體之間的空間中的最短距離(d1)小的寬度(d2)的空隙的方式配置通道板與凸部,進行製膜及排氣。由此,可提供一種能夠以高生產性製造表面缺陷或異物的附著顯著減少的高品質的膜的製膜裝置。

Description

製膜系統及製膜裝置
本實用新型是有關於一種將經霧化的液體原料供給至基體進行製膜的製膜系統及製膜裝置。
作為能夠在低溫、大氣壓下形成外延膜等的方法,已知有霧化學氣相沉積法(Chemical Vapor Deposition,CVD)法等使用水微粒的製膜方法。在專利文獻1中,示出了藉由從相對於基體傾斜地配置的噴嘴向基體供給原料霧來進行製膜的製膜裝置。另外,在專利文獻2中,記載了利用載氣將原料霧搬送至反應容器內,進而產生回旋流而使所述霧與基體反應的成膜方法。
但是,現有的製膜方法無法充分地進行基體上的原料霧控製,其結果,存在以下問題:對於實用尺寸的大口徑基體,難以進行均勻的厚度的製膜,或進而因霧的紊流而產生的粉體等異物附著於基體表面,膜的品質與成品率下降。
[現有技術文獻] [專利文獻]
[專利文獻1]日本專利特開2018-142637號公報
[專利文獻2]日本專利特開2016-146442號公報
本實用新型是為了解決所述問題而成,其目的在於提供一種能夠以高生產性製造表面缺陷或顆粒的附著顯著減少的高品質的膜的製膜方法、能夠以高生產性製造表面缺陷或顆粒的附著顯著減少的高品質的膜的製膜裝置、主表面上的顆粒少的積層體。
為了解決所述問題,在本實用新型中,提供一種製膜方法,其特徵在於,包括:將原料溶液霧化而形成原料霧的步驟;將所述原料霧與載氣混合而形成混合氣的步驟;將基體載置於載台的步驟;將所述混合氣從混合氣供給單元供給至所述基體並在所述基體上進行製膜的步驟;以及利用排氣單元對所述製膜後的混合氣進行排氣的步驟,在所述基體上進行製膜的步驟與利用所述排氣單元排氣的步驟中,在所述基體上以隔著空間與所述基體相向的方式配置通道板,形成在所述基體上的空間中所述混合氣以沿著所述基體的主表面的至少一部分的方式從所述混合氣供給單元朝向所述排氣單元線性流動的混合氣流,以遮擋所述混合氣流偏離從所述混合氣供給單元朝向所述排 氣單元的方向的方式在所述通道板的一部分和/或所述載台的一部分形成凸部,以形成比所述通道板與所述基體之間的所述空間中的最短距離d1小的寬度d2的空隙的方式配置所述通道板與所述凸部,進行所述製膜及所述排氣。
若為此種製膜方法,則可抑制顆粒附著,從而成為能夠在基體表面均勻地形成高品質的膜的製膜方法。
此時,較佳為以所述載台的上表面與所述基體的上表面的高低差成為1mm以下的方式進行所述基體載置於所述載台的步驟。
若為此種製膜方法,則可更容易地抑制顆粒的附著。
此時,可將所述通道板及所述凸部以所述最短距離d1成為所述寬度d2的1.5倍以上的方式配置。
若為此種製膜方法,則能夠形成更高品質的膜。
此時,可將所述通道板及所述凸部以所述最短距離d1成為所述寬度d2的2倍以上的方式配置。
若為此種製膜方法,則進而能夠更穩定地形成高品質的膜。
另外,此時,可將所述凸部形成於所述通道板的一部分。
若為此種製膜方法,則可設為能夠更容易均勻地形成高品質的膜的製膜方法。
另外,此時,可將所述凸部形成於所述載台的一部分。
若為此種製膜方法,則可設為能夠更容易均勻地形成高品質的膜的製膜方法。
另外,在本實用新型中,提供一種製膜裝置,包括:霧化單元,將原料溶液霧化而形成原料霧;載氣的供給單元,搬送所述原料霧;載台,載置基體;混合氣供給單元,將混合了所述原料霧與所述載氣的混合氣供給至所述基體表面;通道板,以隔著空間與所述基體相向的方式配置於所述基體上;排氣單元,對所述空間中的混合氣進行排氣;以及凸部,以遮擋所述混合氣的氣流偏離從所述混合氣供給單元朝向所述排氣單元的方向的方式形成於所述通道板的一部分和/或所述載台的一部分,且所述製膜裝置的特徵在於,所述通道板與所述凸部以形成比所述通道板與所述基體之間的所述空間中的最短距離d1小的寬度d2的空隙的方式配置。
若為此種製膜裝置,則可抑制顆粒附著,從而成為能夠在基體表面均勻地形成高品質的膜的製膜裝置。
所述載台可設為在所述基體的載置部包括容納所述基體的鍃孔。
藉由設置此種鍃孔,可調整載台的上表面與基體的上表面的落差(高低差),充分地抑制因載台與基體的階差而產生紊流 從而抑制顆粒的產生,另外,可充分地抑制產生霧的分佈而防止膜厚分佈變大。
所述通道板及所述凸部較佳為以所述最短距離d1成為所述寬度d2的1.5倍以上的方式配置。
若為此種製膜裝置,則能夠形成更高品質的膜。
所述通道板及所述凸部更佳為以所述最短距離d1成為所述寬度d2的2倍以上的方式配置。
若為此種製膜裝置,則進而能夠更穩定地形成高品質的膜。
所述凸部可形成於所述通道板的一部分。
若為此種製膜裝置,則可製成能夠更容易均勻地形成高品質的膜的製膜裝置。
所述凸部可形成於所述載台的一部分。
若為此種製膜裝置,則可製成能夠更容易均勻地形成高品質的膜的製膜裝置。
另外,在本實用新型中,提供一種積層體,包括:基體;以及α-Ga2O3膜,直接或間接地積層於所述基體上,且所述積層體的特徵在於,所述積層體的主表面上的直徑0.5μm以上的顆粒密度為9個/10cm2以下。
此種積層體可具有抑制了顆粒附著的高品質的α-Ga2O3 膜。
所述基體的主表面上的面積可設為5cm2以上。
在本實用新型中,即便基體的主表面上的面積為5cm2以上,也可具有抑制了顆粒附著的高品質的α-Ga2O3膜。
如以上所述,若為本實用新型的製膜方法,則能夠以高生產性製造表面缺陷或顆粒等異物的附著顯著減少的高品質的膜、例如薄膜。
另外,若為本實用新型的製膜裝置,則能夠以高生產性製造表面缺陷或顆粒等異物的附著顯著減少的高品質的膜、例如薄膜。
而且,若為本實用新型的積層體,則可具有抑制了顆粒附著的高品質的α-Ga2O3膜。
1:製膜裝置
10:載氣供給部
11:載氣
12:載氣配管
20:霧化裝置
21:原料溶液
22:原料霧
23:混合氣
24:霧配管
30:製膜部
31:空間
32:載台
32a、32c、101a、103a:一部分
32b、103:凸部
32d:載置部
32e:鍃孔
33:混合氣
34:基體
35:混合氣供給單元
35a:噴出口
36:排氣單元
36a:排氣口
37:空隙
38:α-Ga2O3
39:積層體
40:機構
100:整流機構
101:整流板
102:通道板
104:端部
d1:最短距離
d2:寬度
h:落差
圖1是表示可在本實用新型的製膜方法中使用的製膜裝置的代表例的概略圖。
圖2是表示可在本實用新型的製造方法中使用的通道板的代表性的一形態的底部的圖。
圖3是表示在本實用新型的製膜方法中進行的、通道板、凸部及載台的代表性的一形態的配置的概略側視圖。
圖4是圖3所示的配置的另一側視圖。
圖5是表示在本實用新型的製膜方法中進行的、通道板、凸部及載台的配置的另一例的概略側視圖。
圖6是表示在本實用新型的製膜方法中進行的、通道板、凸部及載台的配置的另一例的概略側視圖。
圖7是從鉛垂上方觀察圖6的形態的平面圖。
圖8是表示可在本實用新型的製膜裝置中使用的製膜裝置的例子中的製膜部的另一形態的概略側視圖。
圖9是本實用新型的積層體的一例的概略剖視圖。
如上所述,要求開發出能夠以高生產性製造表面缺陷或異物的附著顯著減少的高品質的膜的製膜方法。
本實用新型創作者等人對所述問題反復進行了努力研究,結果發現,一種基於霧CVD法的製膜方法,其中,在基體上以隔著空間與所述基體相向的方式配置通道板,形成在基體上的空間中混合氣以沿著所述基體的主表面的至少一部分的方式從混合氣供給單元朝向所述排氣單元線性流動的混合氣流,以遮擋混合氣流偏離從混合氣供給單元朝向排氣單元的方向的方式在通道板的一部分和/或載台的一部分形成凸部,以形成比通道板與基體之間的空間中的最短距離d1小的寬度d2的空隙的方式配置通道板與凸部,進行製膜及排氣,若為此種製膜方法及製膜裝置,則可抑制混合氣的氣流紊亂,能夠以高生產性製造表面缺陷或顆粒等異物的附著顯著減少的高品質的膜,從而完成了本實用新型。
即,本實用新型是一種製膜方法,其特徵在於,包括:將原料溶液霧化而形成原料霧的步驟;將所述原料霧與載氣混合而形成混合氣的步驟;將基體載置於載台的步驟;將所述混合氣從混合氣供給單元供給至所述基體並在所述基體上進行製膜的步驟;以及利用排氣單元對所述製膜後的混合氣進行排氣的步驟,在所述基體上進行製膜的步驟與利用所述排氣單元排氣的步驟中,在所述基體上以隔著空間與所述基體相向的方式配置通道板,形成在所述基體上的空間中所述混合氣以沿著所述基體的主表面的至少一部分的方式從所述混合氣供給單元朝向所述排氣單元線性流動的混合氣流,以遮擋所述混合氣流偏離從所述混合氣供給單元朝向所述排氣單元的方向的方式在所述通道板的一部分和/或所述載台的一部分形成凸部,以形成比所述通道板與所述基體之間的所述空間中的最短距離d1小的寬度d2的空隙的方式配置所述通道板與所述凸部,進行所述製膜及所述排氣。
另外,本實用新型是一種製膜裝置,包括:霧化單元,將原料溶液霧化而形成原料霧;載氣的供給單元,搬送所述原料霧; 載台,載置基體;混合氣供給單元,將混合了所述原料霧與所述載氣的混合氣供給至所述基體表面;通道板,以隔著空間與所述基體相向的方式配置於所述基體上;排氣單元,對所述空間中的混合氣進行排氣;以及凸部,以遮擋所述混合氣的氣流偏離從所述混合氣供給單元朝向所述排氣單元的方向的方式形成於所述通道板的一部分和/或所述載台的一部分,且所述製膜裝置的特徵在於,所述通道板與所述凸部以形成比所述通道板與所述基體之間的所述空間中的最短距離d1小的寬度d2的空隙的方式配置。
另外,本實用新型是一種積層體,包括:基體;以及α-Ga2O3膜,直接或間接地積層於所述基體上,且所述積層體的特徵在於,所述積層體的主表面上的直徑0.5μm以上的顆粒密度為9個/10cm2以下。
以下,參照附圖對本實用新型進行詳細說明,但本實用新型並不限定於此。
[製膜方法]
首先,對可在本實用新型的製膜方法中使用的製膜裝置的例子進行說明。
在圖1中示出可在本實用新型的製膜方法中使用的製膜裝置的代表例。但是,可進行本實用新型的製膜方法的製膜裝置並不限定於圖1所示的製膜裝置。
圖1所示的製膜裝置1包括:載氣11、載氣配管12、霧化裝置20、霧配管24、混合氣供給單元35、載台32、整流板101、及排氣單元36,形成有膜的基體34載置於載台32上(將基體載置於載台的步驟)。載氣11及載氣配管12構成載氣供給部10。另外,整流板101與載台32構成以下說明的整流機構,進而,混合氣供給單元35、載台32、整流板101、排氣單元36、及載台32構成製膜部30。此外,35a是噴出口,36a是排氣口。
在霧化裝置20內,作為原料,收納有原料溶液21。原料溶液21只要是能夠霧化(也稱為「霧(mist)化」)的溶液,則並無特別限定,可應用包含根據目的的原料的醇類或酮類等有機溶劑溶液或水溶液。
使用已知的手段將原料溶液21霧化,來形成原料霧22。所述霧化是本實用新型的製膜方法中的形成原料霧的步驟的例子。
向霧化裝置20進而供給載氣11,並與原料霧22混合而成為混合氣23。這是本實用新型的製膜方法中的形成混合氣的步驟的例子。也可以說載氣供給部10及霧化裝置20構成形成混合氣23的機構40。混合氣23由霧配管24搬送並被供給至混合氣供給單元35。
從混合氣供給單元35向形成於整流板101與載台32之 間的整流機構內的空間31供給混合氣33,在整流機構內被整流的同時供給至載置於載台32的基體34、特別是基體34的表面。在所述過程中,混合氣33與基體34反應,在基體34上形成膜。這是本實用新型的製膜方法中的在基體上進行製膜的步驟的例子。
無助於膜形成的混合氣33的剩餘部分或混合氣33與基體34反應時產生的副產物作為製膜後的混合氣被排氣單元36吸引而排出至系統外。這是本實用新型的製膜方法中的利用排氣單元排氣的步驟的例子。來自排氣單元36的排氣可根據需要由在圖中未示出的顆粒收集器或洗滌器等處理。
原料溶液21的霧化只要可使原料溶液21霧化或液滴化,則並無特別限定,可為已知的手段,但在本實用新型中,較佳為使用超聲波的霧化手段。使用超聲波獲得的霧或液滴的初速度為零,且懸浮在空中,因此較佳,例如,並非如噴霧器那樣噴射,而是能夠懸浮在空間中作為氣體搬送的霧,因此無由碰撞能量造成的損傷,因此非常適宜。液滴尺寸並無特別限定,可為幾mm左右的液滴,但較佳為50μm以下,更佳為0.1μm~10μm。
載氣11並無特別限定,例如,除了空氣、氧氣、臭氧以外,適宜使用氮氣或氬氣等惰性氣體、或者氫氣或合成氣體等還原氣體。載氣11的種類可為一種,也可為兩種以上。載氣的流量只要根據基體尺寸或製膜室的大小適當設定即可,例如可設為0.01L/分鐘~100L/分鐘左右。
另外,雖然未圖示,但也能夠進而添加稀釋氣體來調節 原料霧22與載氣11的比例。稀釋氣體的流量只要適當設定即可,例如可設為載氣的0.1倍/分鐘~10倍/分鐘。稀釋氣體例如可向霧化裝置20的下游側供給。稀釋氣體可使用與載氣11相同的氣體,也可使用不同的氣體。
另外,製膜可在大氣壓下、加壓下及減壓下的任一條件下進行,但從裝置成本或生產性的方面考慮,較佳為在大氣壓下進行。
此外,在圖1中示出了使用一台霧化裝置的形態,但可在本實用新型的製膜方法中使用的製膜裝置並不限於此,也可將多個霧化裝置串聯或並聯地連接使用。在此情況下,各霧化裝置中可分別放入不同的原料溶液使用,也可放入相同的原料使用。另外,可將各原料各別地霧化而獨立地供給至混合氣供給單元35,也可在使多種原料霧混合之後供給至混合氣供給單元35。
霧配管24只要對要使用的原料溶液21或混合氣供給單元35與載氣配管12的相互配合中的溫度等具有充分的穩定性,則並無特別限定,可根據目的設為樹脂製、金屬製、玻璃製或者將它們組合的材質的配管。
混合氣供給單元35的形態或供給方式並無特別限制,可廣泛應用已知的混合氣供給單元。噴出口35a的形狀並無特別限定,但為了將混合氣33的氣流設為更均勻的層流,可設為狹縫狀。在此情況下,噴出口35a的長度方向的長度可根據基體的形狀而設為充分的長度。
另外,混合氣供給單元35只要對要使用的原料溶液21或使用溫度具有充分的穩定性,則並無特別限定,可根據目的設為樹脂製、金屬製、玻璃製或者將它們組合的材質。
排氣單元36的形態並無特別限定,可廣泛應用已知的排氣單元,但排氣口36a較佳為具有與整流板101的長條方向的長度同等以上的長度的開口。由此,可更良好地保持混合氣33的氣流。另外,排氣單元36只要對要使用的原料溶液21或使用溫度具有充分的穩定性,則並無特別限定,可根據目的設為樹脂製、金屬製、玻璃製或者將它們組合的材質。
排氣單元36的排氣量可根據製膜的條件適當調整,但為了維持混合氣33的層流,較佳為可相對於混合氣33的流量設為70%~150%左右,更佳為可設為80%~130%左右。此外,如根據後段說明的本實用新型的整流機構的例子明確那樣,在排氣量相對於混合氣的流量少的情況下,混合氣直接向排氣單元側排氣,另外,在排氣量相對於混合氣的流量大的情況下,差分的大氣從混合氣供給單元側與混合氣一起流入,因此在任何情況下,在空間31內流動的混合氣33的氣流不紊亂地維持。
此外,在圖1中示出了混合氣33從配置於水平方向上的噴出口35a沿水平方向排出、從配置於水平方向上的排氣口36a排出的形態,但可在本實用新型的製膜方法中使用的製膜裝置並不限於此,噴出口35a與排氣口36a可以噴出方向和/或排氣方向相對於載台32從水平方向至垂直方向形成任意的角的方式配置。
(配置的例子)
接著,參照圖1~圖6對本實用新型的製膜方法的在基體上進行製膜的步驟及利用排氣單元排氣的步驟中的幾個配置的例子進行說明。
首先,在基體34上以隔著空間31與基體34相向的方式配置通道板。作為通道板,例如可使用如圖2代表性所示那樣的作為整流板101的一部分的通道板102。
在基體上進行製膜的步驟及利用排氣單元排氣的步驟中,如圖1所示,形成在基體34上的空間31中混合氣33以沿著基體34的主表面的至少一部分的方式從混合氣供給單元35朝向排氣單元36線性流動的混合氣流33。
進而,以遮擋混合氣流33偏離從混合氣供給單元35朝向排氣單元36的方向的方式在通道板102的一部分和/或載台32的一部分形成凸部103。
在圖2中示出包含代表性的一形態的通道板的整流板、及包括所述整流板的整流機構。圖2所示的整流機構100包括包含通道板102與凸部103的整流板101。凸部103與通道板102的外緣部平行地配置,原料霧與載氣的混合氣33在被凸部103夾著的區域中向凸部103的長度方向流動。
另外,如在後段參照圖3及圖4列舉例子對所述整流機構100中所含的通道板102及凸部103進行詳細說明那樣,以形成比通道板102與基體34之間的空間31中的最短距離d1小的寬 度d2的空隙的方式配置,進行製膜及排氣。
藉由以此種配置進行製膜及排氣,可抑制混合氣33的氣流紊亂,由此,能夠以高生產性製造表面缺陷或異物的附著顯著減少的高品質的膜。
通道板102的形狀並無特別限定,其主表面可設為多邊形、圓形、橢圓形或者除此以外的所有形狀。另外,通道板102的底部只要至少平坦即可,可設為平滑面,另外也可設為用於防止粉體的附著的噴砂處理等根據目的或用途的加工面。
凸部103的形狀並無特別限定,其剖面可設為多邊形、圓形、橢圓形或者除此以外的所有形狀。另外,只要根據要使用的原料的特性或溫度條件具有充分的穩定性即可。在此情況下,可使用鋁或不銹鋼等金屬,在以超過這些金屬的耐熱溫度的更高溫度進行製膜的情況下或在使用酸性或鹼性的原料的情況下,可使用哈斯特洛伊合金等合金或鈉鈣玻璃、硼矽酸玻璃、石英、碳化矽、或者氮化矽或氮化鋁等陶瓷。
整流機構100的所述以外的部位的結構等並無特別限定,另外,只要根據要使用的原料的特性或溫度條件具有充分的穩定性即可。在此情況下,可使用鋁或不銹鋼等金屬,在以超過這些金屬的耐熱溫度的更高溫度進行製膜的情況下或在使用酸性或鹼性的原料的情況下,可使用哈斯特洛伊合金等合金或鈉鈣玻璃、硼矽酸玻璃、石英、碳化矽、或者氮化矽或氮化鋁等陶瓷。
圖3是表示使用圖2所示的整流板101時的、在本實用 新型的製膜方法中進行的、通道板、凸部及載台的代表性的一形態的配置的概略側視圖。圖4是圖3所示的配置的另一側視圖。
圖3是說明圖1所示的製膜部30中的配置的一例的圖,且表示整流機構100的、混合氣33的氣流方向上的側視圖。圖4是圖3所示的整流機構100的另一側視圖,且表示整流機構100的、相對於混合氣33的流束垂直的方向上的側視圖。
圖3及圖4所示的整流板101與圖2所示的整流板101同樣地,具有通道板102與凸部103,凸部103分別形成於通道板102的圖3中的左右的端部104上。各個凸部103與圖4中的混合氣33的氣流方向平行地形成。此外,在圖4中,在最前面示出一個凸部103,在圖4中未圖示的另一個凸部位於最背面。
圖3及圖4所示的整流機構100包括:通道板102、凸部103及與凸部103相向的載台32的一部分32a。
整流板101在通道板102的表面與基體34的表面之間形成空間31,且以將所述空間31中的通道板102的表面與基體34的表面之間的最短距離d1保持為固定的方式設置。另外,凸部103以將凸部103的下端與載台32的表面之間的空隙37的最短距離(寬度)d2保持為固定的方式設置。如圖3所示,空間31與空隙37連續。
圖3及圖4所示的此種整流機構100對從整流機構100的外部供給的混合氣33進行整流。
此時,將通道板102及凸部103以成為d1>d2的方式 配置。更佳為可以成為d1/d2≧1.5的方式配置,進而較佳為可以成為d1/d2≧2的方式配置,特佳為可以成為d1/d2≧3的方式配置。d1及d2可根據要供給的混合氣的流量適當設定,但在本實用新型的製膜方法中,一般若增大d1,則有原料的收率隨之下降的傾向。因此,更具體而言,d1可設為0.5mm至5mm,d2可設為0.1mm至3mm。
在所述最短距離d1為所述寬度d2以下的情況下,混合氣33的一部分從凸部103之下向外部流出,或者外部氣體流入至混合氣33的氣流,由此不僅混合氣33的氣流紊亂,阻礙均質的膜形成,而且顆粒附著於膜形成面而形成缺陷。
顆粒是原料霧中的固體成分析出而成的微粒、及其進一步成長的粉體、或從外部氣體混入的龐雜的粒子。另外,作為因顆粒的附著而產生的缺陷,有因以顆粒為核生長的異常生長粒而產生的轉位或裂紋。
顆粒大致是次微米尺寸至次毫米尺寸,但例如能夠藉由將照射至基板上的光的散射光測定與所述光散射部位的圖像識別組合的檢測方法等已知的方法容易地進行形狀或個數的定量評價。更簡短而言,也能夠作為光學顯微鏡的暗視野中的亮點進行評價。
另外,載台32的上表面與基體34的上表面的落差(高低差)h可以成為0mm以上且1mm以下的方式配置。若落差h為1mm以下,則可充分地抑制因載台32與基體34的階差而產生紊流從而抑制顆粒的產生,另外,可充分地抑制產生霧的分佈而 防止膜厚分佈變大。
因此,在載台32的基體34的載置部32d,可根據基體34的厚度或製膜的條件,呈容納基體34那樣的形狀設置鍃孔32e,在所述鍃孔32e載置基體34。
在圖3及圖4中,示出了空隙37的寬度d2包括凸部103與載台32的一部分32a的上表面的配置的例子,但利用本實用新型的製膜方法進行的配置並不限於此,例如,如圖5所示,也可在載台32的一部分也形成凸部32b,在形成於整流板101的一部分的凸部103的側面的一部分103a與載台32的凸部32b的側面的一部分32c之間,以形成具有寬度d2的空隙37的方式進行配置。此外,102是通道板,34是基體。另外,31是形成於基體34與通道板102之間的空間,在所述空間中的基體34與通道板102的最短距離是d1。所述最短距離d1比所述寬度d2大。
圖5所示的整流機構100包括形成於載台32的一部分的凸部32b和與所述凸部32b相向的整流板101的一部分。另外,圖5所示的整流機構100包括形成於整流板101的一部分的凸部103和與所述凸部103相向的載台32的一部分。
以上,示出了構成整流機構100的凸部設置於整流板101的形態,但利用本實用新型的製膜方法進行的配置並不限於此,例如也可如圖6那樣設為凸部32b僅形成於載台32側的配置。在所述形態的情況下,整流板101僅包括通道板102。此外,34是基體。另外,31是形成於基體34與通道板102之間的空間,所述 空間中的基體34與通道板102的最短距離是d1。
圖6所示的整流機構100包括形成於載台32上的凸部32b和與所述凸部32b相向的整流板101(通道板102)的一部分101a,在它們之間包括寬度d2的空隙37。所述寬度d2比所述最短距離d1小。
圖7是從整流板101(通道板102)側觀察圖6的結構的圖。此外,圖7作為一例示出了在沿箭頭方向使載台32移動的同時在基體34上製膜的形態。在此情況下,凸部32b可設置成在載台32的整個活動區域中凸部32b與通道板102維持圖6所示的整流機構100。
可在本實用新型的製膜方法中使用的製膜裝置能夠進行各種變形。
例如,在圖1中,混合氣供給單元35與排氣單元36和整流板101各別地配置,但在本實用新型的製膜方法中能夠使用的製膜裝置並不限定於此,也可將混合氣供給單元35和/或排氣單元36例如與載台32或整流板101一體地構成。
圖8是表示混合氣供給單元35與排氣單元36和圖2~圖4中說明的通道板102一體地構成的製膜部30的一形態的圖。在圖8的形態中,混合氣33從與通道板102連接的噴出口35a向載台方向噴出,藉由包括通道板102與載台32的整流機構成為水平方向的氣流,從向下配置於混合氣33的氣流方向上的通道板的端部的排氣口36a排出。
整流板101(通道板102)與噴出口35a的連接部、和/或整流板101(通道板102)與排氣口36a的連接部較佳為具有曲面。若如此,則能夠使混合氣33的氣流更良好。
在圖8的形態中,載台32以將基體34的膜形成面與混合氣供給單元35的底面保持為平行的方式設置。
載台32的結構等並無特別限定,另外,只要根據要使用的原料的特性或溫度條件具有充分的穩定性即可。在此情況下,可使用鋁或不銹鋼等金屬,在以超過這些金屬的耐熱溫度的更高溫度進行製膜的情況下或在使用酸性或鹼性的原料的情況下,可使用哈斯特洛伊合金等合金或鈉鈣玻璃、硼矽酸玻璃、石英、碳化矽、或者氮化矽或氮化鋁等陶瓷。
另外,雖然在圖中未示出,但製膜部30可還包括電阻加熱加熱器或燈加熱器等已知的加熱單元,以對基體34進行加熱。在此情況下,可將加熱器例如內置於載台32,也可設置於載台32的外部。另外,載台32可包括用於保持基體34的機構。在此情況下,可應用真空卡盤、機械夾具或者靜電卡盤等已知的基體保持方法。另外,在所述範圍中,載台32也可還包括使基體34沿水平方向自轉的回旋機構。
基體34只要可支撐所形成的膜,則並無特別限定。基體34的材料也並無特別限定,可為已知的材料,也可為有機化合物,也可為無機化合物。例如,可列舉:聚碸、聚醚碸、聚苯硫醚、聚醚醚酮、聚醯亞胺、聚醚醯亞胺、氟樹脂、鐵或鋁、不銹鋼、金 等金屬、矽、藍寶石、石英、玻璃、碳酸鈣、鉭酸鋰、鈮酸鋰、氧化鎵、SiC、ZnO、GaN等,但並不限於此。作為基體的形狀,例如可列舉平板或圓板等的板狀、纖維狀、棒狀、圓柱狀、棱柱狀、筒狀、螺旋狀、球狀、環狀等,可為任一種,特別是在基體為板狀體的情況下,在本實用新型中並無特別限定,但可適宜使用面積為5cm2以上、更佳為10cm2以上、且厚度為50μm~2000μm、更佳為100μm~800μm的基體。
另外,在本實用新型的製膜方法中,基體34與整流板101可在相互相向並在規定的位置靜止的狀態下進行製膜,也可包括在水平方向上改變與基體34的相對位置的移動單元(未圖示)或旋轉單元(未圖示)。藉由包括移動單元或旋轉單元,可使要形成的膜的厚度分佈更良好,另外,能夠對大口徑的基體或長條的基體進行製膜。
移動單元可為在水平的單軸方向上往復的機構,另外,在單軸方向上進行移動時的移動速度可根據目的適當調整,但可設為0.1mm/s至100mm/s,更佳為可設為1mm/s以上且30mm/s。若為1mm/s以上,則可防止膜形成成為反應限速,可實現原料的充分的收率,另外可減少異常反應的機會。若為100mm/s以下,則可使混合氣33充分地追隨移動運動,可實現優異的膜厚分佈。另外,進行旋轉時的旋轉速度只要在不產生混合氣33的紊流的範圍內,則並無特別限定,但一般可以每秒1°至每秒180°進行。
此外,在圖1的形態中,示出了整流板101配置於載台 32的上方,將基體34的製膜面朝向上方進行製膜的形態,但本實用新型的製膜方法中使用的製膜裝置並不限於此,也可設為將整流板101配置於載台32的下方,將基體34的製膜面朝向下方進行製膜的結構。
[製膜裝置]
前面參照附圖說明的代表例的製膜裝置是本實用新型的製膜裝置的例子。
即,圖1~圖8所示的製膜裝置1包括:作為將原料溶液21霧化而形成供給至基體34的混合氣23所包含的原料霧22的霧化單元的霧化裝置20、作為搬送原料霧22的載氣11的供給單元的載氣供給部10、載置基體34的載台32、將混合了原料霧22與載氣11的混合氣23供給至基體34表面的混合氣供給單元35、以隔著空間31與所述基體34相向的方式配置於基體34上的通道板102、對空間31中的混合氣33進行排氣的排氣單元36、以及以遮擋混合氣33的氣流脫離從混合氣供給單元35朝向排氣單元36的方向的方式形成於通道板102的一部分的凸部103和/或形成於載台32的一部分的凸部32b。
另外,在製膜裝置1中,如圖3~圖6所示,通道板102與凸部103和/或凸部32b以形成比通道板102與基體34之間的空間31中的最短距離d1小的寬度d2的空隙37的方式配置。
藉由利用此種製膜裝置1進行製膜及排氣,根據前面說明的理由,可抑制混合氣33的氣流紊亂,由此,能夠以高生產性 製造表面缺陷或異物的附著顯著減少的高品質的膜。
關於製膜裝置的例子的詳細情況,將參照與圖1~圖8相關的前面的說明。
特別是,在製膜裝置1中,通道板102、凸部103和/或凸部32b及載台32如先前說明那樣,可構成整流機構100。具體而言,在圖3及圖4所示的配置的例子中,整流機構100包括:通道板102、凸部103、以及與凸部103相向的載台32的一部分32a。在圖5所示的配置的例子中,整流機構100包括:形成於載台32的一部分的凸部32b、與所述凸部32b相向的整流板101(通道板102)的一部分、形成於整流板101(通道板102)的一部分的凸部103、以及與所述凸部103相向的載台32的一部分。在圖6所示的配置的例子中,整流機構100包括形成於載台32上的凸部32b和與所述凸部32b相向的整流板101(通道板102)的一部分101a,在它們之間包括寬度為d2的空隙37。
也可說排氣單元36連接於整流機構100。
在圖1所示的製膜裝置1中,作為載氣的供給單元的載氣供給部10藉由載氣配管12向作為霧化單元的霧化裝置20搬送載氣11。另外,在圖1所示的製膜裝置1中,混合氣供給單元35將混合了原料霧22與載氣11的混合氣23藉由霧配管24供給至基體34表面。
另外,如圖3~圖6、及圖8所示,在載台32的基體34的載置部32d,可根據基體34的厚度或製膜的條件,呈容納基體 34那樣的形狀設置鍃孔32e,在所述鍃孔32e載置基體34。藉由設置此種鍃孔32e,可調整載台32的上表面與基體34的上表面的落差(高低差)h,充分地抑制因載台32與基體34的階差而產生紊流從而抑制顆粒的產生,另外,可充分地抑制產生霧的分佈而防止膜厚分佈變大。
另外,通道板102與凸部103和/或凸部32b較佳為以最短距離d1成為寬度d2的1.5倍以上的方式配置。若為具有此種配置的製膜裝置1,則能夠形成更高品質的膜。
如前面所說明那樣,更佳為以最短距離d1成為所述寬度d2的2倍以上的方式配置,特佳為以最短距離d1成為所述寬度d2的3倍以上的方式配置。
凸部103可形成於通道板102的一部分。
若為此種製膜裝置1,則可製成能夠更容易均勻地形成高品質的膜的製膜裝置。
另外,凸部32b可形成於載台32的一部分。
若為此種製膜裝置1,則可製成能夠更容易地均勻形成高品質的膜的製膜裝置。
在另一側面中,圖1~圖8所示的製膜裝置1也可稱為製膜系統。作為圖1~圖8所示的製膜系統的製膜裝置1包括:作為將原料溶液21霧化而形成供給至基體34的混合氣23所包含的原料霧22的機構的霧化裝置20、將原料霧22與載氣11混合而形成混合氣的機構40(包括載氣供給部10及霧化裝置20)、載置基 體34的載台32、作為將混合氣33從混合氣供給單元35供給至基體34並在基體34上進行製膜的機構的製膜部30、作為利用排氣單元36對製膜後的混合氣33進行排氣的機構的排氣單元36、以隔著空間31與所述基體34相向的方式配置於基體34上的通道板102、以及以遮擋混合氣33的氣流偏離從混合氣供給單元35朝向排氣單元36的方向的方式形成於通道板102的一部分的凸部103和/或形成於載台32的一部分的凸部32b。而且,通道板102與凸部103和/或凸部32b以形成比通道板102與基體34之間的空間31中的最短距離d1小的寬度d2的空隙37的方式配置。製膜系統也可包括製膜裝置1與基體。
或者,圖1~圖8所示的作為製膜系統的製膜裝置1包括:作為將原料溶液21霧化而形成供給至基體34的混合氣23所包含的原料霧22的霧化單元的霧化裝置20、作為搬送原料霧22的載氣11的供給單元的載氣供給部10、基體34、載置基體34的載台32、將混合了原料霧22與載氣11的混合氣23供給至基體34表面的混合氣供給單元35、以隔著空間31與所述基體34相向的方式配置於基體34上的通道板102、對空間31中的混合氣33進行排氣的排氣單元36、以及以遮擋混合氣33的氣流脫離從混合氣供給單元35朝向排氣單元36的方向的方式形成於通道板102的一部分的凸部103和/或形成於載台32的一部分的凸部32b,也可說通道板102與凸部103和/或凸部32b以形成比通道板102與基體34之間的空間31中的最短距離d1小的寬度d2的空隙37的 方式配置。
[積層體]
在圖9中示出本實用新型的積層體的一例的概略剖視圖。
圖1所示的積層體39包括基體34與直接或間接地積層於基體34上的α-Ga2O3膜38。
積層體39的主表面上的直徑0.5μm以上的顆粒密度為9個/10cm2以下。
此種積層體39可具有抑制了顆粒附著的高品質的α-Ga2O3膜38。
積層體39的主表面上的直徑0.5μm以上的顆粒密度越小越較佳,例如可設為1個/10cm2以上。
本實用新型的積層體39例如可藉由本實用新型的製膜方法獲得。
基體34的主表面上的面積可設為5cm2以上。
在本實用新型中,即便基體34的主表面上的面積為5cm2以上,也可具有抑制了顆粒附著的高品質的α-Ga2O3膜。
基體34的主表面上的面積的上限並無特別限定,但可設為900cm2以下。
[實施例]
以下,使用實施例及比較例對本實用新型進行具體說明,但本實用新型並不限定於此。
(實施例1)
在圖1的製膜裝置中,如參照圖3及圖4說明那樣配置整流機構,並進行了α-氧化鎵的製膜。
對於混合氣供給單元與整流板(通道板),使用對表面實施了氧化鋁處理的鋁製構件,另外,使用了內置有電阻加熱加熱器的SiC製熱板作為載台。此處,將整流板的凸部與載台之間的空隙的最短距離(寬度)d2設為2mm,將整流板的通道板與後述的基板的表面的最短距離d1設為3mm。
對於載氣供給,使用了填充有氮氣的儲氣瓶。利用聚胺基甲酸酯樹脂製管將儲氣瓶與霧化裝置連接,進而利用石英製的配管將霧化裝置與混合氣供給單元連接。
作為原料溶液,準備在以體積比加入1%的濃度34%的鹽酸的稀鹽酸水溶液中以0.02mol/L的比例溶解乙醯丙酮鎵,利用攪拌器攪拌60分鐘的溶液,將其填充至霧化裝置。對於霧化裝置,使用了包括兩台超聲波振動板(頻率2.4MHz)的裝置。
接著,將厚度0.65mm、直徑4英寸(約10cm)的c面藍寶石基板設置於載台,以基板溫度成為400℃的方式進行加熱。此時,載臺上表面與基板表面的高低差為0.2mm。
接著,利用超聲波振動板藉由水使霧化裝置內的前體傳播超聲波振動,而將原料溶液霧化(霧化)。
接著,以25L/分鐘的流量向原料容器中加入氮氣向混合氣供給單元供給霧與氮氣的混合氣,另外,將排氣流量設為28L/分鐘進行排氣。進而,在此期間,使載台水平地移動,以使混合 氣供給單元的噴出口在基板上均等地藉由,進行了60分鐘製膜。
其後,立即停止氮氣的供給,停止向混合氣供給單元的混合氣供給。
所製作的積層體的結晶層在X射線衍射測定中在2θ=40.3°處出現峰值,因此確認到α相的Ga2O3
其後,藉由光反射率分析,在面內25點測定了所製作的膜的膜厚。將測定值的最大值與最小值的差分除以平均值的2倍而得的值作為膜厚分佈。另外,利用基板檢查機(KLA candela-CS10)評價了膜上的顆粒(直徑0.5μm以上)密度。進而,以利用X射線衍射儀(X-ray diffractometer,XRD)(理學智能實驗室(Rigaku SmartLab))的搖擺曲線半值寬度評價了膜的結晶取向性。
(實施例2)
在圖3及圖4所示的整流機構的配置中,將所述最短距離d1設為3mm、將所述寬度d2設為0.5mm,除此之外,與實施例1同樣地進行了α-氧化鎵的製膜。
所製作的積層體的結晶層在X射線衍射測定中在2θ=40.3°處出現峰值,因此確認到α相的Ga2O3
其後,與實施例1同樣地進行了膜的評價。
(比較例1)
在圖3及圖4所示的整流機構的配置中,將所述最短距離d1設為3mm、將所述寬度d2設為3mm,除此之外,與實施例1同樣地進行了α-氧化鎵的製膜。
所製作的積層體的結晶層在X射線衍射測定中在2θ=40.3°處出現峰值,由此確認到α相的Ga2O3
其後,與實施例1同樣地進行了膜的評價。
(實施例3)
在圖1的製膜裝置中,如參照圖5說明那樣配置了整流機構,除此之外,與實施例1同樣地進行了α-氧化鎵的製膜。此時,載臺上表面與基板表面的高低差為0.2mm。
所製作的積層體的結晶層在X射線衍射測定中在2θ=40.3°處出現峰值,由此確認到α相的Ga2O3
其後,與實施例1同樣地進行了膜的評價。
(比較例2)
在圖5所示的整流機構的配置中,將所述最短距離d1設為3mm、將所述寬度d2設為3mm,除此之外,與實施例3同樣地進行了α-氧化鎵的製膜。
所製作的積層體的結晶層在X射線衍射測定中在2θ=40.3°處出現峰值,由此確認到α相的Ga2O3
其後,與實施例1同樣地進行了膜的評價。
(比較例3)
在圖5所示的整流機構的配置中,將所述最短距離d1設為3mm、將所述寬度d2設為3mm、進而將載臺上表面與基板表面的高低差設為1.2mm,除此之外,與實施例3同樣地進行了α-氧化鎵的製膜。
Figure 111201737-A0305-02-0032-1
表1是實施例1~實施例3與比較例1~比較例3的評價結果。在任一情況下,所形成的膜均為α-Ga2O3,但實施例1~實施例3的結果示出,與比較例1~比較例3相比,膜厚分佈與搖擺曲線半值寬度得到改善,顆粒密度大幅度減少。
根據所述結果可知,根據本實用新型,可設為能夠生產相較於現有技術為高品質且均質的膜的製膜方法。
此外,本實用新型並不限定於所述實施方式。所述實施方式是例示,具有與本實用新型的請求項書中所記載的技術思想實質上相同的結構且發揮同樣的作用效果的實施方式均包含在本實用新型的技術範圍內。
30:製膜部
31:空間
32:載台
32a:一部分
32d:載置部
32e:鍃孔
34:基體
37:空隙
100:整流機構
101:整流板
102:通道板
103:凸部
104:端部
d1:最短距離
d2:寬度
h:落差

Claims (13)

  1. 一種製膜系統,其特徵在於,包括:將原料溶液霧化而形成供給至基體的混合氣所包含的原料霧的機構;將所述原料霧與載氣混合而形成所述混合氣的機構;載台,載置所述基體;將所述混合氣從混合氣供給單元供給至所述基體並在所述基體上進行製膜的機構;對所述製膜後的混合氣進行排氣的機構;通道板,以隔著空間與所述基體相向的方式配置於所述基體上;以及凸部,以遮擋所述混合氣的氣流偏離從所述混合氣供給單元朝向所述排氣單元的方向的方式形成於所述通道板的一部分和/或所述載台的一部分,所述通道板與所述凸部以形成比所述通道板與所述基體之間的所述空間中的最短距離(d1)小的寬度(d2)的空隙的方式配置。
  2. 一種製膜裝置,其特徵在於,包括:霧化單元,將原料溶液霧化而形成供給至基體的混合氣所包含的原料霧;載氣的供給單元,通過載氣配管向所述霧化單元供給搬送所述原料霧的載氣;載台,載置所述基體; 混合氣供給單元,將混合了所述原料霧與所述載氣的所述混合氣通過霧配管供給至所述基體表面;通道板,以隔著空間與所述基體相向的方式配置於所述基體上;排氣單元,對所述空間中的混合氣進行排氣;以及凸部,以遮擋所述混合氣的氣流偏離從所述混合氣供給單元朝向所述排氣單元的方向的方式形成於所述通道板的一部分和/或所述載台的一部分,且所述通道板與所述凸部以形成比所述通道板與所述基體之間的所述空間中的最短距離(d1)小的寬度(d2)的空隙的方式配置。
  3. 一種製膜系統,其特徵在於,包括:霧化單元,將原料溶液霧化而形成供給至基體的混合氣所包含的原料霧;載氣的供給單元,搬送所述原料霧;所述基體;載台,載置所述基體;混合氣供給單元,將混合了所述原料霧與所述載氣的所述混合氣供給至所述基體表面;通道板,以隔著空間與所述基體相向的方式配置於所述基體上;排氣單元,對所述空間中的混合氣進行排氣;以及凸部,以遮擋所述混合氣的氣流偏離從所述混合氣供給單元 朝向所述排氣單元的方向的方式形成於所述通道板的一部分和/或所述載台的一部分,且所述通道板與所述凸部以形成比所述通道板與所述基體之間的所述空間中的最短距離(d1)小的寬度(d2)的空隙的方式配置。
  4. 一種製膜系統,其特徵在於,包括:將原料溶液霧化而形成供給至基體的混合氣所包含的原料霧的機構;將所述原料霧與載氣混合而形成所述混合氣的機構;所述基體;載台,載置所述基體;將所述混合氣從混合氣供給單元供給至所述基體並在所述基體上進行製膜的機構;對所述製膜後的混合氣進行排氣的機構;通道板,以隔著空間與所述基體相向的方式配置於所述基體上;以及凸部,以遮擋所述混合氣的氣流偏離從所述混合氣供給單元朝向所述排氣單元的方向的方式形成於所述通道板的一部分和/或所述載台的一部分,所述通道板與所述凸部以形成比所述通道板與所述基體之間的所述空間中的最短距離(d1)小的寬度(d2)的空隙的方式配置。
  5. 一種製膜裝置,其特徵在於,包括:霧化單元,將原料溶液霧化而形成供給至基體的混合氣所包 含的原料霧;載氣的供給單元,搬送所述原料霧;載台,載置所述基體;霧供給單元,將混合了所述原料霧與所述載氣的所述混合氣供給至所述基體表面;通道板,以隔著空間與所述基體相向的方式配置於所述基體上;凸部,形成於所述通道板的一部分和/或所述載台的一部分,與所述載台及所述通道板一併構成整流機構;以及排氣單元,連接於所述整流機構,且所述凸部以遮擋所述混合氣的氣流偏離從所述混合氣供給單元朝向所述排氣單元的方向的方式形成,所述通道板與所述凸部以形成比所述通道板與所述基體之間的所述空間中的最短距離(d1)小的寬度(d2)的空隙的方式配置。
  6. 如請求項5所述的製膜裝置,其特徵在於,所述載台在所述基體的載置部包括容納所述基體的鍃孔。
  7. 如請求項5所述的製膜裝置,其特徵在於,所述通道板及所述凸部以所述最短距離(d1)成為所述寬度(d2)的1.5倍以上的方式配置。
  8. 如請求項6所述的製膜裝置,其特徵在於,所述通道板及所述凸部以所述最短距離(d1)成為所述寬度(d2)的1.5倍以上的方式配置。
  9. 如請求項5所述的製膜裝置,其特徵在於,所述通道板及所述凸部以所述最短距離(d1)成為所述寬度(d2)的2倍以上的方式配置。
  10. 如請求項6所述的製膜裝置,其特徵在於,所述通道板及所述凸部以所述最短距離(d1)成為所述寬度(d2)的2倍以上的方式配置。
  11. 如請求項5至請求項10中任一項所述的製膜裝置,其特徵在於,所述凸部形成於所述通道板的一部分。
  12. 如請求項5至請求項10中任一項所述的製膜裝置,其特徵在於,所述凸部形成於所述載台的一部分。
  13. 如請求項11所述的製膜裝置,其特徵在於,所述凸部形成於所述載台的一部分。
TW111201737U 2021-03-02 2022-02-21 製膜系統及製膜裝置 TWM633563U (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021032594 2021-03-02
JP2021-032594 2021-03-02

Publications (1)

Publication Number Publication Date
TWM633563U true TWM633563U (zh) 2022-11-01

Family

ID=83153761

Family Applications (2)

Application Number Title Priority Date Filing Date
TW111106116A TW202235663A (zh) 2021-03-02 2022-02-21 製膜方法、製膜裝置及積層體
TW111201737U TWM633563U (zh) 2021-03-02 2022-02-21 製膜系統及製膜裝置

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW111106116A TW202235663A (zh) 2021-03-02 2022-02-21 製膜方法、製膜裝置及積層體

Country Status (7)

Country Link
US (1) US20240124973A1 (zh)
EP (1) EP4303338A1 (zh)
JP (1) JPWO2022186112A1 (zh)
KR (1) KR20230150815A (zh)
CN (2) CN218089887U (zh)
TW (2) TW202235663A (zh)
WO (1) WO2022186112A1 (zh)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6478103B2 (ja) 2015-01-29 2019-03-06 株式会社Flosfia 成膜装置および成膜方法
JP6422159B2 (ja) * 2015-02-25 2018-11-14 国立研究開発法人物質・材料研究機構 α−Ga2O3単結晶、α−Ga2O3の製造方法、および、それを用いた半導体素子
JP6906220B2 (ja) 2017-02-28 2021-07-21 株式会社Flosfia 処理方法
JP7212890B2 (ja) * 2019-06-05 2023-01-26 株式会社デンソー 酸化物膜の成膜方法、半導体装置の製造方法、及び、酸化物膜の成膜装置

Also Published As

Publication number Publication date
TW202235663A (zh) 2022-09-16
EP4303338A1 (en) 2024-01-10
WO2022186112A1 (ja) 2022-09-09
CN218089887U (zh) 2022-12-20
CN116888300A (zh) 2023-10-13
JPWO2022186112A1 (zh) 2022-09-09
US20240124973A1 (en) 2024-04-18
KR20230150815A (ko) 2023-10-31

Similar Documents

Publication Publication Date Title
CN105986246A (zh) 成膜装置和成膜方法
WO2022009524A1 (ja) 酸化ガリウム半導体膜の製造方法及び成膜装置
JP2023017874A (ja) 酸化ガリウム膜及び積層体
JP2024040219A (ja) 酸化ガリウム半導体膜の製造方法及び酸化ガリウム半導体膜
WO2021172152A1 (ja) 成膜用霧化装置及びこれを用いた成膜装置並びに半導体膜
TWM633563U (zh) 製膜系統及製膜裝置
JP6975417B2 (ja) 成膜用霧化装置およびこれを用いた成膜装置
WO2023210381A1 (ja) 成膜方法、成膜装置、及び積層体
WO2023132174A1 (ja) 成膜装置および成膜方法
US20240234140A1 (en) Film forming apparatus and method of forming crystalline semiconductor film using the same
WO2024043134A1 (ja) 成膜方法、成膜装置、サセプター、及びα-酸化ガリウム膜
WO2023058273A1 (ja) 成膜装置およびこれを用いた結晶性半導体膜の成膜方法
JP7407426B2 (ja) 半導体膜
WO2022030187A1 (ja) 製膜用霧化装置、製膜装置及び製膜方法
JPS6240720A (ja) 気相エピタキシヤル成長装置
TW202405226A (zh) 成膜方法及成膜裝置
CN118103547A (zh) 成膜装置及制造方法