TWM619674U - Light-emitting device - Google Patents

Light-emitting device Download PDF

Info

Publication number
TWM619674U
TWM619674U TW110209083U TW110209083U TWM619674U TW M619674 U TWM619674 U TW M619674U TW 110209083 U TW110209083 U TW 110209083U TW 110209083 U TW110209083 U TW 110209083U TW M619674 U TWM619674 U TW M619674U
Authority
TW
Taiwan
Prior art keywords
layer
dbr
sub
light
dbr layer
Prior art date
Application number
TW110209083U
Other languages
Chinese (zh)
Inventor
林志遠
歐政宜
紀政孝
Original Assignee
兆勁科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 兆勁科技股份有限公司 filed Critical 兆勁科技股份有限公司
Priority to TW110209083U priority Critical patent/TWM619674U/en
Publication of TWM619674U publication Critical patent/TWM619674U/en

Links

Images

Landscapes

  • Led Devices (AREA)

Abstract

本新型提供一種發光元件,其結構是由下而上藉著磊晶技術依序形成有一基底、一分佈式布拉格反射鏡(DBR)層、一下披覆層、一主動層、一上披覆層及一窗口層;其中,該DBR層具有複數個子DBR層而稱為多階DBR層,複數個子DBR層彼此之間的厚度不同。彼此之間厚度不同的複數個子DBR層的組合可以擴展該DBR層停止帶80%高度的波長區間,使得多階DBR層的停止帶80%高度的波長區間比使用單階DBR層(只有一個子DBR層)的傳統發光元件還寬,而使得本新型之發光元件的發光總能量及光通量提高。The invention provides a light-emitting element whose structure is formed by epitaxial technology from bottom to top. A substrate, a distributed Bragg reflector (DBR) layer, a lower cladding layer, an active layer, and an upper cladding layer are sequentially formed by epitaxial technology. And a window layer; wherein the DBR layer has a plurality of sub-DBR layers and is called a multi-stage DBR layer, and the thickness of the plurality of sub-DBR layers is different from each other. The combination of multiple sub-DBR layers with different thicknesses can extend the wavelength range of the stop band of the DBR layer to 80% height, so that the wavelength range of the stop band 80% height of the multi-stage DBR layer is higher than that of the single-stage DBR layer (with only one sub-layer). The traditional light-emitting element of the DBR layer) is also wide, so that the total luminous energy and luminous flux of the new-type light-emitting element are improved.

Description

發光元件Light-emitting element

本新型係有關於一種發光元件,特別是指具有不同厚度的多個堆疊對(pair)之分佈式布拉格反射鏡(Distributed Bragg Reflector, DBR)層的發光元件,以將主動層(active layer)之發光波長範圍中的短波長及長波長反射至窗口層,使得發光元件於窗口層得以展現出最高的發光總能量(total power)。The present invention relates to a light-emitting element, in particular to a light-emitting element having a distributed Bragg reflector (DBR) layer of multiple stacked pairs of different thicknesses, so as to combine the active layer (active layer) The short wavelength and the long wavelength in the emission wavelength range are reflected to the window layer, so that the light-emitting element can exhibit the highest total light emission energy (total power) in the window layer.

發光元件包含發光二極體(Light-Emitting Diode, LED)及雷射二極體(Laser Diode, LD),尤其LED屬於發散光源,發光元件是藉著磊晶技術在半導體底材上形成由p-n接面或p-i-n接面,以達到發光之目的。請參照第1圖,傳統習知技術中之一發光元件是由磊晶形成,其結構由下而上依序包括:一基底(substate)1、一分佈式布拉格反射鏡層2、一下披覆層(lower cladding layer)3、一主動層4、一上披覆層(upper cladding layer)5及一窗口層(window layer)6,在該基底(substate)1下則為一下電極(electrode)8,至於在該窗口層6之上則形成一上電極7。一般而言,在對該上電極7及該下電極8通電之後由該主動層4所產生的光,一部分會朝著該窗口層6的方向輻射而使該發光元件發光。然而另一部份由該主動層4所產生的光會自該主動層4朝該DBR層2輻射,此時透過該DBR層2的反射作用將光線反射朝該主動層4及該窗口層6方向並穿出該窗口層6幅射而形成發光,因而提高該發光元件之發光強度及發光效率。Light-emitting devices include light-emitting diodes (Light-Emitting Diode, LED) and laser diodes (Laser Diode, LD). In particular, LEDs are divergent light sources. Connecting surface or pin connecting surface to achieve the purpose of light emission. Please refer to Figure 1. One of the light-emitting elements in the conventional technology is formed by epitaxial, and its structure from bottom to top includes: a substrate (substate) 1, a distributed Bragg reflector layer 2, a bottom coating Layer (lower cladding layer) 3, an active layer 4, an upper cladding layer (upper cladding layer) 5 and a window layer (window layer) 6, under the substrate (substate) 1 is a lower electrode (electrode) 8 As for the window layer 6, an upper electrode 7 is formed. Generally speaking, after the upper electrode 7 and the lower electrode 8 are energized, a part of the light generated by the active layer 4 will radiate toward the window layer 6 to cause the light-emitting element to emit light. However, another part of the light generated by the active layer 4 will radiate from the active layer 4 toward the DBR layer 2. At this time, the light is reflected toward the active layer 4 and the window layer 6 through the reflection of the DBR layer 2 Direction and radiate through the window layer 6 to form light, thereby improving the luminous intensity and luminous efficiency of the light-emitting element.

通常該DBR層2是由複數個堆疊對重複堆疊所構成,每一個堆疊對包括上層和下層,在複數個堆疊對中的每一個上層都具有相同的厚度,而每一個下層也同樣具有相同的厚度,而通常上層的厚度與下層的厚度不相同。換言之,複數個堆疊對中的每一個堆疊對都具有相同的厚度。除了所使用材料的因素之外,前述上層的厚度、下層的厚度及堆疊對的厚度,決定了該DBR層2反射來自該主動層4的光之設計波長(target wave length)。請參照第2圖,其中第2圖(a)是前述傳統發光元件操作過程中的該主動層4之發光強度及發光波長範圍,此發光波長範圍(介於585nm至685nm之間,峰值波長為635nm)可以由左至右區分為依次相鄰的短波長範圍A(585nm至610nm之間)、主波長範圍B(610nm至660nm之間)及長波長範圍C(660nm至685nm之間);第2圖(b)則是前述傳統發光元件操作過程中的該DBR層2之反射能力光譜圖,顯然地高反射率的停止帶(stopband)D只對應於主波長範圍B,而短波長範圍A及長波長範圍C並不會被該DBR層2反射往該窗口層6,而前述設計波長(635nm)通常是約位於停止帶D中央的波長。Generally, the DBR layer 2 is composed of multiple stacked pairs repeatedly stacked, and each stacked pair includes an upper layer and a lower layer. In the multiple stacked pairs, each upper layer has the same thickness, and each lower layer also has the same thickness. Thickness, and usually the thickness of the upper layer and the thickness of the lower layer are not the same. In other words, each of the plurality of stacked pairs has the same thickness. In addition to the factors of the materials used, the thickness of the upper layer, the thickness of the lower layer, and the thickness of the stack pair determine the design wavelength (target wave length) of the light from the active layer 4 that the DBR layer 2 reflects. Please refer to Figure 2, where Figure 2(a) is the luminous intensity and luminous wavelength range of the active layer 4 during the operation of the aforementioned conventional light-emitting device. The luminous wavelength range (between 585nm and 685nm, the peak wavelength is 635nm) can be divided from left to right into adjacent short wavelength range A (between 585nm and 610nm), dominant wavelength range B (between 610nm and 660nm) and long wavelength range C (between 660nm and 685nm); Figure 2 (b) is the reflectance spectrum of the DBR layer 2 during the operation of the aforementioned conventional light-emitting element. Obviously, the stopband D with high reflectivity only corresponds to the main wavelength range B, while the short wavelength range A And the long wavelength range C is not reflected by the DBR layer 2 toward the window layer 6, and the aforementioned design wavelength (635 nm) is usually a wavelength approximately in the center of the stop zone D.

前述該DBR層2之中的每一個堆疊對都具有相同的厚度,則此該DBR層2可以被稱為單階DBR層。因此,就使用單階DBR層的前述傳統發光元件而言,其在該窗口層6所測得的發光總能量並不包含短波長範圍A及長波長範圍C的能量。換言之,使用單階DBR層的傳統發光元件損失了短波長範圍A及長波長範圍C的發光能量。Each stacked pair in the aforementioned DBR layer 2 has the same thickness, and the DBR layer 2 can be called a single-stage DBR layer. Therefore, for the aforementioned conventional light-emitting element using a single-stage DBR layer, the total luminous energy measured in the window layer 6 does not include the energy in the short wavelength range A and the long wavelength range C. In other words, the conventional light-emitting element using the single-stage DBR layer loses the luminous energy in the short wavelength range A and the long wavelength range C.

有鑑於上述問題,本新型之目的旨在提供一種發光元件,其能夠反射來自一主動層之發光波長範圍中的短波長範圍、主波長範圍及長波長範圍,以使得該發光元件於一窗口層得以展現出最高的發光總能量。In view of the above problems, the purpose of the present invention is to provide a light-emitting element that can reflect the short wavelength range, the dominant wavelength range and the long wavelength range in the light-emitting wavelength range from an active layer, so that the light-emitting element is in a window layer. Can show the highest total luminous energy.

為達上述目的,本新型係揭露一種發光元件,至少包含:一基底;一分佈式布拉格反射鏡(DBR)層,該DBR層設置於該基底的上方;一下披覆層,該下披覆層設置於該DBR層的上方;一主動層,該主動層設置於該下披覆層的上方;一上披覆層,該上披覆層設置於該主動層的上方;一窗口層,該窗口層設置於該上披覆層的上方;其中,該DBR層具有複數個子DBR層,複數個該子DBR層彼此之間的厚度不同。To achieve the above objective, the present invention discloses a light-emitting device, which at least includes: a substrate; a distributed Bragg reflector (DBR) layer, the DBR layer is disposed above the substrate; a lower cladding layer, the lower cladding layer Is disposed above the DBR layer; an active layer, the active layer is disposed above the lower cladding layer; an upper cladding layer, the upper cladding layer is disposed above the active layer; a window layer, the window The layer is arranged above the upper cladding layer; wherein, the DBR layer has a plurality of sub-DBR layers, and the thickness of the plurality of sub-DBR layers is different from each other.

在另一實施例中,複數個該子DBR層分別為一第一子DBR層及一第二子DBR層,該第二子DBR層的厚度大於該第一子DBR層的厚度。In another embodiment, the plurality of sub-DBR layers are respectively a first sub-DBR layer and a second sub-DBR layer, and the thickness of the second sub-DBR layer is greater than the thickness of the first sub-DBR layer.

在另一實施例中,該第二子DBR層疊置於該第一子DBR層上方。In another embodiment, the second sub-DBR is stacked on top of the first sub-DBR layer.

在另一實施例中,該第一子DBR層疊置於該第二子DBR層上方。In another embodiment, the first sub-DBR is stacked on top of the second sub-DBR layer.

在另一實施例中,該主動層的一發光波長範圍由左至右區分為依次相鄰的一短波長範圍、一主波長範圍及一長波長範圍,該第一子DBR層反射來自該主動層之該主波長範圍的光。In another embodiment, a light-emitting wavelength range of the active layer is divided from left to right into a short wavelength range, a main wavelength range, and a long wavelength range that are successively adjacent to each other, and the reflection of the first sub-DBR layer comes from the active Layer of light in the dominant wavelength range.

在另一實施例中,該第二子DBR層反射來自該主動層之該長波長範圍的光。In another embodiment, the second sub-DBR layer reflects light in the long wavelength range from the active layer.

在另一實施例中,該第二子DBR層反射來自該主動層之該短波長範圍的光。In another embodiment, the second sub-DBR layer reflects light in the short wavelength range from the active layer.

在另一實施例中,複數個該子DBR層由下而上疊置有一第一子DBR層、一第二子DBR層及一第三子DBR層;或者,複數個該子DBR層由下而上疊置有該第一子DBR層、該第二子DBR層、該第三子DBR層及一第四子DBR層;或者,複數個該子DBR層由下而上疊置有該第一子DBR層、該第二子DBR層、該第三子DBR層、該第四子DBR層及一第五子DBR層;該第一子DBR層、該第二子DBR層、該第三子DBR層、該第四子DBR層及該第五子DBR層的厚度是彼此不相同。In another embodiment, a first sub-DBR layer, a second sub-DBR layer, and a third sub-DBR layer are superimposed on a plurality of the sub-DBR layers from bottom to top; or, a plurality of the sub-DBR layers are stacked from bottom to top. The first sub-DBR layer, the second sub-DBR layer, the third sub-DBR layer, and a fourth sub-DBR layer are stacked on top; or, a plurality of the sub-DBR layers are stacked from bottom to top with the first sub-DBR layer. A sub-DBR layer, the second sub-DBR layer, the third sub-DBR layer, the fourth sub-DBR layer, and a fifth sub-DBR layer; the first sub-DBR layer, the second sub-DBR layer, the third sub-DBR layer The thickness of the sub-DBR layer, the fourth sub-DBR layer, and the fifth sub-DBR layer are different from each other.

在另一實施例中,該基底為GaAs,該主動層為AlGaInP,該DBR層為AlGaAs。In another embodiment, the substrate is GaAs, the active layer is AlGaInP, and the DBR layer is AlGaAs.

在另一實施例中,該基底、該DBR層及該下披覆層為一第一傳導型,該上披覆層及該窗口層為一第二傳導型;當第一傳導型為n型,則第二傳導型為p型;或者,當第一傳導型為p型,則第二傳導型為n型。In another embodiment, the substrate, the DBR layer, and the lower cladding layer are of a first conductivity type, and the upper cladding layer and the window layer are of a second conductivity type; when the first conductivity type is an n-type , The second conductivity type is p-type; or, when the first conductivity type is p-type, the second conductivity type is n-type.

為使本領域具有通常知識者能清楚了解本新型之內容,謹以下列說明搭配圖式,敬請參閱。In order to enable those with ordinary knowledge in the field to clearly understand the content of this new model, please refer to the following descriptions and diagrams.

首先,請參閱第3圖,本新型的一種發光元件(Light-Emitting Diode, LED)100,該發光元件100可以是發光二極體(Light-Emitting Diode, LED)及雷射二極體(Laser Diode, LD)。為了方便理解本新型的精神,以下實施方式是以LED的結構為舉例,然而本領域技術人員應當可以理解本新型的精神及結構也適用於LD。該發光元件100係至少包含:一第一電極10;一基底11,該基底11與該第一電極10接觸,該基底11可以設置於該第一電極10的上方或下方;一分佈式布拉格反射鏡(Distributed Bragg Reflector, DBR)層12,該DBR層12設置於該基底11的上方,該DBR層12可以與該基底11的上表面接觸;一下披覆層13,該下披覆層13設置於該DBR層12的上方,該下披覆層13可以與該DBR層12的上表面接觸;一主動層14,該主動層14設置於該下披覆層13的上方,該主動層14可以與該下披覆層13的上表面接觸;一上披覆層15,該上披覆層15設置於該主動層14的上方,該上披覆層15可以與該主動層14的上表面接觸;一窗口層16,該窗口層16設置於該上披覆層15的上方,該窗口層16可以與該上披覆層15的上表面接觸;一第二電極17,該第二電極17設置於該窗口層16的上方,該第二電極17可以與該窗口層16接觸。換言之,該發光元件100的結構是由下而上藉著磊晶技術依序形成有:該基底11、該DBR層12、該下披覆層13、該主動層14、該上披覆層15及該窗口層16,例如以分子束磊晶法(Molecular Beam Epitaxy, MBE)、金屬有機氣相磊晶法(Metal Organic Vapor Phase Epitaxy, MOPVE)、低壓氣相磊晶法(Low Pressure Vapor Phase Epitaxial Method, LPMOVPE)或有機金屬氣相沈積法(Metal Organic Chemical Vapor Deposition, MOCVD)等相關技術於腔室中的原位(in-suit)形成。First of all, please refer to Figure 3, a light-emitting element (Light-Emitting Diode, LED) 100 of the present invention, the light-emitting element 100 can be a light-emitting diode (Light-Emitting Diode, LED) and a laser diode (Laser Diode, LD). In order to facilitate the understanding of the spirit of the present invention, the following embodiments take the structure of the LED as an example. However, those skilled in the art should understand that the spirit and structure of the present invention are also applicable to LD. The light-emitting element 100 includes at least: a first electrode 10; a substrate 11, the substrate 11 being in contact with the first electrode 10, the substrate 11 may be disposed above or below the first electrode 10; and a distributed Bragg reflector Mirror (Distributed Bragg Reflector, DBR) layer 12, the DBR layer 12 is disposed above the substrate 11, the DBR layer 12 can be in contact with the upper surface of the substrate 11; the lower cladding layer 13, the lower cladding layer 13 is disposed Above the DBR layer 12, the lower cladding layer 13 can be in contact with the upper surface of the DBR layer 12; an active layer 14, the active layer 14 is disposed on the lower cladding layer 13, the active layer 14 can Contact with the upper surface of the lower cladding layer 13; an upper cladding layer 15, the upper cladding layer 15 is disposed above the active layer 14, the upper cladding layer 15 can be in contact with the upper surface of the active layer 14 A window layer 16, the window layer 16 is provided above the upper cladding layer 15, the window layer 16 can be in contact with the upper surface of the upper cladding layer 15; a second electrode 17, the second electrode 17 is provided Above the window layer 16, the second electrode 17 can be in contact with the window layer 16. In other words, the structure of the light-emitting device 100 is sequentially formed from bottom to top by epitaxial technology: the substrate 11, the DBR layer 12, the lower cladding layer 13, the active layer 14, the upper cladding layer 15 And the window layer 16, for example, molecular beam epitaxy (MBE), metal organic vapor phase epitaxy (MOPVE), low pressure vapor phase epitaxy (Low Pressure Vapor Phase Epitaxial) Method, LPMOVPE) or Metal Organic Chemical Vapor Deposition (MOCVD) and other related technologies are formed in-suit in the chamber.

該基底11為一第一傳導型基底,例如為n型砷化鎵(GaAs),厚度介於250μm至300μm間。該DBR層12為一第一傳導型DBR層,例如為n型DBR層,該DBR層12可以為砷化鋁鎵(AlGaAs)。該下披覆層13為一第一傳導型披覆層,例如為n型披覆層,該下披覆層13可以為砷化鋁(AlAs)及/或砷化鋁鎵(AlGaAs)。該主動層14則可以例如為未摻雜磷化鋁鎵銦(AlGaInP),厚度大約為0.1至2μm。該上披覆層15為一第二傳導型披覆層,例如為p型披覆層,該上披覆層15可以為砷化鋁(AlAs)及/或砷化鋁鎵(AlGaAs)。該下披覆層13及該上披覆層15皆為抗反射堆積層(anti-reflection stack),其使得該主動層14產生的光不會在該下披覆層13/該主動層14的接面(下接面,圖未標號)以及該上披覆層15/該主動層14的接面(上接面,圖未標號)發生反射,該下披覆層13及該上披覆層15也避免該主動層14產生的光在前述上接面及下接面之間產生共振現象。該窗口層16為一第二傳導型窗口層,例如為p型窗口層,該窗口層16具有較寬或不直接(indirect)的能隙(energy gap)以及較高的傳導性,該窗口層16可以為磷化鎵(GaP)、磷砷化鎵(GaAsP)或砷化鋁鎵(AlGaAs)。該第一電極10為一第一傳導型電極,例如為n型電極;該第二電極17為一第二傳導型電極,例如為p型電極;n型電極可以為金鍺鎳(AuGeNi)合金,而p型電極則可以為鈹金(BeAu)合金。換言之,當第一傳導型為n型,則第二傳導型為p型;或者,當第一傳導型為p型,則第二傳導型為n型。The substrate 11 is a first conductivity type substrate, such as n-type gallium arsenide (GaAs), with a thickness between 250 μm and 300 μm. The DBR layer 12 is a first conductivity type DBR layer, such as an n-type DBR layer, and the DBR layer 12 may be aluminum gallium arsenide (AlGaAs). The lower cladding layer 13 is a first conductivity type cladding layer, for example, an n-type cladding layer. The lower cladding layer 13 may be aluminum arsenide (AlAs) and/or aluminum gallium arsenide (AlGaAs). The active layer 14 may be, for example, undoped aluminum gallium indium phosphide (AlGaInP), with a thickness of about 0.1 to 2 μm. The upper cladding layer 15 is a second conductivity type cladding layer, for example, a p-type cladding layer. The upper cladding layer 15 may be aluminum arsenide (AlAs) and/or aluminum gallium arsenide (AlGaAs). Both the lower cladding layer 13 and the upper cladding layer 15 are anti-reflection stacks, which prevent the light generated by the active layer 14 from being in the lower cladding layer 13/the active layer 14 The junction (lower junction, not numbered in the figure) and the junction of the upper cladding layer 15/the active layer 14 (upper junction, not numbered in the figure) reflect, the lower cladding layer 13 and the upper cladding layer 15 also prevents the light generated by the active layer 14 from resonating between the upper junction and the lower junction. The window layer 16 is a second conductivity type window layer, such as a p-type window layer. The window layer 16 has a wider or indirect energy gap and higher conductivity. The window layer 16 can be gallium phosphide (GaP), gallium arsenide phosphorous (GaAsP) or aluminum gallium arsenide (AlGaAs). The first electrode 10 is a first conductivity type electrode, such as an n-type electrode; the second electrode 17 is a second conductivity type electrode, such as a p-type electrode; the n-type electrode may be AuGeNi (AuGeNi) alloy , And the p-type electrode can be beryllium gold (BeAu) alloy. In other words, when the first conductivity type is n-type, the second conductivity type is p-type; or, when the first conductivity type is p-type, the second conductivity type is n-type.

該DBR層12為多階DBR層,以有別於使用單階DBR層的傳統發光元件。該DBR層12具有複數個疊置的子DBR層120,而前述多階DBR層指的是具有複數個該子DBR層120的DBR層,每一該子DBR層120都具有不同的厚度,也就是說複數個該子DBR層120彼此之間的厚度不同。而前述單階DBR層指的是只具有一個子DBR層的DBR層。每一該子DBR層120都是由複數個堆疊對121重複堆疊所構成,每一個該堆疊對121包括一下堆疊層1211和一上堆疊層1212。該下堆疊層1211之材料為Al xGa 1-xAs和該上堆疊層1212之材料為Al yGa 1-yAs,其中0<x<1,0<y<1,y大於8倍的x。 The DBR layer 12 is a multi-stage DBR layer, which is different from the traditional light-emitting device using a single-stage DBR layer. The DBR layer 12 has a plurality of stacked sub-DBR layers 120, and the aforementioned multi-stage DBR layer refers to a DBR layer having a plurality of sub-DBR layers 120, and each sub-DBR layer 120 has a different thickness. In other words, the thicknesses of the plurality of sub-DBR layers 120 are different from each other. The aforementioned single-stage DBR layer refers to a DBR layer with only one sub-DBR layer. Each sub-DBR layer 120 is formed by repeatedly stacking a plurality of stacked pairs 121, and each stacked pair 121 includes a lower stacked layer 1211 and an upper stacked layer 1212. The material of the lower stack layer 1211 is Al x Ga 1-x As and the material of the upper stack layer 1212 is Al y Ga 1-y As, where 0<x<1, 0<y<1, and y is greater than 8 times x.

請一併參閱第4圖,本新型的第一實施例,該DBR層12可以稱為二階DBR層(具有二個該子DBR層120),例如複數個該子DBR層120分別為一第一子DBR層120’及疊置於該第一子DBR層120’上方的一第二子DBR層120’’,該第一子DBR層120’由複數個第一堆疊對121’重複堆疊所構成,該第二子DBR層120’’由複數個第二堆疊對121’’重複堆疊所構成。每一該第一堆疊對121’包括一第一下堆疊層1211’和一第一上堆疊層1212’,每一該第二堆疊對121’’包括一第二下堆疊層1211’’和一第二上堆疊層1212’’。該第一子DBR層120’與該第二子DBR層120’’彼此之間的厚度不同,更進一步地說,該第一堆疊對121’與該第二堆疊對121’’彼此之間的厚度不同。當然,也可以是該第一下堆疊層1211’與該第二下堆疊層1211’’彼此之間的厚度不同,該第一上堆疊層1212’與該第二上堆疊層1212’’彼此之間的厚度不同。Please also refer to FIG. 4, in the first embodiment of the present invention, the DBR layer 12 may be called a second-order DBR layer (having two sub-DBR layers 120), for example, a plurality of sub-DBR layers 120 are respectively a first A sub-DBR layer 120' and a second sub-DBR layer 120" stacked on top of the first sub-DBR layer 120', the first sub-DBR layer 120' is formed by repeatedly stacking a plurality of first stacked pairs 121' The second sub-DBR layer 120" is formed by repeatedly stacking a plurality of second stacking pairs 121". Each of the first stacked pairs 121' includes a first lower stacked layer 1211' and a first upper stacked layer 1212', and each of the second stacked pairs 121" includes a second lower stacked layer 1211" and a The second upper stack layer 1212". The thicknesses of the first sub-DBR layer 120' and the second sub-DBR layer 120" are different from each other. More specifically, the first stacked pair 121' and the second stacked pair 121" have different thicknesses from each other. The thickness is different. Of course, the thickness of the first lower stacked layer 1211' and the second lower stacked layer 1211" may be different from each other, and the first upper stacked layer 1212' and the second upper stacked layer 1212" may be different from each other. The thickness is different between.

該主動層14可以是多重量子井結構(multiple quantum well structure),其中多重量子井結構包含複數個交替形成之量子井層(quantum well layers)及能障層(barrier layers)。多重量子井結構之材料則可藉著改變AlGaInP中之鋁含量而獲得。對量子井層而言其組成材料可為磷化鋁鎵銦(AlxGaInP, x=0-0.5),而能障層之材料則可使用磷化鋁鎵銦(AlxGaInP, x=0.3-1)量子井層及能障層之厚度可以分別為20及500埃。請一併參閱第5圖(a)及第5圖(b),該主動層14為AlGaInP,其發光波長範圍是介於585nm至685nm之間,而峰值波長為635nm。此發光波長範圍由左至右區分為依次相鄰的短波長範圍A’(585nm至610nm之間)、主波長範圍B’(610nm至660nm之間)及長波長範圍C’(660nm至685nm之間)。於此實施例中,該第一子DBR層120’之反射光譜圖中位於停止帶中央的一第一設計波長為630nm,以反射來自該主動層14之前述短波長範圍A’及主波長範圍B’的光。由於該DBR層12的厚度決定了該DBR層12反射來自該主動層14的光之設計波長,較厚的DBR層能夠反射較長的設計波長,因此本新型使得該第二子DBR層120’’的厚度大於該第一子DBR層120’的厚度,該第二子DBR層120’’之反射光譜圖中位於停止帶中央的一第二設計波長為670nm,以反射來自該主動層14之前述長波長範圍C’及主波長範圍B’的光。換言之,於此實施例中,該第一子DBR層120’與該第二子DBR層120’’分別反射來自該主動層14所發的光之不同的波長範圍,該第二子DBR層120’’的該第二設計波長670nm大於該第一子DBR層120’的該第一設計波長630nm。從第5圖(b)關於DBR之反射能力光譜圖可以明顯看出,本新型使用二階DBR層的第一實施例發光元件之停止帶波長範圍是介於605nm至695nm之間(停止帶80%高度的波長區間84nm),而使用單階DBR層的傳統發光元件之停止帶波長範圍是介於610nm至660nm之間(停止帶80%高度的波長區間49nm)。由於使用二階DBR層的第一實施例發光元件100具有較寬的停止帶波長範圍(停止帶80%高度的波長區間80nm),因此來自該主動層14之短波長範圍A’、主波長範圍B’及長波長範圍C’的光經過該DBR層12反射後會朝著該窗口層16的方向輻射,因而於該窗口層16所測得的發光總能量其功率約為2.51mW。然而,使用單階DBR層的傳統發光元件(設計波長為635nm)卻具有較窄的停止帶波長範圍(停止帶80%高度的波長區間49nm),因此只有來自該主動層14之主波長範圍(610nm至660nm之間)的光經過該DBR層12反射後會朝著該窗口層16的方向輻射,因而於該窗口層16所測得的發光總能量其功率僅約為2.15mW。顯然使用二階DBR層的第一實施例發光元件之發光總能量是使用單階DBR層的傳統發光元件之發光總能量的1.17倍。換言之,使用二階DBR層的第一實施例發光元件提高了於該窗口層16所測得的發光總能量。另外,於該窗口層16也測得使用二階DBR層的第一實施例發光元件之光通量(亮度)是未使用DBR層的傳統發光元件之光通量的1.9倍,而使用單階DBR層的傳統發光元件之光通量僅是未使用DBR層的傳統發光元件之光通量的1.6倍,顯然使用二階DBR層的第一實施例發光元件之光通量是使用單階DBR層的傳統發光元件之光通量的1.19倍。換言之,使用二階DBR層的第一實施例發光元件提高了於該窗口層16所測得的光通量。The active layer 14 may be a multiple quantum well structure, where the multiple quantum well structure includes a plurality of alternately formed quantum well layers and barrier layers. The material of the multiple quantum well structure can be obtained by changing the aluminum content in AlGaInP. For the quantum well layer, its constituent material can be aluminum gallium indium phosphide (AlxGaInP, x=0-0.5), and the material of the energy barrier layer can be aluminum gallium indium phosphide (AlxGaInP, x=0.3-1) quantum The thickness of the well layer and the energy barrier layer can be 20 and 500 angstroms, respectively. Please refer to Fig. 5(a) and Fig. 5(b) together, the active layer 14 is AlGaInP, and its emission wavelength range is between 585nm and 685nm, and the peak wavelength is 635nm. This emission wavelength range is divided from left to right into the adjacent short wavelength range A'(between 585nm and 610nm), the dominant wavelength range B'(between 610nm and 660nm) and the long wavelength range C'(between 660nm and 685nm). between). In this embodiment, a first design wavelength in the center of the stop band in the reflection spectrum of the first sub-DBR layer 120' is 630 nm to reflect the aforementioned short wavelength range A'and main wavelength range from the active layer 14 B'light. Since the thickness of the DBR layer 12 determines the design wavelength of the DBR layer 12 reflecting the light from the active layer 14, a thicker DBR layer can reflect a longer design wavelength, so the present invention makes the second sub-DBR layer 120' The thickness of the first sub-DBR layer 120' is greater than the thickness of the first sub-DBR layer 120', and a second design wavelength in the center of the stop band in the reflection spectrum of the second sub-DBR layer 120" is 670nm to reflect from the active layer 14 Light in the aforementioned long wavelength range C'and dominant wavelength range B'. In other words, in this embodiment, the first sub-DBR layer 120' and the second sub-DBR layer 120" respectively reflect different wavelength ranges of the light emitted from the active layer 14, and the second sub-DBR layer 120 The second design wavelength of 670 nm is greater than the first design wavelength 630 nm of the first sub-DBR layer 120'. From Figure 5(b), it can be clearly seen that the wavelength range of the stop band of the light-emitting element of the first embodiment using the second-order DBR layer of the present invention is between 605 nm and 695 nm (stop band 80%). The height of the wavelength range is 84 nm), and the stop band wavelength range of the traditional light-emitting element using a single-stage DBR layer is between 610 nm and 660 nm (the stop band 80% height of the wavelength range is 49 nm). Since the light-emitting element 100 of the first embodiment using the second-order DBR layer has a wider stop band wavelength range (80% of the stop band height is 80 nm), the short wavelength range A'and the main wavelength range B from the active layer 14 The light of'and the long wavelength range C'is reflected by the DBR layer 12 and radiates toward the window layer 16, so the total luminous energy measured on the window layer 16 has a power of about 2.51 mW. However, the conventional light-emitting element (design wavelength 635nm) using a single-stage DBR layer has a narrow stop band wavelength range (the stop band is 80% of the height of the wavelength range 49nm), so only the dominant wavelength range from the active layer 14 ( After being reflected by the DBR layer 12, the light between 610 nm and 660 nm will radiate toward the window layer 16. Therefore, the total luminous energy measured on the window layer 16 has a power of only about 2.15 mW. Obviously, the total luminous energy of the light-emitting element of the first embodiment using the second-level DBR layer is 1.17 times the total luminous energy of the conventional light-emitting element using the single-level DBR layer. In other words, the light-emitting element of the first embodiment using the second-level DBR layer increases the total luminous energy measured in the window layer 16. In addition, the luminous flux (brightness) of the light-emitting element of the first embodiment using the second-order DBR layer was also measured on the window layer 16 to be 1.9 times that of the conventional light-emitting element without the DBR layer, while the conventional light-emitting element using the single-stage DBR layer The luminous flux of the device is only 1.6 times the luminous flux of the conventional light-emitting device without the DBR layer. Obviously, the luminous flux of the first embodiment light-emitting device using the second-order DBR layer is 1.19 times the luminous flux of the conventional light-emitting device using the single-stage DBR layer. In other words, the light-emitting element of the first embodiment using the second-order DBR layer increases the luminous flux measured at the window layer 16.

本新型的第二實施例與第一實施例類似,第二實施例與第一實施例的差別僅是在第二實施例中,該第一子DBR層120’疊置於該第二子DBR層120’’上方而非下方。當然,於設計第一實施例及第二實施例時,也可以是該第二子DBR層120’’的厚度小於該第一子DBR層120’的厚度。The second embodiment of the present invention is similar to the first embodiment, and the difference between the second embodiment and the first embodiment is that in the second embodiment, the first sub-DBR layer 120' is stacked on the second sub-DBR Layer 120" is above rather than below. Of course, when designing the first embodiment and the second embodiment, the thickness of the second sub-DBR layer 120'' may be smaller than the thickness of the first sub-DBR layer 120'.

於其他的實施例分別為第三實施例、第四實施例、第五實施例,分別是具有三個該子DBR層的三階DBR層、具有四個該子DBR層的四階DBR層、具有五個該子DBR層的五階DBR層。第三實施例與與第一實施例類似,第三實施例與第一實施例的差別僅是在第三實施例中,複數個該子DBR層120由下而上疊置有該第一子DBR層120’、該第二子DBR層120’’及一第三子DBR層(圖未繪出)。第四實施例與第三實施例的差別僅是在第四實施例中,複數個該子DBR層120更包含一第四子DBR層(圖未繪出)疊置於該第三子DBR層的上方。第五實施例與第四實施例的差別僅是在第五實施例中,複數個該子DBR層120更包含一第五子DBR層(圖未繪出)疊置於該第四子DBR層的上方。特別說明的是,該第一子DBR層、該第二子DBR層、該第三子DBR層、該第四子DBR層及該第五子DBR層的疊置次序也可以依需求而改變。當然,前述第一實施例至第五實施例中,該第一子DBR層120’、該第二子DBR層120’’、該第三子DBR層、該第四子DBR層及該第五子DBR層的厚度是彼此不相同,因此各自所對應的位於各自停止帶中央的設計波長也不相同。換言之,該第一子DBR層120’、該第二子DBR層120’’、該第三子DBR層、該第四子DBR層及該第五子DBR層,分別對應的該第一設計波長、該第二設計波長、一第三設計波長、一第四設計波長及一第五設計波長也不同。例如,於第四實施例中,該第一設計波長為600nm、該第二設計波長為635nm、該第三設計波長為670nm及該第四設計波長為700nm,複數個該子DBR層120由下而上疊置有該第四子DBR層、該第三子DBR層、該第二子DBR層120’’及該第一子DBR層120’。請一併參閱第6圖,使用具有單階DBR層的傳統發光元件其停止帶80%高度的波長區間僅為67nm,使用具有三階DBR層的本新型第三實施例發光元件其停止帶80%高度的波長區間可以擴展為87nm,使用具有四階DBR層的本新型第四實施例發光元件其停止帶80%高度的波長區間可以擴展為95nm,使用具有五階DBR層的本新型第五實施例發光元件其停止帶80%高度的波長區間可以擴展為104nm。類似於第一實施例發光元件的討論,因此第三實施例發光元件、第四實施例發光元件及第五實施例發光元件比傳統發光元件的發光總能量及光通量還高。而且發光總能量及光通量由大至小的次序為:第五實施例發光元件、第四實施例發光元件、第三實施例發光元件、第一實施例發光元件、傳統發光元件。The other embodiments are the third embodiment, the fourth embodiment, and the fifth embodiment. They are a third-order DBR layer with three such sub-DBR layers, a fourth-order DBR layer with four such sub-DBR layers, A fifth-order DBR layer with five such sub-DBR layers. The third embodiment is similar to the first embodiment, and the difference between the third embodiment and the first embodiment is that in the third embodiment, a plurality of the sub-DBR layers 120 are stacked with the first sub-layers from bottom to top. The DBR layer 120', the second sub-DBR layer 120", and a third sub-DBR layer (not shown in the figure). The difference between the fourth embodiment and the third embodiment is that in the fourth embodiment, a plurality of the sub-DBR layers 120 further include a fourth sub-DBR layer (not shown in the figure) stacked on the third sub-DBR layer Above. The difference between the fifth embodiment and the fourth embodiment is that in the fifth embodiment, a plurality of the sub-DBR layers 120 further includes a fifth sub-DBR layer (not shown in the figure) stacked on the fourth sub-DBR layer Above. In particular, the stacking order of the first sub-DBR layer, the second sub-DBR layer, the third sub-DBR layer, the fourth sub-DBR layer, and the fifth sub-DBR layer can also be changed according to requirements. Of course, in the foregoing first to fifth embodiments, the first sub-DBR layer 120', the second sub-DBR layer 120", the third sub-DBR layer, the fourth sub-DBR layer, and the fifth sub-DBR layer The thickness of the sub-DBR layers are different from each other, so the corresponding design wavelengths in the center of the respective stop bands are also different. In other words, the first sub-DBR layer 120', the second sub-DBR layer 120", the third sub-DBR layer, the fourth sub-DBR layer, and the fifth sub-DBR layer respectively correspond to the first design wavelength The second design wavelength, a third design wavelength, a fourth design wavelength, and a fifth design wavelength are also different. For example, in the fourth embodiment, the first design wavelength is 600 nm, the second design wavelength is 635 nm, the third design wavelength is 670 nm, and the fourth design wavelength is 700 nm. The fourth sub-DBR layer, the third sub-DBR layer, the second sub-DBR layer 120" and the first sub-DBR layer 120' are superimposed thereon. Please also refer to Fig. 6, using a conventional light-emitting element with a single-stage DBR layer, the stop band 80% of the height of the wavelength interval is only 67nm, using the third embodiment of the new light-emitting element with a three-stage DBR layer, the stop band 80 The wavelength range of the% height can be extended to 87nm, and the wavelength range of the stop band 80% height of the light-emitting element with the fourth-order DBR layer of the fourth embodiment of the present invention can be extended to 95nm, and the fifth-order DBR layer of the present invention is used. The wavelength range of the stop band 80% of the height of the light-emitting element of the embodiment can be extended to 104 nm. Similar to the discussion of the light-emitting element of the first embodiment, the light-emitting element of the third embodiment, the light-emitting element of the fourth embodiment, and the light-emitting element of the fifth embodiment have higher total luminous energy and luminous flux than the conventional light-emitting element. Moreover, the order of the total luminous energy and the luminous flux is as follows: the light-emitting element of the fifth embodiment, the light-emitting element of the fourth embodiment, the light-emitting element of the third embodiment, the light-emitting element of the first embodiment, and the conventional light-emitting element.

本新是利用多階DBR層(複數個子DBR層120)的組合,每一個子DBR層120都具有不同的厚度,也就是說複數個子DBR層120彼此之間的厚度不同。由於該子DBR層120的厚度決定了該子DBR層120反射來自該主動層14的光之設計波長,因此複數個子DBR層120的組合可以擴展停止帶80%高度的波長區間,使得停止帶80%高度的波長區間比使用單階DBR層(只有一個子DBR層)的傳統發光元件還寬,而使得本新型發光元件的發光總能量及光通量提高。The present invention uses a combination of multi-stage DBR layers (a plurality of sub-DBR layers 120), and each sub-DBR layer 120 has a different thickness, that is, the thickness of the plurality of sub-DBR layers 120 is different from each other. Since the thickness of the sub-DBR layer 120 determines the design wavelength of the sub-DBR layer 120 to reflect the light from the active layer 14, the combination of a plurality of sub-DBR layers 120 can extend the wavelength range of the stop band 80% height, so that the stop band 80 The wavelength range of% height is wider than that of a traditional light-emitting element using a single-stage DBR layer (only one sub-DBR layer), so that the total luminous energy and luminous flux of the new light-emitting element are improved.

惟以上所述者,僅為本新型之較佳實施例而已,當不能以此限定本新型實施之範圍,即大凡依本新型申請專利範圍及新型說明內容所作之簡單的等效變化與修飾,皆仍屬本新型專利涵蓋之範圍內。另外,本新型的任一實施例或申請專利範圍不須達成本新型所揭露之全部目的或優點或特點。此外,摘要部分和標題僅是用來輔助專利文件搜尋之用,並非用來限制本新型之權利範圍。此外,本說明書或申請專利範圍中提及的「第一」、「第二」等用語僅用以命名元件(element)的名稱或區別不同實施例或範圍,而並非用來限制元件數量上的上限或下限。However, the above are only the preferred embodiments of the present model, and should not be used to limit the scope of implementation of the present model, that is, simple equivalent changes and modifications made in accordance with the scope of the patent application for the present model and the description of the model, All are still within the scope of this new patent. In addition, any embodiment of the present invention or the scope of the patent application does not have to achieve all the objectives or advantages or features disclosed in the present invention. In addition, the abstract part and title are only used to assist the search of patent documents, not to limit the scope of the rights of this model. In addition, the terms "first" and "second" mentioned in this specification or the scope of the patent application are only used to name the element (element) or to distinguish different embodiments or ranges, and are not used to limit the number of elements. Upper or lower limit.

[傳統] 1:基底 2:DBR層 3:下披覆層 4:主動層 5:上披覆層 6:窗口層 7:上電極 8:下電極 A:短波長範圍 B:主波長範圍 C:長波長範圍 D:停止帶 [本新型] 100:發光元件 10:第一電極 11:基底 12:DBR層 120:子DBR層 120’:第一子DBR層 120’’:第二子DBR層 121:堆疊對 121’:第一堆疊對 1211’:第一下堆疊層 1212’:第一上堆疊層 121’’:第二堆疊對 1211’’:第二下堆疊層 1212’’:第二上堆疊層 1211:下堆疊層 1212:上堆疊層 13:下披覆層 14:主動層 15:上披覆層 16:窗口層 17:第二電極 A’:短波長範圍 B’:主波長範圍 C’:長波長範圍 [Tradition] 1: base 2: DBR layer 3: Lower cladding layer 4: active layer 5: Upper cladding layer 6: Window layer 7: Upper electrode 8: Lower electrode A: Short wavelength range B: Dominant wavelength range C: Long wavelength range D: Stop band [This new model] 100: light-emitting element 10: The first electrode 11: Base 12: DBR layer 120: Sub DBR layer 120’: The first sub-DBR layer 120’’: The second sub-DBR layer 121: Stacked Pair 121’: The first stacking pair 1211’: The first lower stack 1212’: The first upper stack layer 121’’: Second stacked pair 1211’’: The second lower stack 1212’’: The second upper stack layer 1211: Lower stacking layer 1212: upper stacking layer 13: Lower cladding layer 14: active layer 15: Upper cladding layer 16: window layer 17: second electrode A’: Short wavelength range B’: Dominant wavelength range C’: Long wavelength range

第1圖,為傳統發光元件的結構剖視圖。 第2圖(a),為傳統發光元件的主動層發光波長範圍示意圖。 第2圖(b),為傳統發光元件之單階DBR層的反射光譜示意圖。 第3圖,為本新型發光元件的結構剖視圖。 第4圖,為本新型發光元件具有二階DBR層的結構剖視圖。 第5圖(a),為本新型發光元件的主動層發光波長範圍示意圖。 第5圖(b),為本新型發光元件具有二階DBR層的反射光譜示意圖。 第6圖,為本新型發光元件具有三階、四階及五階DBR層的反射光譜示意圖。 Figure 1 is a cross-sectional view of the structure of a conventional light-emitting element. Figure 2(a) is a schematic diagram of the emission wavelength range of the active layer of a conventional light-emitting device. Figure 2(b) is a schematic diagram of the reflectance spectrum of a single-stage DBR layer of a conventional light-emitting device. Figure 3 is a cross-sectional view of the structure of the new type of light-emitting element. Figure 4 is a cross-sectional view of the structure of the novel light-emitting device with a second-stage DBR layer. Figure 5(a) is a schematic diagram of the light-emitting wavelength range of the active layer of the new light-emitting element. Figure 5(b) is a schematic diagram of the reflectance spectrum of the new light-emitting device with a second-order DBR layer. Figure 6 is a schematic diagram of the reflectance spectra of the third-, fourth- and fifth-order DBR layers of the new light-emitting device.

100:發光元件 100: light-emitting element

10:第一電極 10: The first electrode

11:基底 11: Base

12:DBR層 12: DBR layer

120:子DBR層 120: Sub DBR layer

121:堆疊對 121: Stacked Pair

1211:下堆疊層 1211: Lower stacking layer

1212:上堆疊層 1212: upper stacking layer

13:下披覆層 13: Lower cladding layer

14:主動層 14: active layer

15:上披覆層 15: Upper cladding layer

16:窗口層 16: window layer

17:第二電極 17: second electrode

Claims (10)

一種發光元件,係至少包含:一基底;一分佈式布拉格反射鏡(DBR)層,該DBR層設置於該基底的上方;一下披覆層,該下披覆層設置於該DBR層的上方;一主動層,該主動層設置於該下披覆層的上方;一上披覆層,該上披覆層設置於該主動層的上方;一窗口層,該窗口層設置於該上披覆層的上方;其中,該DBR層具有複數個子DBR層,複數個該子DBR層彼此之間的厚度不同。 A light-emitting element at least includes: a substrate; a distributed Bragg reflector (DBR) layer, the DBR layer is disposed above the substrate; a lower cladding layer, the lower cladding layer is disposed above the DBR layer; An active layer, the active layer is disposed above the lower cladding layer; an upper cladding layer, the upper cladding layer is disposed above the active layer; a window layer, the window layer is disposed on the upper cladding layer Wherein, the DBR layer has a plurality of sub-DBR layers, and the thickness of the plurality of sub-DBR layers is different from each other. 如請求項1所述之發光元件,其中複數個該子DBR層分別為一第一子DBR層及一第二子DBR層,該第二子DBR層的厚度大於該第一子DBR層的厚度。 The light-emitting element according to claim 1, wherein the plurality of sub-DBR layers are respectively a first sub-DBR layer and a second sub-DBR layer, and the thickness of the second sub-DBR layer is greater than the thickness of the first sub-DBR layer . 如請求項2所述之發光元件,其中該第二子DBR層疊置於該第一子DBR層上方。 The light-emitting element according to claim 2, wherein the second sub-DBR is stacked on the first sub-DBR layer. 如請求項2所述之發光元件,其中該第一子DBR層疊置於該第二子DBR層上方。 The light-emitting element according to claim 2, wherein the first sub-DBR is stacked on the second sub-DBR layer. 如請求項2所述之發光元件,其中該主動層的一發光波長範圍由左至右區分為依次相鄰的一短波長範圍、一主波長範圍及一長波長範圍,該第一子DBR層反射來自該主動層之該主波長範圍的光。 The light-emitting element according to claim 2, wherein a light-emitting wavelength range of the active layer is divided from left to right into a short wavelength range, a main wavelength range, and a long wavelength range that are successively adjacent to each other, and the first sub-DBR layer The light from the dominant wavelength range of the active layer is reflected. 如請求項5所述之發光元件,其中該第二子DBR層反射來自該主動層之該長波長範圍的光。 The light-emitting element according to claim 5, wherein the second sub-DBR layer reflects light in the long wavelength range from the active layer. 如請求項5所述之發光元件,其中該第二子DBR層反射來自該主動層之該短波長範圍的光。 The light-emitting element according to claim 5, wherein the second sub-DBR layer reflects light in the short wavelength range from the active layer. 如請求項1所述之發光元件,其中複數個該子DBR層由下而上疊置有一第一子DBR層、一第二子DBR層及一第三子DBR層;或者,複數個該子DBR層由下而上疊置有該第一子DBR層、該第二子DBR層、該第三子DBR層及一第四子DBR層;或者,複數個該子DBR層由下而上疊置有該第一子DBR層、該第二子DBR層、該第三子DBR層、該第四子DBR層及一第五子DBR層;該第一子DBR層、該第二子DBR層、該第三子DBR層、該第四子DBR層及該第五子DBR層的厚度是彼此不相同。 The light-emitting element according to claim 1, wherein a first sub-DBR layer, a second sub-DBR layer, and a third sub-DBR layer are superimposed on a plurality of sub-DBR layers from bottom to top; or, a plurality of sub-DBR layers The DBR layer is stacked from bottom to top with the first sub-DBR layer, the second sub-DBR layer, the third sub-DBR layer, and a fourth sub-DBR layer; or, a plurality of the sub-DBR layers are stacked from bottom to top The first sub-DBR layer, the second sub-DBR layer, the third sub-DBR layer, the fourth sub-DBR layer, and a fifth sub-DBR layer are arranged; the first sub-DBR layer, the second sub-DBR layer The thickness of the third sub-DBR layer, the fourth sub-DBR layer, and the fifth sub-DBR layer are different from each other. 如請求項1所述之發光元件,其中該基底為GaAs,該主動層為AlGaInP,該DBR層為AlGaAs。 The light-emitting device according to claim 1, wherein the substrate is GaAs, the active layer is AlGaInP, and the DBR layer is AlGaAs. 如請求項1所述之發光元件,其中該基底、該DBR層及該下披覆層為一第一傳導型,該上披覆層及該窗口層為一第二傳導型;當第一傳導型為n型,則第二傳導型為p型;或者,當第一傳導型為p型,則第二傳導型為n型。 The light-emitting device according to claim 1, wherein the substrate, the DBR layer and the lower cladding layer are of a first conductivity type, and the upper cladding layer and the window layer are of a second conductivity type; If the type is n-type, the second conductivity type is p-type; or, when the first conductivity type is p-type, the second conductivity type is n-type.
TW110209083U 2021-02-20 2021-02-20 Light-emitting device TWM619674U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW110209083U TWM619674U (en) 2021-02-20 2021-02-20 Light-emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW110209083U TWM619674U (en) 2021-02-20 2021-02-20 Light-emitting device

Publications (1)

Publication Number Publication Date
TWM619674U true TWM619674U (en) 2021-11-11

Family

ID=79908848

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110209083U TWM619674U (en) 2021-02-20 2021-02-20 Light-emitting device

Country Status (1)

Country Link
TW (1) TWM619674U (en)

Similar Documents

Publication Publication Date Title
US7242030B2 (en) Quantum dot/quantum well light emitting diode
KR101041843B1 (en) Nitride-based compound semiconductor light emitting device and fabrication method of the same
JP2004179654A (en) LIGHT-EMITTING DEVICE OF GaN GROUP, AND MANUFACTURING METHOD THEREOF
WO2007063833A1 (en) Nitride semiconductor light emitting device
WO2021195863A1 (en) Semiconductor light-emitting element
JPH11274558A (en) Semiconductor light emitting element and semiconductor light emitting device
US20220224080A1 (en) Vertical cavity surface emitting laser device and manufacturing method thereof
Chang et al. Chirped GaAs-AlAs distributed Bragg reflectors for high brightness yellow-green light-emitting diodes
US6501101B2 (en) Light emitting diode
CN102299229A (en) Light emitting diode with Bragg film and metal layer
WO2019024526A1 (en) Light emitting diode
TWI805427B (en) Vcsel laser with small divergence angle, chip and light source for lidar system
Chiou et al. Wide angle distributed Bragg reflectors for 590 nm amber AlGaInP light-emitting diodes
KR101289442B1 (en) Nitride based light emitting diode comprising distributed bragg reflector and manufacturing method thereof
CN114530532A (en) Prague reflector and LED with same
US20160013383A1 (en) Light-emitting device
US20050104078A1 (en) Light-emitting diode having chemical compound based reflective structure
Dorsaz et al. InGaN/GaN resonant‐cavity LED including an AlInN/GaN Bragg mirror
TWM619674U (en) Light-emitting device
JP2009070929A (en) Surface emitting diode
JP3330044B2 (en) Semiconductor light emitting diode
CN109037267B (en) Metal photonic crystal coupling enhanced nano-LED array and manufacturing method thereof
CN115882334B (en) VCSEL laser with small divergence angle, chip and light source for LIDAR system
TW202010202A (en) High-efficiency oxide VCSEL with improved light extraction, and manufacturing method thereof
JPH0738151A (en) Optical semiconductor device