TWM614877U - Powder atomic layer deposition device for preventing powder from sticking to inner wall - Google Patents
Powder atomic layer deposition device for preventing powder from sticking to inner wall Download PDFInfo
- Publication number
- TWM614877U TWM614877U TW110204643U TW110204643U TWM614877U TW M614877 U TWM614877 U TW M614877U TW 110204643 U TW110204643 U TW 110204643U TW 110204643 U TW110204643 U TW 110204643U TW M614877 U TWM614877 U TW M614877U
- Authority
- TW
- Taiwan
- Prior art keywords
- powder
- vacuum chamber
- reaction space
- wall
- wheel body
- Prior art date
Links
Images
Landscapes
- Physical Vapour Deposition (AREA)
Abstract
本新型提供一種防止粉末沾黏在內壁的粉末原子層沉積裝置,主要包括一真空腔體、一軸封裝置、一驅動單元及一敲擊裝置。驅動單元透過軸封裝置連接真空腔體的後壁,並帶動真空腔體轉動。軸封裝置包括一外管體及一內管體,其中內管體設置在外管體的容置空間內。敲擊裝置包括一輪體及一敲擊單元,其中輪體連接軸封裝置或真空腔體。輪體的輪面上設置至少一凸起部,敲擊單元則接觸輪體的凸起部及輪面。當輪體轉動時敲擊單元會由凸起部移動至輪面,並敲擊輪體的輪面或真空腔體,以避免反應空間內的粉末沾黏在真空腔體的內表面或內壁。The invention provides a powder atomic layer deposition device for preventing powder from sticking to the inner wall, which mainly includes a vacuum chamber, a shaft sealing device, a driving unit and a knocking device. The driving unit is connected to the rear wall of the vacuum chamber through a shaft sealing device, and drives the vacuum chamber to rotate. The shaft sealing device includes an outer tube body and an inner tube body, wherein the inner tube body is arranged in the accommodating space of the outer tube body. The percussion device includes a wheel body and a percussion unit, wherein the wheel body is connected with a shaft seal device or a vacuum cavity. At least one protrusion is provided on the wheel surface of the wheel body, and the percussion unit contacts the protrusion and the wheel surface of the wheel body. When the wheel body rotates, the percussion unit will move from the protrusion to the wheel surface and strike the wheel surface or the vacuum cavity to prevent the powder in the reaction space from sticking to the inner surface or inner wall of the vacuum cavity .
Description
本新型有關於一種防止粉末沾黏在內壁的粉末原子層沉積裝置,包括一敲擊裝置與真空腔體相鄰,真空腔體轉動時會驅動敲擊裝置敲擊真空腔體,以避免反應空間內的粉末沾黏在真空腔體的內表面或內壁。The invention relates to a powder atomic layer deposition device that prevents powder from sticking to the inner wall. It includes a knocking device adjacent to the vacuum chamber. When the vacuum chamber rotates, the knocking device is driven to knock the vacuum chamber to avoid reaction. The powder in the space adheres to the inner surface or inner wall of the vacuum chamber.
奈米顆粒(nanoparticle)一般被定義為在至少一個維度上小於100奈米的顆粒,奈米顆粒與宏觀物質在物理及化學上的特性截然不同。一般而言,宏觀物質的物理特性與本身的尺寸無關,但奈米顆粒則非如此,奈米顆粒在生物醫學、光學和電子等領域都具有潛在的應用。Nanoparticles are generally defined as particles smaller than 100 nanometers in at least one dimension. Nanoparticles and macroscopic substances have completely different physical and chemical properties. Generally speaking, the physical properties of macroscopic matter have nothing to do with its size, but nanoparticle is not the case. Nanoparticles have potential applications in the fields of biomedicine, optics, and electronics.
量子點(Quantum Dot)是半導體的奈米顆粒,目前研究的半導體材料為II-VI材料,如ZnS、CdS、CdSe等,其中又以CdSe最受到矚目。量子點的尺寸通常在2至50奈米之間,量子點被紫外線照射後,量子點中的電子會吸收能量,並從價帶躍遷到傳導帶。被激發的電子從傳導帶回到價帶時,會通過發光釋放出能量。Quantum dots (Quantum Dot) are semiconductor nano-particles. The currently studied semiconductor materials are II-VI materials, such as ZnS, CdS, CdSe, etc., of which CdSe has attracted the most attention. The size of quantum dots is usually between 2 and 50 nanometers. After the quantum dots are irradiated with ultraviolet light, the electrons in the quantum dots absorb energy and transition from the valence band to the conduction band. When the excited electron returns from the conduction band to the valence band, it releases energy through light emission.
量子點的能隙與尺寸大小相關,量子點的尺寸越大能隙越小,經照射後會發出波長較長的光,量子點的尺寸越小則能隙越大,經照射後會發出波長較短的光。例如5到6奈米的量子點會發出橘光或紅光,而2到3奈米的量子點則會發出藍光或綠光,當然光色取決於量子點的材料組成。The energy gap of a quantum dot is related to the size. The larger the size of the quantum dot, the smaller the energy gap, and will emit light with a longer wavelength after irradiation. The smaller the size of the quantum dot, the larger the energy gap, and the wavelength will be emitted after irradiation. Shorter light. For example, quantum dots of 5 to 6 nanometers will emit orange or red light, while quantum dots of 2 to 3 nanometers will emit blue or green light. Of course, the light color depends on the material composition of the quantum dots.
應用量子點的發光二極體(LED)產生的光可接近連續光譜,同時具有高演色性,並有利於提高發光二極體的發光品質。此外亦可透過改變量子點的尺寸調整發射光的波長,使得量子點成為新一代發光裝置及顯示器的發展重點。Light-emitting diodes (LEDs) using quantum dots can produce light close to a continuous spectrum, and at the same time have high color rendering properties, and help to improve the luminous quality of the light-emitting diodes. In addition, the wavelength of the emitted light can be adjusted by changing the size of the quantum dots, making the quantum dots the focus of the development of a new generation of light-emitting devices and displays.
量子點雖然具有上述的優點及特性,但在應用或製造的過程中容易產生團聚現象。此外量子點具有較高的表面活性,並容易與空氣及水氣發生反應,進而縮短量子點的壽命。Although quantum dots have the above-mentioned advantages and characteristics, they are prone to agglomeration during the application or manufacturing process. In addition, quantum dots have high surface activity and are easy to react with air and moisture, thereby shortening the lifespan of quantum dots.
具體來說,將量子點製作成為發光二極體的密封膠時,可能會產生團聚效應,而降低了量子點的光學性能。此外,量子點在製作成發光二極體的密封膠後,外界的氧或水氣仍可能會穿過密封膠而接觸量子點的表面,導致量子點氧化,並影響量子點及發光二極體的效能或使用壽命。量子點的表面缺陷及懸空鍵(dangling bonds)亦可能造成非輻射復合(nonradiative recombination),同樣會影響量子點的發光效率。Specifically, when the quantum dots are made into a sealant for light-emitting diodes, agglomeration effect may occur, which reduces the optical performance of the quantum dots. In addition, after quantum dots are made into the sealant of light-emitting diodes, external oxygen or moisture may still pass through the sealant and contact the surface of the quantum dots, causing the quantum dots to oxidize and affect the quantum dots and light-emitting diodes. The effectiveness or service life of the product. Surface defects and dangling bonds of quantum dots may also cause nonradiative recombination, which also affects the luminous efficiency of quantum dots.
目前業界主要透過原子層沉積(atomic layer deposition,ALD)在量子點的表面形成一層奈米厚度的薄膜,或者是在量子點的表面形成多層薄膜,以形成量子井結構。At present, the industry mainly uses atomic layer deposition (ALD) to form a nanometer-thick film on the surface of quantum dots, or form a multilayer film on the surface of quantum dots to form a quantum well structure.
原子層沉積可以在基板上形成厚度均勻的薄膜,並可有效控制薄膜的厚度,理論上亦適用於三維的量子點。量子點靜置在承載盤時,相鄰的量子點之間會存在接觸點,使得原子層沉積的前驅物無法接觸這些接觸點,並導致無法在所有的奈米顆粒的表面皆形成厚度均勻的薄膜。Atomic layer deposition can form a thin film with uniform thickness on the substrate, and can effectively control the thickness of the thin film. In theory, it is also suitable for three-dimensional quantum dots. When the quantum dots are placed on the carrier plate, there will be contact points between adjacent quantum dots, so that the precursors of atomic layer deposition cannot contact these contact points, and it is impossible to form a uniform thickness on the surface of all nano particles. film.
為了解決上述先前技術面臨的問題,本新型提出一種防止粉末沾黏在內壁的粉末原子層沉積裝置,主要在真空腔體或軸封裝置上設置一敲擊裝置,並透過敲擊裝置敲擊真空腔體,使得真空腔體的內表面或內壁產生震動,以將沉積過程中沾黏在真空腔體內表面或內壁上的粉末震落。In order to solve the above-mentioned problems faced by the prior art, the present invention proposes a powder atomic layer deposition device that prevents powder from sticking to the inner wall. A knocking device is mainly provided on the vacuum chamber or the shaft sealing device, and the knocking device is used to knock The vacuum chamber causes the inner surface or inner wall of the vacuum chamber to vibrate to shake off the powder adhering to the inner surface or inner wall of the vacuum chamber during the deposition process.
本新型的一目的,在於提供一種防止粉末沾黏在內壁的粉末原子層沉積裝置,主要包括一驅動單元、一軸封裝置、一真空腔體及一敲擊裝置,其中驅動單元透過軸封裝置連接並帶動真空腔體轉動。An object of the present invention is to provide a powder atomic layer deposition device that prevents powder from sticking to the inner wall, which mainly includes a driving unit, a shaft sealing device, a vacuum chamber and a knocking device, wherein the driving unit passes through the shaft sealing device Connect and drive the vacuum chamber to rotate.
敲擊裝置包括一輪體及一敲擊單元,其中輪體連接軸封裝置或真空腔體,並於輪體的輪面設置至少一凸起部。敲擊單元接觸輪體的凸起部及輪面,在輪體轉動的過程中,敲擊單元會由凸起部移動至輪面,並敲擊輪體的輪面或真空腔體,使得真空腔體產生震動,以去除沾黏在真空腔體的內表面或內壁上的粉末。The percussion device includes a wheel body and a percussion unit, wherein the wheel body is connected to the shaft sealing device or the vacuum cavity, and at least one protrusion is provided on the wheel surface of the wheel body. The percussion unit contacts the protrusion and the wheel surface of the wheel body. During the rotation of the wheel body, the percussion unit will move from the protrusion to the wheel surface, and strike the wheel surface or the vacuum cavity of the wheel body to make a vacuum. The cavity is vibrated to remove the powder adhering to the inner surface or inner wall of the vacuum cavity.
本新型的一目的,在於提供一種防止粉末沾黏在內壁的粉末原子層沉積裝置,主要包括一驅動單元、一軸封裝置、一真空腔體及一敲擊裝置,其中驅動單元透過軸封裝置連接真空腔體,而敲擊裝置則設置在軸封裝置或真空腔體上。驅動單元透過軸封裝置帶動真空腔體轉動時,敲擊裝置的輪體會隨著轉動,而敲擊單元的敲擊部則會在輪體的凸起部及輪面之間來回位移,並敲擊輪體的輪面或真空腔體。An object of the present invention is to provide a powder atomic layer deposition device that prevents powder from sticking to the inner wall, which mainly includes a driving unit, a shaft sealing device, a vacuum chamber and a knocking device, wherein the driving unit passes through the shaft sealing device The vacuum chamber is connected, and the percussion device is arranged on the shaft seal device or the vacuum chamber. When the drive unit drives the vacuum chamber to rotate through the shaft seal device, the wheel of the percussion device will rotate along with it, and the percussion part of the percussion unit will move back and forth between the protrusion of the wheel and the surface of the wheel, and knock Beat the wheel surface or vacuum cavity of the wheel body.
具體而言,本新型提供的敲擊裝置不需要額外設置馬達,便可使得敲擊單元的敲擊部持續敲擊真空腔體及/或輪體,可簡化粉末原子層沉積裝置的構造及製作成本,同時達到去除沾黏的粉末的目的。Specifically, the tapping device provided by the present invention does not require an additional motor, so that the tapping part of the tapping unit can continuously tap the vacuum cavity and/or wheel body, which can simplify the structure and manufacture of the powder atomic layer deposition device Cost, while achieving the purpose of removing sticky powder.
本新型的敲擊裝置包括一輪體及一敲擊單元,其中敲擊單元包括一敲擊部及一固定部。敲擊部透過至少一導引單元連接固定部,使得敲擊部可沿著導引單元相對於固定部位移,並敲擊輪體的輪面及/或真空腔體。The percussion device of the present invention includes a wheel body and a percussion unit, wherein the percussion unit includes a percussion part and a fixed part. The striking part is connected to the fixing part through at least one guiding unit, so that the striking part can move along the guiding unit relative to the fixing part and strike the wheel surface and/or the vacuum cavity of the wheel body.
為了達到上述的目的,本新型提出一種防止粉末沾黏在內壁的粉末原子層沉積裝置,包括:一真空腔體,包括一反應空間用以容置複數顆粉末;一軸封裝置,連接真空腔體,並包括一外管體及一內管體,其中外管體具有一容置空間,用以容置內管體;一驅動單元,連接軸封裝置,並經由軸封裝置帶動真空腔體轉動;至少一抽氣管線,位於內管體內,流體連接真空腔體的反應空間,並用以抽出反應空間內的一氣體;至少一進氣管線,位於內管體內,流體連接真空腔體的反應空間,並用以將一前驅物氣體輸送至反應空間;及一敲擊裝置,包括:一輪體,連接軸封裝置或真空腔體,並隨著軸封裝置轉動,其中輪體的一輪面上設置至少一凸起部,凸起部包括一第一表面及一第二表面,第一表面及第二表面的一側連接輪體的輪面,而第一表面及第二表面的另一端彼此連接,且第一表面與輪體的輪面之間的夾角大於90度;及一敲擊單元,與輪體相鄰,其中輪體轉動時敲擊單元會在輪體的凸起部及輪面之間位移,並敲擊輪體的輪面或真空腔體。In order to achieve the above-mentioned purpose, the present invention proposes a powder atomic layer deposition device that prevents powder from sticking to the inner wall, which includes: a vacuum chamber, including a reaction space for accommodating a plurality of powders; and a shaft sealing device connected to the vacuum chamber The body includes an outer tube body and an inner tube body, wherein the outer tube body has an accommodating space for accommodating the inner tube body; a driving unit connected to the shaft sealing device, and the vacuum chamber is driven by the shaft sealing device Rotation; at least one gas extraction line, located in the inner tube, fluidly connected to the reaction space of the vacuum chamber, and used to extract a gas in the reaction space; at least one gas inlet line, located in the inner tube, fluidly connected to the reaction space of the vacuum chamber Space, and used to deliver a precursor gas to the reaction space; and a percussion device, including: a wheel body connected to the shaft sealing device or the vacuum chamber, and rotating with the shaft sealing device, wherein a wheel surface is arranged on the wheel body At least one protrusion, the protrusion includes a first surface and a second surface, one side of the first surface and the second surface is connected to the wheel surface of the wheel body, and the other end of the first surface and the second surface are connected to each other , And the included angle between the first surface and the tread of the wheel body is greater than 90 degrees; and a percussion unit, adjacent to the wheel body, wherein the percussion unit will be on the convex part of the wheel body and the wheel surface when the wheel body rotates. Displacement between them, and knock the wheel surface or the vacuum cavity.
所述的防止粉末沾黏在內壁的粉末原子層沉積裝置,其中敲擊單元包括一敲擊部及一固定部,敲擊部連接固定部,並用以相對於固定部及輪體位移。In the powder atomic layer deposition device for preventing powder from sticking to the inner wall, the knocking unit includes a knocking part and a fixing part. The knocking part is connected to the fixing part and used for displacement relative to the fixing part and the wheel body.
所述的防止粉末沾黏在內壁的粉末原子層沉積裝置,其中敲擊單元包括一彈性單元連接敲擊部,彈性單元對敲擊單元提供朝向輪體的一恢復力。In the powder atomic layer deposition device for preventing powder from adhering to the inner wall, the percussion unit includes an elastic unit connected to the percussion part, and the elastic unit provides the percussion unit with a restoring force toward the wheel body.
所述的防止粉末沾黏在內壁的粉末原子層沉積裝置,其中敲擊單元包括一緩衝部連接敲擊部,敲擊部經由緩衝部敲擊真空腔體或輪體。In the powder atomic layer deposition device for preventing powder from sticking to the inner wall, the percussion unit includes a buffer part connected to the percussion part, and the percussion part strikes the vacuum cavity or the wheel body through the buffer part.
所述的防止粉末沾黏在內壁的粉末原子層沉積裝置,其中凸起部第二表面與輪體的輪面之間的夾角小於90度。In the powder atomic layer deposition device for preventing powder from sticking to the inner wall, the angle between the second surface of the protrusion and the tread of the wheel body is less than 90 degrees.
所述的防止粉末沾黏在內壁的粉末原子層沉積裝置,其中進氣管線包括至少一非反應氣體輸送管線及至少一反應氣體輸送管線,非反應氣體輸送管線用以將一非反應氣體輸送至反應空間,以吹動反應空間內的粉末,而反應氣體輸送管線則用以將前驅物氣體輸送至反應空間。In the powder atomic layer deposition device for preventing powder from sticking to the inner wall, the gas inlet pipeline includes at least one non-reactive gas delivery pipeline and at least one reactive gas delivery pipeline, and the non-reactive gas delivery pipeline is used to deliver a non-reactive gas To the reaction space, the powder in the reaction space is blown, and the reaction gas delivery pipeline is used to deliver the precursor gas to the reaction space.
所述的防止粉末沾黏在內壁的粉末原子層沉積裝置,其中非反應氣體輸送管線包括一延伸管線,延伸管線位於反應空間內。In the powder atomic layer deposition device for preventing powder from sticking to the inner wall, the non-reactive gas conveying pipeline includes an extended pipeline, and the extended pipeline is located in the reaction space.
所述的防止粉末沾黏在內壁的粉末原子層沉積裝置,包括一過濾單元位於內管體連接反應空間的一端,抽氣管線經由過濾單元流體連接反應空間,而延伸管線穿過過濾單元。The powder atomic layer deposition device for preventing powder from sticking to the inner wall includes a filter unit located at one end of the inner tube body connected to the reaction space, the suction line is fluidly connected to the reaction space through the filter unit, and the extension line passes through the filter unit.
所述的防止粉末沾黏在內壁的粉末原子層沉積裝置,其中內管體由外管體的容置空間延伸至真空腔體的反應空間,並在反應空間內形成一凸出管部。In the powder atomic layer deposition device for preventing powder from sticking to the inner wall, the inner tube extends from the accommodating space of the outer tube to the reaction space of the vacuum chamber, and a protruding tube is formed in the reaction space.
所述的防止粉末沾黏在內壁的粉末原子層沉積裝置,其中真空腔體包括一前壁、一後壁及一側壁,前壁面對後壁,且前壁經由側壁連接後壁,並於前壁、後壁及側壁之間形成反應空間,敲擊裝置與真空腔體的後壁相鄰。In the powder atomic layer deposition device for preventing powder from sticking to the inner wall, the vacuum chamber includes a front wall, a rear wall and a side wall, the front wall faces the rear wall, and the front wall is connected to the rear wall via the side wall, and A reaction space is formed between the front wall, the rear wall and the side wall, and the percussion device is adjacent to the rear wall of the vacuum chamber.
請參閱圖1、圖2及圖3,分別為本新型防止粉末沾黏在內壁的粉末原子層沉積裝置一實施例的前側立體示意圖、剖面示意圖及防止粉末沾黏在內壁的粉末原子層沉積裝置的軸封裝置一實施例的剖面示意圖。如圖所示,防止粉末沾黏在內壁的粉末原子層沉積裝置10主要包括一真空腔體11、一軸封裝置13、一驅動單元15及一敲擊裝置14,其中驅動單元15透過軸封裝置13連接真空腔體11,並帶動真空腔體11轉動。Please refer to Fig. 1, Fig. 2 and Fig. 3, which are respectively a front perspective view, a cross-sectional schematic diagram of an embodiment of a new type of powder atomic layer deposition device for preventing powder from adhering to the inner wall, and a schematic cross-sectional view of the powder atomic layer preventing powder from adhering to the inner wall. A schematic cross-sectional view of an embodiment of the shaft sealing device of the deposition device. As shown in the figure, the powder atomic
在本新型一實施例中,真空腔體11包括一前壁111、一後壁113及一側壁115,其中前壁111面對後壁113,而側壁115位於前壁111及後壁113之間,並連接前壁111及後壁113,以在前壁111、後壁113及側壁115之間形成一反應空間12。In an embodiment of the present invention, the
反應空間12用以容置複數顆粉末121,其中粉末121可以是量子點(Quantum Dot),例如ZnS、CdS、CdSe等II-VI半導體材料,而形成在量子點上的薄膜可以是三氧化二鋁(Al2O3)。在本新型一實施例中,真空腔體11可包括一蓋板117及一腔體119,其中蓋板117用以覆蓋及連接腔體119,以在兩者之間形成反應空間12。蓋板117可以是真空腔體11的前壁111,而腔體119則由真空腔體11的後壁113及側壁115所構成。The
軸封裝置13連接真空腔體11的後壁113,並包括一外管體131及一內管體133,其中外管體131具有一容置空間132,而內管體133則具有一連接空間134,例如外管體131及內管體133可為空心柱狀體。外管體131的容置空間132用以容置內管體133,其中外管體131及內管體133同軸設置。軸封裝置13可以是一般常見的軸封或磁流體軸封,主要用以隔離真空腔體11的反應空間12與外部的空間,以維持反應空間12的真空。The
驅動單元15連接軸封裝置13的一端,而軸封裝置13的另一端則連接真空腔體11的後壁113。驅動單元15透過軸封裝置13帶動真空腔體11轉動,例如驅動單元15為馬達,透過外管體131連接真空腔體11的後壁113,並經由外管體131帶動真空腔體11轉動。此外驅動單元15並未連接內管體133,因此驅動單元15帶動外管體131及真空腔體11轉動時,內管體133不會隨著轉動。The driving
驅動單元15可帶動外管體131及真空腔體11以同一方向持續轉動,例如順時針或逆時針方向持續轉動。真空腔體11轉動時會攪拌反應空間12內的粉末121,以利於粉末121均勻受熱並與前驅物或非反應氣體接觸。The driving
內管體133的連接空間134內可設置至少一抽氣管線171、至少一進氣管線173、至少一非反應氣體輸送管線175、一加熱器177及/或一溫度感測單元179,如圖2及圖3所示。The connecting
抽氣管線171流體連接真空腔體11的反應空間12,並用以抽出反應空間12內的氣體,使得反應空間12為真空狀態,以進行原子層沉積製程。具體而言抽氣管線171可連接一幫浦,並透過幫浦抽出反應空間12內的氣體。The
進氣管線173流體連接真空腔體11的反應空間12,並用以將一前驅物及/或一非反應氣體輸送至反應空間12,其中非反應氣體可以是氮氣或氬氣等惰性氣體。在實際應用時,進氣管線173可能會將一載送氣體(carrier gas)及前驅物一起輸送到反應空間12內。此外進氣管線173亦可將非反應氣體輸送至反應空間12內,並透過抽氣管線171抽氣,以去除反應空間12內的前驅物。在本新型一實施例中,進氣管線173可連接複數個分枝管線,並分別透過各個分枝管線將不同的前驅物依序輸送至反應空間12內。The
進氣管線173可增大輸送至反應空間12的非反應氣體的流量,並透過非反應氣體吹動反應空間12內的粉末121,使得粉末121受到非反應氣體的帶動,擴散到反應空間12的各個區域。The
在本新型一實施例中,進氣管線173可包括至少一非反應氣體輸送管線175及至少一反應氣體輸送管線。非反應氣體輸送管線175流體連接真空腔體11的反應空間12,並用以將一非反應氣體輸送至反應空間12,而反應氣體輸送管線則用以將前驅物氣體輸送至反應空間12。非反應氣體用以吹動反應空間12內的粉末121,配合驅動單元15驅動真空腔體11轉動,可有效且均勻的翻攪反應空間12內的粉末121,並在各個粉末121的表面沉積厚度均勻的薄膜。反應氣體輸送管線流體連接反應空間12,並用以將前驅物輸送至反應空間12。In an embodiment of the present invention, the
透過驅動單元15經由軸封裝置13驅動真空腔體11轉動,並透過進氣管線173將非反應氣體輸送至反應空間12,雖然可以翻攪反應空間12內的粉末121。但在實際應用時,仍有一定數量的粉末121會沾黏在真空腔體11的內表面或內壁,造成輸送至反應空間12的前驅物無法接觸沾黏在真空腔體11上的粉末121,進而無法在所有的粉末121的表面接形成厚度均勻的薄膜。The
為了解決上述及先前技術面臨的問題,本新型提出在真空腔體11或軸封裝置13上設置一敲擊裝置14,其中敲擊裝置14包括一輪體141及一敲擊單元143,敲擊單元143接觸輪體141。輪體141連接真空腔體11或軸封裝置13,並隨著軸封裝置13及/或真空腔體11轉動,其中輪體141可透過螺絲鎖固在真空腔體11的後壁113或側壁115上,或者是將輪體141套設在軸封裝置13上。In order to solve the above-mentioned and the problems faced by the prior art, the present invention proposes to install a
輪體141的輪面1411上設置至少一凸起部145,如圖4及圖5所示,其中凸起部145可以朝輪體141的徑向外側的方向凸起,並以輪體141的圓心做螺旋狀的傾斜。在本新型一實施例中,輪體141的凸起部145包括一第一表面1451及一第二表面1453,其中第一表面1451及第二表面1453的一側連接輪體141的輪面1411,而第一表面1451及第二表面1453的另一側則彼此連接。第一表面1451及第二表面1453之間的夾角小於90度,第一表面1451與輪面1411之間的夾角大於90度,而第二表面1453與輪面1411之間的夾角則小於90度。At least one raised
敲擊單元143與輪體141相鄰,其中輪體141轉動時敲擊單元143會在輪體141的凸起部145及輪面1411之間位移,並敲擊輪體141的輪面1411或真空腔體11。The
具體而言,敲擊單元143包括一敲擊部1431及一固定部1433,其中敲擊部1431連接固定部1433,並可相對於固定部1433位移。敲擊部1431可透過至少一導引單元1435連接固定部1433,例如導引單元1435可以是一導軌或導槽,使得敲擊部1431可沿著導引單元1435相對於固定部1433位移。Specifically, the knocking
敲擊單元143的敲擊部1431接觸輪體141的外圍或外表面,輪體141轉動時敲擊部1431會在凸起部145及輪面1411之間反覆位移。具體而言,輪體141隨著真空腔體11及/或軸封裝置13轉動時,敲擊部1431會沿著輪面1411移動至凸起部145的第一表面1451,並隨著第一表面1451相對於固定部1433朝遠離輪體141的方向位移。當敲擊部1431位移至第一表面1451及第二表面1453的交界時,敲擊部1431會由凸起部145朝輪面1411位移,並敲擊輪體141的輪面1411及/或真空腔體11。在本新型一實施例中,敲擊部1431可沿著輪體141的徑向由凸起部145位移至輪面1411,其中輪體141相對於敲擊單元143轉動的過程中,敲擊單元143的敲擊部1431不會接觸凸起部145的第二表面1453。The
在本新型一實施例中,敲擊單元143可設置在輪體141的上半部,當輪體141相對於敲擊單元143轉動時,敲擊部1431會受到重力的作用,由凸起部145朝輪面1411的方向位移或落下。在實際應用時,敲擊部1431可連接一重物,或增加敲擊部1431的重量,以增加敲擊部1431敲擊輪體141及/或真空腔體11的力道。In an embodiment of the present invention, the
在本新型另一實施例中,敲擊部1431可連接一彈性單元1437,例如敲擊部1431可透過彈性單元1437連接固定部1433,並透過彈性單元1437的恢復力帶動敲擊部1431由凸起部145朝輪面1411的方向位移。In another embodiment of the present invention, the
敲擊部1431在敲擊輪體141及/或真空腔體11的側壁115時,真空腔體11會產生震動,使得沾黏的粉末121離開真空腔體11的內表面或內壁,並散落在真空腔體11的反應空間12內。透過驅動單元15、進氣管線173及敲擊裝置14的設置,可有效解決粉末121沾黏在真空腔體11的問題,並有利於在絕大部分的粉末121的表面形成厚度均勻的薄膜。When the
在本新型一實施例中,敲擊部1431上可設置一緩衝部147,如圖6所示,其中敲擊部1431經由緩衝部147敲擊輪體141及/或真空腔體11的側壁115,以避免在敲擊的過程中造成真空腔體11及/或敲擊裝置14的損壞,例如緩衝部147可為橡膠墊。In an embodiment of the present invention, a
本新型的敲擊裝置14與真空腔體11的側壁115或後壁113相鄰,不會干涉拆卸或裝設真空腔體11及/或蓋板117的動線,並有利於簡化防止粉末沾黏在內壁的粉末原子層沉積裝置10的設計及配置。The
此外本新型的敲擊裝置14不需要設置驅動裝置,例如馬達,只需要將輪體141設置在真空腔體11或軸封裝置13上,而後透過驅動單元15帶動軸封裝置13及真空腔體11轉動,敲擊部1431便會在凸起部145及輪面1411之間來回位移,並持續敲擊輪體141及/或真空腔體11。In addition, the
防止粉末沾黏在內壁的粉末原子層沉積裝置10的進氣管線173及非反應氣體輸送管線175都用以將非反應氣體輸送至反應空間12,其中進氣管線173輸送的非反應氣體的流量較小,主要用以去除反應空間12內的前驅物,而非反應氣體輸送管線175輸送的非反應氣體的流量較大,主要用以吹動反應空間12內的粉末121。Both the
具體而言,進氣管線173及非反應氣體輸送管線175將非反應氣體輸送至反應空間12的時間點不同,因此在實際應用時可不設置非反應氣體輸送管線175,並調整進氣管線173在不同時間點輸送的非反應氣體的流量。當要去除反應空間12內的前驅物時,可降低進氣管線173輸送至反應空間12的非反應氣體的流量,而要吹動反應空間12內的粉末121時,則增加進氣管線173輸送至反應空間12的非反應氣體的流量。Specifically, the time points at which the
本新型的驅動單元15帶動外管體131及真空腔體11轉動時,內管體133及其內部的抽氣管線171、進氣管線173及/或非反應氣體輸送管線175不會隨著轉動,有利於提高進氣管線173及/或非反應氣體輸送管線175輸送至反應空間12的非反應氣體及/或前驅物的穩定度。When the driving
加熱器177用以加熱連接空間134及內管體133,並加熱內管體133內的抽氣管線171、進氣管線173及/或非反應氣體輸送管線175,以提高抽氣管線171、進氣管線173及/或非反應氣體輸送管線175內的氣體的溫度。溫度感測單元179用以量測加熱器177或連接空間134的溫度,以得知加熱器177的工作狀態。The
內管體133連接反應空間12的一端可設置一過濾單元139,其中內管體133內的抽氣管線171、進氣管線173及/或非反應氣體輸送管線175經由過濾單元139流體連接真空腔體11的反應空間12。One end of the
抽氣管線171經由過濾單元139連體連接反應空間12,可避免抽氣管線171抽出反應空間12內的氣體時,將反應空間12內的粉末121一併抽出,可減少粉末121的損耗。The
在本新型一實施例中,如圖6所示,進氣管線173及/或非反應氣體輸送管線175可由軸封裝置13的內管體133的連接空間134延伸至真空腔體11的反應空間12內,其中延伸至反應空間12的進氣管線173及/或非反應氣體輸送管線175可被定義為一延伸管線172。延伸管線172可穿過過濾單元139,並延伸至反應空間12。此外真空腔體11的內部、外部或周圍可設置一加熱裝置16,其中加熱裝置16鄰近或接觸真空腔體11的側壁115,並用以加熱真空腔體11及反應空間12。In an embodiment of the present invention, as shown in FIG. 6, the
在本新型一實施例中,位於反應空間12內的進氣管線173、非反應氣體輸送管線175及/或延伸管線172,朝真空腔體11的前壁111的方向延伸。在不同實施例中,位於反應空間12內的進氣管線173、非反應氣體輸送管線175及/或延伸管線172亦可朝真空腔體11的側壁115及/或後壁113的方向彎折及延伸。此外延伸管線172可包括至少一出風口1721,其中出風口1721朝向真空腔體的前壁111及/或側壁115。In an embodiment of the present invention, the
在本新型另一實施例中,延伸管線172可持續將非反應氣體輸送至反應空間12,並可調整非反應氣體的流量。具體而言,延伸管線172輸出非反應氣體的模式可包括攪動模式及一般模式,在攪動模式下延伸管線172輸出的非反應氣體的流量較大,並可以輸出的非反應氣體攪動反應空間12內的粉末121。在一般模式下延伸管線172輸出的非反應氣體的流量較小,可能無法攪動反應空間12內的粉末121,但在一般模式下輸出的非反應氣體會在延伸管線172的出風口1721形成正壓,以防止粉末121由出風口1721進入延伸管線172。In another embodiment of the present invention, the
在本新型一實施例中,防止粉末沾黏在內壁的粉末原子層沉積裝置10可包括一承載部191,用以承載驅動單元15、真空腔體11、軸封裝置13及/或敲擊裝置14。例如承載部191連接驅動單元15,真空腔體11透過至少一第一支撐架193連接承載部191,而敲擊裝置14則透過至少一第二支撐架195連接承載部191。In an embodiment of the present invention, the powder atomic
在本新型一實施例中,如圖7所示,軸封裝置13的內管體133可由外管體131的容置空間132延伸至真空腔體11的反應空間12,使得內管體133在反應空間12內形成一凸出管部130。In an embodiment of the present invention, as shown in FIG. 7, the
在實際應用時,敲擊裝置14的輪體141可設置在真空腔體11的後壁113,而敲擊部1431則可由輪體141延伸至真空腔體11的側壁115,使得敲擊部1431可以敲擊輪體141的輪面1411及真空腔體11的側壁115。In practical application, the
以上所述者,僅為本新型之一較佳實施例而已,並非用來限定本新型實施之範圍,即凡依本新型申請專利範圍所述之形狀、構造、特徵及精神所為之均等變化與修飾,均應包括於本新型之申請專利範圍內。The above is only one of the preferred embodiments of the present invention, and is not intended to limit the scope of implementation of the present invention, that is, all the equivalent changes and changes in the shape, structure, characteristics and spirit described in the scope of the patent application of the present invention Modifications should be included in the scope of the patent application for this new model.
10:防止粉末沾黏在內壁的粉末原子層沉積裝置 11:真空腔體 111:前壁 113:後壁 115:側壁 117:蓋板 119:腔體 12:反應空間 121:粉末 13:軸封裝置 130:凸出管部 131:外管體 132:容置空間 133:內管體 134:連接空間 139:過濾單元 14:敲擊裝置 141:輪體 1411:輪面 143:敲擊單元 1431:敲擊部 1433:固定部 1435:導引單元 1437:彈性單元 145:凸起部 1451:第一表面 1453:第二表面 147:緩衝部 15:驅動單元 16:加熱裝置 171:抽氣管線 172:延伸管線 1721:出風口 173:進氣管線 175:非反應氣體輸送管線 177:加熱器 179:溫度感測單元 191:承載部 193:第一支撐架 195:第二支撐架 10: Powder atomic layer deposition device to prevent powder from sticking to the inner wall 11: Vacuum chamber 111: front wall 113: Back Wall 115: sidewall 117: cover 119: Cavity 12: reaction space 121: powder 13: Shaft seal device 130: protruding tube 131: Outer tube body 132: accommodating space 133: inner tube body 134: Connecting Space 139: filter unit 14: Percussion device 141: Wheel Center 1411: wheel noodle 143: Percussion unit 1431: Percussion Department 1433: fixed part 1435: Guidance Unit 1437: Elastic Unit 145: Bulge 1451: first surface 1453: second surface 147: Buffer 15: drive unit 16: heating device 171: Extraction line 172: Extension pipeline 1721: air outlet 173: intake line 175: Non-reactive gas pipeline 177: heater 179: temperature sensing unit 191: Carrying Department 193: The first support frame 195: second support frame
[圖1]為本新型防止粉末沾黏在內壁的粉末原子層沉積裝置一實施例的前側立體示意圖。[Figure 1] is a perspective view of the front side of an embodiment of a new type of powder atomic layer deposition device for preventing powder from sticking to the inner wall.
[圖2]為本新型防止粉末沾黏在內壁的粉末原子層沉積裝置一實施例的剖面示意圖。[Figure 2] is a schematic cross-sectional view of an embodiment of a new type of powder atomic layer deposition device for preventing powder from sticking to the inner wall.
[圖3]為本新型防止粉末沾黏在內壁的粉末原子層沉積裝置的軸封裝置一實施例的剖面示意圖。[Figure 3] is a schematic cross-sectional view of an embodiment of a shaft sealing device of a new type of powder atomic layer deposition device that prevents powder from sticking to the inner wall.
[圖4]為本新型防止粉末沾黏在內壁的粉末原子層沉積裝置一實施例的後側立體示意圖。[Fig. 4] is a perspective view of the back side of an embodiment of a new type of powder atomic layer deposition device for preventing powder from sticking to the inner wall.
[圖5]為本新型防止粉末沾黏在內壁的粉末原子層沉積裝置的敲擊裝置一實施例的側面示意圖。[Figure 5] is a schematic side view of an embodiment of a knocking device of a new type of powder atomic layer deposition device for preventing powder from sticking to the inner wall.
[圖6]為本新型防止粉末沾黏在內壁的粉末原子層沉積裝置又一實施例的剖面示意圖。[Figure 6] is a schematic cross-sectional view of another embodiment of the new type of powder atomic layer deposition device for preventing powder from sticking to the inner wall.
[圖7]為本新型防止粉末沾黏在內壁的粉末原子層沉積裝置又一實施例的剖面示意圖。[Figure 7] is a schematic cross-sectional view of another embodiment of the new powder atomic layer deposition device for preventing powder from sticking to the inner wall.
10:防止粉末沾黏在內壁的粉末原子層沉積裝置 10: Powder atomic layer deposition device to prevent powder from sticking to the inner wall
11:真空腔體 11: Vacuum chamber
117:蓋板 117: cover
119:腔體 119: Cavity
13:軸封裝置 13: Shaft seal device
14:敲擊裝置 14: Percussion device
141:輪體 141: Wheel Center
143:敲擊單元 143: Percussion unit
1431:敲擊部 1431: Percussion Department
1433:固定部 1433: fixed part
1435:導引單元 1435: Guidance Unit
1437:彈性單元 1437: Elastic Unit
15:驅動單元 15: drive unit
191:承載部 191: Carrying Department
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW110204643U TWM614877U (en) | 2021-04-26 | 2021-04-26 | Powder atomic layer deposition device for preventing powder from sticking to inner wall |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW110204643U TWM614877U (en) | 2021-04-26 | 2021-04-26 | Powder atomic layer deposition device for preventing powder from sticking to inner wall |
Publications (1)
Publication Number | Publication Date |
---|---|
TWM614877U true TWM614877U (en) | 2021-07-21 |
Family
ID=77912299
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW110204643U TWM614877U (en) | 2021-04-26 | 2021-04-26 | Powder atomic layer deposition device for preventing powder from sticking to inner wall |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWM614877U (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI771124B (en) * | 2021-07-26 | 2022-07-11 | 天虹科技股份有限公司 | Atomic layer deposition equipment with down-blowing pipeline |
-
2021
- 2021-04-26 TW TW110204643U patent/TWM614877U/en unknown
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI771124B (en) * | 2021-07-26 | 2022-07-11 | 天虹科技股份有限公司 | Atomic layer deposition equipment with down-blowing pipeline |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI729945B (en) | Atomic layer deposition apparatus for coating on fine powders | |
TWI759935B (en) | Powder atomic layer deposition device for blowing powders | |
TWI772913B (en) | Atomic layer deposition apparatus for coating particles | |
TWI729944B (en) | Powder atomic layer deposition apparatus | |
CN215251163U (en) | Powder atomic layer deposition machine table with vibration device | |
TWM614877U (en) | Powder atomic layer deposition device for preventing powder from sticking to inner wall | |
TWM610395U (en) | Powder atomic layer deposition device for preventing powder sticking | |
TWM617306U (en) | Powder atomic layer deposition machine with vibration device | |
TWM615615U (en) | Powder atomic layer deposition device with percussion unit | |
CN215251162U (en) | Powder atomic layer deposition device with knocking unit | |
TWI777522B (en) | Powder atomic layer deposition device for preventing powders from sticking to inner wall | |
CN216192694U (en) | Powder atomic layer deposition equipment capable of preventing powder from being sticky | |
CN214736075U (en) | Powder atomic layer deposition device for preventing powder from being sticky | |
TWM610491U (en) | Atomic layer deposition device capable of blowing powder | |
TWI758170B (en) | Powder atomic layer deposition device with vibration unit | |
TWI784497B (en) | Atomic layer deposition device with knocking device | |
CN215251161U (en) | Powder atomic layer deposition device for preventing powder from being adhered to inner wall | |
TWI771124B (en) | Atomic layer deposition equipment with down-blowing pipeline | |
CN114752919B (en) | Powder atomic layer deposition device for preventing powder from sticking | |
TWI773543B (en) | Powder atomic layer deposition machine for reducing powder adhesion | |
TWI750962B (en) | Powder atomic layer deposition apparatus for preventing powders from sticking to filter unit | |
CN112695296B (en) | Atomic layer deposition device for particles | |
TWI775543B (en) | Powder atomic layer deposition equipment with quick release function | |
CN115247256A (en) | Powder atomic layer deposition device capable of preventing inner wall from being sticky | |
CN215887223U (en) | Atomic layer deposition apparatus for blowing powder |