TWM609258U - Heat sink for semiconductor device - Google Patents
Heat sink for semiconductor device Download PDFInfo
- Publication number
- TWM609258U TWM609258U TW109216581U TW109216581U TWM609258U TW M609258 U TWM609258 U TW M609258U TW 109216581 U TW109216581 U TW 109216581U TW 109216581 U TW109216581 U TW 109216581U TW M609258 U TWM609258 U TW M609258U
- Authority
- TW
- Taiwan
- Prior art keywords
- heat transfer
- ultrasonic
- heat
- ultrasonic welding
- heat sink
- Prior art date
Links
Images
Landscapes
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
Abstract
Description
本揭示內容係關於用於半導體元件的散熱器。This disclosure relates to heat sinks for semiconductor devices.
此處的陳述僅提供與本揭示有關的背景信息,而不必然地構成現有技術。The statements here only provide background information related to the present disclosure, and do not necessarily constitute prior art.
近年來,電子元件的散熱漸漸成為重要的問題。相較於傳統的幫浦、壓縮機等大型機件,電子元件或電子構裝的散熱由於體積之限制,需要在小範圍達到好的散熱以及均溫效果,並且需考量設置散熱元件所產生的成本不能太高,因此實際上是頗具挑戰性的散熱領域議題。In recent years, the heat dissipation of electronic components has gradually become an important issue. Compared with traditional pumps, compressors and other large parts, the heat dissipation of electronic components or electronic packages requires a small area to achieve good heat dissipation and temperature uniformity due to the limitation of volume, and it is necessary to consider the effects of heat dissipation components. The cost cannot be too high, so it is actually quite a challenging issue in the field of heat dissipation.
隨著半導體產業最小線寬製程精度不斷提升,電子元件尺寸更是進一步縮小,但其發熱量和單位面積熱密度愈趨增大。為了使電子元件的運作時維持在許可的工作溫度,常見的做法是在電子元件上裝設各種類型的散熱器(例如,散熱片、均溫板、水冷散熱裝置等)。目前所知的裝設結構大多是透過導熱膠作為散熱器和電子元件之間的固定和熱傳導媒介,藉由導熱膠之可塑性高的性質以提升熱接觸面的接合品質。With the continuous improvement of the precision of the minimum line width process in the semiconductor industry, the size of electronic components is further reduced, but the heat generation and heat density per unit area are increasing. In order to maintain the operating temperature of the electronic components, it is common practice to install various types of heat sinks (for example, heat sinks, temperature equalizing plates, water cooling devices, etc.) on the electronic components. Most of the currently known mounting structures use thermally conductive glue as a fixing and heat transfer medium between the heat sink and the electronic component, and the high plasticity of the thermally conductive glue improves the bonding quality of the thermal contact surface.
然而,上述散熱方式所使用的導熱膠之熱傳導係數相較於導熱性較佳的金屬(例如,金、鋁、銅等)仍有一個數量級以上的差距,且在前述電子元件逐漸縮小的趨勢下也將漸漸不足以應付如此高密度且大量的熱能來源。因此,有必要提出進一步提升散熱效果的結構和方法。However, the thermal conductivity of the thermal conductive glue used in the above heat dissipation method is still an order of magnitude difference compared to metals with better thermal conductivity (for example, gold, aluminum, copper, etc.), and the aforementioned electronic components are gradually shrinking. It will gradually be insufficient to cope with such a high density and large amount of heat energy sources. Therefore, it is necessary to propose a structure and method to further improve the heat dissipation effect.
有鑑於此,本揭示的一些實施方式揭露了一種用於半導體元件的散熱器。散熱器包括,超音波接收面、超音波熔接面、多個側面、以及至少一散熱腔體。超音波熔接面相對於超音波接收面設置。超音波熔接面上設置有多個熱傳凸塊。多個側面連接超音波接收面和超音波熔接面。至少一散熱腔體,位於超音波接收面和超音波熔接面之間,並由超音波接收面、超音波熔接面和側面所包覆。In view of this, some embodiments of the present disclosure disclose a heat sink for semiconductor devices. The radiator includes an ultrasonic receiving surface, an ultrasonic welding surface, a plurality of side surfaces, and at least one heat dissipation cavity. The ultrasonic welding surface is arranged relative to the ultrasonic receiving surface. A plurality of heat transfer bumps are arranged on the ultrasonic welding surface. The multiple side surfaces are connected to the ultrasonic receiving surface and the ultrasonic welding surface. At least one heat dissipation cavity is located between the ultrasonic receiving surface and the ultrasonic welding surface, and is covered by the ultrasonic receiving surface, the ultrasonic welding surface and the side surface.
於本揭示的一或多個實施方式中,超音波接收面包括凹陷面、第一凸起面、第二凸起面以及兩個連接面。凹陷面、第一凸起面和第二凸起面的平面延伸方向彼此平行。凹陷面位於第一凸起面和第二凸起面之間並藉由連接面與第一凸起面和第二凸起面連接。In one or more embodiments of the present disclosure, the ultrasonic receiving surface includes a concave surface, a first convex surface, a second convex surface, and two connecting surfaces. The plane extending directions of the concave surface, the first convex surface and the second convex surface are parallel to each other. The concave surface is located between the first convex surface and the second convex surface and is connected to the first convex surface and the second convex surface through the connecting surface.
於本揭示的一或多個實施方式中,散熱腔體內包括水冷管路,水冷管路的入口和出口設置在其中一個側面上。In one or more embodiments of the present disclosure, a water-cooled pipe is included in the heat dissipation cavity, and the inlet and the outlet of the water-cooled pipe are arranged on one of the side surfaces.
於本揭示的一或多個實施方式中,散熱腔體內更包括多個散熱鰭片,散熱鰭片的兩端分別連接超音波接收面和超音波熔接面。In one or more embodiments of the present disclosure, the heat dissipation cavity further includes a plurality of heat dissipation fins, and the two ends of the heat dissipation fins are respectively connected to the ultrasonic receiving surface and the ultrasonic welding surface.
於本揭示的一或多個實施方式中,散熱鰭片分別接觸該水冷管路。In one or more embodiments of the present disclosure, the heat dissipation fins respectively contact the water-cooled pipeline.
於本揭示的一或多個實施方式中,熱傳凸塊至少包括第一類熱傳凸塊和第二類熱傳凸塊。第一類熱傳凸塊相較於超音波熔接面具有第一高度。第二類熱傳凸塊相較於超音波熔接面具有第二高度。第一高度大於該第二高度。In one or more embodiments of the present disclosure, the heat transfer bumps include at least a first type heat transfer bump and a second type heat transfer bump. Compared with the ultrasonic welding surface, the first type of heat transfer bump has a first height. The second type of heat transfer bump has a second height compared to the ultrasonic welding surface. The first height is greater than the second height.
本揭示的一些實施方式揭露了一種半導體元件與散熱器半導體元件的接合方法,包括將超音波產生器接觸散熱器的超音波接收面並於超音波接收面上產生超音波震動。超音波震動經由散熱器的超音波接收面、多個側面以及至少一散熱腔體傳遞至散熱器的超音波熔接面上的多個熱傳凸塊。這些熱傳凸塊傳遞超音波震動至半導體元件的至少一熱傳墊上,並使得熱傳凸塊與熱傳墊產生鍵合。其中超音波熔接面相對於超音波接收面設置。側面連接超音波接收面和超音波熔接面。散熱腔體位於超音波接收面和超音波熔接面之間,並由超音波接收面、超音波熔接面和側面所包覆。Some embodiments of the present disclosure disclose a method for joining a semiconductor element and a semiconductor element of a heat sink, which includes contacting an ultrasonic generator with an ultrasonic receiving surface of the heat sink and generating ultrasonic vibration on the ultrasonic receiving surface. The ultrasonic vibration is transmitted to the plurality of heat transfer bumps on the ultrasonic welding surface of the heat sink via the ultrasonic receiving surface, multiple side surfaces and at least one heat dissipation cavity of the heat sink. These heat transfer bumps transfer ultrasonic vibration to at least one heat transfer pad of the semiconductor device, and make the heat transfer bump and the heat transfer pad bond. The ultrasonic welding surface is set relative to the ultrasonic receiving surface. The side connects the ultrasonic receiving surface and the ultrasonic welding surface. The heat dissipation cavity is located between the ultrasonic receiving surface and the ultrasonic welding surface, and is covered by the ultrasonic receiving surface, the ultrasonic welding surface and the side surface.
於本揭示的一或多個實施方式中,超音波產生器係接觸超音波接收面的凹陷面。凹陷面位於超音波接收面的第一凸起面和第二凸起面之間。凹陷面、第一凸起面和第二凸起面的平面延伸方向彼此平行。凹陷面位於第一凸起面和第二凸起面之間並藉由兩個連接面與第一凸起面和第二凸起面連接。In one or more embodiments of the present disclosure, the ultrasonic generator is in contact with the concave surface of the ultrasonic receiving surface. The concave surface is located between the first convex surface and the second convex surface of the ultrasonic receiving surface. The plane extending directions of the concave surface, the first convex surface and the second convex surface are parallel to each other. The concave surface is located between the first convex surface and the second convex surface and is connected to the first convex surface and the second convex surface by two connecting surfaces.
於本揭示的一或多個實施方式中,熱傳凸塊分別傳遞超音波震動至半導體元件的熱傳墊上,並使得熱傳凸塊與熱傳墊產生鍵合的步驟係包括:自熱傳凸塊的第一類熱傳凸塊傳遞超音波震動至熱傳墊,使得第一類熱傳凸塊與熱傳墊產生鍵合;以及施加壓力使得熱傳凸塊中的第二類熱傳凸塊接觸並傳遞超音波震動至熱傳墊,使得第二類熱傳凸塊與熱傳墊產生鍵合。其中第一類熱傳凸塊相較於超音波熔接面具有第一高度。第二類熱傳凸塊相較於超音波熔接面具有第二高度。第一高度大於該第二高度。In one or more embodiments of the present disclosure, the heat transfer bumps respectively transfer ultrasonic vibrations to the heat transfer pads of the semiconductor device, and the step of bonding the heat transfer bumps and the heat transfer pads includes: self-heat transfer The first type of heat transfer bump of the bump transfers ultrasonic vibration to the heat transfer pad, so that the first type of heat transfer bump and the heat transfer pad are bonded; and pressure is applied to make the second type of heat transfer in the heat transfer bump The bump contacts and transmits the ultrasonic vibration to the heat transfer pad, so that the second type of heat transfer bump and the heat transfer pad are bonded. The first type of heat transfer bump has a first height compared to the ultrasonic welding surface. The second type of heat transfer bump has a second height compared to the ultrasonic welding surface. The first height is greater than the second height.
本揭示藉由散熱器的超音波接收面、超音波熔接面以及多個熱傳凸塊的結構設置,以較佳的震動傳輸配合超音波或熱音波接合,可在加工過程中避免對半導體元件施以過高溫度,僅以超音波產生的磨擦熱及進一步運用加熱及加壓以讓分別設置在散熱器、半導體元件表面之導熱金屬凸塊表面相互瞬時加熱而熔合,最後產生金屬鍵合,生成金屬層結構以接合散熱器及半導體元件。利用上述方式,可在接合過程中避免高溫以保護被施作接合的半導體元件。甚至,其可視為以金屬層結構取代傳統的導熱膠來接合散熱器及半導體元件,藉以大幅降低散熱器與半導體元件之傳熱路徑上的熱阻,從而提升散熱器對半導體元件的散熱效率。The present disclosure uses the ultrasonic receiving surface, the ultrasonic welding surface and the plurality of heat transfer bumps of the heat sink to be configured with better vibration transmission and ultrasonic or thermosonic bonding, which can avoid damage to semiconductor components during processing. Excessively high temperature, only the frictional heat generated by ultrasonic waves and further application of heating and pressure to make the surfaces of the thermally conductive metal bumps installed on the heat sink and the surface of the semiconductor element instantaneously heat and fuse each other, and finally produce a metal bond. Generate a metal layer structure to join the heat sink and the semiconductor element. With the above method, high temperature can be avoided during the bonding process to protect the semiconductor element to be bonded. Moreover, it can be regarded as a metal layer structure instead of the traditional thermal conductive glue to join the heat sink and the semiconductor element, thereby greatly reducing the thermal resistance of the heat transfer path between the heat sink and the semiconductor element, thereby improving the heat dissipation efficiency of the heat sink to the semiconductor element.
為了讓本揭示的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。In order to make the above-mentioned features and advantages of the present disclosure more comprehensible, the following specific embodiments are described in detail in conjunction with the accompanying drawings.
為使本揭示之敘述更加詳盡與完備,下文針對了本揭示的實施態樣與具體實施例提出了說明性的描述;但這並非實施或運用本揭示具體實施例的唯一形式。以下所揭露的各實施例,在有益的情形下可相互組合或取代,也可在一實施例中附加其他的實施例,而無須進一步的記載或說明。In order to make the description of the present disclosure more detailed and complete, the following provides an illustrative description for the implementation aspects and specific embodiments of the present disclosure; this is not the only way to implement or use the specific embodiments of the present disclosure. The embodiments disclosed below can be combined or substituted with each other under beneficial circumstances, and other embodiments can also be added to an embodiment without further description or description.
在以下的描述中,將詳細敘述許多特定細節以使讀者能夠充分理解以下的實施例。然而,可在無此等特定細節之情況下實踐本揭示之實施例。在其他情況下,為簡化圖式,熟知的結構與裝置僅示意性地繪示於圖中。In the following description, many specific details will be described in detail so that the reader can fully understand the following embodiments. However, the embodiments of the present disclosure can be practiced without these specific details. In other cases, in order to simplify the drawings, well-known structures and devices are only schematically shown in the drawings.
參考第1A圖至第1D圖。第1A圖繪示本揭示一些實施例中散熱器100的上視立體示意圖。第1B圖繪示一些實施例中散熱器100的下視立體示意圖。第1C圖繪示本揭示一些實施例中散熱器100沿第1A圖中線段A-A’的側剖面示意圖。第1D圖繪示本揭示一些實施例中散熱器100沿第1A圖中線段B-B’的側剖面示意圖。本揭示的實施例提供一種用於半導體元件的散熱器100。散熱器100包括超音波接收面102、超音波熔接面104、多個側面106以及至少一個散熱腔體108。超音波熔接面104相對於超音波接收面102而設置。超音波熔接面104上設置有多個熱傳凸塊1042。側面106連接超音波接收面102和超音波熔接面104。散熱腔體108位於超音波接收面102和超音波熔接面104之間,並由超音波接收面102、超音波熔接面104和側面106所包覆。多個獨立的熱傳凸塊1042之結構可相較於整面一體的熱傳金屬層之結構在接合製程的能量消耗和溫度要求上都節省/減少許多。由於溫度較低(約攝氏100至150度),熱傳凸塊1042於後續製程中的金屬接合面雜質也較少,提升接面品質。散熱器100主要可以由銅所製成,但不以此為限。Refer to Figure 1A to Figure 1D. FIG. 1A is a top three-dimensional schematic diagram of the
在一些實施例中,熱傳凸塊1042(沿X-Y方向)的側向長度可以是25微米左右,(沿Z方向)的厚度可以是2微米左右,以達到較佳超音波熔接製程效果。但前述尺寸選擇並不用以限制本揭示的保護範圍。此外,第1B圖所示的尺寸比例僅為示意圖,並非用以限制超音波熔接面104和熱傳凸塊1042之間的真實尺寸比例。In some embodiments, the lateral length of the heat transfer bump 1042 (along the X-Y direction) may be about 25 microns, and the thickness (along the Z direction) may be about 2 microns to achieve a better ultrasonic welding process effect. However, the aforementioned size selection is not used to limit the protection scope of the present disclosure. In addition, the size ratio shown in FIG. 1B is only a schematic diagram, and is not intended to limit the actual size ratio between the
參考第1A圖。在一些實施例中,超音波接收面102包括凹陷面1022、第一凸起面1024、第二凸起面1026以及兩個連接面1028。第一凸起面1024和第二凸起面1026的平面延伸方向彼此平行(例如,第1A圖中的X-Y方向)。凹陷面1022位於第一凸起面1024和第二凸起面1026之間並藉由連接面1028與第一凸起面1024和第二凸起面1026連接。凹陷面1022在Z方向的高度小於第一凸起面1024和第二凸起面1026。Refer to Figure 1A. In some embodiments, the
散熱器100更包括提供散熱腔體108連通外部的管路(圖略)的入口1082A和出口1082B。在一些實施例中,當散熱腔體108為兩個時,不同散熱腔體108的入口1082A和出口1082B可設置在散熱器100的同一個側面106上。參考第1A圖、第1C圖和第1D圖。詳細而言,靠近線段B-B’的B’處並沿著Y軸延伸的散熱腔體108具有位於圖中側面106上的入口1082A,其液體流向為自正y方向流入,並向負y方向從出口1082B(第1A圖中以虛線繪示)流出。此外,對於靠近線段B-B’的B處並沿著Y軸延伸的另一散熱腔體108(第1A圖非剖面圖,未顯露其位置,故省去標號),其液體流向為自負y方向經入口1802A(第1A圖中以虛線繪示)流入,並向正y方向從位於側面106上的出口1082B流出。藉由上述具備不同液體流向的兩個散熱腔體108相鄰所構成的散熱器100,可使得散熱器100各處的溫度更加平均分布。The
參考第1C圖和第1D圖。散熱腔體108內亦可包括至少一個散熱鰭片1084,以進一步增加散熱效率。在一些實施例中,散熱鰭片1084的兩端1084A、1084B分別連接超音波接收面102和超音波熔接面104,以幫助超音波震動的傳遞以及熱傳導。Refer to Figure 1C and Figure 1D. The
參考第2圖。第2圖繪示本揭示一些實施例中散熱器100A的側剖面示意圖,其視角同第1C圖。在一些實施例中,熱傳凸塊1042至少包括第一類熱傳凸塊1042A和第二類熱傳凸塊1042B。第一類熱傳凸塊1042A相較於超音波熔接面104具有第一高度H1。第二類熱傳凸塊1042B相較於超音波熔接面104具有第二高度H2。第一高度H1大於第二高度H2。此外,在一些實施例中,第二類熱傳凸塊1042B相較於第一類熱傳凸塊1042A設置在距離超音波熔接面104的幾何中心C較遠處,但不以此為限。在其它實施例中,亦可設置第二類熱傳凸塊1042B在內而第一類熱傳凸塊1042A在外包圍第二類熱傳凸塊1042B的結構。在另一些實施例中,可以包括第三類熱傳凸塊1042C,即熱傳凸塊1042超過兩種不同高度的情況。在第2圖所示的實施利中,第三類熱傳凸塊1042C具有高度介於第一高度H1和第二高度H2之間的第三高度H3。Refer to Figure 2. FIG. 2 is a schematic side sectional view of the
由於超音波熔接製程中些許的高度差可產生先後不同時間接合的現象,因此上述三種高度彼此的高度差可以為微米等級,操作洽當時甚至可以是0.1微米的數量級。當然,本揭示並不排除高度差較大的情況,例如數十微米以上的高度差。應注意,這些高度差並非由製程誤差或公差所形成,乃是特意為之的區域性高度差區別。也就是說,同一高度會集中在同一區域。上述結構可使得超音波熔接由少部分面積開始擴張,而非一整面同時熔接,因此可達到降低熔接時功率及溫度之功效,從而節省製程成本及降低散熱對象半導體元件(後詳述)內部電路元件受損的機率。Since the slight height difference in the ultrasonic welding process can produce the phenomenon of joining at different times, the height difference between the above three heights can be on the order of micrometers, and can even be on the order of 0.1 micrometers at the time of operation. Of course, the present disclosure does not exclude the case where the height difference is large, for example, a height difference of more than tens of micrometers. It should be noted that these height differences are not caused by process errors or tolerances, but are deliberate regional height differences. In other words, the same height will be concentrated in the same area. The above structure allows the ultrasonic welding to expand from a small part of the area instead of the entire surface at the same time, so it can achieve the effect of reducing the power and temperature during welding, thereby saving process costs and reducing the internal heat dissipation of semiconductor components (detailed later) The probability of damage to circuit components.
參考第3A至4B圖。第3A圖繪示本揭示一些實施例中在散熱器100上產生超音波震動之沿線段A-A’的側剖面示意圖。第3B圖繪示本揭示一些實施例中在散熱器100上產生超音波震動之沿線段B-B’的側剖面示意圖。第4A圖繪示本揭示一些實施例中接合散熱器100與半導體元件200之中間步驟的側剖面示意圖。第4B圖繪示本揭示一些實施例中接合散熱器100與半導體元件200後的側剖面示意圖。本揭示一些實施例揭露一種半導體元件200與散熱器100的接合方法。此方法為將超音波產生器S接觸散熱器100的超音波接收面102並於超音波接收面102上產生超音波震動。此超音波震動經由散熱器100的超音波接收面102、多個側面106以及至少一散熱腔體108傳遞至散熱器100的超音波熔接面104上的多個熱傳凸塊1042(可參考第3A圖至第4B圖中的箭頭指向)。詳細而言,超音波產生器S接觸凹陷面1022,超音波震動經由凹陷面1022傳遞至第一凸起面1024和第二凸起面1026,並經由散熱腔體108或側面106傳遞至超音波熔接面104以及熱傳凸塊1042。這些熱傳凸塊1042傳遞超音波震動至半導體元件200的熱傳墊210上,並使得熱傳凸塊1042與熱傳墊210產生鍵合,並形成單一金屬層結構300。Refer to Figures 3A to 4B. FIG. 3A is a schematic side cross-sectional view of the ultrasonic vibration generated on the
如同上開其它實施例所述,在此方法的應用中,超音波熔接面104相對於超音波接收面102設置。側面106連接超音波熔接面104和超音波熔接面104。散熱腔體108位於超音波接收面102和超音波熔接面104之間,並由超音波接收面102、超音波熔接面104和側面106所包覆。其它結構特徵如凹陷面1022、第一凸起面1024和第二凸起面1026亦可適用於此處提及的方法。多個獨立的熱傳凸塊1042可相較於整面一體連續的熱傳金屬層之實施態樣在接合的能量消耗和溫度要求上都節省/減少許多。As described in other embodiments above, in the application of this method, the
在一些實施例中,在進行前述超音波接合的同時或之前可對散熱器100進行加熱(即熱音波),使得熱傳凸塊1042更易於與熱傳墊210產生鍵合。加熱的溫度範圍大約為攝氏100-150度。此溫度範圍係由於採用多點分別產生鍵合的實施態樣而能夠有效地降低鍵合溫度,其可更好地保護半導體元件200。在一些實施例中,可先加溫、再施加壓力使得熱傳凸塊1042接觸熱傳墊210。接著進行短暫的超音波震動以使熱傳凸塊1042和熱傳墊210產生鍵合。In some embodiments, the
在一些實施例中,熱傳凸塊1042的材料包括金和鎳,鎳接觸超音波接收面102。熱傳墊210的材料亦包括金和鎳,且前述鍵合係產生於熱傳凸塊1042的金與熱傳墊210的金之接觸界面,此設置得以在超音波或熱音波接合時相較於其他本揭示不特意排除的材料組合(例如,熱傳凸塊1042和熱傳墊210其中之一為鋁和鎳的組合,另一為金和鎳的組合)達到更好的鍵合效果。在前述異質接面(金對上鋁)的態樣中,由於金和鋁的擴散速率差異,兩者在產生鍵合時容易產生柯爾達孔洞(Kirkendall voids),這類孔洞易聚集成裂痕,降低熱傳品質,因而減低了鍵合後散熱器100對半導體元件200的散熱效果。In some embodiments, the material of the
在前述實施例中,熱音波接合的頻率大於16千赫茲,可為40千赫茲至120千赫茲,但不以此為限。此外,若前述熱傳凸塊1042的鎳係以鎳薄膜的形式形成於超音波熔接面104上,則可進一步協助超音波功率更好地傳遞至熱傳凸塊1042和熱傳墊210的接合處,幫助產生鍵合。In the foregoing embodiment, the frequency of thermosonic bonding is greater than 16 kHz, and can be 40 kHz to 120 kHz, but is not limited to this. In addition, if the nickel of the
配合第2圖並同時參考前述第3A至4B圖。在一些實施例中,前述熱傳凸塊1042分別傳遞超音波震動至半導體元件200的熱傳墊210上,並使得熱傳凸塊1042與熱傳墊210產生鍵合的步驟更包括了以下的詳細階段。首先,自熱傳凸塊1042的第一類熱傳凸塊1042A傳遞超音波震動至熱傳墊210,使得第一類熱傳凸塊1042A與熱傳墊210產生鍵合。接著,施加壓力使得熱傳凸塊1042中的第二類熱傳凸塊1042B接觸並傳遞超音波震動至熱傳墊210,使得第二類熱傳凸塊1042B與熱傳墊210產生鍵合。上開其它實施例中關於第一類熱傳凸塊1042A之第一高度H1大於第二類熱傳凸塊1042B之第二高度H2的特徵亦為此處實施例所採用。當然,第三類熱傳凸塊1042C的特徵亦可為此處的實施例所採用。Cooperate with Figure 2 and refer to Figures 3A to 4B above. In some embodiments, the aforementioned heat transfer bumps 1042 respectively transfer ultrasonic vibrations to the
綜上所述,本揭示的實施例提供了一種用於半導體元件的散熱器及半導體元件與散熱器的接合方法。藉由散熱器的超音波接收面、超音波熔接面以及多個熱傳凸塊的結構設置,以較佳的震動傳輸配合超音波或熱音波接合,使得散熱器的導熱金屬直接與半導體晶片上的導熱金屬產生鍵合。此種方式可在加工過程中避免對半導體元件施以過高溫度,僅以超音波產生的磨擦熱及進一步運用加熱及加壓以讓分別設置在散熱器、半導體元件表面之導熱金屬凸塊表面相互瞬時加熱而產生金屬鍵合,生成金屬層結構以接合散熱器及半導體元件。此外,本揭示所提供的實施例替代了習知技術所採用的導熱膠,並提高將半導體元件所產生之熱能傳導至散熱器的效率。In summary, the embodiments of the present disclosure provide a heat sink for a semiconductor element and a method for joining the semiconductor element and the heat sink. With the ultrasonic receiving surface, ultrasonic welding surface and multiple heat transfer bumps of the heat sink, the ultrasonic or thermosonic bonding can be combined with better vibration transmission, so that the heat conductive metal of the heat sink is directly on the semiconductor chip. The thermally conductive metal produces bonding. This method can avoid applying excessively high temperature to the semiconductor element during the processing, and only use the frictional heat generated by ultrasonic waves and further use heating and pressure to make the surface of the thermal conductive metal bumps respectively arranged on the surface of the heat sink and the semiconductor element Mutual instantaneous heating produces metal bonding, forming a metal layer structure to join the heat sink and the semiconductor element. In addition, the embodiments provided by the present disclosure replace the thermally conductive glue used in the prior art, and improve the efficiency of conducting the heat generated by the semiconductor element to the heat sink.
雖然本揭示已以實施例揭露如上,然並非用以限定本揭示,任何熟習此技藝者,在不脫離本揭示之精神和範圍內,當可作各種之更動與潤飾,因此本揭示之保護範圍當視後附之申請專利範圍所界定者為準。Although the present disclosure has been disclosed in the above embodiments, it is not intended to limit the present disclosure. Anyone who is familiar with this technique can make various changes and modifications without departing from the spirit and scope of the present disclosure. Therefore, the protection scope of the present disclosure When the scope of the attached patent application is defined, it shall prevail.
100、100A:散熱器
102:超音波接收面
1022:凹陷面
1024:第一凸起面
1026:第二凸起面
1028:連接面
104:超音波熔接面
1042:熱傳凸塊
1042A:第一類熱傳凸塊
1042B:第二類熱傳凸塊
1042C:第三類熱傳凸塊
106:側面
108:散熱腔體
1082A:入口
1082B:出口
1084:散熱鰭片
1084A、1084B:端
200:半導體元件
210:熱傳墊
300:金屬層結構
S:超音波產生器
A-A’、B-B’:線段
C:幾何中心
H1:第一高度
H2:第二高度
H3:第三高度
100, 100A: radiator
102: Ultrasonic receiving surface
1022: sunken surface
1024: the first raised surface
1026: second raised surface
1028: connecting surface
104: Ultrasonic welding surface
1042:
第1A圖繪示本揭示一些實施例中散熱器的上視立體示意圖。 第1B圖繪示本揭示一些實施例中散熱器的下視立體示意圖。 第1C圖繪示本揭示一些實施例中散熱器的側剖面示意圖。 第1D圖繪示本揭示一些實施例中散熱器的另一方向之側剖面示意圖。 第2圖繪示本揭示一些實施例中散熱器的側剖面示意圖。 第3A圖繪示本揭示一些實施例中在散熱器上產生超音波震動的側剖面示意圖。 第3B圖繪示本揭示一些實施例中在散熱器上產生超音波震動的另一方向之側剖面示意圖。 第4A圖繪示本揭示一些實施例中接合散熱器與半導體元件之中間步驟的側剖面示意圖。 第4B圖繪示本揭示一些實施例中接合散熱器與半導體元件後的側剖面示意圖。 FIG. 1A is a top three-dimensional schematic diagram of the heat sink in some embodiments of the present disclosure. FIG. 1B is a bottom three-dimensional schematic diagram of the heat sink in some embodiments of the present disclosure. FIG. 1C is a schematic side sectional view of the heat sink in some embodiments of the present disclosure. FIG. 1D is a schematic side cross-sectional view of the heat sink in another direction in some embodiments of the present disclosure. FIG. 2 is a schematic side sectional view of the heat sink in some embodiments of the disclosure. FIG. 3A is a schematic side sectional view of ultrasonic vibration generated on the heat sink in some embodiments of the present disclosure. FIG. 3B is a schematic side sectional view of another direction in which ultrasonic vibration is generated on the heat sink in some embodiments of the present disclosure. FIG. 4A is a schematic side sectional view of an intermediate step of bonding the heat sink and the semiconductor device in some embodiments of the present disclosure. FIG. 4B is a schematic side cross-sectional view of the heat sink and the semiconductor device after bonding in some embodiments of the present disclosure.
100:散熱器 100: radiator
1042:熱傳凸塊 1042: Heat transfer bump
108:散熱腔體 108: radiating cavity
1084:散熱鰭片 1084: heat sink fins
1084A、1084B:端 1084A, 1084B: end
S:超音波產生器 S: Ultrasonic generator
B-B’:線段 B-B’: Line segment
Claims (6)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW109216581U TWM609258U (en) | 2020-12-15 | 2020-12-15 | Heat sink for semiconductor device |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW109216581U TWM609258U (en) | 2020-12-15 | 2020-12-15 | Heat sink for semiconductor device |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| TWM609258U true TWM609258U (en) | 2021-03-11 |
Family
ID=76037259
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| TW109216581U TWM609258U (en) | 2020-12-15 | 2020-12-15 | Heat sink for semiconductor device |
Country Status (1)
| Country | Link |
|---|---|
| TW (1) | TWM609258U (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20220336314A1 (en) * | 2021-04-15 | 2022-10-20 | Smarim Global Corp. | Chip module with heat dissipation device and manufacturing method thereof |
-
2020
- 2020-12-15 TW TW109216581U patent/TWM609258U/en unknown
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20220336314A1 (en) * | 2021-04-15 | 2022-10-20 | Smarim Global Corp. | Chip module with heat dissipation device and manufacturing method thereof |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US8266802B2 (en) | Cooling apparatus and method of fabrication thereof with jet impingement structure integrally formed on thermally conductive pin fins | |
| JP5801996B2 (en) | Double-sided cooling power module with power coating | |
| CN107293496B (en) | Chip-scale integrated microfluidic radiating module and preparation method | |
| JP2009540587A (en) | Thermally conductive composite interface, cooling electronic assembly using the same, and method for coupling cooling assembly and heat generating electronic device | |
| US8305755B2 (en) | Power modules, cooling devices and methods thereof | |
| JP2008294284A (en) | Semiconductor device | |
| WO2016173286A1 (en) | Liquid cooling radiator and electronic device | |
| WO2020248905A1 (en) | Wafer-level 3d stacked microchannel heat dissipation structure and manufacturing method therefor | |
| WO2022241846A1 (en) | Lead bonding structure comprising embedded manifold type micro-channel and preparation method for lead bonding structure | |
| CN115206912B (en) | IGBT embedded type micro-channel liquid cooling structure | |
| CN204442897U (en) | A kind of lightweight package alloy liquid cooling radiator structure | |
| WO2024093695A1 (en) | Liquid-cooling heat dissipation module embedded with three-dimensional vapor chamber element | |
| TWM609258U (en) | Heat sink for semiconductor device | |
| WO2006122505A1 (en) | Integrated circuit packaging and method of making the same | |
| TWM610399U (en) | Heat sink structure | |
| US20220346269A1 (en) | Water cooling head with sparse and dense fins | |
| CN221848607U (en) | Cooling structure of automobile motor shell die casting die | |
| CN210040184U (en) | A microchannel water cooling plate | |
| CN213459715U (en) | Heat sink for semiconductor element | |
| CN114582728A (en) | Method for bonding heat sink and semiconductor element and heat sink structure thereof | |
| TWI738588B (en) | Heat sink structure for semiconductor device and method for bonding semiconductor device and heat sink structure | |
| CN115692338A (en) | Structure for radiating bare chip based on cold plate with connecting column | |
| CN213907273U (en) | Heat radiation structure for semiconductor element | |
| TW202407924A (en) | Package assembly | |
| CN113023666B (en) | Encapsulating method for silicon-based flat-plate micro heat pipe |