TWM488724U - Gate driver - Google Patents

Gate driver Download PDF

Info

Publication number
TWM488724U
TWM488724U TW103204295U TW103204295U TWM488724U TW M488724 U TWM488724 U TW M488724U TW 103204295 U TW103204295 U TW 103204295U TW 103204295 U TW103204295 U TW 103204295U TW M488724 U TWM488724 U TW M488724U
Authority
TW
Taiwan
Prior art keywords
switch
control signal
signal
gate driver
circuit
Prior art date
Application number
TW103204295U
Other languages
Chinese (zh)
Inventor
Ying-Chi Chen
Original Assignee
Upi Semiconductor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Upi Semiconductor Corp filed Critical Upi Semiconductor Corp
Priority to TW103204295U priority Critical patent/TWM488724U/en
Publication of TWM488724U publication Critical patent/TWM488724U/en

Links

Landscapes

  • Power Conversion In General (AREA)

Abstract

A gate drive is provided. The gate drive is coupled to a capacitor, a first switch and a phase node. The gate drive includes a comparator, a timing control circuit and a switch circuit. The comparator compares a preset voltage and a phase voltage of the phase node to generate a comparison signal. The switch circuit is coupled to the timing control circuit, the capacitor and a working voltage. The switch circuit enables the working voltage for charging the capacitor via the switch circuit according to the first control signal and the second control signal, and can avoid a voltage between the capacitor over a withstand voltage range.

Description

閘極驅動器Gate driver

本創作是有關於一種閘極驅動技術,且特別是有關於一種閘極驅動器。This creation is related to a gate drive technology, and in particular to a gate driver.

圖1為習知的閘極驅動器的示意圖。請參閱圖1。為了能夠精準地控制電容器C2兩端的電壓不會超過一耐電壓值,閘極驅動器100利用比較器110檢測第一上電軌UR1與第一下電軌LR1的電壓值,並將檢測結果傳送至位準偏移電路120。一旦檢測結果表示超過或低於電壓參考值REF的臨界值範圍時,位準偏移電路120將P型金氧半(P type Metal Oxide Semiconductor,PMOS)電晶體130關閉。1 is a schematic diagram of a conventional gate driver. Please refer to Figure 1. In order to accurately control the voltage across the capacitor C2 not to exceed a withstand voltage value, the gate driver 100 detects the voltage values of the first upper rail UR1 and the first lower rail LR1 by using the comparator 110, and transmits the detection result to The level shift circuit 120. The level shift circuit 120 turns off the P-type Pseudo Oxide Semiconductor (PMOS) transistor 130 once the detection result indicates a threshold value range that exceeds or falls below the voltage reference value REF.

然而,閘極驅動器100在控制第一開關140與第二開關150的切換過程時,第一開關140與第二開關150會有一段短暫時間都關閉。此短暫時間稱為非交錯時間(non-interactive time),約為2毫微秒(ns)。在非交錯時間期間,電感電流IL會流經第二開關150的寄生二極體(parasitic diode),此時若工作電壓VDD透過二極體132以及P型金氧半電晶體130而對電容器C2持續充 電,可能導致電容器C2兩端的電壓超過第一開關140所能承受的耐電壓範圍。換言之,在這麼短的非交錯時間期間內需完成一連串程序(檢測、判斷、控制程序)是困難的。例如:在2毫微秒內,比較器110需要檢測第一上電軌UR1與第一下電軌LR1之間的電壓值,並且位準偏移電路120根據檢測結果決定是否關閉PMOS電晶體130。因此,在實際電路設計有困難,且因電路設計複雜而增加成本。However, when the gate driver 100 controls the switching process of the first switch 140 and the second switch 150, the first switch 140 and the second switch 150 may be turned off for a short period of time. This short time is called non-interactive time and is about 2 nanoseconds (ns). During the non-interlaced time, the inductor current IL flows through the parasitic diode of the second switch 150. At this time, if the operating voltage VDD passes through the diode 132 and the P-type MOS transistor 130, the capacitor C2 Continuous charging Electricity may cause the voltage across capacitor C2 to exceed the withstand voltage range that first switch 140 can withstand. In other words, it is difficult to complete a series of programs (detection, judgment, control procedures) during such a short non-interlaced time period. For example, in 2 nanoseconds, the comparator 110 needs to detect the voltage value between the first upper power rail UR1 and the first lower power rail LR1, and the level shift circuit 120 determines whether to turn off the PMOS transistor 130 according to the detection result. . Therefore, it is difficult to design the actual circuit, and the cost is increased due to the complicated circuit design.

有鑑於此,本創作提出一種閘極驅動器,藉以解決先前技術所述及的問題。In view of this, the present invention proposes a gate driver to solve the problems described in the prior art.

本創作提供一種閘極驅動器,其耦接電容器、第一開關及相位節點。閘極驅動器包括比較器、時序控制電路以及開關電路。比較器耦接相位節點與預設電壓,且比較預設電壓與相位節點的相位電壓,以產生比較信號。時序控制電路耦接比較器且接收輸入控制信號。時序控制電路依據比較信號與輸入控制信號進行時序控制,以產生第一控制信號與第二控制信號。開關電路耦接時序控制電路、電容器與工作電壓,以依據第一控制信號與第二控制信號來使得工作電壓經由開關電路對電容器充電。The present invention provides a gate driver coupled to a capacitor, a first switch, and a phase node. The gate driver includes a comparator, a timing control circuit, and a switching circuit. The comparator couples the phase node with the preset voltage and compares the preset voltage with the phase voltage of the phase node to generate a comparison signal. The timing control circuit is coupled to the comparator and receives the input control signal. The timing control circuit performs timing control according to the comparison signal and the input control signal to generate the first control signal and the second control signal. The switch circuit is coupled to the timing control circuit, the capacitor and the operating voltage to cause the operating voltage to charge the capacitor via the switching circuit according to the first control signal and the second control signal.

於本創作的一實施例中,開關電路包括第一開關元件與第二開關元件。第一開關元件具有第一寄生二極體。第二開關元件具有第二寄生二極體。第一寄生二極體的電流方向與第二寄生二極體的電流方向相反。In an embodiment of the present creation, the switching circuit includes a first switching element and a second switching element. The first switching element has a first parasitic diode. The second switching element has a second parasitic diode. The current direction of the first parasitic diode is opposite to the current direction of the second parasitic diode.

於本創作的一實施例中,預設電壓為參考負電壓。In an embodiment of the present creation, the preset voltage is a reference negative voltage.

於本創作的一實施例中,輸入控制信號為關聯於第一開關的驅動輸入信號。In an embodiment of the present creation, the input control signal is a drive input signal associated with the first switch.

於本創作的一實施例中,閘極驅動器更耦接第二開關。第一開關與第二開關之間具有相位節點,且輸入控制信號為關聯於第二開關的驅動輸入信號。In an embodiment of the present invention, the gate driver is further coupled to the second switch. There is a phase node between the first switch and the second switch, and the input control signal is a drive input signal associated with the second switch.

於本創作的一實施例中,輸入控制信號為用於操作第一開關的驅動信號。In an embodiment of the present creation, the input control signal is a drive signal for operating the first switch.

於本創作的一實施例中,輸入控制信號為用於操作第二開關的驅動信號。In an embodiment of the present creation, the input control signal is a drive signal for operating the second switch.

本創作提供另一種閘極驅動器,包括比較器、時序控制電路以及開關電路。比較器比較預設電壓與相位節點的相位電壓以產生比較信號。相位節點耦接閘極驅動器外部的至少一個III-V族電晶體之開關元件。時序控制電路耦接比較器,接收比較信號,產生第一控制信號與第二控制信號。開關電路耦接時序控制電路,接收第一控制信號與第二控制信號。This creation provides another gate driver, including a comparator, a timing control circuit, and a switching circuit. The comparator compares the preset voltage with the phase voltage of the phase node to generate a comparison signal. The phase node is coupled to the switching element of at least one III-V family transistor external to the gate driver. The timing control circuit is coupled to the comparator, receives the comparison signal, and generates the first control signal and the second control signal. The switch circuit is coupled to the timing control circuit and receives the first control signal and the second control signal.

於本創作的一實施例中,開關電路包括第一開關元件與第二開關元件。第一開關元件具有第一寄生二極體。第二開關元件具有第二寄生二極體。第一寄生二極體的電流方向與第二寄生二極體的電流方向相反。In an embodiment of the present creation, the switching circuit includes a first switching element and a second switching element. The first switching element has a first parasitic diode. The second switching element has a second parasitic diode. The current direction of the first parasitic diode is opposite to the current direction of the second parasitic diode.

基於上述,本創作的閘極驅動器包含比較器、時序控制電路以及開關電路。時序控制電路依據比較信號與輸入控制信號進行時序控制,以產生第一控制信號與第二控制信號。開關電路依據第一控制信號與第二控制信號使得工作電壓經由開關單元對電容器充電。因此本創作能夠藉由控制電容器的充電路徑來避免 因電容器兩端過大的電壓而損壞輸出級內的開關。另一方面,相較於習知技術,本創作的閘極驅動器提供了一種較為簡單的電路設計;閘極驅動器配置在積體電路上時還可減少面積且降低成本。Based on the above, the gate driver of the present invention includes a comparator, a timing control circuit, and a switching circuit. The timing control circuit performs timing control according to the comparison signal and the input control signal to generate the first control signal and the second control signal. The switching circuit causes the operating voltage to charge the capacitor via the switching unit according to the first control signal and the second control signal. Therefore, this creation can be avoided by controlling the charging path of the capacitor. The switch in the output stage is damaged by excessive voltage across the capacitor. On the other hand, compared to the prior art, the gate driver of the present invention provides a relatively simple circuit design; when the gate driver is disposed on the integrated circuit, the area can be reduced and the cost can be reduced.

為讓本創作的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。In order to make the above features and advantages of the present invention more comprehensible, the following embodiments are described in detail with reference to the accompanying drawings.

10‧‧‧第一驅動器電路10‧‧‧First driver circuit

12‧‧‧比較器12‧‧‧ comparator

14‧‧‧位準偏移電路14‧‧‧bit shift circuit

16‧‧‧預驅動電路16‧‧‧Pre-driver circuit

18‧‧‧反相器18‧‧‧Inverter

20‧‧‧第二驅動器電路20‧‧‧Second driver circuit

22‧‧‧比較器22‧‧‧ Comparator

26‧‧‧預驅動電路26‧‧‧Pre-driver circuit

28‧‧‧反相器28‧‧‧Inverter

30‧‧‧比較器30‧‧‧ Comparator

35‧‧‧時序控制電路35‧‧‧Sequence Control Circuit

40‧‧‧開關電路40‧‧‧Switch circuit

50‧‧‧輸出級50‧‧‧Output level

51‧‧‧第一開關51‧‧‧First switch

52‧‧‧第二開關52‧‧‧second switch

60‧‧‧負載60‧‧‧ load

100‧‧‧閘極驅動器100‧‧‧gate driver

110‧‧‧比較器110‧‧‧ comparator

120‧‧‧位準偏移電路120‧‧‧bit shift circuit

130‧‧‧P型金氧半電晶體130‧‧‧P type MOS semi-transistor

132‧‧‧二極體132‧‧‧ diode

140‧‧‧第一開關140‧‧‧First switch

150‧‧‧第二開關150‧‧‧second switch

200‧‧‧閘極驅動器200‧‧ ‧ gate driver

CB、C2‧‧‧電容器CB, C2‧‧ ‧ capacitor

HI‧‧‧驅動輸入信號HI‧‧‧ drive input signal

IL‧‧‧電感電流IL‧‧‧Inductor Current

LI‧‧‧驅動輸入信號LI‧‧‧ drive input signal

LG‧‧‧驅動信號LG‧‧‧ drive signal

LR1‧‧‧第一下部軌LR1‧‧‧first lower rail

LR2‧‧‧第二下部軌LR2‧‧‧Second lower rail

LX‧‧‧相位節點LX‧‧‧ phase node

M1‧‧‧第一開關元件M1‧‧‧ first switching element

M2‧‧‧第二開關元件M2‧‧‧Second switching element

PHASE‧‧‧相位電壓PHASE‧‧‧ phase voltage

REF‧‧‧電壓參考值REF‧‧‧ voltage reference value

SC‧‧‧比較信號SC‧‧‧Comparative signal

T0、T1、T3、T4‧‧‧時間T0, T1, T3, T4‧‧‧ time

T2‧‧‧時間期間During the period of T2‧‧

UG‧‧‧驅動信號UG‧‧‧ drive signal

UR1‧‧‧第一上部軌UR1‧‧‧first upper rail

UR2‧‧‧第二上部軌UR2‧‧‧second upper rail

VC‧‧‧參考負電壓VC‧‧‧ reference negative voltage

VDD‧‧‧工作電壓VDD‧‧‧ working voltage

VG‧‧‧第一控制信號VG‧‧‧First control signal

VG2‧‧‧第二控制信號VG2‧‧‧second control signal

Vin‧‧‧輸入電壓Vin‧‧‧Input voltage

Vout‧‧‧輸出電壓Vout‧‧‧ output voltage

下面的所附圖式是本創作的說明書的一部分,其繪示了本創作的示例實施例,所附圖式是與說明書的描述一起用來說明本創作的原理。The following drawings are a part of the specification of the present invention, which shows an exemplary embodiment of the present invention, which is used together with the description of the specification to explain the principles of the present invention.

圖1為習知的閘極驅動器的示意圖。1 is a schematic diagram of a conventional gate driver.

圖2是依照本創作一實施例的閘極驅動器的電路圖。2 is a circuit diagram of a gate driver in accordance with an embodiment of the present invention.

圖3是依照本創作一實施例的閘極驅動器的波形圖。3 is a waveform diagram of a gate driver in accordance with an embodiment of the present invention.

現在將詳細參考本創作的實施例,並在附圖中說明所述的實施例的實例。另外,在圖式及實施方式中所使用的相同或類似標號的元件/構件是用來代表相同或類似部分。Reference will now be made in detail to the embodiments of the present invention, and in the drawings In addition, the same or similar reference numerals or components used in the drawings and the embodiments are used to represent the same or similar parts.

在下述諸實施例中,當元件被指為「連接」或「耦接」至另一元件時,其可為直接連接或耦接至另一元件,或可能存在介於其間的元件。術語「電路」可表示為至少一元件或多個元件,或者主動地且/或被動地而耦接在一起的元件以提供合適功能。術語「信號」可表示為至少一電流、電壓、負載、溫度、資料或其他信號。此外,應理解,貫穿本說明書以及圖式所指代的信號, 其物理特性可以為電壓或是電流。In the embodiments described below, when an element is referred to as "connected" or "coupled" to another element, it can be directly connected or coupled to the other element, or there may be intervening elements. The term "circuitry" can be used to mean at least one element or elements, or elements that are actively and/or passively coupled together to provide suitable functionality. The term "signal" can be expressed as at least one current, voltage, load, temperature, data, or other signal. In addition, it should be understood that throughout the description and the signals referred to in the drawings, Its physical properties can be voltage or current.

圖2是依照本創作一實施例的閘極驅動器的電路圖。圖3是依照本創作一實施例的閘極驅動器的波形圖。請合併參閱圖2和圖3。在本實施例中,閘極驅動器可應用在直流對直流轉換器(DC-DC converter)的電路中,在其他實施例中,閘極驅動器也可應用在其他驅動電晶體開關元件的電路,本創作並不對此加以限制。上述直流對直流轉換器可以包括脈寬調變(pulse width modulation,PWM)控制電路、閘極驅動器200與輸出級50。閘極驅動器200可單獨實施在積體電路上。在其他實施例中,閘極驅動器200可與輸出級50整合在同一個積體電路封裝體中,此外,閘極驅動器200也可與上述PWM控制電路整合在同一個積體電路中。本實施例對於氮化鎵(Gallium Nitride,GaN)電晶體可能產生負電壓問題,導致電容器兩端的電壓超過氮化鎵電晶體(特別是指第一開關51)所能承受耐電壓範圍而提出一種解決方案。2 is a circuit diagram of a gate driver in accordance with an embodiment of the present invention. 3 is a waveform diagram of a gate driver in accordance with an embodiment of the present invention. Please refer to Figure 2 and Figure 3. In this embodiment, the gate driver can be applied to a circuit of a DC-DC converter. In other embodiments, the gate driver can also be applied to other circuits that drive the transistor switching element. Creation does not limit this. The DC-to-DC converter may include a pulse width modulation (PWM) control circuit, a gate driver 200, and an output stage 50. The gate driver 200 can be implemented separately on the integrated circuit. In other embodiments, the gate driver 200 can be integrated in the same integrated circuit package with the output stage 50. In addition, the gate driver 200 can also be integrated in the same integrated circuit as the PWM control circuit described above. In this embodiment, a gallium nitride (GaN) transistor may generate a negative voltage problem, and the voltage across the capacitor exceeds the range of withstand voltage of the gallium nitride transistor (in particular, the first switch 51). solution.

輸出級50包含第一開關51和第二開關52。第一開關51耦接第二開關52。閘極驅動器200根據驅動輸入信號HI、LI產生驅動信號UG、驅動信號LG,其中驅動信號UG用以控制第一開關51的操作,而驅動輸入信號HI是關聯於第一開關51,驅動信號LG用以控制第二開關52的操作,而驅動輸入信號LI是關聯於第二開關52。在本實施例中,第一開關51和第二開關52為氮化鎵(GaN)電晶體,在其他實施例中,第一開關51和第二開關52也可為高電子移動性電晶體(high electron mobility transistor,HEMT)、氮化鋁鎵(AlGaN)電晶體或其他III-V族電晶體。輸出級50用以對輸入電壓Vin進行直流對直流的轉換,從而直流對直 流轉換器可以產生輸出電壓Vout並輸出至負載60。The output stage 50 includes a first switch 51 and a second switch 52. The first switch 51 is coupled to the second switch 52. The gate driver 200 generates a driving signal UG for controlling the operation of the first switch 51 according to the driving input signals HI, LI, and the driving input signal HI is associated with the first switch 51, the driving signal LG To control the operation of the second switch 52, the drive input signal LI is associated with the second switch 52. In this embodiment, the first switch 51 and the second switch 52 are gallium nitride (GaN) transistors. In other embodiments, the first switch 51 and the second switch 52 may also be high electron mobility transistors ( High electron mobility transistor (HEMT), aluminum gallium nitride (AlGaN) transistor or other III-V family of crystals. The output stage 50 is configured to perform DC-to-DC conversion on the input voltage Vin, thereby directly aligning DC The stream converter can generate an output voltage Vout and output it to the load 60.

閘極驅動器200包括第一驅動器電路10、第二驅動器電路20、比較器30、時序控制電路(timing control circuit)35以及開關電路(switch circuit)40。時序控制電路35耦接第二驅動器電路20與比較器30。開關電路40耦接第一驅動器電路10、第二驅動器電路20、電容器CB、工作電壓VDD、第一上部軌UR1與第二上部軌UR2。The gate driver 200 includes a first driver circuit 10, a second driver circuit 20, a comparator 30, a timing control circuit 35, and a switch circuit 40. The timing control circuit 35 is coupled to the second driver circuit 20 and the comparator 30. The switch circuit 40 is coupled to the first driver circuit 10, the second driver circuit 20, the capacitor CB, the operating voltage VDD, the first upper rail UR1 and the second upper rail UR2.

第一驅動器電路10耦接第一上部軌UR1與第一下部軌LR1,接收驅動輸入信號HI,且第一驅動器電路10的輸出端耦接閘極驅動器200外部的第一開關51的控制端。第二驅動器電路20耦接第二上部軌UR2與第二下部軌LR2,接收驅動輸入信號LI,且第二驅動器電路20的輸出端耦接閘極驅動器200外部的第二開關52的控制端。時序控制電路35耦接比較器30和開關電路40。相位節點LX為第一開關51、第二開關52與第一下部軌LR1的共同連接節點。The first driver circuit 10 is coupled to the first upper rail UR1 and the first lower rail LR1 to receive the driving input signal HI, and the output end of the first driver circuit 10 is coupled to the control end of the first switch 51 outside the gate driver 200. . The second driver circuit 20 is coupled to the second upper rail UR2 and the second lower rail LR2 to receive the driving input signal LI, and the output end of the second driver circuit 20 is coupled to the control terminal of the second switch 52 outside the gate driver 200. The timing control circuit 35 is coupled to the comparator 30 and the switching circuit 40. The phase node LX is a common connection node of the first switch 51, the second switch 52, and the first lower rail LR1.

比較器30比較預設電壓(例如參考負電壓VC)與相位節點LX的相位電壓PHASE以產生比較信號SC。當相位節點LX的相位電壓PHASE低於預設電壓,比較信號SC為第一邏輯狀態。當相位節點LX上的相位電壓PHASE高於參考負電壓VC,比較信號SC為第二邏輯狀態。The comparator 30 compares the preset voltage (for example, the reference negative voltage VC) with the phase voltage PHASE of the phase node LX to generate a comparison signal SC. When the phase voltage PHASE of the phase node LX is lower than the preset voltage, the comparison signal SC is in the first logic state. When the phase voltage PHASE on the phase node LX is higher than the reference negative voltage VC, the comparison signal SC is in the second logic state.

舉例而言,假設當導通第一開關51和第二開關52時,相位節點LX上的電壓值為-0.05伏特;當關閉第一開關51和第二開關52時,相位節點LX上的電壓值為-2.5伏特。為了使比較器30能夠區分第一邏輯狀態和第二邏輯狀態,預設電壓的電壓範圍 的設定可介於-0.1至-0.2伏特之間。For example, assume that when the first switch 51 and the second switch 52 are turned on, the voltage value on the phase node LX is -0.05 volt; when the first switch 51 and the second switch 52 are turned off, the voltage value on the phase node LX It is -2.5 volts. In order to enable the comparator 30 to distinguish between the first logic state and the second logic state, the voltage range of the preset voltage The setting can be between -0.1 and -0.2 volts.

若第一開關51和第二開關52在一段短暫時間都關閉。此短暫時間即為非交錯時間,電感電流IL會流經第二開關52的寄生二極體,此時若工作電壓VDD對電容器CB持續充電,可能導致電容器CB兩端的電壓超過第一開關51所能承受的耐電壓範圍。上述比較信號SC由於可用來區分第一邏輯狀態和第二邏輯狀態,如此一來有利於後續的時序控制電路35進行時序控制,從而避免因電容器CB兩端過大的電壓而損壞輸出級50內的開關。If the first switch 51 and the second switch 52 are turned off for a short period of time. The short time is the non-interlace time, and the inductor current IL flows through the parasitic diode of the second switch 52. If the operating voltage VDD continuously charges the capacitor CB, the voltage across the capacitor CB may exceed the first switch 51. Able to withstand voltage range. The comparison signal SC can be used to distinguish between the first logic state and the second logic state, thereby facilitating subsequent timing control circuit 35 to perform timing control, thereby avoiding damage to the output stage 50 due to excessive voltage across the capacitor CB. switch.

時序控制電路35接收比較信號SC與輸入控制信號,依據比較信號SC與輸入控制信號進行時序控制,以產生第一控制信號VG與第二控制信號VG2。在此實施例,輸入控制信號為關聯於第二開關52的驅動輸入信號LI。在其他實施例中,由於驅動輸入信號HI為驅動輸入信號LI的反相信號,因此輸入控制信號可以為關聯於第一開關51的驅動輸入信號HI。在又一其他實施例中,由於驅動信號LG是驅動輸入信號LI經預驅動電路28處理後的信號,因此輸入控制信號可以為驅動信號LG。在又一其他實施例中,由於驅動信號UG是驅動輸入信號HI經預驅動電路18處理後的信號,因此輸入控制信號可以為驅動信號UG。The timing control circuit 35 receives the comparison signal SC and the input control signal, and performs timing control according to the comparison signal SC and the input control signal to generate the first control signal VG and the second control signal VG2. In this embodiment, the input control signal is a drive input signal LI associated with the second switch 52. In other embodiments, since the drive input signal HI is an inverted signal that drives the input signal LI, the input control signal can be a drive input signal HI associated with the first switch 51. In still other embodiments, since the drive signal LG is a signal that the drive input signal LI is processed by the pre-drive circuit 28, the input control signal may be the drive signal LG. In still other embodiments, since the drive signal UG is a signal that the drive input signal HI is processed by the pre-drive circuit 18, the input control signal may be the drive signal UG.

開關電路40可以依據第一控制信號VG與第二控制信號VG2使得工作電壓VDD經由開關電路40對電容器CB充電。The switching circuit 40 can cause the operating voltage VDD to charge the capacitor CB via the switching circuit 40 according to the first control signal VG and the second control signal VG2.

詳細來說,開關電路40可包括第一開關元件M1與第二開關元件M2。第一開關元件M1與第二開關元件M2可以為金氧半(Metal Oxide Semiconductor,MOS)電晶體。在本實施例中,第一開關元件M1可以為P型金氧半(PMOS)電晶體,第二開關 元件M2可以為N型金氧半(NMOS)電晶體。In detail, the switch circuit 40 may include a first switching element M1 and a second switching element M2. The first switching element M1 and the second switching element M2 may be Metal Oxide Semiconductor (MOS) transistors. In this embodiment, the first switching element M1 may be a P-type MOS transistor, and the second switch Element M2 can be an N-type gold oxide half (NMOS) transistor.

第一開關元件M1的第一端耦接第一上部軌UR1。第一開關元件M1的控制端接收第一控制信號VG。第二開關元件M2的第一端耦接第一開關元件M1的第二端。第二開關元件M2的控制端接收第二控制信號VG2,第二開關元件M2的第二端耦接第二上部軌UR2。第二控制信號VG2為第一控制信號VG的反相信號。第一開關元件M1具有第一寄生二極體,第二開關元件M2具有第二寄生二極體,第一寄生二極體的電流方向與第二寄生二極體的電流方向相反。The first end of the first switching element M1 is coupled to the first upper rail UR1. The control terminal of the first switching element M1 receives the first control signal VG. The first end of the second switching element M2 is coupled to the second end of the first switching element M1. The control end of the second switching element M2 receives the second control signal VG2, and the second end of the second switching element M2 is coupled to the second upper rail UR2. The second control signal VG2 is an inverted signal of the first control signal VG. The first switching element M1 has a first parasitic diode, and the second switching element M2 has a second parasitic diode, the current direction of the first parasitic diode being opposite to the current direction of the second parasitic diode.

當第一開關元件M1與第二開關元件M2導通時,電流通過第一開關元件M1和第二開關元件M2的串接路徑而從第二上部軌UR2流向第一上部軌UR1。When the first switching element M1 and the second switching element M2 are turned on, current flows from the second upper rail UR2 to the first upper rail UR1 through the series path of the first switching element M1 and the second switching element M2.

此外,第一開關元件M1內的寄生二極體與第二開關元件M2內的寄生二極體在串接方向上互為相反。第一開關元件M1內的第一寄生二極體的陰極耦接第一上部軌UR1。第二開關元件M2內的第二寄生二極體的陰極耦接第二上部軌UR2。第一開關元件M1內的第一寄生二極體的陽極耦接第二開關元件M2內的第二寄生二極體的陽極。因此,當第一開關元件M1與第二開關元件M2斷開時,沒有電流通過第一開關元件M1和第二開關元件M2內的寄生二極體從第二上部軌UR2流向第一上部軌UR1,可以避免對電容器CB產生一條充電路徑。Further, the parasitic diodes in the first switching element M1 and the parasitic diodes in the second switching element M2 are opposite to each other in the series direction. The cathode of the first parasitic diode in the first switching element M1 is coupled to the first upper rail UR1. The cathode of the second parasitic diode in the second switching element M2 is coupled to the second upper rail UR2. The anode of the first parasitic diode in the first switching element M1 is coupled to the anode of the second parasitic diode in the second switching element M2. Therefore, when the first switching element M1 and the second switching element M2 are disconnected, no current flows from the second upper rail UR2 to the first upper rail UR1 through the parasitic diodes in the first switching element M1 and the second switching element M2. It is possible to avoid generating a charging path for the capacitor CB.

再者,第一驅動器電路10包括比較器12、位準偏移電路(level shift circuit)14、預驅動電路(pre-driving circuit)16以及反相器18。比較器12接收驅動輸入信號HI,以判別驅動輸入 信號HI的邏輯位準。位準偏移電路14耦接比較器12的輸出。預驅動電路16耦接位準偏移電路14的輸出。反相器18耦接預驅動電路16、電容器CB與第一開關元件M1。反相器18透過位準偏移電路14和預驅動電路16而反應於比較器12的輸出且產生驅動信號UG來控制第一開關51。Furthermore, the first driver circuit 10 includes a comparator 12, a level shift circuit 14, a pre-driving circuit 16, and an inverter 18. The comparator 12 receives the drive input signal HI to discriminate the drive input The logic level of the signal HI. The level shift circuit 14 is coupled to the output of the comparator 12. The pre-driver circuit 16 is coupled to the output of the level shift circuit 14. The inverter 18 is coupled to the pre-drive circuit 16, the capacitor CB, and the first switching element M1. The inverter 18 reacts to the output of the comparator 12 through the level shift circuit 14 and the pre-drive circuit 16 and generates a drive signal UG to control the first switch 51.

第二驅動器電路20包括比較器22、預驅動電路26以及反相器28。第二驅動器電路20中的各個元件的操作與第一驅動器電路10類似,在此不再重複說明。The second driver circuit 20 includes a comparator 22, a pre-driver circuit 26, and an inverter 28. The operation of the respective elements in the second driver circuit 20 is similar to that of the first driver circuit 10, and the description thereof will not be repeated here.

上述驅動輸入信號LI為驅動輸入信號HI的反相信號,因此時序控制電路35在依據比較信號SC的同時可以根據驅動輸入信號HI與驅動輸入信號LI中的任一者來判別位準變化,來產生具有邏輯低位準或邏輯高位準的第一控制信號VG和第二控制信號VG2。第二控制信號VG2為第一控制信號VG的反相信號。The driving input signal LI is an inverted signal for driving the input signal HI. Therefore, the timing control circuit 35 can determine the level change according to any one of the driving input signal HI and the driving input signal LI according to the comparison signal SC. A first control signal VG and a second control signal VG2 having a logic low level or a logic high level are generated. The second control signal VG2 is an inverted signal of the first control signal VG.

圖3是依照本創作一實施例的閘極驅動器的波形圖。請合併參閱圖2和圖3。在時間T0,當驅動輸入信號LI由第二位準(邏輯高位準)轉為第一位準(邏輯低位準)時,時序控制電路35立即或是在數個毫微秒的期間內提供具有邏輯高位準的第一控制信號VG與具有邏輯低位準的第二控制信號VG2來關閉(turn off)第一開關元件M1和第二開關元件M2,使得第一開關元件M1斷開工作電壓VDD與電容器CB之間的一充電路徑,且因為第二開關元件M2的關閉使得第一開關元件M1呈現浮接而且完全地不會導通,因此工作電壓VDD無法透過開關電路40對電容器CB充電。3 is a waveform diagram of a gate driver in accordance with an embodiment of the present invention. Please refer to Figure 2 and Figure 3. At time T0, when the drive input signal LI is switched from the second level (logic high level) to the first level (logic low level), the timing control circuit 35 is provided immediately or for a period of several nanoseconds. The logic high level first control signal VG and the logic low level second control signal VG2 turn off the first switching element M1 and the second switching element M2 such that the first switching element M1 is disconnected from the operating voltage VDD and A charging path between the capacitors CB, and because the second switching element M2 is turned off, causes the first switching element M1 to float and is not turned on at all, the operating voltage VDD cannot charge the capacitor CB through the switching circuit 40.

在時間T1,當驅動輸入信號LI由第一位準(邏輯低位準) 轉為第二位準(邏輯高位準)時,驅動信號UG轉為邏輯低位準且驅動信號LG轉為邏輯高位準之前(時間T1至T3),第一開關51與第二開關52在時間期間T2都關閉。時間期間T2稱為非交錯時間。由於電感電流IL會流經第二開關52的寄生二極體,此時不可對電容器CB充電,以避免電容器CB兩端的電壓超過第一開關51所能承受耐電壓範圍。因此,在本實施例中,時序控制電路35在驅動輸入信號LI由第一位準轉變為第二位準在一預設時間之後,在時間T4時序控制電路35提供第一控制信號VG和第二控制信號VG2來導通第一開關元件M1與第二開關元件M2,從而有效地避免因電容器CB兩端過大的電壓而損壞第一開關51。在對時序控制電路35設計時序控制時,可以根據驅動信號LG由邏輯低位準轉為邏輯高位準的所需時間(時間T1與時間T3的期間)來設計上述預設時間,其中時間T4可以為時間T3或是在時間T3之後。在其他實施例中,時序控制電路35也可依據驅動輸入信號LI由第二位準轉變為第一位準之後的一段預設時間之後再提供上述第一控制信號VG和第二控制信號VG2。At time T1, when the drive input signal LI is from the first level (logic low level) When the second signal level (logic high level) is turned, the driving signal UG is turned to the logic low level and the driving signal LG is turned to the logic high level (time T1 to T3), and the first switch 51 and the second switch 52 are in the time period. T2 is off. The time period T2 is referred to as a non-interlaced time. Since the inductor current IL flows through the parasitic diode of the second switch 52, the capacitor CB cannot be charged at this time to prevent the voltage across the capacitor CB from exceeding the withstand voltage range of the first switch 51. Therefore, in the present embodiment, the timing control circuit 35 provides the first control signal VG and the first timing control circuit 35 at a time T4 after the driving input signal LI is changed from the first level to the second level for a predetermined time. The second control signal VG2 turns on the first switching element M1 and the second switching element M2, thereby effectively damaging the first switch 51 due to an excessive voltage across the capacitor CB. When the timing control is designed for the timing control circuit 35, the preset time may be designed according to the required time (the period of time T1 and time T3) when the driving signal LG is turned from the logic low level to the logic high level, wherein the time T4 may be Time T3 is either after time T3. In other embodiments, the timing control circuit 35 may also provide the first control signal VG and the second control signal VG2 after the preset time after the driving input signal L1 is converted from the second level to the first level.

綜上所述,本創作的閘極驅動器包含比較器、時序控制電路以及開關電路。時序控制電路依據比較信號與輸入控制信號進行時序控制,以產生第一控制信號與第二控制信號。開關電路依據第一控制信號與第二控制信號使得工作電壓經由開關單元對電容器充電。因此本創作能夠藉由控制電容器的充電路徑來避免因電容器兩端過大的電壓而損壞輸出級內的開關。另一方面,相較於習知技術,本創作的閘極驅動器提供了一種較為簡單的電路設計;閘極驅動器配置在積體電路上時還可減少面積且降低成本。In summary, the gate driver of the present invention includes a comparator, a timing control circuit, and a switching circuit. The timing control circuit performs timing control according to the comparison signal and the input control signal to generate the first control signal and the second control signal. The switching circuit causes the operating voltage to charge the capacitor via the switching unit according to the first control signal and the second control signal. Therefore, the present invention can avoid damage to the switches in the output stage due to excessive voltage across the capacitor by controlling the charging path of the capacitor. On the other hand, compared to the prior art, the gate driver of the present invention provides a relatively simple circuit design; when the gate driver is disposed on the integrated circuit, the area can be reduced and the cost can be reduced.

雖然本創作已以實施例揭露如上,然其並非用以限定本創作,任何所屬技術領域中具有通常知識者,在不脫離本創作的精神和範圍內,當可作些許的更動與潤飾,故本創作的保護範圍當視後附的申請專利範圍所界定者為準。Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and any person having ordinary knowledge in the art can make some changes and refinements without departing from the spirit and scope of the present invention. The scope of protection of this creation is subject to the definition of the scope of the patent application.

另外,本創作的任一實施例或申請專利範圍不須達成本創作所揭露的全部目的或優點或特點。此外,摘要部分和標題僅是用來輔助專利文件搜尋之用,並非用來限制本創作的專利範圍。In addition, any embodiment or application of the present invention is not required to achieve all of the objects or advantages or features disclosed in the present disclosure. In addition, the abstract sections and headings are only used to assist in the search for patent documents and are not intended to limit the scope of patents in this creation.

10‧‧‧第一驅動器電路10‧‧‧First driver circuit

12‧‧‧比較器12‧‧‧ comparator

14‧‧‧位準偏移電路14‧‧‧bit shift circuit

16‧‧‧預驅動電路16‧‧‧Pre-driver circuit

18‧‧‧反相器18‧‧‧Inverter

20‧‧‧第二驅動器電路20‧‧‧Second driver circuit

22‧‧‧比較器22‧‧‧ Comparator

26‧‧‧預驅動電路26‧‧‧Pre-driver circuit

28‧‧‧反相器28‧‧‧Inverter

30‧‧‧比較器30‧‧‧ Comparator

35‧‧‧時序控制電路35‧‧‧Sequence Control Circuit

40‧‧‧開關電路40‧‧‧Switch circuit

50‧‧‧輸出級50‧‧‧Output level

51‧‧‧第一開關51‧‧‧First switch

52‧‧‧第二開關52‧‧‧second switch

60‧‧‧負載60‧‧‧ load

200‧‧‧閘極驅動器200‧‧ ‧ gate driver

CB‧‧‧電容器CB‧‧‧ capacitor

HI‧‧‧驅動輸入信號HI‧‧‧ drive input signal

IL‧‧‧電感電流IL‧‧‧Inductor Current

LI‧‧‧驅動輸入信號LI‧‧‧ drive input signal

LG‧‧‧驅動信號LG‧‧‧ drive signal

LR1‧‧‧第一下部軌LR1‧‧‧first lower rail

LR2‧‧‧第二下部軌LR2‧‧‧Second lower rail

LX‧‧‧相位節點LX‧‧‧ phase node

M1‧‧‧第一開關元件M1‧‧‧ first switching element

M2‧‧‧第二開關元件M2‧‧‧Second switching element

PHASE‧‧‧相位電壓PHASE‧‧‧ phase voltage

SC‧‧‧比較信號SC‧‧‧Comparative signal

UG‧‧‧驅動信號UG‧‧‧ drive signal

UR1‧‧‧第一上部軌UR1‧‧‧first upper rail

UR2‧‧‧第二上部軌UR2‧‧‧second upper rail

VC‧‧‧參考負電壓VC‧‧‧ reference negative voltage

VDD‧‧‧工作電壓VDD‧‧‧ working voltage

VG‧‧‧第一控制信號VG‧‧‧First control signal

VG2‧‧‧第二控制信號VG2‧‧‧second control signal

Vin‧‧‧輸入電壓Vin‧‧‧Input voltage

Vout‧‧‧輸出電壓Vout‧‧‧ output voltage

Claims (10)

一種閘極驅動器,耦接一電容器、一第一開關及一相位節點,該閘極驅動器包括:一比較器,耦接該相位節點與一預設電壓,且比較該預設電壓與該相位節點的一相位電壓,以產生一比較信號;一時序控制電路,耦接該比較器且接收一輸入控制信號,該時序控制電路依據該比較信號與該輸入控制信號進行一時序控制,以產生一第一控制信號與一第二控制信號;以及一開關電路,耦接該時序控制電路、該電容器與一工作電壓,以依據該第一控制信號與該第二控制信號來使得該工作電壓經由該開關電路對該電容器充電。 A gate driver coupled to a capacitor, a first switch and a phase node, the gate driver comprising: a comparator coupled to the phase node and a predetermined voltage, and comparing the preset voltage with the phase node a phase voltage to generate a comparison signal; a timing control circuit coupled to the comparator and receiving an input control signal, the timing control circuit performing a timing control on the comparison control signal according to the comparison signal to generate a first a control signal and a second control signal; and a switching circuit coupled to the timing control circuit, the capacitor and an operating voltage to cause the operating voltage to pass the switch according to the first control signal and the second control signal The circuit charges the capacitor. 如申請專利範圍第1項所述的閘極驅動器,其中該開關電路包括一第一開關元件與一第二開關元件,該第一開關元件具有一第一寄生二極體,該第二開關元件具有一第二寄生二極體,該第一寄生二極體的電流方向與該第二寄生二極體的電流方向相反。 The gate driver of claim 1, wherein the switch circuit comprises a first switching element and a second switching element, the first switching element having a first parasitic diode, the second switching element There is a second parasitic diode, and the current direction of the first parasitic diode is opposite to the current direction of the second parasitic diode. 如申請專利範圍第1項所述的閘極驅動器,其中該預設電壓為一參考負電壓。 The gate driver of claim 1, wherein the predetermined voltage is a reference negative voltage. 如申請專利範圍第1項所述的閘極驅動器,其中該輸入控制信號為關聯於該第一開關的一驅動輸入信號。 The gate driver of claim 1, wherein the input control signal is a drive input signal associated with the first switch. 如申請專利範圍第1項所述的閘極驅動器,其中該閘極驅動器更耦接一第二開關,該第一開關與該第二開關之間具有該相位節點,且該輸入控制信號為關聯於該第二開關的一驅動輸入信號。 The gate driver of claim 1, wherein the gate driver is further coupled to a second switch, the phase switch is provided between the first switch and the second switch, and the input control signal is associated A drive input signal to the second switch. 如申請專利範圍第5項所述的閘極驅動器,其中該輸入控制信號為用於操作該第二開關的一驅動信號。 The gate driver of claim 5, wherein the input control signal is a driving signal for operating the second switch. 如申請專利範圍第1項所述的閘極驅動器,其中該輸入控制信號為用於操作該第一開關的一驅動信號。 The gate driver of claim 1, wherein the input control signal is a driving signal for operating the first switch. 一種閘極驅動器,包括:一比較器,比較一預設電壓與一相位節點的一相位電壓以產生一比較信號,該相位節點耦接該閘極驅動器外部的至少一個III-V族電晶體之開關元件;一時序控制電路,耦接該比較器,接收該比較信號,產生一第一控制信號與一第二控制信號;以及一開關電路,耦接該時序控制電路,接收該第一控制信號與該第二控制信號。 A gate driver includes: a comparator that compares a predetermined voltage with a phase voltage of a phase node to generate a comparison signal, the phase node being coupled to at least one III-V transistor external to the gate driver a switching component; a timing control circuit coupled to the comparator, receiving the comparison signal to generate a first control signal and a second control signal; and a switching circuit coupled to the timing control circuit to receive the first control signal And the second control signal. 如申請專利範圍第8項所述的閘極驅動器,其中該開關電路包括一第一開關元件與一第二開關元件,該第一開關元件具有一第一寄生二極體,該第二開關元件具有一第二寄生二極體,該第一寄生二極體的電流方向與該第二寄生二極體的電流方向相反。 The gate driver of claim 8, wherein the switch circuit comprises a first switching element and a second switching element, the first switching element having a first parasitic diode, the second switching element There is a second parasitic diode, and the current direction of the first parasitic diode is opposite to the current direction of the second parasitic diode. 如申請專利範圍第8項所述的閘極驅動器,其中該預設電壓為一參考負電壓。 The gate driver of claim 8, wherein the predetermined voltage is a reference negative voltage.
TW103204295U 2014-03-13 2014-03-13 Gate driver TWM488724U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW103204295U TWM488724U (en) 2014-03-13 2014-03-13 Gate driver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW103204295U TWM488724U (en) 2014-03-13 2014-03-13 Gate driver

Publications (1)

Publication Number Publication Date
TWM488724U true TWM488724U (en) 2014-10-21

Family

ID=52109600

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103204295U TWM488724U (en) 2014-03-13 2014-03-13 Gate driver

Country Status (1)

Country Link
TW (1) TWM488724U (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9660637B1 (en) 2015-12-22 2017-05-23 Delta Electronics, Inc. Driving circuit and driving method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9660637B1 (en) 2015-12-22 2017-05-23 Delta Electronics, Inc. Driving circuit and driving method

Similar Documents

Publication Publication Date Title
US20210328511A1 (en) Circuits and techniques for power regulation
US10468978B2 (en) Balancing techniques and circuits for charge pumps
US10622890B1 (en) Resonant rectified discontinuous switching regulator
JP4528321B2 (en) Switching circuit, circuit, and circuit including switching circuit and drive pulse generation circuit
US8723564B2 (en) Driving circuit
US9859883B2 (en) Gate driver and control method thereof
US8766711B2 (en) Switching circuit with controlled driver circuit
US20220321116A1 (en) Gate drive circuit of switching circuit
US10389240B2 (en) Switching regulator with multiple MOSFET types
US10715027B2 (en) Driver circuit
US9059697B2 (en) Drive circuit and drive method for driving normally-on-type transistor
TWI543519B (en) Bridge rectifier circuit
JP5552691B2 (en) Regulator circuit
JP7518247B2 (en) Output transistor driver circuit, semiconductor device, automobile
US9843258B2 (en) Buck power stage with multiple MOSFET types
JP7378372B2 (en) semiconductor equipment
CN111758210A (en) Rectifier circuit and power supply device
US9270157B2 (en) DC-DC converter and semiconductor integrated circuit
TWM488724U (en) Gate driver
JP2020096444A (en) Switching circuit
Park et al. Improvements in light-load efficiency and operation frequency for low-voltage current-mode integrated boost converters
US8525559B2 (en) Non-overlap circuit
TW201916559A (en) Control circuit for controlling dead-time of direct current to direct current converter
CN203872043U (en) Gate driver
JP7310555B2 (en) power conversion circuit

Legal Events

Date Code Title Description
GD4K Issue of patent certificate for granted utility model filed before june 30, 2004
MK4K Expiration of patent term of a granted utility model