TWM441988U - Combined heat conductive copper clad laminate - Google Patents

Combined heat conductive copper clad laminate Download PDF

Info

Publication number
TWM441988U
TWM441988U TW101211237U TW101211237U TWM441988U TW M441988 U TWM441988 U TW M441988U TW 101211237 U TW101211237 U TW 101211237U TW 101211237 U TW101211237 U TW 101211237U TW M441988 U TWM441988 U TW M441988U
Authority
TW
Taiwan
Prior art keywords
copper foil
layer
thermally conductive
adhesive layer
conductive adhesive
Prior art date
Application number
TW101211237U
Other languages
Chinese (zh)
Inventor
Meng-Hao Chang
Chien-Hui Lee
Original Assignee
Asia Electronic Material Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asia Electronic Material Co filed Critical Asia Electronic Material Co
Priority to TW101211237U priority Critical patent/TWM441988U/en
Publication of TWM441988U publication Critical patent/TWM441988U/en

Links

Description

M441988 五、新型說明: 【新型所屬之技術領域】 本創作係關於-種驗led等散熱產品上的柔性基 板,特別是一種具有高散熱效率的複合式導熱銅箔基板。 【先前技術】 隨著王球環保的意識抬頭,節能省電已成為當今的趨 勢。LED產業是近年來最受矚目的產業之…發展至今, • LED產品已具有節能、省電、高效率、回應時間快、‘命 週期長及不含汞之具有環保效益等優點。然而通常 高功率產品的輪入功率只有約2〇%能被轉換成光,剩下 80%的電能均轉換為熱能。 一般而言,LED發光時所產生的熱能若無法匯出,將 會使LED結φ溫度過高,進而影響產品生命週期、效 率和穩定性。 X " 傳統的散熱材料由於需要考慮絕緣特性,用於黏合銅 #羯層的膠厚度需要做到6〇至12〇um方能達到絕緣要^ 因此產品的總厚度會报大,散熱效果不理想。若採用播雜 有散熱粉體的熱塑性聚酿亞胺(τρ;〇的散熱模型,雖然^ 將產品厚度降低’也能滿足絕緣特性的要求,但由於加工 τρι時需要高溫操作(操作溫度大於35(rc ),因此加 本很高,無法有效量產化。 因此,仍有需要提供一種可簡化加工條件卻仍維持散 熱效率高和絕緣性能之導熱銅箔基板。、 【新型内容】 3 M441988 為了彌補以上不足,本創作提供一種複合式導熱銅箔 基板及其製作方法,該複合式導熱銅箔基板具有產品厚度 薄,散熱效率高及耐擊穿電壓高等優點。 為了解決其技術問題,本創作提供一種複合式導熱銅 箔基板,包括銅箔層;絕緣聚合物層;以及導熱黏著層, 其中,該導熱黏著層包括聚醯亞胺黏著劑和分散於該聚醯 亞胺黏著劑中的散熱粉體,且該絕緣聚合物層固定夹置於 該銅箔層和導熱黏著層之間。 作為本創作的進一步改進,以重量百分比計,該散熱 粉體占該導熱黏著層固含量的10至90%。 於一具體實施例中,本創作之散熱粉體可選自碳化 矽、氮化硼、氧化鋁和氮化鋁所組成群組的至少一種。作 為本創作的進一步改進,該散熱粉體的平均粒徑為〇丨至 5微米。 本創作之銅箔層可為電解銅箔和壓延鋼箱中的一 種使用該銅Ά層可以在複合式導熱銅落基板上形成高散 熱的電路層。一般而言’銅箔層的厚度為12.5至70微米, 較佳為35微米》 本創作所用之絕緣聚合物層的材質可為聚醯亞胺,因 此使用該絕緣聚合物層而成形之複合式導熱銅謂基板的抗 電擊穿和機械強度都有明顯的提升。作為本創作的進一步 改進,絕緣聚合物層的厚度為3至15微米。作為本創作的 進一步改進,本創作之導熱黏著層中的聚醯亞胺黏著劑可 選自二胺單體與二酸酐單體等所組成的聚醯亞胺黏著劑。 M441988 作為本創作的進—步改進,導熱黏著層的厚度為ι〇 至25微米。 /創作之複合式導熱㈣基板復可包括厚度為0.3至 3毫米厚的金屬層,以令該導熱黏著層夾置在該絕緣聚合 物層和該金屬層之間。該金屬層可為,例如紹基板、銅基 板或鐵基板等金屬材質基板。 料本創作的進—步改進,為了轉本創作之複合式 .鲁導熱銅箱基板的特性以應用於LED等散熱產品並能有效 ,制成本本創作之導熱黏著層的厚度較佳為1〇至25微 米,且該絕緣聚合物層的厚度較佳為3至15微米。 本創作複合式導熱銅箔基板之製作方法,係包括下列 步驟: 將絕緣t合物塗佈在銅箱層的表面,並供乾該絕緣聚 合物,以形成絕緣聚合物層,得到一單面銅箔基板; 使用塗佈或轉印法將導熱黏著層形成於該絕緣聚合 鲁物層的表面上,以令該絕緣聚合物層夾置在該導熱黏著層 和銅箔層之間’並使該導熱黏著層處於半聚合半硬化狀 態;以及 固化該導熱黏著層,以形成複合式導熱銅箔基板。 本創作之複合式導熱銅箱基板的製作方法中,在固化 β亥導熱黏著層之前,復可包括將金屬層貼合至該導熱黏著 層的外表面之步驟,以使該導熱黏著層夹置在該絕緣聚合 物層和金屬層之間。 本案創作人發現藉由調整本創作之絕緣聚合物層及 5 M441988 導熱黏著層的厚度,可使本創作之複合式導熱銅箔基板具 有高熱傳導效率及高耐擊穿電壓的特性。 【實施方式】 第1圖係顯示本創作之複合式導熱銅箔基板結構的第 一具體實例。於該具體實例中,複合式導熱銅箔基板包括: 銅箔層11、絕緣聚合物層12及導熱黏著層13,其中,該 導熱黏著層Π包括聚醯亞胺黏著劑和分散於該聚醯亞胺 黏著劑中的散熱粉體,該絕緣聚合物層12固定夾置於該銅 箔層11和該導熱黏著層13之間。 本創作銅箔層11所使用的銅箔可為電解銅箔(ED銅 箔)和壓延銅箔(RA銅箔)中的一種,一般而言,銅箔 層11的厚度為12.5至70微米,且較佳為35微米。 絕緣聚合物層12的材質可為聚醯亞胺,且較佳為不 含鹵素的熱固性聚醯亞胺材料,更佳為具有自黏性且不含 鹵素的熱固性聚醯亞胺材料。 形成於該絕緣聚合物層12表面的導熱黏著層13中含 有散熱粉體,藉於散熱粉體能提升散熱效果,因此本創作 之複合式導熱銅箔基板具有良好的散熱效果。一般而言, 本創作使用之散熱粉體的平均粒徑為0.1至5微米,以維 持導熱黏著層13之良好黏著性。 散熱粉體可選自碳化矽、氮化硼、氧化鋁和氮化鋁所 組成群組的至少一種。以重量百分比計,該導熱黏著層13 中,散熱粉體占該導熱黏著層13固含量的10至90%。 於一具體實施例中,導熱黏著層13的厚度為10至25 M441988 微米。此外,導熱黏著層13除了包括聚醯亞胺黏著劑和散 熱粉體外,還可以包括固化劑、奈米填充料、染料、添加 劑等。 本創作中,導熱黏著層之該聚醯亞胺黏著劑具有下式 (I)M441988 V. New description: [New technical field] This creation is about the flexible substrate on the heat dissipation products such as led, especially a composite thermal conductive copper foil substrate with high heat dissipation efficiency. [Prior Art] With the awareness of Wang Qiu's environmental protection rising, energy saving has become a trend today. The LED industry is the most watched industry in recent years...to date, LED products have the advantages of energy saving, power saving, high efficiency, fast response time, long life cycle and environmental benefits without mercury. However, usually only about 2% of the power of the high-power products can be converted into light, and the remaining 80% of the energy is converted into heat. In general, if the thermal energy generated by LED illumination cannot be remitted, the LED junction φ temperature will be too high, which will affect the product life cycle, efficiency and stability. X " Traditional heat-dissipating materials need to consider the insulation properties, the thickness of the glue used to bond the copper #羯 layer needs to be 6〇 to 12〇um to achieve the insulation. Therefore, the total thickness of the product will be reported, and the heat dissipation effect will not be ideal. If a thermoplastic polyimine (such as a heat dissipation model of τρ; 〇, which is used to reduce the thickness of the product) is used, it can meet the requirements of insulation properties, but it requires high temperature operation when processing τρι (operating temperature is greater than 35). (rc), so the cost is too high to be effectively mass-produced. Therefore, there is still a need to provide a thermally conductive copper foil substrate that can simplify processing conditions while still maintaining high heat dissipation efficiency and insulation properties. [New content] 3 M441988 To compensate for the above deficiencies, the present invention provides a composite thermally conductive copper foil substrate having a product thickness, high heat dissipation efficiency, and high breakdown voltage, etc. In order to solve the technical problems, the present invention provides a composite thermal conductive copper foil substrate. Provided is a composite thermally conductive copper foil substrate comprising a copper foil layer; an insulating polymer layer; and a thermally conductive adhesive layer, wherein the thermally conductive adhesive layer comprises a polyimide and a heat dissipating heat dispersed in the polyimide adhesive a powder, and the insulating polymer layer is fixedly sandwiched between the copper foil layer and the thermally conductive adhesive layer. As a further improvement of the present invention, The heat dissipating powder accounts for 10 to 90% of the solid content of the thermally conductive adhesive layer. In one embodiment, the heat dissipating powder of the present invention may be selected from the group consisting of niobium carbide, boron nitride, aluminum oxide, and nitriding. At least one of the groups consisting of aluminum. As a further improvement of the present invention, the heat dissipating powder has an average particle diameter of 〇丨 to 5 μm. The copper foil layer of the present invention can be used for one of electrolytic copper foil and rolled steel box. The copper beryllium layer can form a high heat dissipation circuit layer on the composite thermally conductive copper drop substrate. Generally, the thickness of the copper foil layer is 12.5 to 70 micrometers, preferably 35 micrometers. The material can be polyimine, so the composite thermal conductive copper substrate formed by using the insulating polymer layer has obvious improvement in electrical breakdown resistance and mechanical strength. As a further improvement of the present invention, the thickness of the insulating polymer layer is improved. It is 3 to 15 micrometers. As a further improvement of the present invention, the polyimine adhesive in the thermally conductive adhesive layer of the present invention may be selected from the group consisting of a polyamine imide adhesive composed of a diamine monomer and a dianhydride monomer. M441988 As a further improvement of the creation, the thickness of the thermally conductive adhesive layer is from ι to 25 μm. / The composite thermal conductivity (4) substrate can be composed of a metal layer having a thickness of 0.3 to 3 mm to make the thermal adhesive layer sandwich. The metal layer may be disposed between the insulating polymer layer and the metal layer. The metal layer may be a metal substrate such as a substrate, a copper substrate or an iron substrate. The characteristics of the heat conduction copper box substrate can be effectively applied to heat dissipation products such as LEDs, and the thickness of the heat conductive adhesive layer formed by the invention is preferably from 1 to 25 μm, and the thickness of the insulating polymer layer is preferably 3 The method for fabricating the composite thermally conductive copper foil substrate comprises the steps of: coating an insulating compound on the surface of the copper box layer, and drying the insulating polymer to form an insulating polymer layer, Obtaining a single-sided copper foil substrate; forming a thermally conductive adhesive layer on the surface of the insulating polymer layer by coating or transfer method, so that the insulating polymer layer is sandwiched between the thermally conductive adhesive layer and the copper foil layer 'And Thermally conductive adhesive layer in a semi-polymeric semi-hardened state; and curing the thermally conductive adhesive layer to form a composite thermally conductive copper foil substrate. In the method for fabricating the composite thermally conductive copper box substrate of the present invention, before curing the β-thermally conductive adhesive layer, the step of bonding the metal layer to the outer surface of the thermally conductive adhesive layer may be performed to sandwich the thermally conductive adhesive layer Between the insulating polymer layer and the metal layer. The creator of the case found that the composite thermal conductive copper foil substrate of the present invention has high heat transfer efficiency and high breakdown voltage by adjusting the thickness of the insulating polymer layer and the thickness of the 5 M441988 thermal conductive adhesive layer. [Embodiment] Fig. 1 is a view showing a first specific example of the structure of the composite thermally conductive copper foil substrate of the present invention. In this specific example, the composite thermally conductive copper foil substrate comprises: a copper foil layer 11, an insulating polymer layer 12, and a thermally conductive adhesive layer 13, wherein the thermally conductive adhesive layer comprises a polyimide adhesive and is dispersed in the polyfluorene A heat dissipating powder in the imide adhesive, the insulating polymer layer 12 is fixedly sandwiched between the copper foil layer 11 and the thermally conductive adhesive layer 13. The copper foil used in the present copper foil layer 11 may be one of an electrolytic copper foil (ED copper foil) and a rolled copper foil (RA copper foil). Generally, the copper foil layer 11 has a thickness of 12.5 to 70 micrometers. And preferably 35 microns. The insulating polymer layer 12 may be made of a polyimide, and is preferably a halogen-free thermosetting polyimide material, more preferably a self-adhesive and halogen-free thermosetting polyimide material. The heat-conductive adhesive layer 13 formed on the surface of the insulating polymer layer 12 contains a heat-dissipating powder, and the heat-dissipating powder can improve the heat-dissipating effect. Therefore, the composite heat-conductive copper foil substrate of the present invention has a good heat-dissipating effect. In general, the heat-dissipating powder used in the present invention has an average particle diameter of 0.1 to 5 μm in order to maintain good adhesion of the thermally conductive adhesive layer 13. The heat dissipating powder may be at least one selected from the group consisting of niobium carbide, boron nitride, aluminum oxide, and aluminum nitride. In the heat conductive adhesive layer 13, the heat dissipating powder accounts for 10 to 90% of the solid content of the thermally conductive adhesive layer 13. In one embodiment, the thermally conductive adhesive layer 13 has a thickness of 10 to 25 M441988 microns. Further, the thermally conductive adhesive layer 13 may further include a curing agent, a nanofiller, a dye, an additive, and the like in addition to the polyimine adhesive and the thermal powder. In the present invention, the polyimide adhesive of the thermally conductive adhesive layer has the following formula (I)

式中,ΑΓι及AiV獨立選自下列基團: ch3 〇Wherein ΑΓι and AiV are independently selected from the group consisting of: ch3 〇

ch3 cf3 __ ο CF3 —c— 或 Αγ2係選自下列基團Ch3 cf3 __ ο CF3 —c— or Αγ2 is selected from the following groups

7 M4419887 M441988

or

;以及;as well as

X係為 此外,式(I)的X,係透過2,6-二胺基吼啶 (2, 6-Diaminopyridine;簡稱DAP)於共聚合時導入其中, 該含有氮雜環之官能基團會跟銅或其他金屬形成電荷轉移 錯合物(change-transfer complex)提升其與銅或其他金 屬之間的接著強度。 其聚合前之聚醯亞胺黏著劑與添加劑DAP之莫耳比 介於1:0.02至1:0.48之間。 第2圖係顯示本創作之複合式導熱銅箔基板結構的第 二具體實例。於該具體實例中,複合式導熱銅箔基板包括: 銅箔層21、絕緣聚合物層22、導熱黏著層23及金屬層24, 其中,該導熱黏著層23包括聚醯亞胺黏著劑和分散於該聚 醯亞胺黏著劑中的散熱粉體,該絕緣聚合物層22固定夾置 於該銅箔層21和該導熱黏著層23之間,且該導熱黏著層 23夾置在該絕緣聚合物層22和該金屬層24之間。 銅箔層21所使用的銅箔可為電解銅箔(ED銅箔)或 M441988 壓延_(RA_)。-般而言,該銅料21的厚度為 12.5至70微米,且較佳為35微米。 於具體應用,絕緣聚合物層22的材質為聚酿亞胺。 此外,該絕縣合物層22的材f亦可為不含鹵素的熱固性 聚醯亞胺材料或具有自純且不含自素的熱固 材料。 由於導齡著層23中含有能提升散熱效果的散熱粉 體’因此本創作之複合式導熱銅箱基板具有良好的散孰效 罾果。-般而言,散熱粉體的平均粒徑為〇1至5微米且 導熱黏著層23的厚度在1〇至25微米。 散熱粉體可選自碳化石夕、氮化棚、氧化铭和氮化銘所 組成群組的至少-種。以重量百分比計,該導熱黏著層^ 中,散熱粉體占該導熱黏著層23固含量的1〇至9〇%。 導熱黏著層23可貼合於各種金屬或其他基材上。於 此具體實例中,金屬層24可貼合至導熱黏著層23的外表 #面以進行壓合熱固化,該金屬層Μ可為,例如链基板、銅 基板及鐵基板等金屬材質基板。 為了維持本創作之複合式導熱銅箔基板的特性以應 用=LED電純’並能有效控制成本,視需要可調整導二 黏著層及絕緣聚合物層的厚度。較佳者,該導熱黏著層‘的 厚度為10至25微米,且該絕緣聚合物層的厚度為3 微米。 > 本創作複合式導熱銅箔基板的製作方法,包括下列步 9 M441988 將絕緣聚合物塗佈在銅羯層的表面,並供乾以形成絕 緣聚合物層,得到一單面銅箔基板; 使用塗佈或轉印法將導熱黏著層形成於該絕緣聚合 物層的表面上,以令該絕緣聚合物層夹置在該導熱黏著層 和該銅箔層之間’並使該導熱黏著層處於半聚合半硬化狀 態;以及 固化該導熱黏著層’以形成複合式導熱銅箔基板。 於另一具體實施例中,本創作之複合式導熱銅箔基板 的製作方法,復包括於完全固化該導熱黏著層之前,將金 屬層貼合至該導熱黏著層的外表面,以令該導熱黏著層夾 置在該絕緣聚合物層和該金屬層之間,以形成複合式導熱 銅箔基板。 實施例一 本創作中導熱黏著層之聚醯亞胺黏著劑主要是由二 胺單體 1,3-雙(3-胺苯氧基)苯(i,3-Bis(3-aminophenoxy) benzene,APB-133)之 0.2kmol 溶解於二曱基乙醯胺(DMAc) 攪拌半小時後;再加入溶解於DMAc中含有2,6-二胺基°比 啶(DAP)之0.035mol之溶液繼續攪拌反應一小時,再持續 加入二酸酐單體3,3’,4,4’-二苯曱酮四曱酸二酐(BTDA)之 O.lkmol與4,4丨-聯苯醚二酐(〇DPA)之O.lkmol攪拌反應八 小時後’共聚合成聚醯亞胺黏著劑;再加入散熱粉體氮化 鋁A1N(5%)與氮化硼BN(5%)繼續攪拌均勻二小時,並依 前述之方法製得導熱黏著層。 M441988 實施例二至七 同上實施例一之方式製備聚醯亞胺黏著劑,但加入之 散熱粉體比例係如表1所示做調整。 測試例熱傳導分析測試 對複合式導熱銅箔基板進行熱傳導分析測試:使用 熱導系數儀(Hot Disk)進行熱傳導分析測試,在傳感器 #上下兩面覆蓋兩完全固化後蝕刻銅箔層的複合式導熱銅箔 基板樣品,並在該兩個複合式導熱銅箔基板外側面分別以 兩鋼板夾置樣品和傳感器,並由傳感器測量樣品的導熱性 能,將對本創作的樣品所作的測試作為實驗組。以同樣的 方法測試一般導熱基板的黏著層導熱性能作為比較例,將 測得的熱傳導系數結果紀錄於表1中。 使用耐壓分析儀(型號:19057-20);將複合式導熱銅箔 •基板#刻去除銅箔;然後裁成尺寸大小為3cmX3cm;然後 量測膜厚;再浸泡純水清洗10分鐘;試片在烘箱U〇°C下 供乾半小時;最後將試片放入财壓分析儀中測試其試片之 耐擊穿電壓。 使用燃燒測試儀器設備(型號:UL-94X);將複合式導熱 銅箔基板蝕刻去除銅箔,再裁成試片,依照94-UL測試方 法,根據燃燒秒數的判定為V-0等級。 11 M441988 表1 絕緣 聚合 物層 厚度 (um) 導熱 黏著 層厚 度 (um) 散熱 粉體 含量 (%) 絕緣 層熱 傳導 係數 (W/m-k) 耐擊 穿電 壓 (KV) UL 94 燃燒 性能 測試 實施例一 3 22 A1N(5%)/ BN(5%) 0.58 4.6 V-0 實施例二 5 20 A1N(4%)/ BN(8%) 0.7 4.4 • V-0 實施例三 8 17 A1N(10%)/ BN(10%) 0.85 4.3 V-0 實施例四 15 10 A1N(5%)/ BN(5%) 0.4 6.5 V-0 實施例五 3 22 Al2O3(60%) 0.75 2 V-0 實施例六 5 20 Al2〇3 (70%) 1.06 4.3 ν_ο· 實施例七 8 17 Al2〇3 (75%) 1.3 4.2 V-0 比較例一 LX07022016RA —— 22 —— 0.8 4 V-0 比較例二 LX03517016RA —— 17 —— 0.8 2.5 V-0 12 M441988 t 由上表1可知,相較於比較例而言,本創作之複合式 導熱銅箔基板在設計上藉由導熱黏著層厚度為1〇至25微 米;絕緣聚合物層的厚度為3至15微米,具有較高的熱傳 導係數或耐擊穿電壓。 【圖式簡單說明】 第1圖係本創作第一具體實例之複合式導熱銅箔基板 結構剖視圖;以及 第2圖係本創作之第二具體實例之複合式導熱銅箔基 板結構剖視圖。 【主要元件符號說明】 11、 21 銅箔層 12、 22 絕緣聚合物層 13、 23 導熱黏著層 24 金屬層 13In addition, X of the formula (I) is introduced into the group by a 2,6-diaminopyridine (DAP), which is a functional group containing a nitrogen heterocycle. Forming a charge-transfer complex with copper or other metals enhances the bond strength between it and copper or other metals. The molar ratio of the polyimine adhesive before polymerization to the additive DAP is between 1:0.02 and 1:0.48. Fig. 2 is a view showing a second concrete example of the structure of the composite thermally conductive copper foil substrate of the present invention. In this embodiment, the composite thermally conductive copper foil substrate comprises: a copper foil layer 21, an insulating polymer layer 22, a thermally conductive adhesive layer 23, and a metal layer 24, wherein the thermally conductive adhesive layer 23 comprises a polyimide and an adhesive. a heat dissipating powder in the polyimine adhesive, the insulating polymer layer 22 is fixedly sandwiched between the copper foil layer 21 and the thermally conductive adhesive layer 23, and the thermally conductive adhesive layer 23 is sandwiched between the insulating polymerization Between the object layer 22 and the metal layer 24. The copper foil used for the copper foil layer 21 may be an electrolytic copper foil (ED copper foil) or M441988 calendered _ (RA_). In general, the copper material 21 has a thickness of 12.5 to 70 μm, and preferably 35 μm. For a specific application, the material of the insulating polymer layer 22 is a polyimide. Further, the material f of the primary layer 22 may be a halogen-free thermosetting polyimine material or a self-purifying and self-containing thermosetting material. Since the lead-in layer 23 contains a heat-dissipating powder which can enhance the heat-dissipating effect, the composite heat-conductive copper box substrate of the present invention has a good effect. In general, the heat dissipating powder has an average particle diameter of 〇1 to 5 μm and the heat conductive adhesive layer 23 has a thickness of 1 〇 to 25 μm. The heat dissipating powder may be selected from at least one of the group consisting of carbon carbide, nitriding, oxidizing, and nitriding. The heat dissipating powder accounts for 1 to 9% of the solid content of the thermally conductive adhesive layer 23 in the heat conductive adhesive layer. The thermally conductive adhesive layer 23 can be applied to various metals or other substrates. In this embodiment, the metal layer 24 may be bonded to the outer surface of the thermally conductive adhesive layer 23 for thermal curing. The metal layer may be a metal substrate such as a chain substrate, a copper substrate or an iron substrate. In order to maintain the characteristics of the composite thermally conductive copper foil substrate of the present application, application = LED electrical purity, and to effectively control the cost, the thickness of the conductive adhesive layer and the insulating polymer layer can be adjusted as needed. Preferably, the thermally conductive adhesive layer has a thickness of 10 to 25 microns and the insulating polymer layer has a thickness of 3 microns. > The method for fabricating the composite thermal conductive copper foil substrate comprises the following steps: 9 M441988 coating an insulating polymer on the surface of the copper beryllium layer and drying it to form an insulating polymer layer to obtain a single-sided copper foil substrate; Forming a thermally conductive adhesive layer on the surface of the insulating polymer layer using a coating or transfer method such that the insulating polymer layer is sandwiched between the thermally conductive adhesive layer and the copper foil layer 'and the thermally conductive adhesive layer In a semi-polymeric semi-hardened state; and curing the thermally conductive adhesive layer' to form a composite thermally conductive copper foil substrate. In another embodiment, the method for fabricating the composite thermally conductive copper foil substrate of the present invention includes laminating a metal layer to the outer surface of the thermally conductive adhesive layer to completely heat the thermally conductive adhesive layer. An adhesive layer is interposed between the insulating polymer layer and the metal layer to form a composite thermally conductive copper foil substrate. The polyimine adhesive of the thermal conductive adhesive layer in the present invention is mainly composed of diamine monomer 1,3-bis(3-aminophenoxy)benzene (i,3-Bis(3-aminophenoxy)benzene, 0.2kmol of APB-133) was dissolved in dimercaptoacetamide (DMAc) and stirred for half an hour; then added to a solution of 0.035 mol of 2,6-diaminopyridinium (DAP) dissolved in DMAc to continue stirring. After one hour of reaction, the O.lkmol and 4,4丨-diphenyl ether dianhydride of the dianhydride monomer 3,3',4,4'-dibenzophenone tetraphthalic acid dianhydride (BTDA) were continuously added. DPA) O.lkmol stirred reaction for eight hours to 'copolymerize polyimine adhesive; then add heat-dissipating powder aluminum nitride A1N (5%) and boron nitride BN (5%) and continue to stir for two hours, and A thermally conductive adhesive layer was obtained in the same manner as described above. M441988 Examples 2 to 7 Polyimine adhesives were prepared in the same manner as in Example 1 except that the proportion of the heat-dissipating powder added was adjusted as shown in Table 1. Test Example Thermal Conduction Analysis Test The heat conduction analysis test of the composite thermally conductive copper foil substrate: thermal conduction analysis test using a hot disk instrument (Hot Disk), covering the upper and lower sides of the sensor # two fully cured copper foil layer composite thermal copper A sample of the foil substrate was placed on the outer side of the two composite thermally conductive copper foil substrates with the two steel plates sandwiching the sample and the sensor, and the thermal conductivity of the sample was measured by the sensor. The test of the sample of the creation was taken as an experimental group. The thermal conductivity of the adhesive layer of a general heat-conductive substrate was tested in the same manner as a comparative example, and the measured results of the heat transfer coefficient were recorded in Table 1. Use a pressure analyzer (Model: 19057-20); remove the copper foil from the composite thermal conductive copper foil • substrate; then cut into a size of 3cm×3cm; then measure the film thickness; then rinse with pure water for 10 minutes; The sheet was allowed to dry for half an hour in an oven U 〇 ° C; finally, the test piece was placed in a financial analyzer to test the breakdown voltage of the test piece. The combustion test equipment (model: UL-94X) was used; the composite thermal conductive copper foil substrate was etched to remove the copper foil, and then the test piece was cut. According to the 94-UL test method, the number of combustion seconds was determined to be V-0. 11 M441988 Table 1 Insulation polymer layer thickness (um) Thermal adhesive layer thickness (um) Thermal powder content (%) Thermal conductivity coefficient of insulation (W/mk) Breakdown voltage (KV) UL 94 Combustion performance test example 1 3 22 A1N (5%) / BN (5%) 0.58 4.6 V-0 Example 2 5 20 A1N (4%) / BN (8%) 0.7 4.4 • V-0 Example 3 8 17 A1N (10%) / BN (10%) 0.85 4.3 V-0 Example 4 15 10 A1N (5%) / BN (5%) 0.4 6.5 V-0 Example 5 3 22 Al2O3 (60%) 0.75 2 V-0 Example 6 5 20 Al2〇3 (70%) 1.06 4.3 ν_ο· Example 7 8 17 Al2〇3 (75%) 1.3 4.2 V-0 Comparative Example 1 LX07022016RA —— 22 —— 0.8 4 V-0 Comparative Example 2 LX03517016RA —— 17 —— 0.8 2.5 V-0 12 M441988 t As can be seen from Table 1, the composite thermally conductive copper foil substrate of the present invention is designed to have a thickness of 1 〇 to 25 μm by thermal conductive adhesive layer; The insulating polymer layer has a thickness of 3 to 15 microns and has a high heat transfer coefficient or breakdown voltage. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a cross-sectional view showing the structure of a composite thermally conductive copper foil substrate according to a first specific example of the present invention; and Fig. 2 is a cross-sectional view showing the structure of a composite thermally conductive copper foil substrate according to a second specific example of the present invention. [Main component symbol description] 11, 21 copper foil layer 12, 22 insulating polymer layer 13, 23 thermal conductive adhesive layer 24 metal layer 13

Claims (1)

M441988 六、申請專利範圍: 1. 一種複合式導熱銅箔基板,包括: 銅fl層; 絕緣聚合物層;以及 導熱黏著層’係包括聚醯亞胺黏著劑和分散於該 聚醯亞胺黏著劑中的散熱粉體,且該絕緣聚合物層固 定夾置於該銅箔層和導熱黏著層之間,其中,該聚醯 亞胺黏著劑具有下式(I)M441988 VI. Patent Application Range: 1. A composite thermally conductive copper foil substrate comprising: a copper fl layer; an insulating polymer layer; and a thermally conductive adhesive layer comprising a polyimide adhesive and dispersed in the polyimide. a heat dissipating powder in the agent, and the insulating polymer layer is fixedly sandwiched between the copper foil layer and the heat conductive adhesive layer, wherein the polyimine adhesive has the following formula (I) Ar2係選自下列基團 或Ar2 is selected from the following groups or M441988M441988 2. 如申請專利範圍第1項所述之複合式導熱銅箔基板, 其中,以重量百分比計,該導熱黏著層中的散熱粉體 占該導熱黏著層固含量的10至90%。 3. 如申請專利範圍第1或2項所述之複合式導熱銅箔基 板,其中,該散熱粉體的平均粒徑為0.1至5微米,且 該散熱粉體是選自碳化矽、氮化硼、氧化鋁和氮化鋁 所組成群組的至少一種。 4. 如申請專利範圍第1項所述之複合式導熱銅箔基板, 其中,該銅箔層為電解銅箔或壓延銅箔。 5. 如申請專利範圍第1項所述之複合式導熱銅箔基板, 其中,該銅箔層的厚度為12.5至70微米,該絕緣聚合 物層的厚度為3至15微米,且該導熱黏著層的厚度為 15 M441988 10至25微米。 6. 如申請專利範圍第1項所述之複合式導熱銅箔基板, 其中,該絕緣聚合物層的材質為聚醯亞胺。 7. 如申請專利範圍第1項所述之複合式導熱銅箔基板, 復包括0.3至3毫米厚的金屬層,以令該導熱黏著層夾 置在該絕緣聚合物層和該金屬層之間。2. The composite thermally conductive copper foil substrate according to claim 1, wherein the heat dissipating powder in the thermally conductive adhesive layer accounts for 10 to 90% of the solid content of the thermally conductive adhesive layer. 3. The composite thermally conductive copper foil substrate according to claim 1 or 2, wherein the heat dissipating powder has an average particle diameter of 0.1 to 5 μm, and the heat dissipating powder is selected from the group consisting of niobium carbide and nitriding. At least one of the group consisting of boron, aluminum oxide, and aluminum nitride. 4. The composite thermally conductive copper foil substrate according to claim 1, wherein the copper foil layer is an electrolytic copper foil or a rolled copper foil. 5. The composite thermally conductive copper foil substrate according to claim 1, wherein the copper foil layer has a thickness of 12.5 to 70 micrometers, the insulating polymer layer has a thickness of 3 to 15 micrometers, and the heat conductive adhesive layer The thickness of the layer is 15 M441988 10 to 25 microns. 6. The composite thermally conductive copper foil substrate according to claim 1, wherein the insulating polymer layer is made of polyimide. 7. The composite thermally conductive copper foil substrate of claim 1, further comprising a metal layer of 0.3 to 3 mm thick to sandwich the thermally conductive adhesive layer between the insulating polymer layer and the metal layer .
TW101211237U 2012-06-11 2012-06-11 Combined heat conductive copper clad laminate TWM441988U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW101211237U TWM441988U (en) 2012-06-11 2012-06-11 Combined heat conductive copper clad laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW101211237U TWM441988U (en) 2012-06-11 2012-06-11 Combined heat conductive copper clad laminate

Publications (1)

Publication Number Publication Date
TWM441988U true TWM441988U (en) 2012-11-21

Family

ID=47718321

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101211237U TWM441988U (en) 2012-06-11 2012-06-11 Combined heat conductive copper clad laminate

Country Status (1)

Country Link
TW (1) TWM441988U (en)

Similar Documents

Publication Publication Date Title
TWM420148U (en) Thin mental substrate with high thermal conductivity
JP2019057731A (en) Electromagnetic wave-absorbing composition coating material
JP6043188B2 (en) Interlayer thermal connection member and interlayer thermal connection method
JP5392178B2 (en) High thermal conductive composite particles and heat dissipation material using the same
WO2016093248A1 (en) Epoxy resin composition, resin sheet, prepreg, metal foil with resin, metal substrate and power semiconductor device
JP5442491B2 (en) Thermally conductive metal-insulating resin substrate and manufacturing method thereof
JPWO2015072428A1 (en) heatsink
TWM425495U (en) Flexible high thermal conductive copper substrate
JP2015043417A (en) Power module metal wiring board, power module, power module board, and method for manufacturing power module metal wiring board
CN103042762B (en) High thermal conductive metal substrate
CN102825861B (en) Heat-conductive two-sided flexible copper clad laminate and manufacturing method thereof
US10550299B2 (en) A-staged thermoplastic-polyimide (TPI) adhesive compound and method of use
TWM420832U (en) Rigid-flex double sided thermal conductivity substrate
KR102077766B1 (en) GRAPHITE FILM, preparing method thereof, and heat emission structure including the same
CN108419362A (en) A kind of FRCC base materials and preparation method thereof with high cooling efficiency
TWM441988U (en) Combined heat conductive copper clad laminate
TWM447653U (en) Circuit board structure of high heat-conductivity
CN113563824B (en) Thermal tackifying heat conducting adhesive tape and preparation method thereof
TWM556055U (en) Flexible back adhesive copper foil substrate
CN201910417U (en) Thin metal substrate with high thermal conductivity
TW201431679A (en) High-frequency circuit substrate
KR101447258B1 (en) Thermal conductive epoxy composites and their applications for light emitting diode fixtures
CN103050616B (en) Composition heat conducting copper foil base plate
JP6800034B2 (en) Interlayer bonding part, interlayer thermal bonding member, interlayer thermal bonding method, and method for manufacturing interlayer thermal bonding member
JP2020136577A (en) Heat dissipation substrate

Legal Events

Date Code Title Description
MK4K Expiration of patent term of a granted utility model