TWM435045U - Surface emitting semiconductor LED - Google Patents

Surface emitting semiconductor LED Download PDF

Info

Publication number
TWM435045U
TWM435045U TW100217862U TW100217862U TWM435045U TW M435045 U TWM435045 U TW M435045U TW 100217862 U TW100217862 U TW 100217862U TW 100217862 U TW100217862 U TW 100217862U TW M435045 U TWM435045 U TW M435045U
Authority
TW
Taiwan
Prior art keywords
layer
substrate
emitting diode
semiconductor light
light
Prior art date
Application number
TW100217862U
Other languages
Chinese (zh)
Inventor
Abrosimova Vera
Trenkler Torsten
Kloth Bernd
Original Assignee
Jenoptik Polymer Systems Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jenoptik Polymer Systems Gmbh filed Critical Jenoptik Polymer Systems Gmbh
Priority to TW100217862U priority Critical patent/TWM435045U/en
Publication of TWM435045U publication Critical patent/TWM435045U/en

Links

Landscapes

  • Led Devices (AREA)

Abstract

A surface emitting semiconductor LED, including an overlapping arranged sequence of: - a layer of a substrate-conduct (1) of an first conductivity type, - a common substrate (2), - a first barrier layer (5) of the first conductivity type, - a light-emitting active layer (6), - a second barrier layer (7) of a second conductivity type, - a first contact layer (9) of the second conductivity type and surface-implanted areas (11) in the first contact layer (9) which are electrically insulated from each other by irradiation with electrical charge-carriers, as well an - a number of electrically conductive surface contacts (10) for contacting the first contact layer (9), characterized by: - that the substrate (2) is composed of a semiconductor substrate, and the substrate (2) has a first conductivity type or the substrate (2) is an electrically insulating substrate (2.1) or the substrate (2) is composed of a metal or a composite material, - that between the substrate (2) and the first barrier layer (5) there exists a reflector layer a the first conductive type, - that the first contact layer (9) has at least an emitting surface (13), by which the beam emitted from the active layer (6) come out of the LED and the emitting surfaces (13) are electrically and optically insulated from each other by areas (11) in the first contact layer (9) irradiated by electrical charge carriers and - that the areas of the layers under the emitting surface, originated from the first contact layer (9) until the first deeply implanted areas of the layers, which are implanted through the active layer (6) and irradiated by electrical charge carriers, are electrically and optically insulated form the areas of the surface which are not situated under the emitting surface (13).

Description

M435045 - 二 … 一 一 - * - - — … -— __ ** _ " —-----二_____ 100年12月可日修正替榼百 五、新型說明: 【新型所屬之技術領域】 本新型係有關於一種半導體發光二極體,其與us 5’216,263 A所揭露之半導體發光二極體同類型。 【先前技術】 用led及led陣列晶片顯示圖形符號已有數十年歷 -史。其中,採用鋅擴散或鋅植入工藝向GaAS (砷化鎵)2 · 板上的厚η型GaAsP (磷砷化鎵)層中送入鋅,以此研^ · 出(例如)七段LED顯示晶片,此項工藝沿用至今。在5爪八 電流強度下,其光強通常達到每段〇.lmcd。發射波長被材 料限制在650-660 nm (紅色光)範圍内,此波長範圍内之 人眼靈敏度僅為10%左右。 另有將可見光譜發射波長互不相同的較高效LED晶片 (效率約為1 〇%)予以組合排佈之混合型LED顯示元件。 但此類元件受尺寸限制無法應用於狹小空間,例如,無法 應用於光學設備的光路令。 鲁 另有配備LED背光以顯示圖形符號之半透明Lcd顯示 益。此等顯示器通常體積較大,故其LED背光僅憑佈置於M435045 - Two... One-one - * - - - ... - - __ ** _ " —----- Two _____ 100 years December can be revised for the next five hundred, new description: [New technology field The present invention relates to a semiconductor light-emitting diode of the same type as the semiconductor light-emitting diode disclosed in US 5'216,263 A. [Prior Art] Displaying graphic symbols with led and led array chips has been for decades. Among them, a zinc diffusion or zinc implantation process is used to feed zinc into a thick n-type GaAsP (phosphorus gallium arsenide) layer on a GaAS (gallium arsenide) 2 plate, thereby extracting, for example, a seven-segment LED. Display wafers, this process is still in use today. At a current of 5 claws, the light intensity usually reaches 〇.lmcd per segment. The emission wavelength is limited by the material in the range of 650-660 nm (red light), and the sensitivity of the human eye in this wavelength range is only about 10%. In addition, a hybrid LED display element in which a relatively high-efficiency LED chip having a different spectral emission wavelength is different from each other (efficiency is about 1%) is arranged. However, such components are limited in size and cannot be used in tight spaces, for example, optical paths that cannot be applied to optical devices. Lu also has a translucent Lcd display with LED backlight to display graphical symbols. These displays are usually bulky, so their LED backlights are only placed in

載板上之分立LED或LED晶片陣列而實現。陣列中的LED 既可集中控制,亦可單獨控制。LED背光可實施為單色、 多色或白色。 為減小體積,必須對半導體層(磊晶結構)進行小型 化結構化處理並調整其光學性能及電性能。除擴散法外, M435045 川〇年12月2|>日修正替換頁 亦可透過照射植入質子或其他載荷子以改變乃至破壞晶體 結構,從而使受照(被植入)區域部分或完全喪失導電性。 此外亦可使此等區域在特定波長範圍内具有吸收性。可藉 由對載荷子所獲動能及照射用射線束中每單位面積之載^ 子數(劑量)進行選擇來控制晶體變化。為產生所謂的深 植入區,可用小劑量高能载荷子照射材料,表面植入區之 產生則需低能大劑量。 US 5,216,263八描述一種排佈成LED陣列之表面發光 的半導體發光二極體(LED),其包含—上下疊置層序列, 其中,該層序列包括第一導電類型之基板觸點層、第一導 電類型之共用基板、第一導電類型之第一阻擋層、發光活 性層、第二導電類型之第二阻擋層、第二導電類型之第一 接觸層以及多個用於接觸該第-接觸層之導電表面觸點, 其中’該第-接觸層中設有多個透過質子照射而彼此電性 絕緣之表面植入區。 “透過以下方式對此等半導體層進行深度結構化處理: 精由石夕擴散法在LED陣列之各咖之間產生多個受干擾 仏’其穿過活性層並在活性層各發光區影響下彼此電性絕 緣。此等受干擾區具有較強之發射輻射吸收能力。 活性層之每_單個區域皆可透過第一接觸層上分配給 :區域的P型觸點受到控制。為能在半導體層靠近基板 二則產生發射輕射’須移除發光表面區域内之基板觸點及 基板仍無5法對採用上述排佈方式的層進行透射。 ’2 16,263 A中的基板皆為n型摻雜基板,第一接觸 7 M435045 100年12月γ日修正替換頁 層則為ρ型摻雜。 " ’216,263八之解決方案之缺點在於,對半導體層進 行結構化處理時冑|彳于__糸& τ μ a 時需執π系列不同步驟。首先須進行耗時 較長的石夕擴散處理(7至8小時),再實施質子照射及不同 虫刻步驟。此外’先前技術未能提供任何對基板既可實施。 型摻雜又可實施Ρ型摻雜之解決方案。 夕然而,若能對基板進行不同類型之摻雜,便可多提供 許多能支持LED工作之電路結構,亦可用共用陽極或陰極 製造晶片。 【新型内容】 本新型之目的在於提供一種光強大於先前技術之表面 發光的半導體發光二極體’該半導體發光二極體更既可具 有共用陰極亦可具有共用陽極。此外,本新型之表面發光 的半導體發光二極體在發光區域與不發光區域之間有較高 對比度,同時可在560 nm至880 nm之光譜範圍内發射波 長’且晶片邊緣無發射。 本新型用以達成該目的之解決方案為一種包含上下叠 置層序列之表面發光的半導體發光二極體(LED ),其中, 邊層序列包含 -第一導電類型之基板觸點層, -共用基板, •該第一導電類型之第一阻擋層, -發光活性層, M435045 100年I2月日修正替換頁 -第二導電類型之第二阻擋層, . •该第二導電類型之第一接觸層,該第一接觸層中設有 多個藉載荷子照射而彼此電性絕緣之表面植入區,及 -多個用於接觸該第一接觸層之導電表面觸點。本新型 LED之特徵在於, . _該基板由半導體基板構成,該基板具有第一導電類 型,抑或該基板為電絕緣型基板,抑或該基板由金屬或複 合材料構成, 籲 _該基板與該第一阻擋層之間設有該第一導電類型之 反射層, 乂第接觸層具有至少一發光表面,該活性層所發射 的光經該發光表面自該led射出,該第一接觸層中受載荷 子照射之表面植入區使該等發光表面彼此光電隔離,以及 -多個受載荷子照射之深植入區使得該等層在該發光 表面下方自該第一接觸層出發至少延伸至貫穿該活性層之 Φ 區域與邊等層不位於該發光表面下方的區域光電隔離。 本新型之核心在於一種僅用少量同類工藝步驟便可實 現極小體積且能在藍色至紅外輻射之波長範圍内達到較高 光強之表面發光的半導體LED。 該反射層用於將活性層所發射的光朝發光表面方向反 射’在發射波長為65〇 nm之情況下,可在發光表面實現高 達母發光段例如1〇 mcd (毫燭光)左右之光強。該反射層 叮具有任何一種能提供良好反射效果及有效導電性之結 構。分佈式布拉格反射器(英文:distributed Bragg reflect〇r ) 9 M435045 100年12月日修正替換頁 為較佳之選。 該等發光表面具有第二導電 尸m兰 之導電性。表面觸點 在該發先表面進行接觸,除 ^ ± 除此之外,活性層所發射的光亦 ^ ^ a , 戰仃子進仃照射,可消除第一 =中各發光表面間之導電性。此外,帛一接觸層經此 之區域吸收活性層所發射之光之波長的能力較 強’故施在將該等發光表面雷隐 衣面電隔離的同時再將其光隔離。 表面植入區之深度亦可超過第一接觸層。 該發光表面可呈圓形、條形、炙 條办多邊形或曲線形等任意 形狀。 nm至95 0 nm之輻射,其中, 可發射波長範圍為400 5 60 nm至8 80 nm之波長範圍為較佳之選。 本新型另-核心在於,該等深植入區貫穿該活性層, 乂確保活(·生層中月匕形成疋向電流並避免產生非期望之橫向 電流。根據本新型的一種較佳實施方案,深植入區穿過第This is achieved by a discrete LED or array of LED chips on the carrier. The LEDs in the array can be controlled either centrally or individually. The LED backlight can be implemented in monochrome, multi-color or white. In order to reduce the volume, the semiconductor layer (epitaxial structure) must be miniaturized and structured to adjust its optical and electrical properties. In addition to the diffusion method, M435045 Chuanxiong December 2|> Day Correction Replacement Page can also be used to modify or even destroy the crystal structure by implanting protons or other charge carriers, so that the illuminated (implanted) area is partially or completely Loss of conductivity. In addition, these regions can be made absorbable in a specific wavelength range. The crystal change can be controlled by selecting the kinetic energy obtained by the charge carrier and the number of carriers (dose) per unit area in the beam for irradiation. In order to produce a so-called deep implanted area, a small dose of high-energy charge carriers can be used to illuminate the material, and the surface implanted area requires a low-energy large dose. US Pat. No. 5,216,263, the disclosure of which is incorporated herein incorporated by reference in its entirety, the entire entire entire entire entire entire entire entire disclosure a common substrate of a conductivity type, a first barrier layer of a first conductivity type, a luminescent active layer, a second barrier layer of a second conductivity type, a first contact layer of a second conductivity type, and a plurality of contacts for the first contact layer The conductive surface contact, wherein the first contact layer is provided with a plurality of surface implant regions electrically insulated from each other by proton irradiation. "The deep structuring of these semiconductor layers by the following methods: The lithographic diffusion method produces a plurality of disturbed 仏 between the coffee makers of the LED array, which passes through the active layer and is affected by the respective light-emitting regions of the active layer. Electrically insulated from each other. These interfered areas have a strong ability to absorb radiation. Each of the active layers can be distributed through the first contact layer: the P-type contacts of the area are controlled. The layer is close to the substrate 2, and the light-emitting is generated. The substrate contacts and the substrate in the region of the light-emitting surface are removed. There is still no way to transmit the layer in the above arrangement. The substrates in '2 16,263 A are all n-type doped. Miscellaneous substrate, first contact 7 M435045 December gamma-day correction replacement page layer is p-type doping. " '216,263 Eight's solution has the disadvantage that when the semiconductor layer is structured, 胄|彳_ _糸& τ μ a requires different steps of the π series. First, it takes a long time to carry out the diffusion process (7 to 8 hours), then carry out proton irradiation and different insect engraving steps. Offer The substrate can be implemented. The type doping can also implement the doping type doping solution. However, if different types of doping can be performed on the substrate, a plurality of circuit structures capable of supporting the LED operation can be provided, and sharing can be used. The anode or the cathode is used to manufacture a wafer. [New content] The purpose of the present invention is to provide a semiconductor light-emitting diode that is lighter than the surface light of the prior art. The semiconductor light-emitting diode can have a common cathode or a common anode. In addition, the surface-emitting semiconductor light-emitting diode of the present invention has a high contrast between the light-emitting region and the non-light-emitting region, and emits a wavelength in the spectral range of 560 nm to 880 nm and has no emission at the edge of the wafer. The solution for achieving this is a semiconductor light-emitting diode (LED) comprising surface-emitting layers of upper and lower stacked layers, wherein the edge layer sequence comprises a substrate contact layer of a first conductivity type, a common substrate, • The first barrier layer of the first conductivity type, - the luminescent active layer, M435045 100% I2 Month Day Correction Replacement Page - Second Conductive Class a second barrier layer, a first contact layer of the second conductivity type, wherein the first contact layer is provided with a plurality of surface implant regions electrically insulated from each other by a charge carrier, and - a plurality of Contacting the conductive surface contact of the first contact layer. The novel LED is characterized in that the substrate is composed of a semiconductor substrate, the substrate has a first conductivity type, or the substrate is an electrically insulating substrate, or the substrate is made of metal Or a composite material, wherein the first conductive type reflective layer is disposed between the substrate and the first barrier layer, and the first contact layer has at least one light emitting surface, and the light emitted by the active layer passes through the light emitting surface. The LED is ejected, the surface implanted region of the first contact layer that is illuminated by the charge carriers is such that the light emitting surfaces are optically isolated from each other, and the plurality of deep implant regions that are illuminated by the charge carriers such that the layers are below the light emitting surface From the first contact layer, at least the Φ region extending through the active layer is optically isolated from the region where the edge layer is not located below the light emitting surface. At the heart of the novel is a semiconductor LED that achieves a very small volume and achieves a high surface intensity in the blue to infrared radiation range with only a small number of similar process steps. The reflective layer is used to reflect the light emitted by the active layer toward the light emitting surface. In the case of an emission wavelength of 65 〇 nm, a light intensity of up to a mother light-emitting segment such as 1 〇mcd (candle light) can be achieved on the light-emitting surface. . The reflective layer has any structure that provides good reflection and effective conductivity. Distributed Bragg reflector (English: distributed Bragg reflect〇r) 9 M435045 December 2014 Correction Replacement Page is a better choice. The light emitting surfaces have electrical conductivity of the second conductive body. The surface contact is contacted on the surface of the first surface, in addition to the above, the light emitted by the active layer is also ^ ^ a , and the warp beam is irradiated to eliminate the conductivity between the first and middle light emitting surfaces. . In addition, the ability of the first contact layer to absorb the wavelength of the light emitted by the active layer is relatively strong, so that it is optically isolated while electrically isolating the light-emitting surface of the light-emitting surface. The depth of the surface implanted region may also exceed the first contact layer. The illuminating surface may have any shape such as a circle, a strip, a polygon or a curved shape. From nm to 95 0 nm radiation, a wavelength range from 400 5 60 nm to 880 nm is preferred. Another novel of the present invention is that the deep implant regions penetrate the active layer to ensure that the meniscus forms a turbulent current in the green layer and avoids undesired lateral currents. According to a preferred embodiment of the present invention Deep implant area through the first

一接觸層並與表面植入區直接鄰接。深植入區較佳實施為 自第一接觸層沿垂直方向延伸。各發光表面之深植入區可 彼此相隔一定距離、相鄰抑或相通。該等深植入區亦可延 伸至不同層内部從而形成不同類型之深植入區。透過不同 類型之深植入區,可將本新型led之層序列構建成多個耳 有任意形狀、採用任意佈置方式且彼此光電隔離之區域。 該等實施為表面植入區或深植入區之光電隔離區係藉 由用不同能量及劑量之載荷子照射該層序列而產生。照射 所用載荷子可為質子或離子。 M435045 100年12月γ日修正替換頁 本新型LED之第一莫啻相相丨Q松 導電類型及第二導電類型選自一包 道p型及η型摻雜半導體之導電類型之群組,其中,第一 導電類型不同於第二導電類型。 本新型㈣各層之不同材料可採用不同離子作為載荷 子(例如’將導電類型自η型轉換 ^•轉換為Ρ型以及自ρ型轉換A contact layer is directly adjacent to the surface implanted region. The deep implant region is preferably implemented to extend in a vertical direction from the first contact layer. The deep implanted regions of each of the illuminating surfaces may be spaced apart from each other, adjacent or in communication. The deep implant regions can also extend into different layers to form different types of deep implant regions. Through the different types of deep implanted regions, the layer sequence of the novel led can be constructed into a plurality of regions having arbitrary shapes, optically isolated from each other in an arbitrary arrangement. The opto-isolated regions that are implemented as surface implanted regions or deep implanted regions are produced by illuminating the layer sequence with charge carriers of different energies and doses. The charge carriers used for irradiation can be protons or ions. M435045 December γ γ 修正 替换 替换 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本Wherein the first conductivity type is different from the second conductivity type. Different materials of the various layers of the novel (4) can use different ions as charge carriers (for example, 'converting the conductivity type from n-type to ^-type and converting from p-type to

η型)。為了在GaN基半導體内製造高阻區域可使用 :ι離子、〇離子、N離子、He離子或叫離子實施載荷子 入。舉例而言,可藉由植入H離子、u離子、c離子或 0離子來隔離摻鋅GaAs結構。 根據本新型LED的其他實施方案,該等表面植入區血 ^深植入區可具有疊合之水平延伸纟,但在暨向上因所 植入載荷子濃度與類型不同而不同。 該等表面植X區及料深才直入區可在單獨一個植 程中依次製成。 在本新型之LED中,包含p_n接面之蟲晶結構既可佈 置於η型摻雜基板上,亦可佈置於p型摻雜基板上,此點 極為有利。在此情況下,既可用共用陽極亦可用共用陰極 製造晶片。其t,帛一接觸層及基板觸點皆可實施為陽極 或陰極’具體視實施方案而定。 第一及第二阻擋層、第一接觸層及活性層之材料皆選 自一包括(AlxGahUnzP (磷化鋁銦鎵)及AlxGaixAs (砷 化鎵鋁)之群組。尤佳根據化學計量指數中丨且 z S 〇_6之取值範圍來確定材料。作為替代方案,可將 InyGa|_yN (氮化銦鎵)用作第一及第二阻擋層、第一接觸 ί00年12月2f日修正替換頁 層及活性層之材料抑或其中任 0.5。若採用χ 曰义材科,其t’〇<y< 右私用inyGa“yN,則該基板較佳 -7 - 金屬合金之群組。 、自一包括鍺、矽尽 根據本新型LED的另—實施 層、第-接觸層及活性層之材料了士 β亥第一及第二阻擋 中’印〜ΰ<χ<1二料可由从GMnzN構成,其 ~-1,0^y<i>〇<2<05〇 其中,所選材料應使得第一及第二阻 於活性層之帶隙。 ▲層之帶隙^大 該活性層由非摻雜材料(i—声 # # U U Μ Λ' y- +,. B P !枱雜材料或n型 成。在其他實施方案中,該活性層可以習知方 子井(一對薄層)或多量子井(多對。 該活性層位於該發光表面下方 超過3_。 -不赵過4 μι較佳不 該基板可為任何—種可吸收發射輻射之半導體基板, _ (珅化鎵)基板為較佳之選。該基板可為ρ型或η型 摻雜。構成該基板之摻雜材料較佳選自—包括Μϋ Ge及金屬合金之群組。 該基板亦可實施為電絕緣型基板,例如非摻雜“、 高阻石夕或不導電錯。構成該電絕緣型基板之材料亦可選自 一包括藍寶石、si - A1N、MgAl2〇4尖晶石或金屬氧化物(例 如,MgO或Zn〇 )之群組。該電絕緣型基板亦可由複合材 料如多晶碳化矽上矽(silicon on p〇ly_erystaUine silk。。 carbide ; SopSiC )構成。 可將不同材料及類型之基板(例如,第—或第二導電 12 M435045 100年12月γ日修正替換頁 類型之基板與電絕緣型基板)結合應用,例如以層疊方式 進行佈置。 八 °玄基板可吸收發射輻射抑或可被發射輻射穿透。 根據本新型LED的其他實施方案,基板與第一阻撐層 之間可設一第—導電類型之緩衝層,用以對各層之不同晶 體結構進行補償。該緩衝層例如為由構成的第一導電 類型之摻雜層。 ,主該基板觸點及該等表面觸點較佳皆實施為接合面。在 /况下4基板觸點及該等表面觸點較佳皆被—接合層 完全或部分覆蓋。遂可以方便、安全且穩定之方式接㈣ 一接觸層或基板。 在本新型LED設電絕緣型基板之其他實施方案中,該 基板觸點可透過至少一金屬導體與該緩衝層連接。該金屬 導體較佳穿過設置於該電絕緣型基板中的溝槽。 , 亦可藉由在絕緣型基板中設置裝有導電材料之微孔來 新型LED中需要電接觸的層(特別是緩衝層)進行接 觸。所謂微孔係自由直徑不超過丨〇 μηι之孔隙。 邊基板觸點較佳為-全向反射器。若將本新型㈣各 層佈置於可被發射韓射穿透之基板上且該基板底面設有一 可反射該發射輻射之層(例如由A1'Ag、CU ^構成), 便可產生全向反射器。 若電絕緣型基板中設有溝槽,則該等溝槽之内表面亦 可'以塗佈處理。此外,該金屬導體本身亦可為反射層。 该第二阻擋層與該第一接觸層之間更可設一第二導電 13 M435045 !〇〇年12月4日修正替換頁 類型之配電層’以便透過一導電截面對流動於第一接觸層 與基板觸點間之電流進行分配。 配電層係用於在整個導電截面上產生電流,此舉十分 有利°此導電截面係為各層位於發光表面下方之區域的水 平截面’在橫向上被該層序列之深植入區光電隔離。該配 電層之有益作用在於,使電流流經活性層整個截面從而提 高發光效率,實現均勻發光。該配電層之材料例如採用p 型或n型摻雜AlInGaP或AlGaAs或InGaN,該配電層可被 活性層所發射的光穿透。 該配電層可由可被發射輻射穿透之導電材料如氧化銦 錫(ιτο)或氧化鋅(Zn0)構成。 該配電層之材料選用能使該配電層具有第一或第二導 電類型且與該第二阻擋層之導電類型一致的摻雜材料。 本新型LED可佈置於一 LED陣列中,其中,多個發光 表面在一共用基板上排佈成一圖樣,較佳採用由行與列構 成之圖樣。 此種LED陣列可採用能使其LED在互不影響的情況下 單獨夂控之設計。根據—種有利實施方案,該等深植入區 穿過所有層一直延伸至電絕緣型基板。其中,緩衝層與該 反射層之間設有一第—導電類型之第二接觸層。該第二接 觸層亦可同時實施為緩衝層。該第二接觸層可為陽極或陰 極’具體視所選導電類型而定。 = 較佳設有用於選擇性控制LED之構件,在此情況下, 與該LED相鄰之未受控LED便不會發光。在包含本新型 14 M435045 100年12月γ日修正替換頁 LED之LED陣列的柃制护 —~ - 鍤处斜Tpn 工制裝置中,此等構件可為採用任何一 種此對LED進行選擇性 簡單的較佳實制之佈置方式的觸點。根據-種 案,該等構件乃多個分佈於該活性層上 方〆下方之不同層中的交又條形觸點(多路控制)。亦可 對成組LED實施集中控制。 方了 2對本新型LED進行控制,則在達収夠高電屋的情 況下會有電流自陽極流向陰極。如前所述,該電流可自第 一接觸層流向基板觸點式笛_ q 關點或第-接㈣,抑或可自基板觸點 或第-接觸層流向第-接觸層,具體視設置於活性層上方 及下方各層的摻雜情況而定。該電流之橫向傳播受料深 植入區限制’故而該電流在位於發光表面下方各層的導電 截面上大體沿豎向定向流動。該活性層以習知方式發射輻 射。朝基板方向發射的輕射到達反射層後被其朝發光表面 方向反射。該等光隔離型深植入區阻止該發射輕射沿橫向 傳播。 【實施方式】 下文將藉由實施例及附圖對本新型進行詳細說明。 下列實施例中的層序列係藉由用以產生層式蠢晶結構 之習知方法製成。表面植入區及深植入區亦同樣藉由習知 技術而產生。 在圖1所示的LED之第一實施方案中,一層序列用以 在575 nm至595 nm範圍内發射黃色光。 底層為基板觸點1以及基板2,基板觸點1實施為歐姆 15 M435045 . —---- 100年12月if日修正替換頁 η型觸點(陰極)且由金構成,基板2係n型摻雜基板由 GaAs單晶(砷化鎵)構成,且與基板觸點丄平面導電連接。 基板2上方為由〇型GaAs構成之緩衝層3,之後係實施為 分佈式布拉格反射器(DBR)的反射層4,其經過某種結構 化處理從而將自上方照射到反射層4上的黃色光朝反射層4 j方反射。反射層4上方依次為由Μ AIInGap構成的第 一阻擋層5、由i_AlinGap構成的活性層6及由^型-構成的第二阻擋層7。第一及第二阻擋層之帶隙大於活性層 6之帶隙。活性層6實施為多量子井。在其他實施方案中,· 活性層6可實施為p型或n型摻雜層、非摻雜層或量子井。 根據其他實施方案,基板觸點!亦可由錯或金/錯構成。 第二阻擋層7上方為由?型Α1Ι‘ρ構成之配電層$ 及由P型GaAs (陽極)構成之第一接觸層9。 有透過質子照射而產生的第一深植入區丨2.1,1 自第-接觸層9出發延伸至反射層内部。第—深植人區… 在其整個登向延伸範圍内具有怪定之環形截面。其中,該 截面上不屬於第-深植入區12.1之區域係一導電戴:籲 (圖中示出其言名τ、 - 於導㈣/ 第一深植入區12」貫穿的層上屬 2〇之區域沿橫向光電隔離。第—接觸層9 一深植入區12la 士 乐 •1具有一藉質子照射而產生之表 (陰影部分)。楚… m八& 1 1 ;第一接觸層9表面設有多個表面觸點ln 冤戠面20整個周邊與第一接觸層9表面 觸。表面觸點丨η弓接 ·· 〇被接合面10.2完全覆蓋。導電截面2〇 留於第一接觸Hq主工 β 殘 碉層9表面之曝露區域形成發光表面13,活性 16 M435045 ____ 100年12月γ日修正替換頁 層6所發射的光到達且穿過該發光表面1 3並發射出去。活 性層6位於發光表面1 3下方3 μιη處。工作電流強度為5 mA 時’每個LED所能達到的光強為1 5 mcd。 在其他實施方案中,位於吸收型基板2上之第一阻撞 層5、第二阻擋層7、第一接觸層9及活性層6可採用能發 射藍色及綠色輻射之材料。 在圖2所示的LED之第二實施方案中,各層及其佈置 • 方式皆與第一實施方案相同,用於在640 nm至660 nm之 籲波長範圍内發射紅色光。此處各層由不同於第一實施方案 之摻雜材料構成。其中,基板2、緩衝層3、反射層4及第 一阻撞層5係p型摻雜’第二阻擋層7、配電層8及第—接 觸層9則為n型摻雜。活性層6位於發光表面13下方3 μηι 處.。 在圖3所示的LED之第三實施方案中,所有層的佈置 方式亦與第一及第二貫施方案相同。此實施方案用以發射 φ 波長為860 nm之紅外輻射。基板2、緩衝層3、反射層4 ' 及第—阻擋層5係n型摻雜,第二阻擋層7、配電層8及第 • 接觸層9則為Ρ型摻雜。與該LED之第一及第二實施方 案不同,此處之第一及第二阻擋層5、7以及配電層8由摻 铭AlGaAs構成。活性層6係由A1GaAs構成的多量子井且 位於發光表面Π下方3 μηι處。 圖4所示係為採用本新型第四實施方案且佈置於一共 用基板2上的兩LED,其中,基板2為一由非推雜以二 構成之電絕緣型基板2·2。絕緣型基板21上方設有由η型 17 M435045 100年12月#日修正替換頁 摻雜GaAs構成的第二接觸層14。再往上依次為實施為 之η型摻雜反射層4、由!!型AUnGaP構成的第一阻擋層5、 實施為活性層6且由i.A1InGaP構成的多量子井由p型η type). In order to fabricate a high-resistance region in a GaN-based semiconductor, it is possible to carry out charge sub-injection using: Ig ions, cesium ions, N ions, He ions or ions. For example, a zinc-doped GaAs structure can be isolated by implanting H ions, u ions, c ions, or 0 ions. According to other embodiments of the novel LEDs, the deep implant regions of the surface implanted regions may have overlapping horizontally extending ridges, but differ in cum-up due to the concentration and type of implanted charge carriers. These surface X zones and feed depths can be made in a single plant in sequence. In the LED of the present invention, the serpentine structure including the p_n junction can be disposed on the n-type doped substrate or on the p-type doped substrate, which is extremely advantageous. In this case, the wafer can be fabricated using either a common anode or a common cathode. The t-contact layer and the substrate contacts can be implemented as anodes or cathodes, depending on the embodiment. The materials of the first and second barrier layers, the first contact layer and the active layer are all selected from the group consisting of (AlxGahUnzP (aluminum indium phosphide) and AlxGaixAs (aluminum gallium arsenide). Especially according to the stoichiometric index And the value range of z S 〇 _6 is used to determine the material. As an alternative, InyGa|_yN (Indium Gallium Nitride) can be used as the first and second barrier layers, and the first contact is corrected on December 2f Replacing the material of the page layer and the active layer or 0.5 of them. If χ 曰 曰 , , , , , , 。 y y y y y y 右 右 右 右 右 右 右 右 右 右 该 该 该 该 该 该 该 该 该 该 该 该 该 该 该 该 该 该 该 该 该According to the invention, the material of the other embodiment, the first contact layer and the active layer of the LED are used in the first and second barriers of the first and second barriers. GMnzN is composed of ~-1,0^y<i>〇<2<05, wherein the selected material is such that the first and second barriers are in the band gap of the active layer. The layer is made of an undoped material (i-sound ## UU Μ Λ' y- +, . BP ! a dopant or n-type. In other embodiments, the active layer can Zhifangzi well (a pair of thin layers) or multiple quantum wells (multiple pairs. The active layer is located below the illuminating surface more than 3 _. - not over 4 μιη preferably the substrate can be any kind of absorbable radiation The semiconductor substrate, _ (gallium gallium arsenide) substrate is preferably selected. The substrate may be p-type or n-type doped. The doping material constituting the substrate is preferably selected from the group consisting of Μϋ Ge and a metal alloy. The substrate may also be implemented as an electrically insulating substrate, such as undoped, high-resistance or non-conducting. The material constituting the electrically insulating substrate may also be selected from a spinel including sapphire, si-A1N, MgAl2〇4. A group of stones or metal oxides (for example, MgO or Zn〇). The electrically insulating substrate may also be composed of a composite material such as silicon on p〇ly_erystaUine silk (sopSiC). Substrates of different materials and types (for example, the first or second conductive 12 M435045 December gamma-day modified replacement page type substrate and electrically insulating substrate) are used in combination, for example, in a stacked manner. Absorbing radiation Suppressed or permeable to radiation. According to other embodiments of the novel LED, a buffer layer of a first conductivity type may be disposed between the substrate and the first barrier layer for compensating for different crystal structures of the layers. The buffer layer is, for example, a doped layer of a first conductivity type formed by the substrate. The main substrate contacts and the surface contacts are preferably implemented as a bonding surface. In the case of 4 substrate contacts and the surface contacts Preferably, the bonding layer is completely or partially covered.遂 It is convenient, safe and stable to connect (4) a contact layer or substrate. In other embodiments of the novel LED-insulated substrate, the substrate contact is connectable to the buffer layer via at least one metal conductor. The metal conductor preferably passes through a trench provided in the electrically insulating substrate. It is also possible to make contact with a layer (especially a buffer layer) in the novel LED that requires electrical contact by providing micropores with a conductive material in the insulating substrate. The so-called microporous free diameter does not exceed the pores of 丨〇 μηι. The edge substrate contacts are preferably omnidirectional reflectors. An omnidirectional reflector can be produced by arranging the layers of the novel (4) on a substrate that can be transmitted through the Korean laser and having a layer on the bottom surface of the substrate that reflects the emitted radiation (for example, composed of A1'Ag, CU^). . If grooves are provided in the electrically insulating substrate, the inner surfaces of the grooves may also be treated by coating. Furthermore, the metal conductor itself can also be a reflective layer. A second conductive layer 13 M435045 can be disposed between the second barrier layer and the first contact layer. The distribution layer of the replacement page type is modified on December 4th of the following year to flow through the first contact through a conductive cross section. The current between the layer and the substrate contacts is distributed. The distribution layer is used to generate current over the entire conductive section, which is highly advantageous. The conductive section is the horizontal section of the layer below the luminescent surface, which is optically isolated laterally by the deep implant region of the layer sequence. The beneficial effect of the electrical distribution layer is to cause current to flow through the entire cross section of the active layer to improve luminous efficiency and achieve uniform illumination. The material of the power distribution layer is, for example, p-type or n-type doped AlInGaP or AlGaAs or InGaN, and the power distribution layer can be penetrated by light emitted from the active layer. The distribution layer may be composed of a conductive material that can be penetrated by the emitted radiation, such as indium tin oxide (ZnO) or zinc oxide (Zn0). The material of the power distribution layer is selected from a dopant material that enables the power distribution layer to have a first or second conductivity type and is consistent with the conductivity type of the second barrier layer. The novel LEDs can be arranged in an array of LEDs, wherein the plurality of light-emitting surfaces are arranged in a pattern on a common substrate, preferably in a pattern of rows and columns. Such an LED array can be designed to be individually controlled without affecting the LEDs. According to an advantageous embodiment, the deep implant regions extend through all layers up to the electrically insulating substrate. A second contact layer of a first conductivity type is disposed between the buffer layer and the reflective layer. The second contact layer can also be implemented as a buffer layer at the same time. The second contact layer can be either anode or cathode' depending on the type of conductivity selected. = A component for selectively controlling the LED is preferably provided, in which case the uncontrolled LED adjacent to the LED will not emit light. In the pn 护 T pn pn 包含 包含 包含 包含 包含 包含 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 The preferred arrangement of the contacts. According to the invention, the members are a plurality of cross-shaped contacts (multiplexed control) distributed in different layers below the upper layer of the active layer. It is also possible to implement centralized control of groups of LEDs. In the case of controlling the new LED, there will be current flowing from the anode to the cathode in the case of a high enough electric house. As described above, the current may flow from the first contact layer to the substrate contact flute _ q or the first (four), or may flow from the substrate contact or the first contact layer to the first contact layer, as specifically The doping of the layers above and below the active layer depends on the doping. The lateral propagation of this current is limited by the deep implant region so that the current flows generally vertically in the conductive cross section of the layers below the light emitting surface. The active layer emits radiation in a conventional manner. The light radiation emitted toward the substrate is reflected by the reflective layer and reflected toward the light emitting surface. The optically isolated deep implant regions prevent the transmitted light radiation from propagating in the lateral direction. [Embodiment] Hereinafter, the present invention will be described in detail by way of embodiments and the accompanying drawings. The layer sequences in the following examples were made by a conventional method for producing a layered amorphous structure. Surface implanted regions and deep implanted regions are also produced by conventional techniques. In a first embodiment of the LED shown in Figure 1, a sequence of layers is used to emit yellow light in the range of 575 nm to 595 nm. The bottom layer is the substrate contact 1 and the substrate 2, and the substrate contact 1 is implemented as ohm 15 M435045. The replacement of the n-type contact (cathode) is replaced by gold, and the substrate 2 is n. The doped substrate is composed of a GaAs single crystal (gallium arsenide) and is electrically connected to the substrate contact plane. Above the substrate 2 is a buffer layer 3 composed of 〇-type GaAs, which is then implemented as a reflective layer 4 of a distributed Bragg reflector (DBR), which undergoes some structural treatment to illuminate the yellow layer from the upper side onto the reflective layer 4. The light is reflected toward the reflective layer 4 j. Above the reflective layer 4, there is a first barrier layer 5 composed of Μ AIInGap, an active layer 6 composed of i_AlinGap, and a second barrier layer 7 composed of a ^-type. The band gaps of the first and second barrier layers are larger than the band gap of the active layer 6. The active layer 6 is implemented as a multiple quantum well. In other embodiments, the active layer 6 can be implemented as a p-type or n-type doped layer, an undoped layer, or a quantum well. According to other embodiments, the substrate contacts! It can also consist of wrong or gold/wrong. What is above the second barrier layer 7? The first layer 9 is composed of a distribution layer of 'p' and a first contact layer 9 composed of a p-type GaAs (anode). The first deep implant region 丨2.1,1 produced by proton irradiation extends from the first contact layer 9 to the inside of the reflective layer. The first-deep-planted area... has a strange circular section in its entire extension. Wherein the region of the cross section not belonging to the deep-deep implant region 12.1 is a conductive wear: a layer (the figure shows the name τ, - the guide (4) / the first deep implant region 12" penetrates the layer genus The area of 2〇 is optically isolated along the lateral direction. The first contact layer 9 is a deep implanted area 12la. The music has a table (shaded part) produced by proton irradiation. Chu... m8& 1 1 ; first contact The surface of the layer 9 is provided with a plurality of surface contacts ln. The entire periphery of the surface 20 is in contact with the surface of the first contact layer 9. The surface contact 弓 弓 · is completely covered by the joint surface 10.2. An exposed area contacting the surface of the Hq main work β residue layer 9 forms a light-emitting surface 13, active 16 M435045 ____ 100 years γ day correction replacement light emitted by the page layer 6 reaches and passes through the light-emitting surface 13 and is emitted The active layer 6 is located at 3 μm below the light-emitting surface 13. When the operating current intensity is 5 mA, the light intensity that each LED can achieve is 15 mcd. In other embodiments, the first substrate is located on the absorption substrate 2. A barrier layer 5, a second barrier layer 7, a first contact layer 9, and an active layer 6 may be capable of emitting Color and green radiation material. In the second embodiment of the LED shown in Figure 2, the layers and their arrangement and manner are the same as in the first embodiment, for emitting red in the wavelength range of 640 nm to 660 nm Light, wherein each layer is composed of a doping material different from the first embodiment, wherein the substrate 2, the buffer layer 3, the reflective layer 4 and the first barrier layer 5 are p-type doped 'second barrier layer 7, and the power distribution layer The layer 8 and the first contact layer 9 are n-type doped. The active layer 6 is located 3 μηι below the light-emitting surface 13. In the third embodiment of the LED shown in Fig. 3, all layers are arranged in the same manner. The first and second embodiments are the same. This embodiment is for emitting infrared radiation having a φ wavelength of 860 nm. The substrate 2, the buffer layer 3, the reflective layer 4' and the first barrier layer 5 are n-type doped, and the second blocking The layer 7, the distribution layer 8 and the contact layer 9 are doped-type doped. Unlike the first and second embodiments of the LED, the first and second barrier layers 5, 7 and the distribution layer 8 are It is composed of fused AlGaAs. The active layer 6 is a multi-quantum well composed of A1GaAs and is located at 3 μηι below the luminescent surface. Figure 4 shows two LEDs arranged on a common substrate 2 using the fourth embodiment of the present invention, wherein the substrate 2 is an electrically insulating substrate 2·2 composed of non-inductive and two-in-one. A second contact layer 14 made of η-type 17 M435045 December DEC 2015, a replacement page doped GaAs is provided on the upper surface of the substrate 21. The n-type doped reflective layer 4, which is implemented as the ?! A first barrier layer 5 composed of AUnGaP, a multi-quantum well constructed as an active layer 6 and composed of i.A1InGaP, is p-type

AlInGaP構成的第二阻擋層7、纟?型AUnGap構成的配電 層8以及由p型GaAs構成之第一接觸層9。第一深植入區 12.1自第一接觸層9出發延伸至反射層4内部。表面觸點 1〇及接合面10.2採用與前述第一至第三實施方案相同之設 計。此外更設有多個平行分佈之第二深植入區ΐ2·2,其自 第一接觸層9延伸至絕緣型基板21内部。其中一第二深植 入區12.2在兩LED之間自LED之層序列的其中一側不間 斷延伸至層序列之另—側,藉此將兩LED的所有層予以光 電隔離。该等LED透過其他第二深植入區12.2與層序列兩 側絕緣。 圖5至圖8所示係為本新型LED的設計與佈置方案。 圖5為兩具有二角形發光表面13之LED的佈置方案。第一 接觸層9具有可將兩發光表面13予以光電隔離之表面植入 區11。表面觸點10(未圖示)上設有接合面10.2。 从〜π叫刀、a」M肱顯不數字之方式定 位於第-接觸層9。其中,總計七個㈣之發光表面以 透過-實施為條帶1(M之表面觸點1G受到接觸且各與一接 合面10.2導雷磕拉 ± ^ 〒电逻接。表面植入區丨丨使表面觸點1〇與發光 表面13彼此光電隔離,從而可對各表面觸點及發光表面分 別實施獨立控制。按此方式應用本新型之LED,便可實現 led顯示晶片。 18 M435045 _ - 100年12月γ日修正替換頁 該等LED可發射650 rnn之輻射(紅色),其中,在約 400 nA條件下便可發射可見光。光強比第一代GaAsP基顯 示晶片高1〇〇倍(及以上),遂可提高輝度及輪廓清晰度 且便於辨識。最佳數字高度約為0.5 mm至1.5 mm (標準高The second barrier layer 7 composed of AlInGaP, 纟? A power distribution layer 8 of type AUnGap and a first contact layer 9 of p-type GaAs. The first deep implant region 12.1 extends from the first contact layer 9 to the inside of the reflective layer 4. The surface contact 1〇 and the joint surface 10.2 are of the same design as the first to third embodiments described above. Further, a plurality of second deep implant regions ΐ2·2 distributed in parallel are provided, which extend from the first contact layer 9 to the inside of the insulating substrate 21. One of the second deep implanted regions 12.2 extends between the two LEDs from one side of the layer sequence of the LEDs uninterrupted to the other side of the layer sequence, thereby photo-isolated all layers of the two LEDs. The LEDs are insulated from the other sides of the layer sequence through the other second deep implant region 12.2. Figure 5 to Figure 8 show the design and layout of the new LED. FIG. 5 shows an arrangement of two LEDs having a polygonal light emitting surface 13. The first contact layer 9 has a surface implant region 11 which is capable of optically isolating the two light emitting surfaces 13. A joint surface 10.2 is provided on the surface contact 10 (not shown). It is located on the first contact layer 9 from the way that the π is called a knife and the a"M is not digital. Wherein, a total of seven (four) light-emitting surfaces are transmitted-implemented as strips 1 (the surface contacts 1G of M are contacted and each is electrically connected to a joint surface 10.2.) The surface contact 1〇 and the light emitting surface 13 are optically isolated from each other, so that each surface contact and the light emitting surface can be independently controlled. In this way, the LED of the present invention can be used to realize the LED display chip. 18 M435045 _ - 100 December γ Day Correction Replacement Page These LEDs can emit 650 rnn of radiation (red), where visible light can be emitted at about 400 nA. The light intensity is 1 times higher than that of the first generation GaAsP based display wafer ( And above), which improves brightness and contour definition and is easy to identify. The optimum digital height is about 0.5 mm to 1.5 mm (standard height)

度約為0.7 mm )。採用本新型LED ( 0.05 mA/LED )之LED 顯示晶片的耗電量比第一代LED顯示晶片(5 mA/LED )大 約小100倍。 此種LED顯示晶片可用極小空間顯示數字及字母等符 ® 號,並將其映射到光路中。此種LED顯示晶片例如可將依 賴電池工作之量測設備的輸出資訊視覺化抑或將資訊映射 到光學设備中。亦可應用於醫療領域(例如,内窺鏡檢杳) 或雷射打印機之行陣列。 圖7示出一類似佈置方案。其中設有多個發射可見光 或紅外輕射之圓形發光表面13,其直徑皆為5〇 μιη,它們 分別透過分離的接合式表面觸點1 〇受到接觸且可予以單獨 控制。The degree is about 0.7 mm). The LED display with this new LED (0.05 mA/LED) consumes approximately 100 times less power than the first generation of LED display chips (5 mA/LED). This LED display chip can display numbers and letters, etc., in a very small space and map it to the light path. Such LED display wafers, for example, can visualize or map information to the output of the battery-operated measurement device. It can also be applied to medical fields (for example, endoscopy) or arrays of laser printers. Figure 7 shows a similar arrangement. There are a plurality of circular light-emitting surfaces 13 that emit visible light or infrared light, each having a diameter of 5 〇 μηη, which are respectively contacted through separate bonded surface contacts 1 且 and can be individually controlled.

在圖8中,多個發光表面13在一共用絕緣型基板2ι 上排佈成-陣歹4 " (LED陣列),此處之層序列依照本新 型LED如圖4所示之第四實施方案。 表面觸點1〇實施為條帶10.卜該等條帶透過第—接觸 層9之表面植入區11彼此電性絕緣。透過該等條帶^可 分別使陣列丨5之第一方向丨7上的多個發光表面13受到接 觸。第二接觸層14實施為多個彼此電性絕緣之條帶μ卜 該等條帶沿陣列15之第二方向18 (垂直於陣列之第二 19 M435045 100年12月if日修正替換頁 方向)分佈’遂使沿第一方向1 7分佈之條帶1 〇 · 1與沿第二 方向18分佈之條帶14.1從俯視角度看形成一網絡(見圖中 虛線)’其中’元件符號19係條帶1〇」與14」之交又點 19 ’且每個發光表面13各佈置於一交又點19上。條帶10.1 可藉由位於其中—末端的接合面10.2受到接觸。條帶14.1 的其中末端透過化學蝕刻或電漿蝕刻自第一接觸層9 一 側呈點狀曝露。條帶1 4 · 1之曝露區域可單獨接觸。 匕外°又有控制裝置1 6,其實施為可透過相應導線2 1選 擇丨生接觸各條帶丨〇丨及條帶丨4丨,因此,控制裝置1 6可單聲 ^為每個發光表面13以不受其他發光表面13影響之方式 可控觸發一定向電流’此電流在一條帶10.1與一條帶14.1 之間垂直於交叉點19流動。 在其他實施方案中,條帶1 4·1可具有突出於層序列以 卜的接合面1 0.2,抑或透過其他習知方法呈點狀或平面狀 βΕ & _ · %圖9為本新型LED之第五實施方案。表面植入區n與 衣植入區12具有相同之水平延伸度且上下疊合佈置。設有 兩豎直分佈且相隔一定水平距離之區左右兩側的陰影 區)’該等區域包含上下疊合佈置之表面植入區"及深植 入區12。深植入區12實施為第二深植入區μ且自表面 植入區11延伸至基板2。基板2為第—或第二導電類型。 圖10為本新型LED之第六實施方案其基本結構與圖 所不-致。第六實施方案中設有—電絕緣型基板Π,其 包含兩豎向分佈之溝槽23,每個溝槽中各設—金屬導體 20 M435045 100年12月日修正替換頁 22,基板觸點!與緩衝層3經由該金屬導體22受到接觸且 彼此導電相連。緩衝層3透過金屬導體22在發光表面13 下方受到接觸。電絕緣型基板21可被發射輻射穿透且其底 面設有金鍍層。經此塗佈處理之電絕緣型基板21與本新型 led佈置於該電絕緣型基板21上方的各層共同作用,從而 形成一全向/雙向反射器。 圖1 1為本新型LED用作聚光燈晶片時的俯視圖。發光 表面13呈圓形,被接合面1〇.2包圍,直徑為5〇μιη。此直 授在其他實施方案中亦可有所減小(例如25 μηι)或增大(例 如150 μη〇。所發射輻射之波長為65〇 nm (紅色),其中, 自彻nA起便可發射可見光。光強比第—代聚光燈晶片大 約向5倍。該聚光燈晶片之允許電流負荷高達2〇〇 , 反應時間短(<5nS)。100 A/cm2時,該聚光燈晶片在1〇〇 A/cm2條件下使用壽命超過100000小時,故特別適用於資 料傳輸領域。本新型LED在聚光燈晶片中的使用效率高, 能延長聚光燈晶片非靜態應用時的電池使用壽命,抑或延 長配有5玄聚光燈晶片之儀器設備的使用壽命。 有鑒於此,该聚光燈晶片例如可應用於不會產生斑點 的替代型VCSEL,用作旋轉位移感測器(編碼器)之射線 源、目標光學系統之小型光點、光障之聚焦光束以及雷射 打印機之點行陣列。 本新型之LED應用廣泛。例如,為顯示可視圖形符號 斤用之顯不裔提供背光,抑或將可視圖形符號映射到光學 設備的光路中。該LED光強高,因吸收、部分反射、散射 100年12月γ日修正替換頁 及/或+、、本 對比户:而產生的損耗不難得到補償。此外,本新型之LED 形符:了,故而亦適合用來顯示小圖形符號及/或高解析圖 案; 【圖式簡單說明】 .為包3 η型摻雜基板之本新型LED之第一實 施方 案; 圖2為包含p型摻雜基板之本新型 之第二實施方 案; 圖3為包含n型摻雜基板之本新型led之第三實 施方 圖4為包含非摻雜基板之本新型咖之第四實施方案; 圖5為本新型LED之第一佈置方案之俯視圖; 圖6為本新型LED在數字顯示器中之第二佈 之 俯視圖; 〃 圖7為本新型LED之第三佈置方案之俯視圖; 圖8為包含本新型LED之LED陣列之俯視圖; 圖9為本新型LED之第五實施方案,包含水平延伸度 相同之表面植入區與深植入區; 圖10為本新型LED之第六實施方案,包含水平延伸度 相同之表面植入區與深植入區、絕緣型基板及全向反= 器;及 圖11為聚光燈形式之本新型LED的俯視圖。 22 M435045 100年12月γ日修正替換頁 【主要元件符號說明】 1 :基板觸點 2 :基板 2.1 :電絕緣型基板 3 :緩衝層 4 :反射層 5 :第一阻擋層 6 :活性層 7 :第二阻擋層 8 :配電層 9 :第一接觸層 1 0 :表面觸點 10.1 :條帶 1 〇. 2 :接合面 1 1 :表面植入區 1 2 .深植入區 1 2.1 :第一深植入區 12.2 :第二深植入區 13 :發光表面 14 :第二接觸層 14.1 :條帶 1 5 :陣列 1 6 :控制裝置 17 :第一方向 23 M435045 _ — — - — ·-- --- - — 一 -. · — _ _ — - — — - - —— —— -- — _ —-------—-- 100年12月砰日修正替換頁 18 :第二方向 1 9 :交叉點 20 :導電截面 21 :導線 22 :金屬導體 23 :溝槽In FIG. 8, a plurality of light-emitting surfaces 13 are arranged on a common insulating substrate 2i as an array of LEDs, and the layer sequence here is in accordance with the fourth embodiment of the novel LED as shown in FIG. Program. The surface contacts 1A are implemented as strips 10. The strips are electrically insulated from each other through the surface implant region 11 of the first contact layer 9. The plurality of light emitting surfaces 13 on the first direction 丨7 of the array 丨5 are respectively contacted by the strips. The second contact layer 14 is implemented as a plurality of strips electrically insulated from each other. The strips are along the second direction 18 of the array 15 (perpendicular to the second 19 M435045 of the array, December 2014, if the date of the replacement page is corrected) The distribution '遂 causes the strips 1 〇 1 distributed along the first direction 17 and the strips 14.1 distributed along the second direction 18 to form a network from a top view (see dotted line in the figure) 'where' the component symbol 19 is strip The intersection of the belts 1" and 14" is again 19' and each of the light-emitting surfaces 13 is disposed at a point and point 19. The strip 10.1 can be contacted by the joint surface 10.2 located at its end. The end of the strip 14.1 is spot-like exposed from one side of the first contact layer 9 by chemical etching or plasma etching. The exposed area of the strip 1 4 · 1 can be contacted separately. The control device 16 is configured to selectively contact each of the strips and the strips 透过4丨 through the corresponding wires 2 1 , so that the control device 16 can monophonize each of the lights The surface 13 is controllably triggered to deflect a certain current in a manner that is unaffected by the other illumination surface 13 'this current flows perpendicularly to the intersection 19 between a strip 10.1 and a strip 14.1. In other embodiments, the strip 1 4·1 may have a joint surface 1 0.2 protruding from the layer sequence, or may be spotted or planar by other conventional methods. βΕ & _ · % Figure 9 is a novel LED The fifth embodiment. The surface implanted region n has the same horizontal extent as the garment-implanted region 12 and is arranged one above the other. There are two shaded areas on the left and right sides of the area that are vertically distributed and separated by a certain horizontal distance. The areas include the surface implanted area " and the deep implanted area 12 which are arranged one above the other. The deep implant region 12 is implemented as a second deep implant region μ and extends from the surface implant region 11 to the substrate 2. The substrate 2 is of a first or second conductivity type. Fig. 10 is a view showing the basic structure and the drawings of the sixth embodiment of the novel LED. In the sixth embodiment, there is provided an electrically insulating substrate Π, which comprises two vertically distributed grooves 23, each of which is provided with a metal conductor 20 M435045, December 2014, revised replacement page 22, substrate contacts ! The buffer layer 3 is brought into contact via the metal conductor 22 and is electrically connected to each other. The buffer layer 3 is contacted under the light-emitting surface 13 through the metal conductor 22. The electrically insulating substrate 21 is permeable to emitted radiation and has a gold plating on its bottom surface. The electrically insulating substrate 21 subjected to the coating treatment cooperates with the layers of the novel led disposed above the electrically insulating substrate 21 to form an omnidirectional/bidirectional reflector. Figure 11 is a top plan view of the novel LED used as a spotlight wafer. The light-emitting surface 13 has a circular shape and is surrounded by the joint surface 1〇2, and has a diameter of 5 μm. This direct grant may also be reduced (e.g., 25 μηι) or increased (e.g., 150 μη〇 in other embodiments. The wavelength of the emitted radiation is 65 〇 nm (red), where it can be emitted since the nA Visible light. The intensity is about 5 times higher than that of the first-generation spotlight chip. The current load of the spotlight chip is up to 2〇〇, and the reaction time is short (<5nS). At 100 A/cm2, the spotlight chip is at 1〇〇A. The service life is more than 100,000 hours under the condition of /cm2, so it is especially suitable for data transmission. The new LED is highly efficient in spotlight wafers, can extend the battery life of non-static applications of spotlight chips, or extend with 5 bright spotlights. The service life of the instrumentation of the wafer. In view of this, the spotlight wafer can be applied, for example, to an alternative VCSEL that does not generate spots, as a radiation source of a rotational displacement sensor (encoder), and a small spot of the target optical system. The focus beam of the light barrier and the dot array of the laser printer. The LED of the new type is widely used, for example, to provide a display for the display of visual graphic symbols. Or mapping the visual graphic symbol into the optical path of the optical device. The LED light intensity is high, due to absorption, partial reflection, scattering, gamma-day correction replacement page and/or +, and the loss generated by the comparison household: It is not difficult to get compensation. In addition, the LED shape of the present invention is: therefore, it is also suitable for displaying small graphic symbols and/or high-resolution patterns; [Simplified illustration]. This is a novel type of η-type doped substrate. A first embodiment of the LED; FIG. 2 is a second embodiment of the novel comprising a p-type doped substrate; FIG. 3 is a third embodiment of the novel led comprising an n-type doped substrate. FIG. 4 is a top view of the first arrangement of the LED; FIG. 5 is a plan view of the second arrangement of the LED in the digital display; FIG. 6 is a top view of the second cloth of the novel LED in the digital display; FIG. 8 is a plan view of an LED array including the LED of the present invention; FIG. 9 is a fifth embodiment of the LED of the present invention, including a surface implanted region and a deep implanted region having the same horizontal extent; FIG. The sixth real thing for this new LED The solution includes a surface implanted region and a deep implanted region having the same horizontal extent, an insulating substrate and an omnidirectional reverser; and Fig. 11 is a top view of the novel LED in the form of a spotlight. 22 M435045 December gamma day Correction replacement page [Main component symbol description] 1 : Substrate contact 2 : Substrate 2.1 : Electrically insulating substrate 3 : Buffer layer 4 : Reflective layer 5 : First barrier layer 6 : Active layer 7 : Second barrier layer 8 : Power distribution Layer 9: first contact layer 10: surface contact 10.1: strip 1 〇. 2: joint surface 1 1 : surface implanted region 1 2 . deep implanted region 1 2.1: first deep implanted region 12.2: Two deep implant area 13: light emitting surface 14: second contact layer 14.1: strip 1 5: array 1 6: control device 17: first direction 23 M435045 _ — — — — — — — — — — — · — _ _ — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — : Conductive section 21: Conductor 22: Metal conductor 23: Trench

24twenty four

Claims (1)

M435045 __ —— ^ ιοί年〇5月/日修正替換頁 六、申請專利範圍: 1. 一種表面發光的半導體發光二極體(LED ),包含一 上下疊置層序列,該層序列包含: 一第一導電類型之基板觸點(1)層, 一共用基板(2), 一該第一導電類型之第一阻擋層(S), 一發光活性層(6 ), . 一第二導電類型之第二阻檔層(7), 一該第二導電類型之第一接觸層(9),該第一接觸層 (9 )中设有多個藉載荷子照射而彼此電性絕緣之表面植入 區(11 ),及 多個用於接觸該第—接觸層(9)之導電表面觸點 (10), 其特徵在於, 該基板(2)由一半導體基板構成,該基板(2)具有 第導電類型,抑或該基板⑺為一電絕緣型基板(21), 抑或该基板(2 )由一金屬或一複合材料構成, °玄基板(2 )與該第-阻擋層(5 )之間設有一該第〆 導電類型之反射層, ^層(9)具有至少一發光表自(13),該活 性層(”所發射的輻射經該發光表面自該半導體發光二極 體射:該第—接觸層(9)中受載荷子照射之表面植入區 (&quot;:使該等發光表面(13)彼此光電隔離,以及 固又载荷子照射之第一深植入區(ΐ2 ι )使得該等層 25 M435045 在該發光表面(13)下方自該第一接觸層(9)出發至少延 伸至貫穿該活性層(6)之區域與該等層不位於該發光表面 (13)下方的區域光電隔離。 2.如申請專利範圍第1項之半導體發光二極體,其中, 該第一導電類型及該第二導電類型選自一包括p型及η 型摻雜半導體之導電類型之群組’且該第一導電類型不同 於該第二導電類型。 3. 如申請專利範圍第2項之半導體發光二極體,其中, 該第一阻擋層(5 )及該第二阻擋層(7 )之帶隙皆大 於該活性層(6 )之帶隙。 4. 如申請專利範圍第3項之半導體發光二極體,其中, 該第一及第二阻擔層(5,7)、該第一接觸層(9)及 該活性層(6 )之材料選自一包括(AlxGai x)|_zinzp及 AlxGai-xAs 之群組,其中,i 且 〇 “ 5·如申請專利範圍第 該第一及第二阻擋層 4項之半導體發光二極體,其中, (5’7)、該第一接觸層(9)及 該活性層(6 )之材料由A1 Ga Τη μ摄〇、 β &amp; π· t«〜山ayinzN 構成,其中,x+y + z=1 Ο &lt; X &lt; 1 . Ο &lt; y &lt; 1 , 〇 &lt; z &lt; 〇 5 〇 6.如申請專利範圍第4項 該第一及第二阻擋層(5 該活性層(6)之材料選用In 之半導體發光二極體,其中, ,7)、該第一接觸層(9)及 yGa^N,其中,〇 $ y $ 〇.5, 且δ亥基板(2)選自一包括錯 石夕及金屬合金之群組。 7.如申明專利範圍第μ之半導體發光二極體,其中, 該活性層(6)由—非摻雜材料、一 ρ型摻雜材料或一 η 26 101年05月/日修正替換頁 型摻雜材料構成,且佈置於該等發光表面(⑴沈 度不超過4 μιη。 冰 8. 如争請專利範圍第1項之半導體發光二極體,呈卜 該活性層(6)實施為量子井或多量子井,且佈置於該 等發光表面(13)下方,深度不超過4μιη。 9. 如申請專利範圍第丨項之半導體發光二極體,其中, 該基板(2)由一摻雜材料構成,該材料選自一包括 GaAs、Ge及金屬合金之群組。 10. 如申請專利範圍第〗項之半導體發光二極體,其中, 該基板(2 )實施為一電絕緣型基板(2丨)。 11. 如申請專利範圍第1〇項之半導體發光二極體,其 中, 該電絕緣型基板(21 )由一選自一包括藍寶石、si -AIN、MgAhO4尖晶石、金屬氧化物之群組的材料構成,抑 或由複合材料構成。 12. 如申請專利範圍第1項之半導體發光二極體,其中, 該基板(2)與該第一阻檔層(5)之間設有一該第一 導電類型之緩衝層(3 ),用以對該等層之不同晶體結構進 行補償。 13. 如申請專利範圍第1項之半導體發光二極體,其中, 該反射層(4)為一分佈式布拉格反射器(DBR)。 14. 如申請專利範圍第1項之半導體發光二極體,其中’ 該第二阻擋層(7)與該第一接觸層(9)之間設有一 該第二導電類型之配電層(8),用以對一透過一導電截面 27 M435045 (20 )流動於該第一接觸層(9 )與該基板觸點(丨)間之 - 電流進行分配,該配電層可被該發射輻射穿透》 · 15. 如申請專利範圍第14項之半導體發光二極體,盆 ^ t , 八 該配電層(8)由一透明導電材料構成。 16. 如申凊專利範圍第丨項之半導體發光二極體其中, β玄基板觸點(1 )及該等表面觸點(j 〇 )皆實施為接合 面(10.2),具體實現方式係使其被一接合層(1〇 2)至2 部分覆蓋。 17. 如申請專利範圍第12項之半導體發光二極體,复 t . '、 忒基板觸點(1 )透過至少—金屬導體(22 )與該緩衝 層(3)連接,該金屬導體穿過至少一設置於該電絕緣型基 板(2.1 )中之溝槽(23) 。 土 18. 如申請專利範圍第17項之半導體發光二極 t , 。玄基板觸,點(1)之底面塗覆有一可反射該發射輻射之 ^,該基板觸點與設置於該絕緣型基板(21)中的該至少-金屬導體(22)及該緩衝層(3)共同構成一全向反射器。 I9·如申請專利範圍第1項之半導體發光二極體,其申, 藉由用照射用射線束每單位截面面積動能及載荷子數 不同之載荷子照射該層序列,使該等表面植入區(ιι)斑 該等第—深植入區⑴·1)光電隔離,其中,用以產生該等 表面植入區之射線束每單位截面面積载荷子動能小於該等 28 1〇1年05月I曰修正替換頁 大於該 深植入區(12),射線束每單位截面 等深植入區(12)。 數 t 2〇.如申請專利範圍第16項之半導體發光 二極體,其 為不同發光二極體材料採用不同離子作為載流子。 卜2!.如申請專利範圍第16項之半導體發光二極體,其 該等表面植入區(丨丨)與該辇 合之水平延伸卢,…6 區(12)具有疊 同,= 在置向上因離子濃度與類型不同而不 同該等表面植入區愈該箄深始λ广7&gt;上 ,^ /、政寺,衣植入區係在單獨一個植入盥 程中依次製成。 徊植入I 22.如申請專利範圍第 其中, ,I牛導體發光二極體陣列, 多個發光表面(13)在—Α 樣(陣列(15))。 ”用基板⑴上排佈成一圖 2 3 ·如申請專利範圍坌μ 列,其中, 項之半導體發光二極體陣 除該等第一深植入區( ^ , 19 匕^2.1)外更設有多個第二深植入 區(12.2),該等第_深始 乐一,木植入區穿過所有層一直延伸至該雷 絕緣型基板(2.0,在一键“ 直延1甲至该電 . 在緩衝層(3)與該反射層(4)之 間設有一第一導電_ $ at 貝生之第二接觸層(14),該第二阻擋 層(7)與g亥第—接觸層 (8) ^ ()之間設有一該第二導電類型 之配电層(8) ’該等表 觸(10 )實施為彼此電性絕緣 之條帶(10.1),拉士分姑、 曰由該荨條帶分別對該陣列(1 5 )之第一 29 M435045M435045 __ —— ^ ιοί 〇 May/Day Revision Replacement Page VI. Scope of Application: 1. A surface-emitting semiconductor light-emitting diode (LED) comprising a sequence of superimposed layers, the sequence of layers comprising: a substrate contact (1) layer of a first conductivity type, a common substrate (2), a first barrier layer (S) of the first conductivity type, a luminescent active layer (6), a second conductivity type a second barrier layer (7), a first contact layer (9) of the second conductivity type, wherein the first contact layer (9) is provided with a plurality of surface implants electrically insulated from each other by charge carriers a region (11), and a plurality of conductive surface contacts (10) for contacting the first contact layer (9), wherein the substrate (2) is composed of a semiconductor substrate, and the substrate (2) has a Conductive type, or whether the substrate (7) is an electrically insulating substrate (21), or the substrate (2) is composed of a metal or a composite material, and between the 玄 substrate (2) and the first barrier layer (5) a reflective layer of the second conductivity type, the layer (9) having at least one illuminating meter from (13) The radiation emitted by the active layer (" emitted from the semiconductor light emitting diode through the light emitting surface: a surface implanted region of the first contact layer (9) that is irradiated by a charge carrier (&quot;: such light emitting surface ( 13) optically isolating from each other, and the first deep implant region (ΐ2 ι ), which is fixed by the charge carriers, causes the layer 25 M435045 to extend at least from the first contact layer (9) under the light-emitting surface (13) to The region of the active layer (6) is optically isolated from the region of the layer below the light-emitting surface (13). 2. The semiconductor light-emitting diode of claim 1, wherein the first conductivity type And the second conductivity type is selected from the group consisting of a conductivity type including p-type and n-type doped semiconductors and the first conductivity type is different from the second conductivity type. 3. The semiconductor of claim 2 a light-emitting diode, wherein a band gap of the first barrier layer (5) and the second barrier layer (7) is greater than a band gap of the active layer (6). 4. A semiconductor according to claim 3 a light emitting diode, wherein the first and second resistors The material of the layer (5, 7), the first contact layer (9) and the active layer (6) is selected from the group consisting of (AlxGai x)|_zinzp and AlxGai-xAs, wherein i and 〇 "5· The semiconductor light-emitting diode of the first and second barrier layers of claim 4, wherein the material of (5'7), the first contact layer (9) and the active layer (6) is composed of A1 Ga Τη μ 〇, β & π· t«~山ayinzN, where x+y + z=1 Ο &lt; X &lt; 1 . Ο &lt; y &lt; 1 , 〇&lt; z &lt; 〇5 〇6. The first and second barrier layers (5 of the material of the active layer (6) are selected from the semiconductor light-emitting diode of In, wherein, 7), the first contact layer (9) And yGa^N, wherein 〇$ y $ 〇.5, and the δ hai substrate (2) is selected from the group consisting of a stone and a metal alloy. 7. The semiconductor light-emitting diode according to the patent range of μ, wherein the active layer (6) is replaced by an undoped material, a p-type doped material or a η 26 Doped material is disposed on the light-emitting surface ((1) sinking does not exceed 4 μιη. Ice 8. If the semiconductor light-emitting diode of claim 1 is claimed, the active layer (6) is implemented as a quantum a well or a multi-quantum well, disposed under the illuminating surface (13), having a depth of no more than 4 μm. 9. The semiconductor light-emitting diode according to claim </ RTI> wherein the substrate (2) is doped by a doping The material composition is selected from the group consisting of GaAs, Ge, and a metal alloy. 10. The semiconductor light-emitting diode of claim </RTI> wherein the substrate (2) is implemented as an electrically insulating substrate ( The semiconductor light-emitting diode of claim 1, wherein the electrically insulating substrate (21) is selected from the group consisting of a sapphire, a si-AIN, a MgAhO4 spinel, and a metal oxide. Material composition of the group of objects, or by composite 12. The semiconductor light-emitting diode of claim 1, wherein a buffer layer of the first conductivity type is disposed between the substrate (2) and the first barrier layer (5) (3) The semiconductor light-emitting diode of claim 1, wherein the reflective layer (4) is a distributed Bragg reflector (DBR). 14. The semiconductor light emitting diode according to claim 1, wherein a distribution layer (8) of the second conductivity type is disposed between the second barrier layer (7) and the first contact layer (9). For distributing a current flowing between the first contact layer (9) and the substrate contact (丨) through a conductive section 27 M435045 (20), the distribution layer can be penetrated by the emitted radiation · 15. For the semiconductor light-emitting diode of claim 14 of the patent scope, the power distribution layer (8) is composed of a transparent conductive material. 16. The semiconductor light-emitting diode of the third paragraph of the patent application Where the β-shaped substrate contact (1) and the surface contacts ( j 〇) is implemented as a joint surface (10.2), and the specific implementation is such that it is covered by a joint layer (1〇2) to 2. 17. The semiconductor light-emitting diode of claim 12, complex t ', the substrate contact (1) is connected to the buffer layer (3) through at least a metal conductor (22), and the metal conductor passes through at least one trench disposed in the electrically insulating substrate (2.1) (23) Earth 18. The semiconductor light-emitting diode t, as claimed in Article 17 of the patent application. The bottom surface of the point (1) is coated with a surface that reflects the emitted radiation, the substrate contact and the at least-metal conductor (22) disposed in the insulating substrate (21) and the buffer layer ( 3) Together form an omnidirectional reflector. I9. The semiconductor light-emitting diode according to claim 1, wherein the surface layer is irradiated by a charge carrier having a different kinetic energy and a load number per unit cross-sectional area of the irradiation beam. Zone (ιι) spot-like deep-embedded zone (1)·1) photoelectric isolation, wherein the beam kinetic energy per unit cross-sectional area of the beam used to generate the surface implanted regions is less than the 28 1〇1 year 05 The month I曰 correction replacement page is larger than the deep implant region (12), and the beam is equally deep into the implant region (12) per unit section. The number t 2 〇. The semiconductor light-emitting diode of claim 16 which uses different ions as carriers for different light-emitting diode materials.卜2!. The semiconductor light-emitting diode of claim 16 of the patent scope, wherein the surface implantation area (丨丨) and the horizontal extension of the combination are ..., the 6th area (12) has the same overlap, = The placement of the surface implanted regions is different depending on the ion concentration and type. The upper surface of the surface implanted region is formed in a single implantation process.徊I implant I 22. As in the scope of the patent application, an array of I-conductor light-emitting diodes, a plurality of light-emitting surfaces (13) are in-sampling (array (15)). The substrate (1) is arranged as a picture 2 3 · As claimed in the 坌 μ column, wherein the semiconductor light-emitting diode array is set in addition to the first deep implanted area ( ^ , 19 匕 ^ 2.1) There are a plurality of second deep implanted areas (12.2), the first _ _ _ _, the wood implanted area extends through all layers up to the lightning insulated substrate (2.0, a key "straight 1 The second conductive layer (14) is disposed between the buffer layer (3) and the reflective layer (4), and the second barrier layer (7) and the second barrier layer (7) A contact layer (8) ^ () is provided with a second conductivity type of power distribution layer (8) 'the surface contacts (10) are implemented as electrically insulated strips (10.1), The first 29 M435045 of the array (1 5 ) by the strip ⑼年05月f日修正替換頁 方向07)上一定數目之發光表面(13)進行接觸,該第 二接觸層(1 4 )實施為多個彼此電性絕緣之條帶(丨4丨), 、 該等條帶沿該陣列(1 5 )垂直於該陣列(丨5 )之第一方^ , (17)的一第一方向(18)分佈’藉此.,該等沿該第一方 向(17)分佈之條帶(ίο」)與該等沿該第二方向(18)分 佈之條帶(14.1)從俯視角度看形成一網絡,該網絡包含該 等條帶(10.1及14·1 )的多個交叉點(19),每個發光表 - 面(13)各佈置於一交又點(19)上。 、 24.如申請專利範圍第23項之半導體發光二極體陣 列,其中, 可透過一控制裝置(16 )對該等條帶(10:1 )及該等條 ’(14.1 )進行選擇性接觸,遂可由該控制裝置(丨6 )針對 每一單個發光表面丁-苡木受其他發光表面(Η)影響 之方式控制一定向電流,該電流在一條帶(1 0.1 )與一條帶 (14.1)之間垂直於一交叉點(19)流動。 2 5 _種半導體發光二極體顯示晶片,包含多個如申請 專利圍第1至21項中任一項之半導體發光二極體,其中, °玄等半導體發光二極體發射一波長為650nm之轄射, 在約400 πΑ條件下便可發射可見光,其耗電量不超過〇〇5 mA/半導體發光二極體。 七、圖式. (如次頁) 30 M435045 四、指定代表圖: (一) 本案指定代表圖為:圖1。 (二) 本代表圖之元件符號簡單說明: 1 :基板觸點 2 :基板 . 3 :緩衝層 4 :反射層 ^ 5 :第一阻擋層 6 :活性層 7 :第二阻擋層 8 :配電層 9 :第一接觸層 1 0 :表面觸點 10.2 :接合面 1 1 :表面植入區 φ 1 2.1 :第一深植入區 &quot; 1 3 :發光表面 100 年 12 曰修正替換頁 5(9) The number of light-emitting surfaces (13) on the replacement page direction 07) is adjusted to be replaced by a plurality of light-emitting surfaces (13), and the second contact layer (14) is implemented as a plurality of strips electrically insulated from each other (丨4丨), And the strips are distributed along a first direction (18) of the array (15) perpendicular to the first side (17) of the array (丨5). thereby, the first direction is along the first direction (17) a strip of distribution (ίο") and the strips (14.1) distributed along the second direction (18) form a network from a top view, the network comprising the strips (10.1 and 14·1) A plurality of intersections (19), each of which is arranged at a point (19). 24. The semiconductor light emitting diode array of claim 23, wherein the strips (10:1) and the strips (14.1) are selectively contacted by a control device (16) , the 遂 can be controlled by the control device (丨6) for each individual illuminating surface Ding-Yumu by the influence of other illuminating surfaces (Η), the current is in a strip (1 0.1 ) and a strip (14.1) Flows between perpendicular to an intersection (19). A semiconductor light-emitting diode display wafer comprising a plurality of semiconductor light-emitting diodes according to any one of claims 1 to 21, wherein the semiconductor light-emitting diode emits a wavelength of 650 nm. It can emit visible light at about 400 π ,, and its power consumption does not exceed 〇〇5 mA/semiconductor light-emitting diode. Seven, schema. (such as the next page) 30 M435045 Fourth, the designated representative map: (a) The representative representative of the case is: Figure 1. (2) A brief description of the component symbols of this representative diagram: 1 : substrate contact 2 : substrate. 3 : buffer layer 4 : reflective layer ^ 5 : first barrier layer 6 : active layer 7 : second barrier layer 8 : distribution layer 9: First contact layer 10: Surface contact 10.2: Joint surface 1 1 : Surface implant region φ 1 2.1: First deep implant region &quot; 1 3: Luminous surface 100 years 12 曰 Correction replacement page 5
TW100217862U 2011-09-23 2011-09-23 Surface emitting semiconductor LED TWM435045U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW100217862U TWM435045U (en) 2011-09-23 2011-09-23 Surface emitting semiconductor LED

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100217862U TWM435045U (en) 2011-09-23 2011-09-23 Surface emitting semiconductor LED

Publications (1)

Publication Number Publication Date
TWM435045U true TWM435045U (en) 2012-08-01

Family

ID=47047568

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100217862U TWM435045U (en) 2011-09-23 2011-09-23 Surface emitting semiconductor LED

Country Status (1)

Country Link
TW (1) TWM435045U (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI676261B (en) * 2016-04-12 2019-11-01 美商克里公司 High density pixelated led and devices and methods thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI676261B (en) * 2016-04-12 2019-11-01 美商克里公司 High density pixelated led and devices and methods thereof

Similar Documents

Publication Publication Date Title
US8847241B2 (en) Surface-emitting semiconductor light-emitting diode
US8901575B2 (en) AC light emitting diode and method for fabricating the same
KR101926358B1 (en) Semiconductor light emitting device and illumination apparatus
JP4699287B2 (en) White light emitting device and manufacturing method thereof
TWM260003U (en) Light-emitting diode to increase the light-emitting efficiency of spontaneous emission
US8384112B2 (en) Light emitting chip
JP2004006582A (en) Light emitting device
TW201001761A (en) Light emitting elements, light emitting devices including light emitting elements and methods of manufacturing such light emitting elements and/or devices
CN110140263A (en) Surface-mountable semiconductor laser, the device with this semiconductor laser and its operation method
WO2020131231A1 (en) Interconnects for light emitting diode chips
KR20170104401A (en) Light-emitting device
TW201025680A (en) Optoelectronic semiconductor body
JP5276680B2 (en) Light emitting device package, lighting system
CN109524879A (en) Independent switch formula area source VCSEL and preparation method thereof
CN103390711A (en) LED chip with electrode reflective layers and manufacture method thereof
CN103681997B (en) A kind of manufacture method of required color light-emitting diode chip for backlight unit
JP2007043178A (en) Edge-emitting led light source
TWM435045U (en) Surface emitting semiconductor LED
CN102130242A (en) Single-color LED (light-emitting diode) chip and method for forming single-color LED chip
TW201203611A (en) Light emitting device and its manufacturing method
KR101651923B1 (en) Light Emitting Diode With A High Operating Voltage And Method Of Manufacturing The Same
CN109119409B (en) All-in-one L ED chip and manufacturing method thereof
KR20120048331A (en) Light emitting diode chip and method of fabricating the same
KR20080066366A (en) Semiconductor light emitting device
TWI528583B (en) Led and method for manufacting the same

Legal Events

Date Code Title Description
MK4K Expiration of patent term of a granted utility model