TWM428785U - Toy helicopter control device using EEG (electroencephalography) and EMG (electromyograph) signals - Google Patents

Toy helicopter control device using EEG (electroencephalography) and EMG (electromyograph) signals Download PDF

Info

Publication number
TWM428785U
TWM428785U TW100224709U TW100224709U TWM428785U TW M428785 U TWM428785 U TW M428785U TW 100224709 U TW100224709 U TW 100224709U TW 100224709 U TW100224709 U TW 100224709U TW M428785 U TWM428785 U TW M428785U
Authority
TW
Taiwan
Prior art keywords
helicopter
controller
remote control
brain wave
unit
Prior art date
Application number
TW100224709U
Other languages
Chinese (zh)
Inventor
Ching-Hua Chiu
Wen-Goang Yang
Su-Shiang Lee
Chih-Wei Lin
Original Assignee
Univ Chaoyang Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Chaoyang Technology filed Critical Univ Chaoyang Technology
Priority to TW100224709U priority Critical patent/TWM428785U/en
Publication of TWM428785U publication Critical patent/TWM428785U/en

Links

Landscapes

  • Toys (AREA)

Abstract

A toy helicopter control device using EEG (Electroencephalography) and EMG (electromyograph) signals has a user controller, a remote control and a helicopter power system. The user controller has a CPU, a direction finder, an EEG and EMG sensing unit and a wireless transmission unit. The direction finder generates a forward, backward, left turn and right turn instruction signal in accordance with a user's head movement. The EEG and EMG sensing unit acquires EEG and EMG signals to generate an ascending or descending instruction signal. These signals are converted and sent to the CPU. The CPU transmits the converted signals to the remote control through the wireless transmission unit. The remote control transmits these signals to the helicopter power system to control the toy helicopter to take off, land, move forward and backward and turn.

Description

M428785 五、新型說明: 【新型所屬之技術領域】 本創作係關於一種遊戲直昇機控制裝置,尤指一種可 利用腦波、肌電訊號控制直昇機執行起降、進退及轉向等 動作之遙控裝置。 【先前技術】 一般遙控直昇機大致包括一内建動力系統的直昇機及 以遙控方式驅動直昇機内動力系統的遙控器,該遙控器 上設有多組搖桿,供使用者分別控制直昇機的起降、進退 及轉向。當使用者扳動對應的搖桿時,即會由遙控器發射 對應的遙控指令,使直昇機内動力系統運轉並產生對應的 動作》 前述的手動遙控方式大致上也是其他遙控玩具的控制 方式,然而隨著電子科技與工業技術的發達,使前述的手 動遙控方式轉為無手遙控的可能性大為提高。 【新型内容】 因此,本創作主要目的在提供一種運用腦波及肌電訊 號之遊戲直昇機控制裝置,主要係利用腦波(EEG)與肌電 (EMG)訊號的取得與解譯,以產生一控制直昇機特定動作 的指令,藉此可達到無手遙控之目的。 為達成前述目的採取的主要技術手段係令前述控制裝 置包括有: ' M428785 -使用者控制器,主要係由一中央處理單元、一定向 器、-腦波暨肌電感測單元及一無線發射單元組成,該定 向器與腦波暨肌電感測單元分別透過—訊號轉換單元與中 央處理單元連接;纟中’該腦波暨肌電感測單元包括一腦 波感測器及-肌電感測器;再者,該中央處理料的輸出 端則與無線發射單元連接; -遙控器,主要係由—接收模組、—轉換模組及一遙 控模組等組成,該接收模組係用以接收❹者控制器發送 的指令訊號,經由轉換模組進行機電轉換後送至遙控模組 ,由遙控模組發射遙控指令; p 一直昇機動力系'统,係設於直昇機内部,並接受遙控 器發射的遙控指令,以執行指定的動作; 二 前述使用者控制器可採用頭戴方式,由定位器偵測使 用者的頭部動作產生—組指令訊號(如進退、轉向),又由腦 波暨肌電感„元檢測取得使用者的腦波及肌電訊號以產 生另,令訊號(上升、下降)’兩組指令訊號則分別送至 中央!理單元,由中央處理單元透過無線發射單元發送給 =控盗’該遙控器將接㈣的指令訊料行轉換後傳送至 、控模組’由遙控模組發射特定動作指令給直昇機動力系 :晉直昇機動力系統接收後即執行對應的動作;利用前述 、卩可貫現無手遙控之目的。 【實施方式】 1所示, 10、一 内 關於本創作之—姑#參# F ^ 較佳實施例,首先請;| 包括一由使用者(操縱者)配戴的使用者扫 5 M428785 建有動力系統的直昇機20及一接收使用者控制器1〇送出 的指令訊號並轉送給直昇機20的遙控器3〇 ;於本實施例 中,該使用者控制器10為一頭戴式結構,可方便配戴固 定於使用者頭上,並由該使用者控制器】〇量測使用者的 腦波、肌電訊號及判斷分析使用者的頭部動作,用以產生 不同的4曰令訊號,再將指令訊號送至遙控器3〇轉換後, 由遙控器30送出對應的控制指令給直昇機2〇令其執行指 定的動作。為支援前述功能,直昇機2〇安裝有一動力系 統,用以接收並執行指令。至於前述使用者控制器彳〇、直 昇機20内的動力系統及遙控器3〇内部的電氣構造謹進一 步詳述如后: 請參閱圖2所示,該使用者控制器1〇主要係由一中央 處理單兀11、一定向器12、一腦波暨肌電感測單元13及 一無線發射單元14組成;其中,該定向器可用以判斷 一 X1軸轉動訊號及一 Z1軸轉動訊號,具體而言,可用以 判斷分析使用者之轉頭動作及其角度,又定向器12係透過 一訊號轉換單元15與中央處理單元彳彳的輸入端連接。 該腦波暨肌電感測單元13係整合有一腦波感測器131 及一肌電感測器132,又腦波暨肌電感測單元13係依序透 過一訊號濾波放大單元16及一訊號轉換單元17與中央處 理單元11的輸入端連接,以便將腦波感測器131與肌電感 測器132取得使用者之腦波及肌電訊號經㈣波及訊號轉 換後送至中央處理單元11。 單 該定向器12與腦波暨肌電感測單元 元11的訊號將分別產生三組指令,其 13送入中央處理 中一組為起降控制 M428785 指令,係根據脈波暨肌電感測單元13送入的訊號所產生, 其他兩組分別為進退控制指令及轉向控制指令,係由定向 器12送入中央處理單元彳彳的訊號所產生。 又中央處理單元11係透過無線發射單元14發射前述 控制指令,於本實施例令,該中央處理單元扪内部包括有 運异器、記憶體(ROM、RAM)等;又本實施例中,該無線 發射單元14係由一藍牙模組所構成,其係向遙控器3〇發 射控制指令》 再請參閲圖3所示,該遙控器30係包括手動及遙控兩 部分,所謂的手動係如既有遙控工具的遙控器一樣,其提 供多組搖桿31卜313,分為一昇降搖桿311、一前進搖桿 312及一方向搖桿313,以分別產生控制訊號送至一控制 器314,由該控制器314產生對應的控制指令經由一發射 器315發射給直昇機20内部的動力系統,而前述昇降、前 進、方向搖桿31卜313、控制器314及發射器315係組成 一遙控模組31,而為使該遙控器3〇接受使用者控制器1〇 的控制’故使該遙控器30進一步設有一接收模組32及一 轉換模組33 ’於本實施例中,該接收模組32亦為一藍牙 模組,其用以接收使用者控制器1〇透過無線發射單元 發射的控制指令,並送至轉換模組33,該轉換模組33包 括有一中央處理早元330 '三組受控於中央處理單元33〇 的控制器331〜333、三組分設於各控制器331〜333的驅動 器334〜336及三組分別受前述驅動器334〜336驅動的伺服 馬達337^339 ;其中,三組控制器331〜333係分別為 Χ,Υ,Ζ轴控制器’又二組伺服馬達337〜339係分別與遙控 7 M428785 杈組31的三組搖桿311-313構成機構連結,當接收模組 32接收使用者控制器1〇送出的控制指令後,隨即送至中 央處理單元330,由中央處理單元將控制指令送至對 應的控制器331〜333,由選定的控制器33彳〜333透過對應 的驅動器334~336,再由驅動器334〜336驅動對應的伺服 馬達337〜339,以移動搖桿311〜313 ,以便對直昇機20送 出執行特定動作的控制指令。 再者,請配合參閱圖1及圖4所示,如前揭所述,該 遙控β 30係包括手動及遙控兩部分,遙控部分係如前揭所 述,手動部分則在遙控器3〇的機體内部設有數個離合構造 ,各個離合構造分別包括一滑塊3〇1,每一滑塊3〇1的側 邊分別形成一缺口 302,分供對應的榣桿311〜313可移動 地的卡入或退出(圖4Α中係以搖桿311為例),該搖桿311 上可上下滑動地設有—球塊,並利用該球塊卡入滑塊3〇1 上形狀匹配的缺口 302;又每-滑塊3〇1係分別可滑動地 穿-X在β軸303上,並為一螺桿3〇4所螺穿,該螺桿 的一端分別與飼服馬S 337〜339轴心連結(圖巾以词服馬達 337為例),當伺服馬達337驅動螺桿3〇4正反轉,將使滑M428785 V. New description: [New technical field] This creation is about a game helicopter control device, especially a remote control device that can use the brain wave and myoelectric signal to control the helicopter to perform the actions of taking off, landing, retreating and steering. [Prior Art] A general RC helicopter generally includes a helicopter with a built-in power system and a remote controller that remotely drives the power system of the helicopter. The remote controller is provided with a plurality of sets of joysticks for the user to separately control the take-off and landing of the helicopter. Advance and retreat and turn. When the user pulls the corresponding rocker, the corresponding remote command is transmitted by the remote controller to make the power system in the helicopter operate and generate corresponding actions. The manual remote control method described above is generally also the control method of other remote control toys. With the development of electronic technology and industrial technology, the possibility of switching the aforementioned manual remote control mode to hands-free remote control is greatly enhanced. [New content] Therefore, the main purpose of this creation is to provide a game helicopter control device using brain waves and myoelectric signals, mainly using the acquisition and interpretation of brain wave (EEG) and myoelectric (EMG) signals to generate a control. The command of the specific action of the helicopter can achieve the purpose of hands-free remote control. The main technical means adopted to achieve the foregoing objectives are that the aforementioned control device includes: ' M428785 - user controller, mainly consisting of a central processing unit, a redirector, a brain wave and muscle sensing unit and a wireless transmitting unit. The transmitter and the brain wave and muscle sensing unit are respectively connected to the central processing unit through a signal conversion unit; the brainwave and muscle inductance measuring unit comprises a brain wave sensor and a muscle sensor; Furthermore, the output end of the central processing material is connected to the wireless transmitting unit; the remote control is mainly composed of a receiving module, a conversion module and a remote control module, and the receiving module is configured to receive the UI. The command signal sent by the controller is electromechanically converted by the conversion module and sent to the remote control module, and the remote control module transmits a remote control command; p. The helicopter power system is installed inside the helicopter and is received by the remote controller. The remote control command is used to perform the specified action; the user controller can adopt the head-mounted mode, and the positioner detects the user's head motion to generate a group command signal. (such as advance and retreat, turn), and the brain wave and muscle inductance „ meta-detection to obtain the user's brain wave and myoelectric signal to generate another, so that the signal (up, down)' two sets of command signals are sent to the central unit! The central processing unit transmits to the control thief through the wireless transmitting unit. The remote controller converts the command signal line of the (4) and transmits it to the control module. The remote control module transmits a specific action command to the helicopter powertrain: Jin Helicopter After the power system receives the corresponding action, the corresponding action can be performed; the first embodiment can be used for the purpose of hand-free remote control. [Embodiment] 1 , 10, 1 for the creation of the present - gu #参# F ^ preferred embodiment First, please; | including a user (operator) wearer sweeping 5 M428785 built-in helicopter 20 with a power system and a command signal sent by the user controller 1 and forwarded to the remote control of the helicopter 20 In this embodiment, the user controller 10 is a head-mounted structure that can be easily worn and fixed on the user's head, and the user's controller measures the brain waves and muscles of the user. The signal and the judgment analyze the user's head motion to generate different 4 command signals, and then send the command signal to the remote controller 3, and then the remote control unit 30 sends the corresponding control command to the helicopter 2 to execute it. The specified action. To support the above functions, the helicopter 2 is equipped with a power system for receiving and executing commands. As for the user controller 彳〇, the power system in the helicopter 20 and the electrical structure inside the remote control 3 谨 further The details are as follows: Referring to FIG. 2, the user controller 1 is mainly composed of a central processing unit 11, a redirector 12, a brain wave and muscle sensing unit 13 and a wireless transmitting unit 14. The director can be used to determine an X1 axis rotation signal and a Z1 axis rotation signal, and specifically, can be used to determine and analyze the user's turning motion and its angle, and the director 12 is transmitted through a signal conversion unit 15 Connected to the input of the central processing unit 彳彳. The brain wave and muscle inductance measuring unit 13 is integrated with a brain wave sensor 131 and a muscle sensor detector 132, and the brain wave and muscle sensor measuring unit 13 is sequentially passed through a signal filtering amplifying unit 16 and a signal converting unit. 17 is connected to the input end of the central processing unit 11 to convert the brain wave and the myoelectric signal of the user's brain wave sensor 131 and the muscle sensor 132 to the central processing unit 11 via the (4) wave signal. The signals of the director 12 and the brain wave and muscle sensing unit 11 respectively generate three sets of instructions, and 13 of them are sent to the central processing group for the start and fall control M428785 command, according to the pulse wave and muscle inductance measuring unit 13 The incoming signal is generated, and the other two groups are the advance and retreat control command and the steering control command, which are generated by the signal sent from the director 12 to the central processing unit. The central processing unit 11 transmits the foregoing control command through the wireless transmitting unit 14. In the embodiment, the central processing unit includes a transporter, a memory (ROM, a RAM), and the like. In this embodiment, the The wireless transmitting unit 14 is composed of a Bluetooth module, which transmits a control command to the remote controller 3 再. Referring to FIG. 3 , the remote controller 30 includes two parts, a manual and a remote control. Like the remote controller of the remote control tool, it provides a plurality of sets of rockers 31 313, which are divided into a lifting rocker 311, a forward rocker 312 and a directional rocker 313 to respectively generate control signals for sending to a controller 314. The controller 314 generates a corresponding control command to be transmitted to the power system inside the helicopter 20 via a transmitter 315, and the aforementioned lifting, forward, direction rocker 31 313, controller 314 and transmitter 315 form a remote control mode. In the present embodiment, the remote control unit 30 further includes a receiving module 32 and a conversion module 33'. In this embodiment, the receiving module is further configured to receive the control of the user controller 1 Group 32 is also The Bluetooth module is configured to receive a control command transmitted by the user controller 1 through the wireless transmitting unit, and send the control command to the conversion module 33. The conversion module 33 includes a central processing unit 330. The three groups are controlled by the central unit. The controllers 331 to 333 of the processing unit 33A, the three drivers 334 to 336 of the controllers 331 to 333, and the three sets of servo motors 337 to 339 driven by the drivers 334 to 336, respectively; The units 331 to 333 are respectively Χ, Υ, and Ζ axis controllers, and the two sets of servo motors 337 to 339 are respectively coupled with the three sets of rockers 311-313 of the remote control 7 M428785 杈 group 31, and the receiving module 32 is connected. After receiving the control command sent by the user controller 1 , the control command is sent to the central processing unit 330, and the central processing unit sends the control command to the corresponding controllers 331 333 333, and the selected controllers 33 彳 333 333 pass through the corresponding The drivers 334-336 are further driven by the drivers 334-336 to drive the corresponding servo motors 337-339 to move the joysticks 311-313 to send the helicopter 20 a control command to perform a specific action. Furthermore, please refer to FIG. 1 and FIG. 4. As mentioned above, the remote control β 30 system includes two parts, a manual and a remote control. The remote control part is as described above, and the manual part is in the remote control. The inside of the body is provided with a plurality of clutch structures. Each of the clutch structures includes a slider 3〇1, and a side of each of the sliders 3〇1 respectively forms a notch 302 for the corresponding movable masts 311 to 313. In the case of the rocker 311, the rocker 311 is slidably disposed on the rocker 311, and the ball block is used to engage the shape matching notch 302 on the slider 3〇1; Further, each of the sliders 3〇1 is slidably passed through the -X on the β-axis 303, and is screwed by a screw 3〇4, and one end of the screw is respectively coupled with the shaft of the feeding horse S 337 339 ( The towel is exemplified by the word motor 337. When the servo motor 337 drives the screw 3〇4 to reverse, it will slide.

Mom# _方向前後滑動’從而帶動搖桿311前後 搖擺(如圖4A所示),以遙控直昇機的飛行狀態。 又如圖4B所示,當直接以手動方式操縱該遙控器30 時’係將搖桿311橫向拉出而脫離滑塊301上的缺口 3〇2 ’接著以搖桿311底端為支點,前後擺動該搖# 311以手 動控制直昇機的飛行狀態。 而直昇機20内部的勤力系統係如圖5所示包括有一 M428785The Mom# _ direction slides back and forth to drive the rocker 311 back and forth (as shown in Figure 4A) to remotely control the flight state of the helicopter. As shown in FIG. 4B, when the remote controller 30 is directly manipulated manually, 'the horizontally pulls the rocker 311 out of the notch 3〇2' on the slider 301, and then the bottom end of the rocker 311 is used as a fulcrum. Swing the shake #311 to manually control the flight status of the helicopter. The internal force system of the helicopter 20 includes a M428785 as shown in FIG.

控制器21、-電源22、一主旋翼電動馬達23、一尾翼電 動馬達24及-陀塚儀26;其中:該控制器。輸入端進一 步設有-接收器25,以接收遙控器3〇送來的控制指令。 又主旋翼電動馬達23係控制直昇機2〇的上升、下降,尾 翼電動馬達24則用以控制直昇機2〇的轉向動作。由於前 述動力系統係-已知技術,容不進—步詳述其具體技術内 容及工作原理。 • 由上述說明可瞭解本創作一較佳實施例的詳細構造, 至於其整體的控制流程請參閱圖6所示,其包括: 擷取A〆1軸方向(定位器)訊號及EEG(腦波)暨肌電 (EMG)訊號(Z!轴方向)(5〇1); 對前述訊號執行濾波處理(5〇2); 分別驅動前進及左右方向之方向控制器(5〇3)(5〇4)與 EEG及EMG上昇下降控制器(505)(Ζι軸); 視覺回饋直昇機飛行狀態(5〇6),以協助使用者操縱;A controller 21, a power source 22, a main rotor electric motor 23, a tail rotor motor 24, and a tuner 26; wherein: the controller. The input terminal is further provided with a receiver 25 for receiving a control command sent from the remote controller 3. Further, the main rotor electric motor 23 controls the rise and fall of the helicopter 2, and the tail electric motor 24 controls the steering motion of the helicopter 2 。. Due to the above-mentioned power system-known technology, it is impossible to further detail its specific technical content and working principle. • The detailed construction of a preferred embodiment of the present invention can be understood from the above description. For the overall control flow, please refer to FIG. 6 , which includes: capturing A 〆 1 axis direction (locator) signal and EEG (brain wave) ) EMG signal (Z! axis direction) (5〇1); Perform filtering processing on the above signals (5〇2); Drive the forward and left direction direction controllers (5〇3) respectively (5〇 4) EEG and EMG ascending and descending controller (505) (Ζι axis); visual feedback helicopter flight status (5〇6) to assist the user in maneuvering;

| 判斷是否結束飛行(507),若是,則驅動EEG及EMG 上昇下降控制器(508)以執行降落(509),隨即結束飛行操控 由上述可知,本創作具體實現了利用腦波與肌電訊號 的取得’配合定向器以達成無手操縱之目的,其相較於既 有的遙控裝置更具新鮮感與便利性,除了無手操縱外,遙 控器仍提供傳統的手動遙控方式,以滿足不同的需求。 【圖式簡單說明】 圖1 :係本創作之整體架構示意圖。 9 M428785 圖2:係本創作之使用者控制器電路方塊圖。 圖3 :係本創作之遙控器電路方塊圖。 圖4A、4B··係本創作之遙控器内部離合構造爹動作 示意圖。 圖5:係本創作之直昇機動力系統電路方塊圖 圖6 :係本創作之操控流程圖。 【主要元件符號說明】 1 〇使用者控制器 11中央處理單元 定向器 1 3腦波暨肌電感測單 1 31腦波感測器 132肌電感測器 14無線發射單元 15,17訊號轉換單元 16訊號渡波放大單元 20直昇機 21控制器 23主旋翼電動馬達 24尾翼電動馬達 26陀螺儀 25接收器 30遙控器 301滑塊 302 缺口 303滑軸 304螺桿 31遙控模組 311〜313搖桿 314控制器 315發射器 32接收模組 3 3轉換模組 330中央處理單元 331〜333控制器 334〜336驅動器 337〜339飼服馬達| Determine whether to end the flight (507), and if so, drive the EEG and EMG ascending and descending controller (508) to perform the landing (509), and then end the flight control. As can be seen from the above, the creation specifically utilizes brain waves and myoelectric signals. The acquisition of the 'orientation device for the purpose of hands-free operation, compared with the existing remote control device is more fresh and convenient, in addition to no hand control, the remote control still provides the traditional manual remote control to meet different Demand. [Simple description of the diagram] Figure 1 is a schematic diagram of the overall architecture of the creation. 9 M428785 Figure 2: Block diagram of the user controller circuit of this creation. Figure 3: Block diagram of the remote control circuit of this creation. Fig. 4A, Fig. 4B are schematic diagrams showing the internal clutch structure of the remote controller of the present invention. Figure 5: Block diagram of the helicopter power system circuit of this creation Figure 6: Control flow chart of this creation. [Main component symbol description] 1 〇 user controller 11 central processing unit director 1 3 brain wave and muscle inductance measurement list 1 31 brain wave sensor 132 muscle inductance detector 14 wireless transmission unit 15, 17 signal conversion unit 16 Signal wave amplifying unit 20 helicopter 21 controller 23 main rotor electric motor 24 tail electric motor 26 gyroscope 25 receiver 30 remote control 301 slider 302 notch 303 sliding shaft 304 screw 31 remote control module 311~313 rocker 314 controller 315 Transmitter 32 receiving module 33 conversion module 330 central processing unit 331~333 controller 334~336 driver 337~339 feeding motor

1010

Claims (1)

M428785M428785 六、申請專利範圍: 1_ 一種運用腦波及肌電訊號之遊戲直昇機控制裝置 包括有: —使用者控制器,主要係由一中央處理單元、—定向 器、一腦波暨肌電感測單元及一無線發射單元組成,該定 向器與腦波暨肌電感測單元分別透過一訊號轉換單元與中 央處理單元連接;其中,該腦波暨肌電感測單元包括—腦 波感測器及一肌電感測器;再者,該中央處理單元的輪出 端則與無線發射單元連接; 一遙控态,主要係由一接收模組、一轉換模組及一遙 控模組等組成,該接收模組係用以接收使用者控制器發送 的指令訊號,經由轉換模組進行機電轉換後送至遙控模組 ’由遙控模組發射遙控指令; 一直昇機動力系統,係設於直昇機内部,並接受遙控 器發射的遙控指令,以執行指定的動作。Sixth, the scope of application for patents: 1_ A game helicopter control device using brain waves and myoelectric signals includes: - a user controller, mainly consisting of a central processing unit, an orienter, a brain wave and muscle inductance measuring unit and a The wireless transmitting unit is composed of the director and the brain wave and muscle sensing unit respectively connected to the central processing unit through a signal conversion unit; wherein the brain wave and muscle sensing unit comprises a brain wave sensor and a muscle sensor Furthermore, the rounding end of the central processing unit is connected to the wireless transmitting unit; a remote control state is mainly composed of a receiving module, a conversion module and a remote control module, and the receiving module is used Receiving the command signal sent by the user controller, performing electromechanical conversion through the conversion module and then sending it to the remote control module'. The remote control module transmits a remote command; a helicopter power system is installed inside the helicopter and is received by the remote controller. Remote command to perform the specified action. 2·如叫求項1所述運用腦波及肌電訊號之遊戲直昇 ,控制裝i,該腦波暨肌電感測單元係整合有-腦波感測 器及一肌電感測器。 3. 士叫求項2所述運用腦波及肌電訊號之遊戲直昇 機控:裝置,該遙控器之遙控模組主要係以多組搖桿與一 控制器連接’該控制器輸出端設有-發射器; 該接收模組為一藍牙模組; 。 該轉換模組包括有一中央處理軍元、多組受控於中 八理單:的控制器、多組分設於各控制器的驅動器及多 刀別又刖述驅動器驅動的伺服馬達中,各組伺服馬 11 M428785 [~ΐ〇1年3月21日修正替^:頁η 係分別與遙控模組的各組搖桿構成機構連結。 4.如請求項3所述運用腦波及肌電訊號之遊戲直昇 機2制裝置,該遙控器具有一機體,該機體内部設有數個 離=構造,各個離合構造分別包括—滑塊,每—滑塊的側 邊分別形成一缺口,分供對應的搖桿可移動地的卡入或退 =,又每一滑塊係分別可滑動地穿設在滑軸上,並為一螺 #所螺穿’該螺桿的—端分別與飼服馬達軸心連結。 5.如請求項4所述運用腦波及肌電訊號 w ΛίΤ 想乂 ,_ 機控制裝4 ’該直昇機内部的動力系統包括有—控制器、 一電源及一主旋翼電動馬達及一尾翼電動馬達;直中:該 動力系統的控制器輸入端進一步設有一接收器,以接收遙 2送來的控制指又主旋翼電動馬達係控制直昇機的 降’尾翼電動馬達用以控制直昇機的轉向動作 求項1至5巾卜項所述㈣腦波及肌電訊 :遊戲直昇機控制農置,該使用者控制器係一構 造。 / 七、圖式:(如次頁) 12 M4287852. If the game of brain wave and myoelectric signal is used as shown in Item 1, the control unit is equipped with a brain wave sensor and a muscle sensor. 3. The game helicopter control using the brain wave and myoelectric signal as described in Item 2, the remote control module of the remote control is mainly connected with a plurality of sets of joysticks and a controller. Transmitter; the receiving module is a Bluetooth module; The conversion module includes a central processing unit, a plurality of controllers controlled by the middle eight: a multi-component driver provided in each controller, and a plurality of servo motors driven by the driver. Group servo horse 11 M428785 [~ΐ〇 March 21st, revised for ^: page η is connected to each group of rocker forming mechanisms of the remote control module. 4. The game helicopter 2 device using the brain wave and the myoelectric signal according to claim 3, the remote controller has a body, the body is provided with a plurality of off-structures, and each of the clutch structures includes a slider, and each slider The side edges respectively form a notch, and the corresponding rocker is movably inserted or retracted, and each of the sliders is slidably disposed on the sliding shaft, and is screwed by a screw # The ends of the screw are respectively coupled to the shaft of the feeding motor. 5. Use the brain wave and myoelectric signal w ΛίΤ as described in claim 4, _ machine control unit 4 'The internal power system of the helicopter includes - controller, a power supply and a main rotor electric motor and a tail rotor electric motor Straight center: the controller input of the power system is further provided with a receiver to receive the control finger sent from the remote 2, and the main rotor motor control system of the helicopter is used to control the steering action of the helicopter. 1 to 5 towel items (4) Brain waves and muscle telecommunications: The game helicopter controls the farm, and the user controller is constructed. / VII, schema: (such as the next page) 12 M428785 M428785 CNITM428785 CNIT 5T I- _ li§^ LroL- 信號濾波 放大單元 i i 腦波感測器 肌電感測器 ICNe/5T I- _ li§^ LroL- Signal Filtering Amplifier Unit i i Brain Wave Sensor Muscle Inductance Tester ICNe/ 國 -丨toL M428785 厂 πCountry -丨toL M428785 Factory π 寸 CVJLfo- 盤 绷 删 m m 1¾ HJf MX ΠΧ» ΠΧ» ntx nx> W- obr)n m 〇>P omT? ntsn ΓίΓττΐν ίμΟΠ tmrtV ππιπ mil 罐 lHil ΗΗ|> m. HH? ιήβ cnjr- z m m m ro y K) cnnlM CD r〇 r〇 tn ΓΌto L M428785Inch CVJLfo- disc stretched mm 13⁄4 HJf MX ΠΧ» ΠΧ» ntx nx> W-obr)nm 〇>P omT? ntsn ΓίΓττΐν ίμΟΠ tmrtV ππιπ mil cans lHil ΗΗ|> m. HH? ιήβ cnjr- zmmm ro y K) cnnlM CD r〇r〇tn ΓΌto L M428785 量4A M428785Volume 4A M428785 量4B M428785 V 22- 電源 2N 23^ 接收器-j 25^7~~ ί 控制器 主旋翼電動馬達 24、 陀螺儀 尾翼電動馬達 26 -204B M428785 V 22- Power 2N 23^ Receiver-j 25^7~~ ί Controller Main rotor electric motor 24, Gyro Rear wing electric motor 26 -20 M428785M428785
TW100224709U 2011-12-27 2011-12-27 Toy helicopter control device using EEG (electroencephalography) and EMG (electromyograph) signals TWM428785U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW100224709U TWM428785U (en) 2011-12-27 2011-12-27 Toy helicopter control device using EEG (electroencephalography) and EMG (electromyograph) signals

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100224709U TWM428785U (en) 2011-12-27 2011-12-27 Toy helicopter control device using EEG (electroencephalography) and EMG (electromyograph) signals

Publications (1)

Publication Number Publication Date
TWM428785U true TWM428785U (en) 2012-05-11

Family

ID=46549949

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100224709U TWM428785U (en) 2011-12-27 2011-12-27 Toy helicopter control device using EEG (electroencephalography) and EMG (electromyograph) signals

Country Status (1)

Country Link
TW (1) TWM428785U (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI469814B (en) * 2013-02-07 2015-01-21 Univ Southern Taiwan Sci & Tec Voice - based and brain waves, supplemented by the role of video game control system Methods and methods
US9031631B2 (en) 2013-01-31 2015-05-12 The Hong Kong Polytechnic University Brain biofeedback device with radially adjustable electrodes
TWI487644B (en) * 2013-01-09 2015-06-11 Nat Univ Chung Hsing Bike with brain wave controllable speed changing system
RU2790546C1 (en) * 2023-01-31 2023-02-22 федеральное государственное автономное образовательное учреждение высшего образования "Российский университет дружбы народов" (РУДН) Method for performing electromyography of masticatory and temporal muscles

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI487644B (en) * 2013-01-09 2015-06-11 Nat Univ Chung Hsing Bike with brain wave controllable speed changing system
US9031631B2 (en) 2013-01-31 2015-05-12 The Hong Kong Polytechnic University Brain biofeedback device with radially adjustable electrodes
TWI469814B (en) * 2013-02-07 2015-01-21 Univ Southern Taiwan Sci & Tec Voice - based and brain waves, supplemented by the role of video game control system Methods and methods
RU2790546C1 (en) * 2023-01-31 2023-02-22 федеральное государственное автономное образовательное учреждение высшего образования "Российский университет дружбы народов" (РУДН) Method for performing electromyography of masticatory and temporal muscles

Similar Documents

Publication Publication Date Title
CN102419588B (en) Method and device for controlling target based on brain electrical signal and motion signal
JP4972218B1 (en) Action body toy
CN205139708U (en) Unmanned aerial vehicle's action discernment remote control device
CN104020777A (en) Motion-sensing follow-type flight control system and method
CN202995348U (en) An intelligent wheelchair controlling system
TW201203004A (en) Handheld device and method for controlling a unmanned aerial vehicle using the handheld device
TWM428785U (en) Toy helicopter control device using EEG (electroencephalography) and EMG (electromyograph) signals
TW201207676A (en) Handheld device and method for controlling a unmanned aerial vehicle using the handheld device
CN103721422A (en) Model airplane remote control handle with automatic attitude control function
CN105730586A (en) Two-wheel self-balancing car control system in two-control mode
CN102217557A (en) Wireless pet pulling device
CN203658947U (en) Intelligent remote control cart controller based on data gloves
Radhika et al. IoT based joystick controlled pibot using socket communication
CN203235258U (en) Remote control model wireless control system based on gesture recognition
WO2017000907A1 (en) Remote control apparatus and remote control system
CN106239511A (en) A kind of robot based on head movement moves control mode
CN103065444A (en) Wireless remote control model toy
CN204723766U (en) A kind of gun-type radio remote controller
Ansari et al. Android App Based Robot
CN106863302B (en) Robot charging device and implementation method thereof
CN106215431B (en) A kind of unmanned plane one hand remote controler
CN202526911U (en) Multifunction toy remote control device
Tothong et al. Brain-Computer Interface for Quadcopter Morphology Manipulation
CN201119344Y (en) Wireless towing device for pet
JP2013042476A (en) Moving body toy

Legal Events

Date Code Title Description
MM4K Annulment or lapse of a utility model due to non-payment of fees