TWM354614U - Crystal shaping device and heat dissipation device thereof - Google Patents

Crystal shaping device and heat dissipation device thereof Download PDF

Info

Publication number
TWM354614U
TWM354614U TW97206485U TW97206485U TWM354614U TW M354614 U TWM354614 U TW M354614U TW 97206485 U TW97206485 U TW 97206485U TW 97206485 U TW97206485 U TW 97206485U TW M354614 U TWM354614 U TW M354614U
Authority
TW
Taiwan
Prior art keywords
crucible
heat dissipating
crystal
heat
dissipating device
Prior art date
Application number
TW97206485U
Other languages
Chinese (zh)
Inventor
Bruce Hsu
Chi-Yung Chen
Wen-Ching Hsu
Ssu-Hua Ho
Original Assignee
Sino American Silicon Prod Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sino American Silicon Prod Inc filed Critical Sino American Silicon Prod Inc
Priority to TW97206485U priority Critical patent/TWM354614U/en
Publication of TWM354614U publication Critical patent/TWM354614U/en

Links

Description

M354614 八、新型說明: 【新型所屬之技術領域】 " 本創作係有關有多晶矽晶體成型裝置及其散熱装置 之改良’旨在解決既有習知技術所成型無法使晶種的體積 大型化’導致由多晶發晶體切片成型的晶片產生位能障壁 之課題。 【先前技術】 參 按’太陽能光電池屬半導體之一種,故又稱為太陽能 晶片’矽(silicon)為目前通用的太陽能電池之原料代 表,其發電原理為將太陽光能轉換成電能。太陽能光電基 板(Solar PV Cell)的晶片材質有很多種,大致上可分為 單晶石夕(Monocrystalline Silicon)、多晶石夕 (Polycrystal 1 ine/Mul ticrystal 1 ine Si 1 icon)、非晶石夕 (Amorphous Silicon),以及其它非矽材料,其中以單晶 碎及多晶石夕兩類最為常見;而,單晶梦的組成原子均按照 Φ 一定的規則,產品轉換效率較高,但相對的製造成本也較 為昂貴’雖然早期市場的產品仍以單晶石夕為主,但由於單 晶矽的生產成本較高,加上近年來多晶矽的技術進展很 快,使得多晶矽的轉換效率大幅的提高,在低成本的優勢 下,多晶矽已有取代單晶矽產品的趨勢。 而目前業界所普遍採用的多晶矽晶體製造技術如第 一圖所示,係於坩鍋A内將長晶之液相原料放入,在坩鍋 A兩側加熱器A1及坩鍋A底層散熱板A2之作用下,使坩 M354614 鍋A底層形成無數晶種1,並且令該晶種1以單向凝固向 ' 上成長而形成一如第二圖所示之完整多晶矽晶體10 ,該 多晶矽晶體10最後採用橫向切割、研磨、拋光和切片成 為既定尺寸的晶片底材,以供製作成太陽能晶片。 再者,多晶矽晶體的各晶種之間係由“晶界”所區 隔,利用上述既有技術所成型之多晶矽晶體因為晶種的體 積無法大型化,配合參照第三圖所示,將使得習有多晶矽 晶體10單位面積中具有較多數量的晶種1,相對的晶界 • 11的數量也較多,導致利用此多晶矽晶體10所切片成型 的晶片產生位能障壁。 【新型内容】 本創作係之主要目的即在解決既有習知技術所成型 無法使晶種的體積大型化,導致由多晶矽晶體切片成型的 晶片產生位能障壁之課題,亦即能夠有效降低晶片的位能 障壁及電阻,進而增加晶片之光電轉換效率。 Φ 為達上揭目的,本創作之晶體成型裝置係至少包有: 一坩鍋、加熱器以及一散熱裝置,該坩鍋係用以容置液相 原料,該加熱器相對設於掛銷邊側或周圍以對其進行加 熱,該散熱裝置則設於坩鍋底層,並且設有複數與坩鍋接 觸區段及非接觸區段,以形成對坩鍋底層施以間隔散熱的 方式,使首先形成於坩鍋下層的晶種大型化,以及控制晶 種的形式,使由各晶種單向凝固向上成長而形成之完整多 晶矽晶體具有單位橫切面積晶界數量較少之特性:甚至 M354614 的方式完全 =界一步採用沿著晶種成長方向縱向切割 在於能夠減少晶片因為晶界所衍 本創作之功效之一 生的位能障壁及電阻。M354614 VIII. New description: [New technology field] [This book is about the improvement of polycrystalline germanium crystal forming device and its heat sink.] It is intended to solve the problem that the existing technology can not form the size of the seed crystal. This has led to the problem of generating a potential barrier for wafers formed from polycrystalline crystal chips. [Prior Art] The solar photovoltaic cell is a kind of semiconductor, so it is also called solar wafer. Silicon is the raw material of the current general-purpose solar cell. Its power generation principle is to convert solar energy into electrical energy. Solar PV Cell has a wide variety of wafer materials, which can be roughly classified into Monocrystalline Silicon, Polycrystal 1 ine/Mul ticrystal 1 ine Si 1 icon, and amorphous stone. Amorphous Silicon, as well as other non-antimony materials, of which single crystal and polycrystalline are the most common; while the constituent atoms of single crystal dreams are in accordance with the Φ rule, the product conversion efficiency is higher, but relative The manufacturing cost is also relatively expensive. Although the products in the early market are still dominated by single crystal slabs, the production efficiency of polycrystalline germanium is very high due to the high production cost of single crystal germanium and the rapid advancement of polycrystalline germanium. Improvement, under the advantage of low cost, polycrystalline germanium has a tendency to replace single crystal germanium products. At present, the polycrystalline germanium crystal manufacturing technology commonly used in the industry is as shown in the first figure. The liquid phase raw material of the long crystal is placed in the crucible A, and the heater A1 and the crucible A bottom heat sink on both sides of the crucible A are placed. Under the action of A2, the bottom layer of the 354M354614 pot A is formed into a plurality of seed crystals 1, and the seed crystal 1 is grown by unidirectional solidification to form a complete polycrystalline germanium crystal 10 as shown in the second figure, the polycrystalline germanium crystal 10 Finally, it is cut, ground, polished and sliced into a wafer substrate of a given size for fabrication into a solar wafer. Furthermore, each seed crystal of the polycrystalline germanium crystal is separated by a "grain boundary", and the polycrystalline germanium crystal formed by the above-mentioned prior art cannot be enlarged because the volume of the seed crystal cannot be enlarged. A polycrystalline germanium crystal has a larger number of seed crystals in 10 unit areas, and a relatively large number of grain boundaries 11 are present, resulting in a potential energy barrier for the wafer sliced by the polycrystalline germanium crystal 10. [New content] The main purpose of this creation department is to solve the problem that the prior art technology can not enlarge the size of the seed crystal, resulting in the formation of a potential energy barrier for the wafer formed by the polycrystalline germanium crystal slice, that is, the wafer can be effectively reduced. The potential barrier and resistance increase the photoelectric conversion efficiency of the wafer. Φ In order to achieve the above, the crystal forming apparatus of the present invention includes at least: a crucible, a heater and a heat dissipating device for accommodating liquid raw materials, and the heater is oppositely disposed on the side of the hanging pin Heating the side or the periphery, the heat dissipating device is disposed on the bottom layer of the crucible, and is provided with a plurality of contact sections and non-contact sections of the crucible to form a heat dissipation manner for the bottom layer of the crucible, so that The seed crystal formed in the lower layer of the crucible is enlarged, and the form of the seed crystal is controlled, so that the complete polycrystalline germanium crystal formed by the unidirectional solidification of each seed crystal has a characteristic of a small number of grain boundaries per unit cross-sectional area: even M354614 The method is completely = the first step is to cut longitudinally along the growth direction of the seed crystal to reduce the potential barrier and resistance of the wafer due to the effect of the grain boundary.

之在光=界:減少晶片_ 【實施方式】 而獲可參閱本案圖式及實施例之詳細說明 =創作「晶體成型裝置及其散熱裝置」旨在解決既有 S知技術所成型無法使晶種的體積大型化,導致由多晶矽 晶體切片成型的晶片產生位能障壁之課題;如第四圖:第 五圖所示,該整體成型錢係包括有—用以容置液相原料 的坩鍋A、相對設於坩鍋a底層的散熱裝置A3(可以為散 熱板或均熱板)及相對設在坩鍋A周圍(而本實施例係設 置於邊側)的加熱器A1,其中該散熱裝置A3靠近坩鍋一 侧設有複數與坩鍋A接觸區段及非接觸區段,如圖所示之 實施例中,該散熱裝置A3靠近坩鍋A 一側可設有複數低 於表面不連續之凹槽A31,藉由設置複數不連續凹槽A31 的方式,使對坩鍋底部產生間隔散熱之效果,如圖所示, 各凹槽A31即形成為與坩鍋A非接觸區段,各凹槽A31 間係形成有與掛鍋A底層為接觸區段之散熱區A32;當 然,該散熱裝置A3亦可於靠近坩鍋一側設有複數突出於 M354614 表面不連狀餘n A32 心 可以外加於該散熱裝置八3上,且為陣列分佈 各散熱區亦可以與該散熱裝置一體成型 = 分佈方式排列於散熱裝置上。 4非陣列 而整《置即在義纟咖加熱 散熱裝置A3之作用下,使物底層的特=4! 種1,其成型方式係首先形成於賴A底層相對應各凹: A31而未接受散熱的部位形成晶種,並且如第七圖: 坩鍋A持續受熱及保溫的作用 y、, :區域擴大,因此 ==及藉以控制晶種1的形式,進而各二 二=向上成長而形成-如第八圖所示之完整多 ::施時’散熱裝置A3係可以如第九圖所示,採用 样A3:可方ί在散熱裝置A3上設有複數凹槽A3卜該凹 ‘ $’抑或是如第十_示’以非陣列分佈 :散熱裝置A3上設有複數凹槽A31,該凹槽am 可以為圓形’使達到控制晶種形式之目的。9 ’、 由於糊作首_纽賴下 r特性,使得由各晶種單向凝固向上成長而形 有如第十一圖所示,單位橫切面積晶二 =知用沿著晶種】成長方向縱向切割的方式完J 開曰日界,進而能夠減少晶片因為晶界所街生的位 = M354614 電阻;尤其,在晶片内部晶界(即晶片内部雜質)相對減少 之後,能夠增加晶片之光電轉換效率。 綜上所述,本創作提供一較佳可行之晶體成型裝置及 其散熱裝置’有效解決既有習知技術所成型無法使晶種的 體積大型化’導致由多晶砍晶體切片成型的晶片產生位能 障壁之課題,爰依法提呈新型專利之申請;本創作之技術 内容及技術特點巳揭示如上,然而熟悉本項技術之人士仍 可能基於本創作之揭示而作各種不背離本案創作精神之 • 替換及修飾。因此,本創作之保護範圍應不限於實施例所 揭示者,而應包括各種不背離本創作之替換及修飾,並為 以下之申請專利範圍所涵蓋。 【圖式簡單說明】 第一圖係為習有晶體成型技術之晶種形成狀態示意圖。 第二圖係為利用習有晶體成型技術所完成之多晶矽晶體 外觀示意圖。 φ 第三圖係為利用習有晶體成型技術所完成之多晶矽晶體 橫切面結構示意圖。 第四圖係為本創作之裝置結構示意圖。 第五圖係為本創作之晶種形成狀態示意圖。 第六圖係為本創作之晶種擴大狀態示意圖。 第七圖係為利用本創作所完成之多晶矽晶體外觀示意圖。 第八圖係為本創作第一實施例之散熱裝置平面結構圖。 第九圖係為本創作第二實施例之散熱裝置平面結構圖。 M354614 .第利用本創作所完成之多晶石夕晶體橫切面結構 第十一圖係為利用本創作所完成之夕 構示意圖。 夕晶矽晶體橫切面結 【主要元件代表符號說明】 A坩鍋 A1加熱器 • A2散熱板 A3散熱裝置 A31凹槽 A32散熱區 1晶種 10多晶碎晶體 11晶界In the light = boundary: reduce the wafer _ [Embodiment] Reference can be made to the detailed description of the drawings and the examples. The creation of "crystal forming device and its heat sink" is intended to solve the problem that the existing S-known technology can not be crystallized. The large size of the seed causes the problem of the potential barrier of the wafer formed by the polycrystalline germanium crystal slice; as shown in the fourth figure: the fifth figure, the integral molding money includes a crucible for containing the liquid material. A, a heat sink A3 (which may be a heat sink or a heat spreader) disposed on the bottom layer of the crucible a, and a heater A1 disposed opposite the crucible A (and the embodiment is disposed on the side), wherein the heat dissipation The device A3 is provided with a plurality of contact sections and non-contact sections of the crucible A near the side of the crucible. In the embodiment shown in the figure, the side of the heat dissipating device A3 adjacent to the crucible A may be provided with a plurality of lower than the surface. The continuous groove A31, by providing a plurality of discontinuous grooves A31, has the effect of providing a heat dissipation effect on the bottom of the crucible. As shown in the figure, each groove A31 is formed as a non-contact section with the crucible A. Each groove A31 is formed to be connected with the bottom layer of the hanging pot A The heat dissipating area A32 of the section; of course, the heat dissipating device A3 may also have a plurality of protrusions on the side of the crucible near the surface of the M354614. The surface of the heat sink A3 may be added to the heat dissipating device 八3, and the array is distributed. The heat dissipating area can also be integrally formed with the heat dissipating device in a distributed manner on the heat dissipating device. 4 non-array and the whole "set under the action of the Aijia coffee heating and cooling device A3, the bottom layer of the special = 4! species 1, its molding method is first formed in the bottom layer of the Lai A corresponding to each concave: A31 and not accepted The heat-dissipating part forms a seed crystal, and as shown in the seventh figure: the crucible A continues to be heated and heat-insulated. y, : The area is enlarged, so == and the form of the seed crystal 1 is controlled, and then the two-two = upward growth - As shown in the eighth figure, the complete:: Shishi' heat sink A3 can be as shown in the ninth figure, using sample A3: can be placed on the heat sink A3 with a plurality of grooves A3 Or is it a non-array distribution as shown in the tenth: the heat sink A3 is provided with a plurality of grooves A31, which may be circular 'for the purpose of controlling the seed crystal form. 9 ', due to the first _ 赖 下 r 特性 特性 , , , 纽 纽 纽 纽 纽 纽 纽 纽 纽 纽 纽 纽 纽 纽 纽 纽 纽 纽 纽 纽 纽 纽 纽 纽 纽 纽 纽 纽 纽 纽 纽 纽 纽 纽The longitudinal cutting method finishes J to open the date, thereby reducing the position of the wafer due to the grain boundary = M354614 resistance; in particular, after the wafer internal grain boundary (ie, the internal impurities in the wafer) is relatively reduced, the photoelectric conversion of the wafer can be increased. effectiveness. In summary, the present invention provides a preferred and feasible crystal forming apparatus and a heat dissipating device thereof, which effectively solves the problem that the prior art can be formed without increasing the size of the seed crystals, resulting in the production of wafers formed by polycrystalline chopped crystal chips. The subject of the barrier, the application for new patents in accordance with the law; the technical content and technical characteristics of the creation are as disclosed above, but those familiar with the technology may still make a variety of creations based on the disclosure of this creation. • Replacement and modification. Therefore, the scope of protection of the present invention is not limited to the embodiments disclosed, but includes various alternatives and modifications that do not depart from the present invention and are covered by the following claims. [Simple description of the drawing] The first figure is a schematic diagram of the seed formation state of the conventional crystal forming technology. The second figure is a schematic view of the appearance of a polycrystalline germanium crystal completed by a conventional crystal forming technique. φ The third figure is a schematic diagram of the cross-sectional structure of the polycrystalline germanium crystal completed by the conventional crystal forming technique. The fourth picture is a schematic diagram of the structure of the device. The fifth picture is a schematic diagram of the seed formation state of the creation. The sixth picture is a schematic diagram of the expanded state of the seed crystal of the creation. The seventh figure is a schematic view of the appearance of the polycrystalline germanium crystal completed by the present invention. The eighth figure is a plan view of the heat sink of the first embodiment of the present invention. The ninth drawing is a plan view of the heat dissipating device of the second embodiment of the present invention. M354614. The polyhedral crystal cross-section structure completed by this creation The eleventh figure is a schematic diagram of the completion of the creation using this creation.夕 矽 矽 矽 【 【 【 【 【 【 【 【 【 【 【 【 【 【 【 【 【 【 【 【 【 【 【 【 【 【 【 【 【 【 【 【 【 【 【 【 【 【 A 【 A A A A A

1010

Claims (1)

M354614 九、申請專利範圍: - 1、一種散熱裝置,該散熱裝置係設於晶體成型裝置 之坩鍋底層,其特徵在於: 該散熱裝置靠近坩鍋一侧設有複數與坩鍋接觸區段 及非接觸區段。 2、 一種散熱裝置,該散熱裝置係設於晶體成型裝置 之坩鍋底層,其特徵在於: 該散熱裝置靠近坩鍋一側設有複數低於表面不連續 # 之凹槽。 3、 如請求項2所述之散熱裝置,其中各凹槽間係形 成有與坩鍋底層接觸之散熱區。 4、 如請求項2所述之散熱裝置,其中該散熱裝置係 採用陣列分佈方式設有複數凹槽。 5、 如請求項2所述之散熱裝置,其中該散熱裝置係 採用非陣列分佈方式設有複數凹槽。 6、 一種散熱裝置,該散熱裝置係設於晶體成型裝置 φ 之坩鍋底層,其特徵在於: 該散熱裝置靠近坩鍋一側設有複數突出於表面不連 續之散熱區。 7、 如請求項6所述之散熱裝置,其中各散熱區可以 與該散熱裝置一體成型;或者各散熱區可以外加於該散熱 裝置上。 8、 如請求項6所述之散熱裝置,其中該散熱裝置係 採用陣列分佈方式設有複數散熱區。 11M354614 IX. Patent application scope: - 1. A heat dissipating device is disposed on the bottom layer of the crucible of the crystal forming device, and is characterized in that: the heat dissipating device is provided with a plurality of contact portions of the crucible and the crucible on the side of the crucible and Non-contact section. 2. A heat dissipating device, the heat dissipating device being disposed on the bottom layer of the crucible of the crystal forming device, wherein: the heat dissipating device is provided with a plurality of grooves lower than the surface discontinuity # on the side of the crucible. 3. The heat sink according to claim 2, wherein the recesses are formed with a heat dissipating area in contact with the bottom layer of the crucible. 4. The heat sink according to claim 2, wherein the heat sink is provided with a plurality of grooves in an array distribution manner. 5. The heat sink of claim 2, wherein the heat sink is provided with a plurality of grooves in a non-array distribution manner. 6. A heat dissipating device, the heat dissipating device being disposed on the bottom layer of the crucible of the crystal forming device φ, wherein: the heat dissipating device is disposed on a side of the crucible having a plurality of heat dissipating regions protruding from the surface. 7. The heat sink according to claim 6, wherein each of the heat dissipating regions is integrally formed with the heat dissipating device; or each of the heat dissipating regions may be externally applied to the heat dissipating device. 8. The heat sink of claim 6, wherein the heat sink is provided with a plurality of heat sinks in an array distribution manner. 11
TW97206485U 2008-04-16 2008-04-16 Crystal shaping device and heat dissipation device thereof TWM354614U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97206485U TWM354614U (en) 2008-04-16 2008-04-16 Crystal shaping device and heat dissipation device thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97206485U TWM354614U (en) 2008-04-16 2008-04-16 Crystal shaping device and heat dissipation device thereof

Publications (1)

Publication Number Publication Date
TWM354614U true TWM354614U (en) 2009-04-11

Family

ID=44377110

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97206485U TWM354614U (en) 2008-04-16 2008-04-16 Crystal shaping device and heat dissipation device thereof

Country Status (1)

Country Link
TW (1) TWM354614U (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI395846B (en) * 2009-09-24 2013-05-11 Sino American Silicon Prod Inc Silicon crystal forming method and forming device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI395846B (en) * 2009-09-24 2013-05-11 Sino American Silicon Prod Inc Silicon crystal forming method and forming device

Similar Documents

Publication Publication Date Title
CN101370970B (en) Methods and apparatuses for manufacturing monocrystalline cast silicon and monocrystalline cast silicon bodies for photovoltaics
US20110297223A1 (en) Method for producing silicon wafers, and silicon solar cell
JP5883766B2 (en) Method for producing crystalline silicon ingot
JP2011528308A (en) Method and apparatus for producing cast silicon from seed crystals
WO2012149886A1 (en) <111> crystal orientation ingot silicon single crystal and preparation method thereof
TWI444509B (en) Method of manufacturing crystalline silicon ingot
JP2006335582A (en) Crystalline silicon manufacturing unit and its manufacturing method
CN203393257U (en) Ingot furnace with plurality of heat-conduction bottom plates for producing efficient polycrystalline silicon ingot
TWM354614U (en) Crystal shaping device and heat dissipation device thereof
TWI438311B (en) Crystal forming method and device
TWI432617B (en) A crystal growing installation
TWI406980B (en) Multi-crystal manufacturing device and manufacturing method thereof
US9109301B2 (en) Crystalline silicon formation apparatus
CN206116446U (en) GaN nanometer post of growth on aluminic acid strontium tantalum lanthanum substrate
TWI300247B (en)
CN101624723B (en) Mode and device for forming crystal
TWI516645B (en) Crystalline silicon ingot, manufacture thereof and silicon wafer therefrom
TWI413713B (en) Silicon crystal forming method and forming device
TWI395846B (en) Silicon crystal forming method and forming device
JP5721207B2 (en) Si polycrystalline ingot manufacturing apparatus, Si polycrystalline ingot, and Si polycrystalline wafer
CN108301043A (en) A kind of preparation method of polysilicon chip
JP5290931B2 (en) Silicon crystal forming device
CN207062420U (en) Combine bottom plate and the polycrystalline silicon ingot or purifying furnace containing the combination bottom plate
TWI405878B (en) Device for crystal growth and method for the same
CN107338473A (en) Combine bottom plate and the polycrystalline silicon ingot or purifying furnace containing the combination bottom plate

Legal Events

Date Code Title Description
MM4K Annulment or lapse of a utility model due to non-payment of fees