TWM343237U - Mask etch plasma reactor with cathode lift pin assembly - Google Patents

Mask etch plasma reactor with cathode lift pin assembly Download PDF

Info

Publication number
TWM343237U
TWM343237U TW96218062U TW96218062U TWM343237U TW M343237 U TWM343237 U TW M343237U TW 96218062 U TW96218062 U TW 96218062U TW 96218062 U TW96218062 U TW 96218062U TW M343237 U TWM343237 U TW M343237U
Authority
TW
Taiwan
Prior art keywords
diameter
mask
lifting
radius
region
Prior art date
Application number
TW96218062U
Other languages
Chinese (zh)
Inventor
Lewington Richard
N Grimbergen Michael
K Nguyen Khiem
Bivens Darin
R Chandrachood Madhavi
Ajay Kumar
Original Assignee
Applied Materials Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Applied Materials Inc filed Critical Applied Materials Inc
Publication of TWM343237U publication Critical patent/TWM343237U/en

Links

Landscapes

  • Drying Of Semiconductors (AREA)

Abstract

A lift pin for a plasma reactor for etching a workpiece is described. In one embodiment, the lift pin comprises a longitudinal body having a circular cross-section, the body comprising a rounded first end and a rounded second end, and a notched region formed in the second end, the notched region adapted to detachably couple to a lift plate disposed in the plasma chamber, wherein the body includes a first diameter region and the notched region includes at least two diametrical regions having a lesser diameter that are separated by a shoulder.

Description

M343237 晶圓特徵尺寸的往後技術,將變得更為困難。 象使這種困難加重,其中在遮罩蝕刻期間的光 耗,導致在石英遮罩上所蝕刻之圖案中線寬( 的縮小。由於典型遮罩材料(例如,石英、鉻 相對於光阻的餘刻選擇性通常小於1,故這些 罩钱刻製程中固有的,因而在遮罩钱刻製程期 阻圖案會被蝕刻。 一些遮罩圖案需要藉由精確定義的深度, 中餘刻出周期性的開口,其中該深度對於在經 晶圓的過程中,達到干涉光束之非常精確的相 關鍵。例如,在一個類型的相移遮罩中,由具 的鉻線定義每條線,該細石英線在鉻線的每一 在一側上的石英線被蝕刻成精確的深度,其相 該鉻線的另一側上的未蝕刻石英的光提供光的 移。爲了精確的控制在石英中的蝕刻深度,银 通過定時的中斷來嚴密的監控,以測量在石英 度。每個這種檢查需要從遮罩蝕刻反應器室移 除光阻、測量蝕刻深度。並且之後根據用掉的 間,估計為達到目標深度所剩餘的蝕刻製程時 的光阻,在光阻上以電子束寫入遮罩圖形,再 遮罩蝕刻室中去,並且重新啓動蝕刻製程。評 度之剩餘蝕刻時間係假定蝕刻速度乃保持穩定 此是不可靠的評估。這種繁瑣的製程問題包括 高成本,以及增加在光阻圖案中引入污染或故 蝕刻偏差現 阻圖案的損 臨界尺寸) 、铜梦化物) 困難是在遮 間,遮罩光 在石英遮罩 由遮罩曝光 位對準極為 有細石英線 側上曝光, 對於穿過在 180度相 刻製程必須 中的蝕刻深 除遮罩、移 蝕刻製程時 間,沈積新 入遮罩到 估達到需深 和均勻,因 低生産率和 障的機會。 6 M343237 然而,由於 圍繞這種問 在臨界 蝕刻速率極 度的遮罩中 一個爲14刻 遮罩的蝕刻 刻速率分佈 用器可改變 的内部和外 這樣一種方 -低的姓刻由 性可爲不對 一個更基本 如此的中心 部線圈的電 到中央-低相 對於非 不同反應器 關鍵部件和 在同一反應 替換部分之 替換部分上 另一挑 需要精確的控制蝕刻深度,這裏似乎沒有必要 題。 尺寸變化上的小公差度需要在整個遮罩表面上 均勻/刀佈。需要在石英材料裡具有精確蝕刻深 其存在有兩個臨界尺寸,一個爲線寬以及另 衣度這兩種類型臨界尺寸的均勻性需要整個 速率分佈均句。通過使用源功率施用器,在餘 上的非均句性可減小到—定程度,該源功率施 電漿離子密度的放射狀分佈,❹由在晶圓上 部線圈天線組成的電感源功率施㈣。然而, 法可僅用於對稱的非均勻性,即中心-高或中心 -率刀佈實際上,在每個速率分佈上的非均勻 稱的,例如在遮罩一個角上的高蝕刻速率等。 的限制是該遮罩蝕刻製程傾向在蝕刻速率具有 -低分佈,致使可調的特徵(此類具有内部和外 感源功率施用器),不能夠將蝕刻速率分佈轉換 L態之外。 均句㈣速率分佈的另—挑戰是在同樣設計之 中蝕刻速率分佈易於有很大的變化,並且當 :肩耗件被替換時,例如陰極的替換,可能 器之内有很大的變化。該蝕刻速率分佈對於所 寺’支中的小改變呈現高敏感度,其在可消耗的 具有不可預料的變化。 戰疋搏升降梢毀壞或不適合使用時,在反應器 M343237 我們已經發現,製程遮罩蝕刻製程中的非岣勻蝕刻速 率分佈是由於在實現遮罩蝕刻製程的電漿反應器内,1支 撐基座中或在支稽遮罩的陰極中,存在RF電非均勻性。 RF偏置功率施加到基座,以控制在遮罩表面的電漿離子能 量,同時RF源功率施加到在例如頂端的線圈天線,以産犯 生電漿離子。RF偏置功率控制在遮罩表面的電場,該電場 係影響離子能量。由於在遮罩表面的離子能量影響钱刻逮 率’因此在基座中的RF電非均勻性造成橫跨遮罩表面之 蝕刻速率分佈的非均勻性。我們已經發現基座中rf非均 勻性的幾個來源。一個疋把紹基座(陰極)和銘設備板固 定在一起的鈦螺釘。該螺釘在橫跨基座表面的電場圖形中 産生節點(並且因而橫跨遮罩表面),此因它們的電特性與 鋁陰極的不同。另一個是在陰極和設備板之間的傳導率的 非均勻分佈。在設備板和陰極之間的電傳導性主要受該板 和陰極周界的限制。這可能至少部分是由於在電漿處理過 程中,由真空壓力引起的陰極的彎曲。在該周界周圍的傳 導可爲非均勻的,這歸因於許多因素,例如,不均勻的固 定鈦螺釘和/或在該板或該基座周界周圍的表面拋光差 異。我們已經通過引入幾種能夠增強橫跨基座的RF電均 勻性的零件,解決了這些問題。首先,藉由提供延伸於陰 極上表面邊界周圍,且環繞所有鈦螺釘頭的連續鈦環,以 解決在鋁陰極中,因鈦螺釘存在所引起之RF場中的非均 勻性和不連續性。藉由在設備片和陰極面對的周界表面上 提供高傳導性的鎳電鍍,以及藉由在設備板和陰極之間引 9 M343237 入RF墊圈,以解決因表面差異或鈦螺釘的不均勻固定, 所導致的傳導率變化,該墊圈在設備板和陰極的周界間被 壓縮。 參考第1圖,用於在遮罩中餘刻圖案的電聚反應器包 括由側壁12和上覆蓋頂板14圍繞的真空室1〇,並且由控 制室壓的真空泵15排空。在該室1〇内的遮罩支撐基座16 支撐遮罩18。如在本說明書中稍後將描述的,該遮罩典型 的由石英基板構成,並且可進一步包括在石英基板頂表面 上的附加遮罩薄膜層,例如鉻和鉬矽化物(ehr〇me and molybdenum Silicide)。另外,提供圖案定義層,其可爲光 阻或由鉻層形成的硬遮罩。在其他類型的遮罩中,石英基 板除了光阻圖案沒有在覆蓋層。 通過上方的内部和外部線圈天線2〇、22供應電漿源功 率,該内部和外部線圈天線2〇、22由各自的RF源功率産 生器24、26通過各自的RF阻抗匹配電路28、3〇驅動。 儘官側壁12可爲連接到地的鋁或其他金屬,頂板14典型 的爲允許從線圈天線20、22到室1〇中之RF功率感應耦 合的絕緣材料。製程氣體係通過側壁丨2頂部均勻間隔的注 射喷嘴32’經由氣體歧管34從氣體面板36引入。該氣體 面板36可由不同氣體供應部38構成,該氣體供應部38 通過各自的氣閥或集中流量控制器4〇,連接到輸出氣閥或 集中流虽控制器42,該輸出氣閥或集中流量控制器42連 接到氣體歧管34。 遮罩支撐基座16由支撐在金屬設備板46上的金屬(例 10 M343237 如,鋁)陰極44構成。陰極44具有内部冷卻劑或加熱液 體流動通道(未示出),該些通道通過在設備板中的供 應和流出埠(未示出)進料和排出。通過由rf阻抗匹配 電路50 ’由RF偏置功率産生器48把Rp偏置功率提供到 設備板。穿過在設備板46和陰極44之間的介面,將rf 偏置功率傳導至陰極44的頂表面。陰極44具有中央平臺 (central plateau) 44a,在其上支撐正方形的石英遮罩或 基板18。該平臺尺寸通常與遮罩is的尺寸相匹配,如下 面將論述的,儘管平臺44a稍微較小,以致遮罩周界的小 部分或邊緣18a超出平臺44a —小段距離。環繞平臺44a 的基座環52分爲(如在第2B圖或第7圖中示出的楔形或 者盤形部分樣式)形成約2/5環52的蓋環52a和形成剩 餘3/5環52的捕獲環52b。捕獲環52b具有支架54,遮罩 18的邊緣18a係放置在支架54中。無論何時需要從支撐 基座16移除遮罩18,三個升降梢56(其只有一個在第1 圖的示圖中可見的)舉起捕獲環5 2b,該捕獲環5 2b通過 邊緣18a擡起遮罩18。在功率産生器48的頻率下,基座 環52由不同電特性的材料層53、55構成,該電特性選擇 爲與由石英遮罩18和鋁平臺44a之組合所呈現的RF阻抗 相匹配(覆蓋環和捕獲環52a、5 2b由不同層53、55構成)。 此外,捕獲環52的頂表面與遮罩18的頂表面是共面的, 因此在電漿處理期間,延伸超出遮罩18邊緣的大均勻表面 促進橫跨遮罩18表面的均勻電場和外殼電壓。典型地,如 果較低環層5 5爲石英,並且上部環層5 3爲陶瓷(例如氧化 M343237 鋁),這些情況是符合的。製程控制器60控制氣體面板36, RF産生器24、26、48,以及晶圓處理裝置61。該晶圓處 理裝置可包括連接到升降梢56的升降伺服電動機62、機 械手葉片臂63和在室1 〇之側壁12中的縫隙閥門64。 一系列均勻間隔的鈦螺釘70沿陰極44和設備板46 的周界將其固定在一起。由於在鋁陰極/設備板44、46和 鈦螺釘70之間的電差異性,該螺釘7〇將不連續的非均勻 性引入到陰極44頂表面處的rf電場中。在陰極44和設 備板46的相對表面中的變化,沿其周界産生位在陰極44 和設備片46間傳導率的非均勻性,其引起在電場中相 應的非均勻性。因爲在電漿處理期間,陰極44易於在其中 心處向上彎曲(由於室真空),在陰極44和設備片之間的 主要電接觸為沿其周界。爲了降低陰極44和設備片46間 電傳導率相對於(a )在各種鈦螺釘70中緊密性的變化; 和(b )表面特性中之變化的靈敏度,高傳導材料(例如鎳) 的環形薄膜72沈積在陰極44的底部表面44b的周界上, 同時錄(舉例而言)的匹配環狀薄膜74沈積在設備片46 的頂表面46a的周長上。鎳薄膜72、72是相互對準的,因 此兩個環狀鎳薄膜72、74構成基座44和設備片46的相對 接觸表面,在它們之間提供電傳導性的高均勻分佈。藉由 沿著陰極44之底部表面的周界提供環狀溝槽76,和在溝 槽76内放置傳導性rf墊圈80,以進一步改善的均勻電傳 導率。可選的,可提供在設備片46之頂表面中與溝槽76 對準的類似環形溝槽78。RF墊圈80可為合適的傳統類 12 M343237 型,例如當陰極44和設備片46壓在一起並 〜儿且嘴釘摔緊The M343237 wafer feature size will become more difficult in the future. Such aggravation is exacerbated by the fact that the light loss during mask etching results in a reduction in line width in the pattern etched on the quartz mask. Due to typical masking materials (eg, quartz, chrome versus photoresist) The residual selectivity is usually less than 1, so these masks are inherent in the process, so the pattern will be etched during the masking process. Some mask patterns need to be periodically defined by a precisely defined depth. An opening, wherein the depth is a very precise correlation key for the interfering beam during the wafer pass. For example, in a type of phase shift mask, each line is defined by a chrome line, the fine quartz The line of quartz on each side of the chrome line is etched to a precise depth, and the unetched quartz light on the other side of the chrome line provides a shift in light. For precise control in quartz The etch depth, silver is closely monitored by timing interruptions to measure the crystallinity. Each such inspection requires removal of the photoresist from the mask etch reactor chamber, measurement of the etch depth, and then, depending on the used interval, Calculating the photoresist at the etching process remaining at the target depth, writing the mask pattern on the photoresist by electron beam, masking the etching chamber, and restarting the etching process. The remaining etching time of the evaluation is assumed The etch rate is stable. This is an unreliable evaluation. This cumbersome process problem includes high cost, as well as increasing the damage critical dimension of the current resistance pattern introduced into the photoresist pattern or the etching resistance. During the occlusion, the mask light is exposed on the side of the quartz mask that is aligned with the fine quartz line by the exposure of the mask. For the etch that is necessary to pass through the 180-degree phase-cut process, the mask is removed, and the etching process time is Deposit new masks to estimate the need for deep and uniform, due to low productivity and barriers. 6 M343237 However, due to the fact that one of the masks with a critical etching rate in the mask of the critical etch rate is a 14-inch mask, the etch rate rate can be changed internally and externally, such a square-low surname can be wrong. A more fundamentally such central coil of the electrical to central-low relative to the non-different reactor key components and the alternative portion of the same reactive replacement portion requires precise control of the etch depth, which does not seem to be necessary. A small tolerance in dimensional change requires uniform/knife across the entire surface of the mask. There is a need for a precise etch depth in the quartz material. There are two critical dimensions, and the uniformity of the critical dimension of the two types of line width and clothing requires the entire rate distribution. By using the source power applicator, the remaining non-uniformity can be reduced to a certain extent, the source power is applied to the radial distribution of the plasma ion density, and the inductance source power composed of the coil antenna at the upper part of the wafer is applied. (4). However, the method can be used only for symmetrical non-uniformities, ie center-height or center-rate knives, in fact, non-uniform scales over each rate distribution, such as high etch rates at one corner of the mask, etc. . The limitation is that the mask etch process tends to have a low distribution at the etch rate, resulting in an adjustable feature (such an internal and external source power applicator) that is not capable of converting the etch rate profile beyond the L state. The other challenge of the rate distribution is that the etch rate distribution tends to vary greatly in the same design, and when the shoulder consumable is replaced, such as the replacement of the cathode, there is a large variation within the detector. This etch rate distribution exhibits a high sensitivity to small changes in the temple's branch, which has unpredictable variations in consumables. In the reactor M343237, we have found that the non-岣 etch rate distribution in the process mask etch process is due to the plasma support in the mask etch process, 1 support base. There is RF electrical non-uniformity in the seat or in the cathode of the shield. RF bias power is applied to the pedestal to control the plasma ion energy at the surface of the mask while RF source power is applied to the coil antenna at, for example, the tip to generate plasma ions. The RF bias power controls the electric field at the surface of the mask that affects the ion energy. Since the ion energy at the surface of the mask affects the rate of entrapment, RF non-uniformity in the susceptor causes non-uniformity in the distribution of etch rates across the surface of the mask. We have found several sources of rf non-uniformity in the susceptor. A titanium screw that holds the base (cathode) and the inscription plate together. The screws create nodes (and thus across the surface of the mask) in the electric field pattern across the surface of the pedestal due to their electrical characteristics being different from those of the aluminum cathode. The other is a non-uniform distribution of conductivity between the cathode and the device board. The electrical conductivity between the device board and the cathode is primarily limited by the perimeter of the board and cathode. This may be due at least in part to the bending of the cathode caused by the vacuum pressure during the plasma processing. The conduction around the perimeter may be non-uniform due to a number of factors, such as uneven fixed titanium screws and/or surface finish differences around the perimeter of the plate or the pedestal. We have solved these problems by introducing several parts that enhance the RF uniformity across the pedestal. First, by providing a continuous titanium ring extending around the boundary of the upper surface of the cathode and surrounding all of the titanium screw heads, it is possible to solve the non-uniformity and discontinuity in the RF field caused by the presence of the titanium screw in the aluminum cathode. Resolving surface unevenness or unevenness of titanium screws by providing high-conductivity nickel plating on the peripheral surface of the device sheet and cathode, and by introducing 9 M343237 into the RF gasket between the device board and the cathode. Fixed, resulting in a change in conductivity, the gasket is compressed between the perimeter of the device plate and the cathode. Referring to Fig. 1, an electropolymerization reactor for patterning in the mask includes a vacuum chamber 1 surrounded by a side wall 12 and an upper cover top plate 14, and is evacuated by a vacuum pump 15 that controls the chamber pressure. A mask support base 16 in the chamber 1 supports the mask 18. As will be described later in this specification, the mask is typically constructed of a quartz substrate and may further comprise additional masking film layers on the top surface of the quartz substrate, such as chromium and molybdenum telluride (ehr〇me and molybdenum) Silicide). Additionally, a pattern defining layer is provided which may be a photoresist or a hard mask formed of a chrome layer. In other types of masks, the quartz substrate is not in the cover layer except for the photoresist pattern. The plasma source power is supplied through the upper and outer coil antennas 2, 22 which pass their respective RF source power generators 24, 26 through respective RF impedance matching circuits 28, 3 drive. The vestigating sidewall 12 can be aluminum or other metal attached to the ground, and the top panel 14 is typically an insulating material that allows for inductive coupling of RF power from the coil antennas 20, 22 into the chamber. The process gas system is introduced from gas panel 36 via gas manifold 34 through injection nozzles 32' that are evenly spaced at the top of side wall 丨2. The gas panel 36 can be formed by different gas supply portions 38 that are connected to an output gas valve or a concentrated flow controller 42 via a respective gas valve or centralized flow controller 4, which outputs a centralized valve Controller 42 is coupled to gas manifold 34. The mask support pedestal 16 is comprised of a metal (e.g., M343237, e.g., aluminum) cathode 44 supported on a metal device panel 46. The cathode 44 has internal coolant or heated liquid flow passages (not shown) that are fed and discharged through supply and discharge ports (not shown) in the equipment panel. The Rp bias power is provided to the device board by the RF bias power generator 48 by the rf impedance matching circuit 50'. The rf bias power is conducted to the top surface of the cathode 44 through the interface between the device board 46 and the cathode 44. The cathode 44 has a central plateau 44a on which a square quartz mask or substrate 18 is supported. The platform size is typically matched to the size of the mask is, as will be discussed below, although the platform 44a is slightly smaller such that a small portion of the perimeter or edge 18a of the mask extends beyond the platform 44a for a small distance. The susceptor ring 52 surrounding the platform 44a is divided into a wedge ring or disc-shaped portion pattern as shown in FIG. 2B or FIG. 7 to form a cover ring 52a of about 2/5 rings 52 and form a remaining 3/5 ring 52. Capture ring 52b. The capture ring 52b has a bracket 54 in which the edge 18a of the mask 18 is placed. Whenever the mask 18 needs to be removed from the support base 16, three lifting tips 56 (only one of which is visible in the diagram of Figure 1) lift the capture ring 52b, which is lifted by the edge 18a The mask 18 is opened. At the frequency of the power generator 48, the susceptor ring 52 is constructed of material layers 53, 55 of different electrical characteristics that are selected to match the RF impedance exhibited by the combination of the quartz mask 18 and the aluminum platform 44a ( The cover ring and capture rings 52a, 52b are composed of different layers 53, 55). Moreover, the top surface of the capture ring 52 is coplanar with the top surface of the mask 18, so that during plasma processing, a large uniform surface extending beyond the edge of the mask 18 promotes uniform electric field and housing voltage across the surface of the mask 18. . Typically, these conditions are met if the lower ring layer 5 5 is quartz and the upper ring layer 5 3 is ceramic (e.g., oxidized M343237 aluminum). The process controller 60 controls the gas panel 36, the RF generators 24, 26, 48, and the wafer processing apparatus 61. The wafer processing apparatus can include a lift servo motor 62 coupled to the lift tip 56, a robot blade arm 63, and a slit valve 64 in the sidewall 12 of the chamber 1 . A series of evenly spaced titanium screws 70 are secured together along the perimeter of the cathode 44 and the equipment plate 46. Due to the electrical variability between the aluminum cathode/device plates 44, 46 and the titanium screw 70, the screw 7 turns a discontinuous non-uniformity into the rf electric field at the top surface of the cathode 44. Variations in the opposing surfaces of the cathode 44 and the device plate 46 create a non-uniformity of conductivity along the perimeter between the cathode 44 and the device sheet 46 which causes a corresponding non-uniformity in the electric field. Because the cathode 44 tends to bend upwardly at the center during plasma processing (due to chamber vacuum), the primary electrical contact between the cathode 44 and the device sheet is along its perimeter. In order to reduce the electrical conductivity between the cathode 44 and the device sheet 46 relative to (a) the change in tightness in the various titanium screws 70; and (b) the sensitivity of variations in surface characteristics, the annular film of highly conductive material (e.g., nickel) 72 is deposited on the perimeter of the bottom surface 44b of the cathode 44 while a matching annular film 74, for example, is deposited on the perimeter of the top surface 46a of the device sheet 46. The nickel films 72, 72 are aligned with one another such that the two annular nickel films 72, 74 form the opposing contact surfaces of the susceptor 44 and the device sheet 46, providing a highly uniform distribution of electrical conductivity therebetween. An annular groove 76 is provided along the perimeter of the bottom surface of the cathode 44, and a conductive rf gasket 80 is placed in the groove 76 to further improve uniform electrical conductivity. Alternatively, a similar annular groove 78 may be provided that is aligned with the groove 76 in the top surface of the device sheet 46. The RF washer 80 can be of the appropriate conventional type 12 M343237, for example, when the cathode 44 and the device piece 46 are pressed together and the nozzle is broken.

時被壓縮的薄金屬螺旋狀物。爲了減 T 4 4 ’月陆易於在鈦螺 釘70頭處所發生之電場分佈的點非均勻性,κ ” 仕陰極44頂 表面之周界中的環形槽84中,放置連續的鈦環82。 第2Α圖描述薄膜支撐基座16和它在下面的升降元件 90。該升降το件9〇包括以氣壓傳 Λ/1 ^ t 展罝或升降伺服電動機 94驅動的升降三角架92’和放置在升降三角架μ上的三 個升降梢56。在升降波紋管96中?|人升降梢%,爷料 波紋管包括滾球轴承98,以用於非常光滑和幾乎沒有摩擦 的運動(進而減小因磨損所產生的污染物卜第⑼圖描述 在升起位£中’具有捕獲S52b和遮$ 18的陰極Ο。當 升起遮罩時,由蓋環和捕獲環52a、52b分離所形成的空^ 隙’允許機械手葉片接近遮罩18« 通過改變陰極平臺44a的電特性(例如’電介電常數) 的分佈,解決橫跨遮罩18表面之中央-極低的钱刻速率分 佈問題。在-個實施例中,這通過在平臺44玨的頂表面上 提供中心插入物102和周圍的外部插入物1〇4來實現,這 兩個插入物和基座環52形成一個連續的平面表面,且它們 是電性上互異材料。例如,爲了減小餘刻速率分佈成爲中 央-極低的趨勢,中心插入物! 〇2可爲導電材料(例如, 鋁),然而外部插入物〗04可爲絕緣材料(例如,陶瓷如氧 化鋁)。該中心插入物102的導電型式對RF電流提供了相 當低的阻抗通路,增加在遮罩18中心的離子能量和蝕刻速 率,同時絕緣外部插入物1〇4呈現較高的阻抗,其減小在 13 M343237 逾星 1 δ ή … 過邊的餘刻速率。該組合改善餘刻速率分佈,致使 其更接近均勻°利用該特徵,藉由調整提供到内部和外部 線圈天線20、22的相關RF功率程度,可實現蝕刻速率分 佈的微調。達到均勻蝕刻速率分佈所需的電漿離子密度其 放射狀分佈中的變化,係減小到相當小的數量,該數量在 内部和外部線圈20、22間之RF功率分配的能力之内,以 獲得均句的蝕刻速率分佈。第3圖是内部和外部插入物 102 ' 104的上視圖。在可替代的實施例中,該插入物ι〇2、 1 04可以爲具有不同介電常數(電介電常數)的絕緣體。 第4圖和第5圖係根據該原理繪示詳盡的細節,其中使用 四個電性漸次不同的同心環1 02、1 04、1 06、1 08,以使餘 刻速率更加均勻。第6圖和第7圖描述提供陰極44之RF 電特性分佈的即時可調性之可替代的實施例。在陰極44 中心内部的中空圓柱11 4内,活塞11 0控制可移動的鋁板 112的軸向位置。鋁板112與鋁平臺44a的剩餘部分電接 觸。絕緣體(例如,陶瓷)頂部膜116可覆蓋陰極44的頂 部。隨著鋁板112靠近圓柱114的頂部,減小了通過陰極 44中心區域的電阻抗,因而增加在遮罩1 8中心處的蝕刻 速率。相反地,隨著鋁板112在圓柱114中向下移動遠離 遮罩1 8,減小了在遮罩中心處的餘刻速率。爲了最大化均 勻性或彌補非均勻性,可通過製程製程控制器60(第1圖) 管理用於控制活塞11 〇軸向運動的制動器11 8,以調節蝕 刻速率分佈。 14 M343237 穿過遮罩背面的钱刻速率監控和络· 藉由使用穿過陰極44和穿過基板18或遮 學感測,降低或消除因周期性間斷蝕刻製程以 的蝕刻深度和臨界尺寸所造成的高生産成本。 製程以執行這種周期性測量是必要的,這是由 阻蝕刻選擇性較差:通常,遮罩材料比光阻餘 典型地通過在遮罩上沈積光阻的厚層解決該問 阻的高蝕刻速率致使光阻表面無規則的不均句 粗糙度影響穿過光阻的光,因而在臨界尺寸和 任何光學測量中引入干擾。因此,每個周期性 時的移除光阻,以確保無干擾的光學測量,在 中斷的遮罩蝕刻製程之前,必須再沈積光阻, 中重寫入光罩圖案。 在第8圖中描述的遮罩蝕刻電漿反應器中 陰極44内提供的背面光學測量裝置,將遮罩^ 至遮罩支據基座上的適當位置時,則避免了上 且能持續觀察臨界尺寸或在整個餘刻製程期間 度。該背面測量裝置利用了遮罩板1 8的光學多 罩板18典型地爲石英^可沈積於其上的薄膜( 矽化物)可為不透明的,但定義遮罩丨8刻線圖 化開口的形成,係可被光學檢測。可經由陰極 背面觀察由這些層所反射或傳輸穿過這些層之 變。該觀察可用於執行蝕刻製程終點檢測。當 料時,在餘刻製程期間,可以檢測到經由陰極 罩背面的光 測量遮罩上 中斷該蝕刻 於相對於光 刻慢得多。 題,但是光 或粗植。該 蝕刻深度的 測量期間暫 重新開始被 並且在光阻 ,當利用在 良基板18提 述困難,並 測量蝕刻深 I明屬性,遮 例如鉻或鉬 案之經圖案 44,在遮罩 光強度的改 蝕刻石英材 44,在遮罩 15 M343237 背面所觀察到的光學干涉,以即時執行钱刻深度測量。一 個優勢在於從遮罩背面檢測的圖像或光信號不受光阻雜訊 的影響,或者至少與從遮罩1 8的頂表面(光阻側)執行這 種測量相比,影響是非常小的。A thin metal spiral that is compressed at the time. In order to reduce the point non-uniformity of the electric field distribution occurring at the 70 head of the titanium screw, the continuous titanium ring 82 is placed in the annular groove 84 in the perimeter of the top surface of the cathode 44. Fig. 2 The film support base 16 and its lower lifting element 90 are described. The lifting and lowering member 9 includes a lifting tripod 92' driven by a pneumatic transmission/1^t or lifting servo motor 94 and placed on a lifting tripod Three lifting tips 56 on the μ. In the lifting bellows 96, the person lifting the tip, the ball corrugated tube includes the ball bearing 98 for very smooth and almost no frictional movement (and thereby reducing wear and tear) The resulting contaminant (9) depicts a cathode crucible having a capture S52b and a cover of $18 in the raised position. When the mask is raised, the void formed by the separation of the cover ring and the capture ring 52a, 52b 'Allowing the robot blade to approach the mask 18« solves the problem of the distribution of the velocity across the surface of the mask 18 by changing the distribution of the electrical characteristics of the cathode platform 44a (for example, the 'dielectric constant'). In one embodiment, this is done on the platform 44玨The top surface is provided with a central insert 102 and surrounding external inserts 1 , 4 which form a continuous planar surface and which are electrically electrically different materials. For example, In order to reduce the tendency of the rate distribution to become a center-to-very low, the center insert! 〇2 may be a conductive material (for example, aluminum), whereas the external insert 04 may be an insulating material (for example, a ceramic such as alumina). The conductive pattern of the center insert 102 provides a relatively low impedance path to the RF current, increasing the ion energy and etch rate at the center of the mask 18, while the insulating external insert 1 〇 4 exhibits a higher impedance, which is reduced in 13 M343237 Over the star 1 δ ή ... the residual rate of the crossing edge. This combination improves the residual rate distribution, making it closer to uniformity. This feature is utilized to adjust the associated RF power supplied to the inner and outer coil antennas 20, 22. To the extent that fine-tuning of the etch rate distribution can be achieved. The variation in the radial distribution of the plasma ion density required to achieve a uniform etch rate distribution is reduced to a relatively small amount. The amount is within the capability of RF power distribution between the inner and outer coils 20, 22 to obtain an average etch rate distribution. Figure 3 is a top view of the inner and outer inserts 102' 104. In an alternative embodiment The inserts ι 2, 10 04 may be insulators having different dielectric constants (dielectric constants). Figures 4 and 5 show detailed details according to the principle, in which four electrical properties are used. Gradually different concentric rings 102, 104, 106, 1 08 to make the residual rate more uniform. Figures 6 and 7 depict alternatives for providing instant tunability of the RF electrical property distribution of the cathode 44. In the hollow cylinder 11 4 inside the center of the cathode 44, the piston 110 controls the axial position of the movable aluminum plate 112. The aluminum plate 112 is in electrical contact with the remainder of the aluminum platform 44a. An insulator (e.g., ceramic) top film 116 can cover the top of the cathode 44. As the aluminum plate 112 approaches the top of the cylinder 114, the electrical impedance through the central region of the cathode 44 is reduced, thereby increasing the etch rate at the center of the mask 18. Conversely, as the aluminum plate 112 moves downwardly away from the mask 18 in the cylinder 114, the rate of remnancy at the center of the mask is reduced. To maximize uniformity or compensate for non-uniformities, the brakes 11 8 for controlling the axial movement of the piston 11 can be managed by the process controller 60 (Fig. 1) to adjust the etch rate distribution. 14 M343237 Velocity rate monitoring and traversing through the back of the mask. Reduce or eliminate etch depth and critical dimensions due to periodic intermittent etch processes by using through the cathode 44 and through the substrate 18 or occlusion sensing. The high production costs caused. The process is necessary to perform this periodic measurement, which is less selective by the etch stop: typically, the mask material is more etched than the photoresist residue typically by thick layers of photoresist deposited on the mask. The rate causes the irregular unevenness of the photoresist surface to affect the light passing through the photoresist, thus introducing interference in critical dimensions and in any optical measurement. Therefore, the photoresist is removed at each periodicity to ensure an interference-free optical measurement. Before the interrupted mask etch process, the photoresist must be deposited and the reticle pattern is rewritten. The backside optical measuring device provided in the cathode 44 in the mask etch plasma reactor described in Fig. 8 avoids the upper and continuous observation when the mask is placed to the appropriate position on the pedestal of the mask. Critical dimension or degree throughout the entire process. The backside measuring device utilizes an optical mask 18 of the masking plate 18, typically a film on which the quartz can be deposited (the telluride) can be opaque, but defines a masked 丨8 scribed opening. Forming can be optically detected. The changes reflected or transmitted through these layers through the layers of the cathode can be observed. This observation can be used to perform an etch process endpoint detection. While in the process, during the remnant process, it can be detected that the etch on the back of the photomask through the back of the cathode mask is interrupted much more slowly than the etch. Problem, but light or rough. The measurement period of the etch depth is temporarily restarted and is in the photoresist, when the difficulty is referred to in the good substrate 18, and the etching depth is measured, and the pattern 44 of the chrome or molybdenum case is covered, in the light intensity of the mask. The quartz material 44 was etched to observe the optical interference observed on the back of the mask 15 M343237 to perform the depth measurement in real time. One advantage is that the image or optical signal detected from the back of the mask is not affected by the photoresist noise, or at least the effect is very small compared to performing this measurement from the top surface (the photoresist side) of the mask 18. .

爲了這些目的,第8圖的反應器包括在陰極44的頂表 面内的凹槽120,凹槽120可容納透鏡122,該透鏡的光軸 面向遮罩或基板18的背面。一對光纖124、126(其直徑相 對於透鏡122而言較小),具有接近於或接觸透鏡122的末 端124 a、126a,且在透鏡122的光轴處兩者幾乎相互對準。 在第8圖中描述的每個光纖124、126實際上可以是一小束 光纖。光纖124具有連接到光源128的另一末端124b,光 源發出一個波長的光,在這個波長上遮罩1 8是透明的,通 常對於石英遮罩是可見波長。在干涉深度測量的情況下,For these purposes, the reactor of Figure 8 includes a recess 120 in the top surface of the cathode 44 that receives the lens 122 with the optical axis of the lens facing the back of the mask or substrate 18. A pair of optical fibers 124, 126 (which are relatively small in diameter relative to lens 122) have proximal ends 124a, 126a that are proximate to or in contact with lens 122, and are nearly aligned with each other at the optical axis of lens 122. Each of the fibers 124, 126 depicted in Figure 8 may actually be a small bundle of fibers. The fiber 124 has an opposite end 124b that is coupled to a source 128 that emits a wavelength of light at which the mask 18 is transparent, typically visible to the quartz mask. In the case of interference depth measurement,

選擇光源1 2 8的波長光譜,以促進遮罩1 8之刻線圖案的局 部一致。對於在约爲45nm級左右之蝕刻遮罩結構的周期 性特徵中(或在一微米之下的周期特徵尺寸),假如光渾 128在可見光譜的範圍内發光,則滿足該要求。光纖126 具有其連接到光接收器1 3 0的另一末端。在單一終點檢測 的情況下,光接收器130可僅檢測光強度。在臨界厚度(例 如’線寬)測量的情況下’光接收器1 3 0可檢測在透鏡1 2 2 之觀測領域内餘刻線的圖像’進而可確定線寬(例如,從 干涉或繞射圖案中推斷或從干涉條紋的數量中計算)^在另 一實施例中,光接收器130可包括用於執行多個波長干涉 測量的分光計’進而可推斷或計算蝕刻深度。對於這種測 16 M343237 定,製程控制器60包括能夠虛 ^處理來自光接收器之光學信 的光學信號處理器132。這藉本 、種先學信號處理可包括(取 於具體的實現)下列各項的一桐· w μ 、 ^ 個·從周圍光強度的改變, 執行蝕刻製程終點檢查;從Aw祖 攸由先接收器130檢測的二維圖 像測量臨界尺寸;藉由計數+ , 1歎干涉條紋,計算蝕刻深度;從 多個波長干涉光譜確定蝕刻深择 .ll ^ d冰度,在此情況下光學接收器The wavelength spectrum of the source 1 28 is selected to promote local uniformity of the mask pattern of the mask 18. For periodic features of the etched mask structure (or periodic feature sizes below one micron) around the order of about 45 nm, this requirement is met if the pupil 128 illuminates within the visible spectrum. The optical fiber 126 has its other end connected to the optical receiver 130. In the case of a single endpoint detection, the light receiver 130 can detect only the light intensity. In the case of a critical thickness (eg 'linewidth') measurement, the 'light receiver 1 30 can detect the image of the residual line in the field of observation of the lens 1 2 2' and thus the line width can be determined (eg from interference or winding) Inferred from the shot pattern or calculated from the number of interference fringes) In another embodiment, the light receiver 130 may include a spectrometer 'for performing multiple wavelength interferometry' and may infer or calculate the etch depth. For this type of measurement, the process controller 60 includes an optical signal processor 132 that is capable of virtual processing the optical signals from the optical receiver. The signal processing of the first and the first can be included (taken from the specific implementation) of the following items: a t························································· The two-dimensional image detected by the receiver 130 measures the critical dimension; the etching depth is calculated by counting +, 1 sinter interference fringes; the etching depth is determined from multiple wavelength interference spectra. ll ^ d ice, in this case optical receiving Device

1 30由分光計組成。可替代祕 „ L 纪代地’利用由電漿發射並且通過 透明遮罩傳輸的光,這種分 但刀九计可精由來自晶圓背面的光 學發射光譜,執行蝕刻製程炊麥丨 ^ ^ 衣裎終點檢測,在此情況下不使用 光源1 2 8。 製程控制器60對來自光學信號處理器132的製程終點 檢測資訊(或制深度測量資幻作出反應,Μ 反應器的各種元件,包括RF産生器24、26、48和晶圓處 理裝置6 1。典型地,當到達餘刻製程終點時,製程控制器 60中止蝕刻製程並從基座16中移除遮罩 第9圖是描述在鉻蝕刻製程(其中根據遮罩刻線圖案 蝕刻在石英遮罩表面的鉻薄膜)期間,從遮罩頂面(塗覆 光阻)所檢測之周圍反射光強度其作爲時間函數的圖表。 在第9圖圖表所描述之強度中的大擺幅,呈現出由光阻層 之頂表面中粗糙度所引起的干擾。虛線代表在干擾中隱藏 的步階函數(step functi〇n)信號,該步階函數與鉻蝕刻製程 …點相致。第圖是在第8圖的反應器中,通過陰極 44從晶圓背面獲得之相同測量的圖表,其中,光接收器1 30 檢測反射光程度。光阻所引起的干擾大大地減小,因而在 17 M343237 光學資料中清楚的呈現出終點定義步階函數。步階函數的 邊緣表示轉換點,在轉換點處反射光強度因蝕刻製程到達 鉻薄膜的底部而下降,在此點處鉻的反射表面區域突然減 小〇 第11和12圖為光強度對時間(或,同等地,對於空 間)的圖表,並且在第12圖中,例如通過光學接收器13〇 所檢測到的結果,其中光強度的周期性峰值對應於蝕刻干 涉條紋,而蝕刻干涉條紋其間距決定蝕刻深度,或對應在 透明石英遮罩基板1 8中,所蝕刻出的緊密周期性地間隔之 特徵其不同表面間厚度上的差異。第11圖描述從遮罩頂面 通過光阻所檢測到的強度,具有大量由光阻所引起之削弱 干涉條紋檢測的干擾成分。第1 2圖描述穿過遮罩背面,由 第8圖的光學接收器130所檢測的強度,其中光阻引入的 干擾實質上不存在。 第13圖是在光學接收器130由分光計組成,並且光源 128産生波長光譜的情形下,所描繪的光強度為波長函數 的圖表。第13圖之圖表的強度光譜為在透明遮罩18中, 周期性隔開、不同深度的次微米特徵中之表面反射光間, 所發生干涉作用的典型情形。在較低波長,峰值是周期性 和均勻間隔的,主要的光學作用是干涉。在較高波長,遮 罩18中之周期性特徵中的局部一致性不那麼強,因此繞射 效果隨著增加的波長變得顯著增強,造成如在第13圖中描 述的,在較高波長處,光強度較不均勻地間隔並且更加複 雜。在第13圖中峰值的間隔,尤其在較低波長,是蝕刻深 18 M343237 度的函數,其可從峰值對峰值的間隔中推斷。 第14圖示出第8圖的反應器的實施例,其中光接收器 130是周圍光強度檢測器,並且光學信號處理器132被編 程以尋找在整個反射光強度中的大的偏轉(步階功能),對 應於第1 0圖的終點檢測圖表。在該實施例中的光源丨2 8 可爲任何合適的光源。可替代的,可省略光源1 2 8,因此 光感測器130僅對來自通過基板18或透明遮罩傳輸之電聚 的光作出回應。 第15圖示出第8圖的反應器的實 _ π叹器 130爲通過透鏡122充分聚焦,以解析干涉條紋的干涉條 紋檢測器,並且爲了計算在透明石英遮罩i 8中的餘刻深' 度’將光學信號處理器1 3 2進行編程,以計算干涉條紋( 如,從第12圖中示出的類型中,強度對時間資料例 算產生虛擬暫態(virtually instantaneous)蚀刻深度,龙、 過邏輯200,與存儲在存儲202中的用戶定義目標深声相 比較。該邏輯200可使用傳統的數位匹配或最小化程弋相 (minimizati〇n routine),以檢測所存儲的和所測量之深 值間的匹配。該匹配使邏輯200爲程式控制器6 ’衣度 刻終點。 35 ^ 第1 6圖示出第8圖的反應器的實施例,其使用第 圖的干涉光譜技術,以測量或確定在透明石英遮罩戈3 18中的蝕刻深度。在這種情況下,光源128 ‘射/基板 或在可見光範圍内的光譜(對於大約幾百奈米或更少、長 期性遮罩特徵尺寸)。光接收器13〇爲分光計。組人^的周 、、Q仏鱿調 19 M343237 郎器矛類比數位資料轉換器220將由分光計130收集的光 4資訊,轉換成爲光學信號處理器132可處理的數位信 號。如上面提到的,可執行終點檢測的一種模式爲由第ι 3 圖呈現之資料中,較低波長範圍中周期性峰值間的間隔來 計算餘刻深度。比較邏輯200可將暫態測量蝕刻深度與存 健在存储202中的用戶定義目標深度相比較,以確定是否 已、、到達餘刻製程終點。在另一模式中,比較邏輯乃 充分強力,以將數位表示的表示分光計丨3〇之暫態輸出的 波長頻譜(對應於第丨3圖的圖表)與對應於所需蝕刻深度 的已知頻譜進行比較。該已知頻譜可存儲在存儲2〇2中。 由比較邏輯200所檢測的在測量頻譜和存儲頻譜間的匹 配,或近似匹配,會使蝕刻製程終點標識發送到製程控制 器60 〇 第17圖示出第8圖的反應器的實施例,其中光學接收 器130爲光學發射分光計,其能夠區分來自室中之電漿所 發射的光學輻射之發射線,以執行光學發射光譜測定法 (Optical emission spectrometry,OES )。處理器 132 爲 〇ES處理器,編程該處理器以追蹤所選光學線的強度(或 檢測所述消失),所選光學線的強度對應於在被蝕刻層中材 料之化學種類的指示。基於預定的轉換(例如,在鉻蝕刻 製程期間廿,OES光譜中的鉻波長線的消失),處理器132 發送蝕刻製程終點檢測標識至製程控制器6 〇。 第1 8圖描述我們已經建構的實施例,在陰極4 4的表 面中分別隔開的凹槽231、233中具有一對透鏡230、232, 20 M343237 該透鏡230、232被聚焦以解析干涉條紋,聚焦的光由面向 或接觸各自的透鏡23 0、232的光纖234、236分別運載。 光纖23 4、236連接到干擾探測器238 (其可爲條紋探測器 或分光計),該探測器23 8具有連接到製程控制器60的輸 出。透鏡230、232通過光纖242、244從光源240接收光。 該光從遮罩18的頂表面反射回透鏡230、232,並且通過 光纖23 4、236運載到檢測器238。另外,第18圖的實施 例在陰極表面中具有第三凹槽24 9,該凹槽可容納通過光 纖252連接到OES分光計254的輸入的第三透鏡250。OES 處理器256處理OES分光計254的輸出,以執行終點檢 測,並且將結果傳輸至製程控制器60。在第1 9圖中描述 第18圖實施例的陰極44,顯示出容納各自的透鏡230、 232、250的三個凹槽231、231、249。第20圖示出在設備 板46内用於容納支撐透鏡23〇、232、25〇的光學裝置(未 示出)的相應孔260、261、262。第21圖示出了在基座16 内部’光纖到透鏡之連接的橫截面圖。 儘管第16、17和18圖中的反應器已經描述爲使用分 光計130 (第16和17圖)和254 (第18圖),該分光計 130或254可由一個或更多調節到預定波長的光學波長濾 波器代替。每個這種光學波長濾波器可與光電倍增管結 合’以增強信號振幅。 i面終點檢測摭罩蝕刻製鋥: 第22A和22B圖描述在遮罩的石英材料中,用於蚀刻 21 M343237 刻線圖案的製程。在第22A圖中,石英遮罩210已用光阻 層212覆蓋’該光阻層具有間隔的線214的周期性結構和 在光阻層212中定義的開口 216。在第15或16圖的反應 器中’將CHFs + CHFdAr的石英蝕刻製程氣體引入到室10 中,通過RF産生器24、26和48供應功率,並且在光阻 層212中形成的開口 216之内蝕刻石英材料。通過在從蝕 刻頂部表面所反射的光218和從石英基板210的未蝕刻頂 表面所反射的光2 1 9之間的干涉,不斷的測量石英中的蝕 刻深度。只要達到期望的蝕刻深度(第22A圖)就停止蝕 刻製程。之後移除光阻以製造需要的遮罩(第22B圖)。 第23A到23E圖描述用於蝕刻三層遮罩結構的製程, 該三層結構由在下面的石英遮罩基板210、鉬矽化物層 260、(包含鉬氧化矽氮化物),鉻層262、鉻氧化物抗反射 塗層264和光阻層266,該光阻層266具有開口 268形成 於其中(第23A圖)。在第23B圖的步驟中,使用鉻蝕刻 製程氣體例如Cl2 + 〇2 + CF4,在具有單一反射係數終點檢測 (第14圖的室)或具有OES終點檢測(第17圖的室)的 電漿反應器室中,蝕刻鉻層262和抗反射塗層264。移除 光阻層266 (第23C圖)。然後如在第23D圖中所示,蝕 刻鉬矽化物層260,其使用的製程氣體是鉬矽化物的蝕刻 劑,例如,SF6 + C12,並且使用鉬層262作爲硬遮罩。在具 有終點檢測的電漿反應器中執行該步驟,前述電漿反應器 係藉由單一周圍反射係數或通過OES進行終點檢測,例如 第14圖或第17圖的室。 22 M343237 在第23E圖中,使用鉻蝕刻製程氣體例如 CHdCFdAr,移除鉻層262和氧化鉻抗反射塗層264。可 使用第1 4和1 7圖具有單一終點檢測而無蝕刻深度測量的 反應器,執行該步驟。這使石英遮罩基板保留了定義刻線 圖案之麵梦化物覆蓋層。 第24A到24E圖描述用於製造二元遮罩,該遮罩由透 明石英遮罩上的周期性鉻線組成,其中該些鉻線位在所暴 露石英之周期性間隔的兩側,而交替暴露的多晶矽間隔乃 被蝕刻到使透射光相移一期望之角度(例如丨8 〇度)的深 度。 第24圖描述了由石英遮罩基板3〇〇、鉻層3〇2、氧化 鉻抗反射塗層304和光阻層3〇6組成的初始結構。在第24B 圖的步驟中’在反應器室(例如第14或17圖的室)的製 程氣體Ch + 〇2 + CF4中’蝕刻鉻和氧化鉻層3〇2、304。在 第24C圖的步驟中,移除光阻層306,其後如第24D圖中 所示,在石英蝕刻製程氣體CHF3 + CF4 + Ar中,蝕刻石英遮 罩基板300的暴露部分。在反應器室中執行第24D圖的石 矣餘刻步驟’該反應器室能夠檢測或控制在石英遮罩基板 3 〇〇中的蝕刻深度,例如第i 5或16圖中的室。在蝕刻製 程期間,不斷監控暫態蝕刻深度,並且在遮罩3 0 0上一旦 達到目標蝕刻深度就中止蝕刻製程。在第24E圖中描述最 終的結果。 搜A遮·罩表面之蝕刻速率分佑的捸續監控: 23 M343237 第25和26圖示出第1圖的晶圓支撐基座16的實施 例’該晶圓支撐基座16在陰極44的頂表面中,具有背面 蝕刻深度檢測元件(透鏡和光纖)的矩陣,在餘刻期間, 在不中斷餘刻製程或干擾遮罩基板的情況下,橫跨遮罩或 基板的整個表面,連續提供蝕刻速率分佈或蝕刻深度分佈 的暫態圖像或示例。鋁板44的頂表面在其頂部上具有開口 320的矩陣,每個開口容納一個面向遮罩基板3〇〇背面的 透鏡322。光源324通過連接到各別對應至透鏡322的輸 出光纖326以提供光。透鏡322産生充足的聚焦以解析干 涉條紋。干涉檢測器328,其既可以是幫助邊緣計數的感 測器也可以是分光儀,連接到分別耦合至透鏡322的輸入 光纖33 0。開關或多工器(multiplexer)332允許來自每個輸 入光纖3 3 0的光順序地傳輸到檢測器3 2 8。有三種工作模 式可以操作第25和26圖中的設備。在第一種模式中,在 特疋透鏡322之視野中的蝕刻深度,是從干涉條紋間的 間隔所计算的。在第二種模式中,檢測器3 2 8爲分光計, 並且在一特定透鏡322之一視野中的蝕刻深度,是從多波 長干涉頻譜之較小的波長峰值間隔所計算的(參考第ι3 圖)\在第三種模式中,在特定的時間間隔内檢測多波長干 涉頻:,並且將其與資料庫340中,與已知蝕刻深度相對 '、的光h進行比較。由蝕刻深度和經過的時間計算出蝕刻 ,率分佈。該分佈記錄製程的蝕刻非均勻⑯,並且反饋到 裝程控制器132。該控制器132通過調節反應器的可調特 徵以作出回應,進而減少在蝕刻速率分佈中的非均勻性。 24 M343237 雖然在第25和26圖實例中描述了在平臺44a的頂表 面中餘刻深度感測器或透鏡322的3x3矩陣,在這樣感測 器矩陣中可使用任何數量的行和列,以使矩陣成爲ηχιη矩 陣,這裏m和η都是合適的整數。 在一個實施例中,可編程製程控制器丨3 2,以推斷出 (通過由分光計或感測器丨3 〇提供的蝕刻速率分佈資訊) 餘刻速率分佈是中心高還是中心低。製程控制器6〇可通過 調整反應器的某些可調特徵對該資訊作出回應,以降低非 均勻性。例如,製程控制器60可改變在内部和外部線圈 20、22之間的RF功率分配。可替代地或另外地,製程控 制器60可以改變在第6和7圖反應器中的可移動鋁板ι12 高度。來自在平臺44a中的蝕刻深度感測元件之陣列或矩 陣的反饋,允許製程控制器60通過反應器可調元件的連續 的試驗和誤差調整,來提高蝕刻速率分佈的均勻性。 第27A圖是升降梢56 —個實施例的側視圖。升降梢 56包括具有第一末端271〇和第二末端2715的主體27〇5。 該主體2705可由製程相容材料製造,例如不銹鋼、鋁、陶 兗等,並且在一個實施例中,主體27〇5由氧化鋁(Al2〇3 ) 材料製造。在實施例中,主體2705包括具有圓形橫截面的 轴並且包括至少一個外直徑,例如第一直徑區2725,以及 一個或更多較小的外直徑區,例如第二直徑區273〇A和第 二直徑區2730B。該第二直徑區2730A和該第三直徑區 2730B可以由肩部2735分開,並且肩部2735可以包括大 體上等於第一直徑區2725的外直徑。在一個實施例中,第 M343237 二末端2715包括凹陷區域2 708,凹陷區域27〇8由第一直 徑區2725和第二直徑區273 0A和第三直徑區273〇b中的 至少一個的交界面定義。在一些實施例中,凹陷區域27〇8 包括第一直徑區2725和由肩部分開的第二和第三直徑區 2730A、2730B的交界面。 凹陷區域2708可以促進與升降骏置%連接和/或擡起 - 第2A圖中的升降波紋管96。凹陷區域27〇8也可藉由作為 指示器或量規以促進替換,進而決定升降梢%何時位於升 降裝置90中。其他具有單個|徑的升降梢,在替換期間, 可能需要監控和/或週邊測量機械裝置,來準確定位和放置 升降梢。另外,其他升降梢可能需要週邊固定裝置,以幫 助連接升降裝置90。在一個應用中,凹陷區域27〇8因而 _ ㈣換升降梢56時,提供—個停止指示,例如當升降梢 56連接到升降裝置90時的觸感。在另一個實施例中,凹 陷區域2708提供額外的功能,用以將升降梢“固定到升 降裝置90和/或升降波紋管96。 • 第27B圖是從第27八圖獲得的部分第二末端2715的 分解側面視圖。如上所述,肩部2735可以包含實質上等於 第一直徑區2725的外直徑,並且第二和第三直徑區 • 273〇A、273〇B略微小於第一直徑2725和肩部2735。在一 個實施例中,第二和第三直徑區273〇A、273〇b實質上相 等,但是在另一實施例中,第二和第三直徑區273〇a、273〇b 彼此之間有細微差別。第二末端2715也包括由雙半徑定義 的圓形末端,例如第一半徑274〇A和第二半徑274〇b。在 26 M343237 圖。 第9和ι〇圖是分別從遮罩的正面和背面獲得的光學終 點檢測信號的圖形。 第11和12圖是分別從遮罩的正面和背面獲得的干涉 條紋光學信號的圖形。 第1 3圖是從第8圖反應器的一個實施例中,獲得的多 個波長干涉光譜信號的圖形。 第1 4圖示出對應於第1 〇圖,具有背面終點檢測之第 8圖反應器的實施例,該背面終點檢測係依據基於整個反 射光強度。 第1 5圖示出對應於第1 2圖’具有背面終點檢測之第 8圖反應器的實施例,該背面終點檢測係依據基於干涉條 紋計算。 第1 6圖示出具有背面終點檢測之第8圖反應器的實施 例,該背面終點檢測係依據多個波長干涉光譜。 第1 7圖示出具有背面終點檢測之第8圖反應器的實施 例,該背面終點檢測係依據光學發射光譜法(OES )。 第18圖不出具有OES和基於干涉的背面終點檢測之 工作示例。 第1 9和20圖分別是第1 8圖的實施例的陰極和設備板 的透視圖。 第21圖是第19圖的陰極的橫截面圖。 第22A和22B圖描述使用背面終點檢測之石英遮罩蝕 28 M343237 26RF源功率産生器 28RF阻抗匹配電路 3 0RF阻抗匹配電路 32注射喷嘴 34氣體歧管 3 6氣體面板 3 8氣體供應部 40集中流量控制器 42集中流量控制器 44陰極 44a中央平臺 44b底部表面 46金屬設備板 48RF産生器 50RF阻抗匹配電路 52基座環 52a蓋環 52b捕獲環 5 3材料層 54支架 55材料層 56升降梢 60製程控制器 6 1晶圓處理裝置 62升降伺服電動機 63機械手葉片臂 64缝隙閥門 70鈦螺釘 72環形薄膜 74匹配環狀薄膜 76溝槽 78環形溝槽 80 RF墊圈 82鈦環 84環形槽 90升降元件 92升降三角架 94升降伺服電動機 96升降波紋管 9 8滾球軸承 1 0 2中心插入物 104外部插入物 106同心環 1 0 8同心環 30 M343237 11 0活塞 112鋁板 11 6頂部膜 11 8制動器 120凹槽 122透鏡 124光纖 124a末端 124b末端 126光纖 126a末端 126b末端 1 2 8光源 130光接收器 132光學信號處理器 200邏輯 202存儲 210石英遮罩 2 1 2光阻層 214線 216 開口 換器 220信號調節器/類比數位資料轉 230透鏡 231凹槽 232透鏡 233凹槽 234光纖 236光纖 238干擾探測器 240光源 242光纖 244光纖 249凹槽 250透鏡 252光纖 2540ES分光計 256 OES處理器 260鉬矽化物層 262鉻層 264鉻氧化物抗反射塗層 266光阻層 268 開口 31 M343237 300石英遮罩基板 302鉻層 3 04氧化鉻抗反射塗層 306光阻層 3 20 開口 322透鏡 324光源 326光纖 3 2 8干涉檢測器 3 3 0光纖 332開關或多工器 340資料庫 2705主體 2708凹陷區域 2710第一末端 2710A第一半徑 2715第二末端 2725第一直徑 2730A第二直徑區 2730B第三直徑區 2735肩部 2740B第二半徑 2740A第一半徑 321 30 consists of a spectrometer. An alternative to the „L 代代地' uses the light emitted by the plasma and transmitted through the transparent mask. This can be refined by the optical emission spectrum from the back side of the wafer, and the etching process is performed. End point detection, in this case no source 1 2 8. Process controller 60 reacts to process endpoint detection information from optical signal processor 132 (or depth measurement illusion, 各种 various components of the reactor, including RF generators 24, 26, 48 and wafer processing apparatus 61. Typically, when the end of the machining process is reached, process controller 60 terminates the etching process and removes the mask from susceptor 16. Figure 9 is depicted in A graph of the intensity of ambient reflected light from the top surface of the mask (coated photoresist) as a function of time during the chrome etch process (where the chrome film on the surface of the quartz mask is etched according to the mask reticle pattern). The large swing in the intensity described in Figure 9 shows the interference caused by the roughness in the top surface of the photoresist layer. The dashed line represents the step function (step functi〇n) signal hidden in the interference. Order The number is in phase with the chrome etching process. The figure is a graph of the same measurement obtained from the back side of the wafer by the cathode 44 in the reactor of Fig. 8, wherein the photoreceiver 1 30 detects the degree of reflected light. The resulting interference is greatly reduced, so the endpoint definition step function is clearly presented in the 17 M343237 optical data. The edge of the step function represents the transition point at which the reflected light intensity reaches the bottom of the chrome film due to the etching process. And descending, at which point the reflective surface area of the chrome is suddenly reduced. Figures 11 and 12 are graphs of light intensity versus time (or, equally, for space), and in Fig. 12, for example by optical receiver The result detected by 13〇, wherein the periodic peak of the light intensity corresponds to the etching interference fringe, and the spacing of the etching interference fringe determines the etching depth, or corresponds to the tight periodicity etched in the transparent quartz mask substrate 18. The spacing of the ground is characterized by the difference in thickness between the different surfaces. Figure 11 depicts the intensity detected by the photoresist from the top surface of the mask, which is caused by a large amount of photoresist. Interference components for weak interference fringe detection. Figure 12 depicts the intensity detected by the optical receiver 130 of Figure 8 through the back of the mask, where the interference introduced by the photoresist is substantially absent. Figure 13 is in the optical The receiver 130 is composed of a spectrometer, and in the case where the light source 128 produces a wavelength spectrum, the depicted light intensity is a graph of the wavelength function. The intensity spectrum of the graph of Figure 13 is in the transparent mask 18, periodically spaced, Typical cases of interference between surface reflected light in sub-micron features of different depths. At lower wavelengths, the peaks are periodically and evenly spaced, the main optical effect being interference. At higher wavelengths, the mask 18 The local consistency in the periodic features is not so strong, so the diffraction effect becomes significantly enhanced with increasing wavelengths, resulting in a lighter intensity at a higher wavelength, as described in Figure 13 Interval and more complicated. The spacing of the peaks in Figure 13, especially at the lower wavelengths, is a function of the etch depth of 18 M343237 degrees, which can be inferred from the peak-to-peak spacing. Figure 14 shows an embodiment of the reactor of Figure 8, wherein the light receiver 130 is a ambient light intensity detector and the optical signal processor 132 is programmed to look for large deflections throughout the intensity of the reflected light (steps) Function), corresponding to the endpoint detection chart of Figure 10. The light source 丨28 in this embodiment can be any suitable light source. Alternatively, the light source 1 2 8 can be omitted, so the light sensor 130 only responds to light from the electro-convergence transmitted through the substrate 18 or the transparent mask. Figure 15 shows that the real π sniper 130 of the reactor of Fig. 8 is an interference fringe detector that is sufficiently focused by the lens 122 to resolve the interference fringes, and in order to calculate the depth in the transparent quartz mask i 8 'degree' is programmed with optical signal processor 132 to calculate interference fringes (eg, from the type shown in Figure 12, the intensity versus time data is calculated to produce a virtual transient etch depth, dragon The logic 200 is compared to the user defined target deep sound stored in the storage 202. The logic 200 can use conventional digital matching or minimizing the routine to detect the stored and measured Matching between the deep values. This matching causes the logic 200 to be the end point of the program controller 6 . 35 ^ Figure 16 shows an embodiment of the reactor of Figure 8, using the interference spectrum technique of the figure, To measure or determine the etch depth in the transparent quartz mask Ge 3 18. In this case, the source 128's shot/substrate or spectrum in the visible range (for a few hundred nanometers or less, long-term masking) Cover feature The light receiver 13 is a spectrometer. The group of people ^, Q 仏鱿 19 M343237 郎 矛 矛 analog digital converter 220 to convert the light 4 information collected by the spectrometer 130 into an optical signal processor 132 Processable Digital Signals. As mentioned above, one mode of performing endpoint detection is to calculate the residual depth from the interval between periodic peaks in the lower wavelength range from the data presented in Figure ι. 200 may compare the transient measurement etch depth to a user-defined target depth stored in memory 202 to determine if the process end point has been reached. In another mode, the comparison logic is sufficiently strong to represent the digits. The wavelength spectrum representing the transient output of the spectrometer (corresponding to the graph of Fig. 3) is compared with a known spectrum corresponding to the desired etching depth. The known spectrum can be stored in the storage 2〇2 The match between the measured spectrum and the stored spectrum detected by the comparison logic 200, or an approximate match, causes the end of the etch process to be sent to the process controller 60. Figure 17 shows Figure 8. An embodiment of a reactor wherein the optical receiver 130 is an optical emission spectrometer capable of distinguishing emission lines from optical radiation emitted by plasma in the chamber to perform optical emission spectrometry (OES) Processor 132 is a 〇ES processor that is programmed to track the intensity of the selected optical line (or detect the disappearance), the intensity of the selected optical line corresponding to an indication of the chemical species of the material in the layer being etched. Based on the predetermined conversion (eg, the chrome wavelength line in the OES spectrum during the chrome etch process), the processor 132 sends an etch process end point identification to the process controller 6 〇. Figure 18 depicts an embodiment that we have constructed, with a pair of lenses 230, 232, 20 M343237 spaced apart in the grooves 231, 233 in the surface of the cathode 44. The lenses 230, 232 are focused to resolve interference fringes. The focused light is carried by optical fibers 234, 236 that face or contact respective lenses 23 0, 232, respectively. The fiber 23 4, 236 is coupled to an interference detector 238 (which may be a stripe detector or spectrometer) having an output coupled to the process controller 60. Lenses 230, 232 receive light from light source 240 through optical fibers 242, 244. This light is reflected back from the top surface of the mask 18 back to the lenses 230, 232 and carried by the fibers 23, 236 to the detector 238. Additionally, the embodiment of Figure 18 has a third recess 24 in the surface of the cathode that accommodates the third lens 250 that is coupled to the input of the OES spectrometer 254 via fiber 252. The OES processor 256 processes the output of the OES spectrometer 254 to perform an end point detection and transmits the results to the process controller 60. The cathode 44 of the embodiment of Fig. 18 is depicted in Fig. 19 showing three recesses 231, 231, 249 housing respective lenses 230, 232, 250. Figure 20 shows respective apertures 260, 261, 262 in the device board 46 for housing optical devices (not shown) supporting the lenses 23, 232, 25A. Figure 21 shows a cross-sectional view of the fiber-to-lens connection inside the susceptor 16. Although the reactors in Figures 16, 17, and 18 have been described as using spectrometers 130 (Figs. 16 and 17) and 254 (Fig. 18), the spectrometer 130 or 254 can be adjusted to one or more predetermined wavelengths. Optical wavelength filter instead. Each such optical wavelength filter can be combined with a photomultiplier tube to enhance signal amplitude. i-Side End Point Detection Mask Etching: Figures 22A and 22B depict a process for etching a 21 M343237 reticle pattern in a quartz material of a mask. In Fig. 22A, the quartz mask 210 has been covered with a photoresist layer 212. The periodic structure of the photoresist layer having spaced lines 214 and the opening 216 defined in the photoresist layer 212. In the reactor of Fig. 15 or Fig. 16, a quartz etching process gas of CHFs + CHFdAr is introduced into the chamber 10, power is supplied through the RF generators 24, 26 and 48, and an opening 216 formed in the photoresist layer 212 is provided. The quartz material is etched inside. The etching depth in the quartz is continuously measured by interference between the light 218 reflected from the etched top surface and the light 2 119 reflected from the unetched top surface of the quartz substrate 210. The etching process is stopped as long as the desired etching depth (Fig. 22A) is reached. The photoresist is then removed to create the desired mask (Fig. 22B). 23A to 23E depict a process for etching a three-layer mask structure comprising a quartz mask substrate 210, a molybdenum telluride layer 260, (including molybdenum oxide niobium nitride), a chromium layer 262, A chromium oxide anti-reflective coating 264 and a photoresist layer 266 having an opening 268 formed therein (Fig. 23A). In the step of Fig. 23B, a chromium etching process gas such as Cl2 + 〇2 + CF4 is used, and a plasma having a single reflection coefficient end point detection (the chamber of Fig. 14) or a plasma having an OES end point detection (the chamber of Fig. 17) is used. In the reactor chamber, a chrome layer 262 and an anti-reflective coating 264 are etched. The photoresist layer 266 is removed (Fig. 23C). Then, as shown in Fig. 23D, the molybdenum telluride layer 260 is etched using a process gas which is an etchant of molybdenum telluride, for example, SF6 + C12, and a molybdenum layer 262 is used as a hard mask. This step is carried out in a plasma reactor having an end point detection which is detected by a single ambient reflection coefficient or by OES, such as the chamber of Fig. 14 or Fig. 17. 22 M343237 In Fig. 23E, a chromium layer 262 and a chromium oxide anti-reflective coating 264 are removed using a chromium etching process gas such as CHdCFdAr. This step can be performed using a reactor having a single endpoint detection without etch depth measurement in Figures 14 and 17. This allows the quartz mask substrate to retain a dreaming overlay that defines the reticle pattern. Figures 24A through 24E depict the fabrication of a binary mask consisting of periodic chrome lines on a transparent quartz mask, wherein the chrome lines are on either side of the periodic spacing of the exposed quartz, alternating The exposed polysilicon spacers are etched to a depth that causes the transmitted light to phase shift by a desired angle (e.g., 丨8 〇). Fig. 24 depicts an initial structure composed of a quartz mask substrate 3, a chromium layer 3, 2, a chromium oxide anti-reflective coating 304, and a photoresist layer 3?6. In the step of Fig. 24B, the chromium and chromium oxide layers 3, 2, 304 are etched in the process gas (e.g., the chamber of the 14th or 17th embodiment) of the process gas Ch + 〇 2 + CF4. In the step of Fig. 24C, the photoresist layer 306 is removed, and thereafter, as shown in Fig. 24D, the exposed portion of the quartz mask substrate 300 is etched in the quartz etching process gas CHF3 + CF4 + Ar. The stone step of the Fig. 24D is performed in the reactor chamber. The reactor chamber is capable of detecting or controlling the etching depth in the quartz mask substrate 3, for example, the chamber in Fig. 5 or 16. During the etching process, the transient etch depth is continuously monitored and the etch process is aborted once the target etch depth is reached on the mask 300. The final result is depicted in Figure 24E. Continuing monitoring of the etch rate of the A mask surface: 23 M343237 Figures 25 and 26 illustrate an embodiment of the wafer support pedestal 16 of FIG. 1 'The wafer support pedestal 16 is at the cathode 44 In the top surface, a matrix having a backside etch depth detecting element (lens and fiber) is continuously provided across the entire surface of the mask or substrate without interrupting the process or interfering with the mask substrate during the remainder of the process. Transient image or example of an etch rate profile or etch depth profile. The top surface of the aluminum plate 44 has a matrix of openings 320 on its top, each opening receiving a lens 322 that faces the back of the mask substrate 3. Light source 324 provides light by connecting to output fiber 326, each corresponding to lens 322. Lens 322 produces sufficient focus to resolve the interference fringes. Interference detector 328, which may be either a sensor that assists in edge counting or a spectrometer, is coupled to input fiber 380 that is coupled to lens 322, respectively. A switch or multiplexer 332 allows light from each of the input fibers 330 to be sequentially transmitted to the detector 3 28 . There are three modes of operation that operate the devices in Figures 25 and 26. In the first mode, the etch depth in the field of view of the lens 322 is calculated from the spacing between the interference fringes. In the second mode, the detector 3 28 is a spectrometer, and the etch depth in the field of view of a particular lens 322 is calculated from the smaller wavelength peak spacing of the multi-wavelength interference spectrum (see page 1 In the third mode, the multi-wavelength interference frequency is detected during a specific time interval: and compared with the light h in the database 340, which is opposite to the known etching depth. The etching and rate distribution were calculated from the etching depth and the elapsed time. The etch process of the distribution recording process is non-uniform 16 and is fed back to the process controller 132. The controller 132 responds by adjusting the adjustable characteristics of the reactor, thereby reducing non-uniformities in the etch rate distribution. 24 M343237 Although a 3x3 matrix of the depth sensor or lens 322 is left in the top surface of the platform 44a is depicted in the examples of FIGS. 25 and 26, any number of rows and columns may be used in such a sensor matrix to Let the matrix be a ηχιη matrix, where m and η are both suitable integers. In one embodiment, the programmable controller 丨32 is used to infer (through the etch rate distribution information provided by the spectrometer or sensor 丨3 )) whether the rate distribution is center high or center low. The process controller 6 can respond to this information by adjusting some of the adjustable characteristics of the reactor to reduce non-uniformity. For example, process controller 60 can vary the RF power distribution between internal and external coils 20, 22. Alternatively or additionally, the process controller 60 can vary the height of the movable aluminum panel ι12 in the reactors of Figures 6 and 7. Feedback from an array or matrix of etched depth sensing elements in platform 44a allows process controller 60 to increase the uniformity of the etch rate profile through continuous testing and error adjustment of the reactor tunable elements. Figure 27A is a side elevational view of one embodiment of the lifting tip 56. The lifting tip 56 includes a body 27〇5 having a first end 271A and a second end 2715. The body 2705 can be fabricated from a process compatible material, such as stainless steel, aluminum, ceramic, etc., and in one embodiment, the body 27〇5 is fabricated from an alumina (Al2〇3) material. In an embodiment, the body 2705 includes a shaft having a circular cross section and includes at least one outer diameter, such as a first diameter region 2725, and one or more smaller outer diameter regions, such as a second diameter region 273A and Second diameter zone 2730B. The second diameter zone 2730A and the third diameter zone 2730B can be separated by a shoulder 2735, and the shoulder 2735 can comprise an outer diameter that is substantially equal to the first diameter zone 2725. In one embodiment, the second end 2715 of the M343237 includes a recessed region 2 708 that is interfaced by the first diameter region 2725 and at least one of the second diameter region 273 0A and the third diameter region 273 〇b definition. In some embodiments, the recessed region 27A includes an interface of the first diameter region 2725 and the second and third diameter regions 2730A, 2730B that are partially separated by the shoulder. The recessed area 2708 can facilitate connection and/or lift-up with the lifter - the lift bellows 96 of Figure 2A. The recessed area 27〇8 can also be used as an indicator or gauge to facilitate replacement, thereby determining when the lift tip % is in the lift device 90. Other lifting tips with a single diameter may require monitoring and/or perimeter measuring mechanisms to accurately position and position the lifting tips during replacement. In addition, other lifting tips may require peripheral fixtures to assist in connecting the lifting device 90. In one application, when the recessed area 27〇8 thus _(4) changes the lifter 56, a stop indication is provided, such as when the lift tip 56 is attached to the lift device 90. In another embodiment, the recessed region 2708 provides an additional function to "fix the lifting tip to the lifting device 90 and/or the lifting bellows 96." Figure 27B is a portion of the second end obtained from Figure 27A. An exploded side view of the 2715. As described above, the shoulder 2735 can comprise an outer diameter substantially equal to the first diameter region 2725, and the second and third diameter regions • 273〇A, 273〇B are slightly smaller than the first diameter 2725 and Shoulder 2735. In one embodiment, the second and third diameter zones 273A, 273〇b are substantially equal, but in another embodiment, the second and third diameter zones 273〇a, 273〇b There is a slight difference between each other. The second end 2715 also includes a rounded end defined by a double radius, such as a first radius 274A and a second radius 274〇b. Figure 26 and Figure 343 are respectively A pattern of optical endpoint detection signals obtained from the front and back of the mask. Figures 11 and 12 are graphs of optical signals of interference fringes obtained from the front and back sides of the mask, respectively. Figure 13 is a reactor from Figure 8. In one embodiment, the plurality of waves obtained Fig. 14 shows an embodiment of a reactor of Fig. 8 having a back end point detection corresponding to the first map, which is based on the entire reflected light intensity. An embodiment corresponding to the reactor of Fig. 8 having the back end point detection in Fig. 2 is calculated based on the interference fringe calculation. Fig. 16 shows the reactor of Fig. 8 having the back end point detection. In the embodiment, the back end point detection is based on a plurality of wavelength interference spectra. Fig. 17 shows an embodiment of the reactor of Fig. 8 having a back end point detection based on optical emission spectroscopy (OES). Figure 18 shows an example of the operation with OES and interference-based back end point detection. Figures 19 and 20 are perspective views of the cathode and device boards of the embodiment of Figure 18, respectively. Figure 21 is the cathode of Figure 19. Cross-sectional view. Figures 22A and 22B depict quartz masking using back end point detection 28 M343237 26 RF source power generator 28 RF impedance matching circuit 3 0 RF impedance matching circuit 32 Injection nozzle 34 gas manifold 3 6 gas panel 3 8 gas supply 40 concentrated flow controller 42 centralized flow controller 44 cathode 44a central platform 44b bottom surface 46 metal equipment board 48RF generator 50RF impedance matching circuit 52 base ring 52a cover ring 52b capture ring 5 3 Material layer 54 bracket 55 material layer 56 lifting tip 60 process controller 6 1 wafer processing device 62 lifting servo motor 63 robot blade arm 64 slit valve 70 titanium screw 72 annular film 74 matching annular film 76 groove 78 annular groove 80 RF washer 82 titanium ring 84 annular groove 90 lifting element 92 lifting tripod 94 lifting servo motor 96 lifting bellows 9 8 ball bearing 1 0 2 center insert 104 external insert 106 concentric ring 1 0 8 concentric ring 30 M343237 11 0 piston 112 aluminum plate 11 6 top film 11 8 brake 120 groove 122 lens 124 fiber 124a end 124b end 126 fiber 126a end 126b end 1 2 8 light source 130 light receiver 132 optical signal processor 200 logic 202 storage 210 quartz mask 2 1 2 photoresist layer 214 line 216 open converter 220 signal conditioner / analog digital data to 230 lens 231 groove 232 lens 2 33 groove 234 fiber 236 fiber 238 interference detector 240 light source 242 fiber 244 fiber 249 groove 250 lens 252 fiber 2540ES spectrometer 256 OES processor 260 molybdenum telluride layer 262 chrome layer 264 chrome oxide anti-reflective coating 266 photoresist Layer 268 opening 31 M343237 300 quartz mask substrate 302 chrome layer 3 04 chrome oxide anti-reflective coating 306 photoresist layer 3 20 opening 322 lens 324 light source 326 fiber 3 2 8 interference detector 3 3 0 fiber 332 switch or multiplexer 340 database 2705 body 2708 recessed area 2710 first end 2710A first radius 2715 second end 2725 first diameter 2730A second diameter zone 2730B third diameter zone 2735 shoulder 2740B second radius 2740A first radius 32

Claims (1)

M343237M343237 範圍 九、申請專利 1 -種用於電漿反應室的升降梢,包括: ——, 目 /、 一環形截面的縱向主體,該圓 一末端,一圓 趲具有圓形第 形成於所述第g域,該凹陷區域 到所述凹陷域適於可拆卸的連接 -直室中的升降板,其中所述主體包括-第 域,並且所述凹陷區域包括至少 些吉似广, 夕兩直徑區域,該 二A域具有一由一肩部分開的較小直徑。 述圓 ,2如申請專利範圍第1項所述的升降槌,其中所 '第一末端和所述圓形第二末端包括〜雙半徑。 3如申請專利範圍第1項所述的升降梢,其中所述圓 肜第一末端和所述圓形第二末端包括—第一半徑和一第二 半徑,並且所述第二半徑大約比所述第一半徑大四倍。 4如申請專利範圍第1頊所述的升降梢’其中所述肩 部的直徑大體上等於所述第/真徑區域,並且所述至少兩 直捏區域具有一小於所述肩部直徑的直徑。、 5如申請專利範圍第1读 體包括陶瓷材料。 戶斤述的升降梢,其中所述 主 33 M343237 6如申請專利範圍第1項所述的升降摘,其 體包括銘材剩·。 7如申請專利範圍第丨項所述的升降摘,直 體包括氧化鋁(Al2〇3 )材料。 一 8如申請專利範圍第1項所述的升降梢,其 0 少兩個直徑區域包括一第二直徑區域和一第三直 並且每個區域具有不同長度。 中所述主 中所述i 中所述至 徑區域, 9如申請專利範圍第i項所述的升降梢,其 述至少兩直徑區域包括一長度和一直徑,其中Z所 致上相等,並且所述長度是不同的。 、 中每個所 述直徑大Scope 9. Patent application 1 - Lifting tip for a plasma reaction chamber, comprising: -, a longitudinal body of a circular cross section, the end of the circle, a circle having a circular shape formed on the g a region, the recessed region to the recessed region being adapted to a lift plate in the detachable connection-straight chamber, wherein the body comprises a -first domain, and the recessed region comprises at least some of a wide-area, two-diameter region, The two A-domains have a smaller diameter that is partially separated by a shoulder. The invention relates to a lifting raft according to claim 1, wherein the first end and the circular second end comprise a double radius. 3. The lifting tip of claim 1, wherein the first end of the circle and the second end of the circle comprise a first radius and a second radius, and the second radius is approximately The first radius is four times larger. [4] The lifting tip of claim 1 wherein the shoulder has a diameter substantially equal to the first/true diameter region and the at least two straight pinching regions have a diameter smaller than the shoulder diameter . 5, as in the scope of application for patents, the first reading includes ceramic materials. The lifting tip of the household, wherein the main 33 M343237 6 is as described in claim 1 of the patent scope, the body includes the remaining material. 7 The lifting pick as described in the scope of claim 2, wherein the straight body comprises an alumina (Al2〇3) material. A lifting tip as described in claim 1, wherein the two less than two diameter regions comprise a second diameter region and a third straight portion and each region has a different length. In the above-mentioned main-to-diameter region of the above-mentioned i, the lifting tip according to item i of the patent application, wherein at least two diameter regions include a length and a diameter, wherein Z is equal in magnitude, and The lengths are different. , each of the stated diameters 一縱向轴,該縱向轴I有一環形撗戴面 以及-第二末端’纟中所述第二末端包括— 和一第三直徑部分,以及其中 T所述第二直徑 三直徑部分包括一直徑,該吉 吻罝徑小於所述第 並且被一肩部分開,所述肩θ丄 项4具有一大體上 直徑部分的直徑。 11如申請專利範圍第 10項所述的升降梢, 第一末蠕 直徑部分 和所述第 徑部分, 所述第一 其中所述 34 M343237 第二 轴包 軸包 所述 所逃 圓形 二半 直徑部分和所述第三直徑部分定義〜 12如申請專利範圍第10項所述的升 括銘材料。 凹陷區域。 降梢,其中 所逃 14如申請專利範圍第1〇項所述的升降梢龙 第-末端和第二末端是圓形的。 、、中每個 如申請專利範圍第14項所述的升降梢,其中戶 f一末端和所述圓形第二末端包括一第一半徑和: 僅’並且所述第二半徑大約比所述第-半徑大四倍 逃 第 所逑 徑, 1 7如申請專利範圍第丨〇項所述的升降梢,其中每個 第二直徑冑分和所述第S直徑^分包括—長度和一直 其中所述直徑大體上相等,並且所述長度是不同的。 35a longitudinal axis, the longitudinal axis I having an annular beveled surface and - the second end 'the second end includes - and a third diameter portion, and wherein the second diameter, the third diameter portion comprises a diameter The ball is smaller than the first and is partially separated by a shoulder having a diameter of a substantially diameter portion. [11] The lifting tip according to claim 10, the first terminal diameter portion and the first diameter portion, wherein the first of the 34 M343237 second shaft package shafts are wrapped in the circular two halves The diameter portion and the third diameter portion define 〜12 as described in claim 10 of the claim. Depressed area. The tip end, wherein the escape 14 is as described in the first paragraph of the patent application, the first end and the second end are circular. Each of the lifting tips of claim 14, wherein the end of the household f and the second end of the circular shape comprise a first radius and: only 'and the second radius is approximately The first radius is a four-fold escape from the first step, and the lifting tip according to the third aspect of the patent application, wherein each of the second diameter and the S-th diameter includes - length and is always The diameters are substantially equal and the lengths are different. 35 M343237 七、指定代表圖: (一) 、本案指定代表圖為··第(27A)圖。 (二) 、本代表圖之元件代表符號簡單說明: 2730A第二直徑區 2730B第三直徑區 2735肩部 5 6升降梢 2705主體 2708凹陷區域 2710第一末端 2715第二末端 2725第一直徑M343237 VII. Designated representative map: (1) The designated representative figure of this case is the picture of (27A). (2) The representative symbol of the representative figure is a simple description: 2730A second diameter zone 2730B third diameter zone 2735 shoulder 5 6 lifting tip 2705 body 2708 recessed area 2710 first end 2715 second end 2725 first diameter
TW96218062U 2007-02-01 2007-10-26 Mask etch plasma reactor with cathode lift pin assembly TWM343237U (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US88777607P 2007-02-01 2007-02-01

Publications (1)

Publication Number Publication Date
TWM343237U true TWM343237U (en) 2008-10-21

Family

ID=40541734

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96218062U TWM343237U (en) 2007-02-01 2007-10-26 Mask etch plasma reactor with cathode lift pin assembly

Country Status (3)

Country Link
JP (1) JP3138694U (en)
CN (1) CN201218899Y (en)
TW (1) TWM343237U (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI578369B (en) * 2014-12-24 2017-04-11 Advanced Micro-Fabrication Equipment Inc Plasma processing device and regulating method of plasma distribution

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102053593B1 (en) * 2017-11-29 2019-12-09 주식회사 테스 Movement method of Lift pin and Substrate process apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI578369B (en) * 2014-12-24 2017-04-11 Advanced Micro-Fabrication Equipment Inc Plasma processing device and regulating method of plasma distribution

Also Published As

Publication number Publication date
CN201218899Y (en) 2009-04-08
JP3138694U (en) 2008-01-17

Similar Documents

Publication Publication Date Title
KR101343948B1 (en) Mask etch plasma reactor with cathode providing a uniform distribution of etch rate
US10170280B2 (en) Plasma reactor having an array of plural individually controlled gas injectors arranged along a circular side wall
KR101384277B1 (en) Mask etch plasma reactor with variable process gas distribution
US8017029B2 (en) Plasma mask etch method of controlling a reactor tunable element in accordance with the output of an array of optical sensors viewing the mask backside
JP5584388B2 (en) Mask etching plasma reactor with backside optical sensor and multi-frequency control of etching distribution
JP6186152B2 (en) Plasma processing apparatus and plasma processing method
JP4563584B2 (en) Method and apparatus for improving accuracy of plasma etching process
US7967930B2 (en) Plasma reactor for processing a workpiece and having a tunable cathode
JP2005012218A (en) Method and system for monitoring etch process
JP2006505687A (en) Element for substrate processing chamber and method of manufacturing the same
US8961804B2 (en) Etch rate detection for photomask etching
TWI828781B (en) Method and processing chamber for eliminating internal reflections in an interferometric endpoint detection system
US8012366B2 (en) Process for etching a transparent workpiece including backside endpoint detection steps
TW202200834A (en) System and method for monitoring semiconductor processes
US20080099437A1 (en) Plasma reactor for processing a transparent workpiece with backside process endpoint detection
TWM343237U (en) Mask etch plasma reactor with cathode lift pin assembly
JP3138693U (en) Plasma reactor with nozzle and variable process gas distribution
KR200461690Y1 (en) Mask etch plasma reactor with cathode lift pin assembly
CN201348719Y (en) Lifting pin for plasma reaction chamber
KR200461689Y1 (en) Plasma reactor with nozzles and variable process gas distribution
EP3869534A1 (en) In-situ etch rate or deposition rate measurement system
KR20030094904A (en) Window of semiconductor product device
JPH01166525A (en) Controlling method for sputtering step and the like

Legal Events

Date Code Title Description
MK4K Expiration of patent term of a granted utility model