M314431 八、新型說明: 【新型所屬之技術領域】 本創作係有關於一 CCM鏡頭模組封裝結構,尤指一 種適用於微型鏡頭模組(Compact Camera Module,(XM) 之封裝結構,以鏡片模組内所設之凹階靠合於該感測晶片 模組之透光面周圍,令該鏡片模組可隨該晶片模組之透光 面同步維持相同水平角度與高度,達到降低製程中所產生 _ 之誤差,使該鏡片模組與該感測晶片模組之對焦成像品質 更佳,進一步可降低製造成本者。 【先前技術】 隨著科技時代的日新月異,各式各樣的隨身資訊電子 產品以及設備因應而生,而各式的產品零組件均朝著輕薄 短小的目標邁進。如何使產品更具人性化,多機一體的概 念’體積縮小攜帶方便符合人因工程,更合乎消費者便利 • 追求時尚的需求,是目前市場主要的課題之一。而將手機 結合數位相機功能甚至將筆記型電腦以及個人數位助理 (PDA)均結合數位相機功能,即是其中一項重要之改良 突破。 觀察目前市售所有手機,可以發現都朝向微型化路線 去發展,尤其是具有照像功能之手機,更是當紅的機種, 現在手機更結合3G的功能,運用網路影像電話令使用者 雙方皆能以影像溝通。因此,未來的手機的路線將會是多 元化且全功能的配備,甚至可能取代現有的數位相機,成 5 M314431 為結合照像、通訊、上網等,具有多功能之整合機種。 請參閱p —所示,其係為習用微型鏡頭模組鏡頭模組 (Compact Camera Module,簡稱CCM)封裝結構剖面示意 圓。習用之CCM鏡頭模組封裝結構包括有:一基板 10 ' —感測晶片模組1卜一鏡筒12、及一承載座13。該 感測晶片模組11更包括有:一影像感測晶片m、一透 明蓋板112以及一晶片載板ι13所組成。 > 將該感測晶片模組11以錫球結合於該基板10之上, 並將中空之該承載座13 —端環繞於該感測晶片模組η並 設置於該基板10上。該鏡筒12可藉由外螺紋121與該承 載座13之另一端内部所設之内螺紋131相配合,並於該 鏡筒12頂面設有一透光孔122,且於該鏡筒12内之該透 光孔122後方依序設有一鏡片叙丨23以及透光層124。 然而,製程中所產生之誤差進而影響成像品質的最大 因素,來自於該感測晶片模組11與該基板1〇藉由錫球做 _ 電性連接時所產生之高度(軸向)誤差、以及該感測晶片 模組11之該透明蓋板112與晶片載板113所接合之高度 (轴向)誤差。而上述之兩項誤差量大致分別為tO.OSmm 以及±0.02mm,故合計影響成像之焦距可達到±〇e〇7mm的 轴向總誤差量。藉由將該承載座13所螺合之該鏡筒12 加以螺旋轉動,可以調整該鏡筒12與該感測晶片模組11 對焦之軸向距離,進而減少其誤差量,使其得到較佳之成 偉位置。但是,習用技術必須花費更多的時間與成本在於 調整誤差至容許範圍内,且鏡筒12與承載座13也必須使 6 M314431 用兩套模具分別生產後再進行鏡筒12與承載座13的組 裝,導致製造及組裝成本相對提高者。 【新型内容】 本創作之第一目的,在於提供一種CCM鏡頭模組封 装結構,其係利用鏡片模組開口端處所設之凹階靠合於該 感測晶片模組之透光面周圍,令該鏡片模組可隨該晶片模 组之透光面同步維持相同水平角度與高度,進一步排除該 感測晶片模組藉由錫球與基板相結合所產生之高度誤 差,達到規範之容許誤差範圍之内。 本創作之另一目的,在於提供一種CCM鏡頭模組封 裘結構,將習用之承載座與鏡筒以一體成形的方式形成一 鏡片模組,達到僅需使用單一模具生產以降低製造成本的 目的。 為達上述之目的,在於提供一種CCM鏡頭模組封裝 結構,其係主要包括有:一基板、一感測晶片模組、以及 一鏡片模組所組成。該基板其係具有一第一基板面及一第 二基板面之印刷電路板。該感測晶片模組係具有一透光面 與一接合面,並以該接合面藉由一錫球與該第一基板面做 電性連接。該鏡片模組包括有一中空筒座,於其中一開口 端内緣設有一凹階,且相對於該開口端之另一端面設有一 透光孔’於該容置室内由該透光孔後方依序設有一鏡片以 及一透光層。 該鏡片模組可利用該鏡片模組内之凹階靠合於該感 7 M314431 洌晶片模組之透光面周圍’同時可將該感測晶片模組框圍 並覆蓋’使該鏡片模組可隨該感測晶片模組之透光面同步 潍持相同水平角度與高度,進一步排除於製程中該感測晶 月模組藉由錫球與基板相結合所產生之高度誤差,達到誤 差落於規範之容許範圍之内,同時可降低生產成本的目 的〇 【實施方式】 為了能更清楚地描述本創作所提出之CC1V[鏡頭模組 封裝結構,以下將配合圖示詳細說明之。 請參閱圖二所示,其係為本創作之CCM鏡頭模組封 裝結構第一較佳實施例之分解剖面示意圖。其中,CCM 頭模組封裝結構2主要係由· 一基板21、-^感測晶片 模組22、以及一鏡片模組23所共同組成。 該基板21具有一第一基板面211及一第二基板面 212,一般來說,該基板21係為一印刷電路板,且於第一 基板面211及第·一基板面212上設有若干電路。 該感測晶片模組22具有一透光面221與一接合面 222,係用來擷取外界影像。該感測晶片模組22更包括 有:一晶片載板223、一影像感測晶片224、複數個金屬 導線225以及一透明蓋板226。該影像感測晶片224通常 是電荷耦合裝置(charge coupled device,CCD)或互補式 金屬氧化半導體(complementary metal oxide semiconductor,CMOS),且該影像感測晶片224具有一 8 M314431 作動面2241與一非作動面2242,所謂作動面2241係指 具有擷取外界影像功能的那一面。該影像感測晶片224 黏晶於該晶片載板223之上,並藉由複數個金屬導線225 將該影像感測晶片224與該晶片載板223做電性連接,並 藉由所設之導通孔2231電性連接至非接合面222之側。 此外,並以該透明蓋板226覆蓋於該影像感測晶片224 之上,並結合於該晶片載板223上,成為一完整之感測晶 爿模組22。 該鏡片模組23其更包括有:一中空筒座230、一容 置室231、一開口端232、一頂面233、一凹階234、一透 光孔236、以及由至少一鏡片所構成之一鏡群237。該中 空筒座230係為以塑膠射出一體成型所製成之單一元 件’且其内部係形成一貫通之容置室231。於該鏡片模組 23之中空筒座230的開口端232内緣設有該凹階234,且 相對於該開口 232之另^—頂面233設有一*透光孔236。 於該容置室231内設置一鏡群237,該鏡群237更包括有 一鏡片組2371以及一透光層2372,且由該透光孔236後 方依序排列於該容置室231内。該透光層2372可以是一 紅外線濾光鏡片。 請參閱圖三所示,其係為本創作之CCM鏡頭模組封 裝結構第一較佳實施例之組合剖面示意圖。其中,該感測 晶片模組22以其接合面222藉由複數個錫球30設置於該 基板21之該第一基板面211之上,並與該基板21做電性 連接。該鏡片棵組23利用該鏡片模組23内所設之凹階 9 M314431 234運用視覺定位的方式靠合於該感測晶片模組22之透 光面221周圍,同時將該鏡片模組23之開口端232將其 感測晶片模組22覆蓋框圍。此時,該開口端232之一端 面處2321通常並不直接貼靠在基板21之該第一基板面 211上,而係留有一小間隙者。 使該鏡片模組23可隨該感測晶片模级22之透光面 221同步維持相同轴向高度及水平角度,更能同時令該影 像感測晶片224之該作動面2241與該鏡片模組23之該透 光孔236與該鏡片組2371及該透光層2372位於同一中心 釉線上,可進行對焦擷取影像者。 藉由該鏡片模組23内所設置之凹階234靠合於該感 測晶片模組22之透光面221周圍,藉此更可令該鏡片模 組23與該感測晶片模組22位於同一高度與水平角度。不 僅可使該鏡片模組23與該感測晶片模組22保持同一中心 勒線,更進而令該感測晶片模組22與該基板21電性連接 之該錫球30所造成之高度誤差不致於影響該鏡片模組23 之鏡片組2371至該影像感測晶片224之該作動面2241 的距離,而可得到更佳之成像焦距。藉此,該CCM鏡頭 模組封裝結構2之製程中,該錫球30所造成大致為土 〇,05mm之焦距誤差量將完全被排除在外,因此可大幅減 少對焦之成像誤差。換句話說,於本創作之CCM鏡頭模 乡且封裝結構2中,無論錫球30所造成的轴向誤差有多少, 均完全不會影響到鏡片模組23與該感測晶片模組22兩者 間的軸向相對距離(也就是鏡片組2371與感測晶片模組 M314431 22之透光面221兩者之間的轴向高度為定值)。 因此,影響該對焦成像之變數僅剩於生產該感測晶片 模組22的製程中,於該透明蓋板226結合於該晶片載板 223上所產生大致為±〇.〇2mm之焦距誤差量,而此一土 0.02mm以内之微量誤差係屬於可被通常業界所能接受之 範圍’而不再需要針對錫球30所造成的軸向誤差去進行 晶片模組22的轴向位置微調動作。所以,本創作之CCM 鏡頭模組封裝結構2特別可將鏡片模組23的中空筒座 230以一體成型的方式製作成單一元件,而不需如圖一所 示之習用技術般為勒提供螺旋微調功能而分離成鏡筒12 輿承載座13兩元件。所以,一體成型且單一元件之鏡片 模組23僅需以單一模具來生產製造、且不需要螺紋螺合 的組裝製程,不僅可節省模具與組裝等生產成本、且更適 於可批量生產該鏡片模組23而無須再次調整誤差至適當 焦距者。 請參閱圖四所示,其係為本創作之CCM鏡頭模組封 裝結構第一較佳實施例之組合剖面示意圖。由於圖四之本 創作之CCM鏡頭模組封裝結構第二較佳實施例其大體上 與圖三所示之第一較佳實施例類似,故相同之元件與結構 以下將不再贅述。其第二較佳實施例之不同點在於該基板 21 s史有至少一定位孔213,且於該中空筒座230之該開口 端232之該端面處2321設有至少一定位卡榫235 ,可令 該定位卡榫235插入該定位孔213之内。 該鏡片模組23上所設之該定位卡榫235不僅提供該 M314431 鏡片模組23定位於該基板21上之定位孔213内的功能, 因該定位卡榫235並無緊密固定於該定位孔213内,更可 利用該定位卡榫235表面與該定位孔213内緣接觸面之摩 擦阻力來分擔該鏡片模組23藉由該凹階234靠合於該感 測晶片模組22時所施加之重力,將部分鏡片模組23之重 力轉嫁於該基板21之上,使其該感測晶片模組22不致被 該鏡片模組23之重力所破壞。 此時’該鏡片模組23之該端面處2321通常並不直接 點靠在基板21之該第一基板面211上,而尚留有一小間 隙者,主要令該鏡片模組23藉由該凹階234靠合於該感 測晶片模組22之透光面221周圍,且與該感測晶片模組 22之透光面221同步維持相同軸向高度及水平角度,更 能同時令該影像感測晶片224之該作動面2241與該鏡片 模組23之該透光孔236與該鏡片組2371及該透光層2372 也於同一中心軸線上者。 综上所述,本創作之CCM鏡頭模組封裝結構,其中, 該鏡片模組21可將該感測晶片模組22框圍並覆蓋,且運 用該鏡片模組21内之凹階234靠合於該感測晶片模組22 之該透光面221周圍,使該鏡片模組21可隨該感測晶片 模組22之透光面221同步維持相同水平角度與高度,進 一步排除製程中該感測晶片模組22藉由錫球3〇與該基板 21相結合所產生之高度誤差,使製程誤差落於業界普遍 规範之容許範圍内,達到免除調整焦距使成像品質更佳 者0 12 M314431 以上所述係利用較佳實施例詳細說明本創作,而非限 制本創作之範圍。大凡熟知此類技藝人士皆能明瞭,適當 而作些微的改變及調整,仍將不失本創作之要義所在,亦 不脫離本創作之精神和範圍。 【圖式簡單說明】 圖一係為習用CCM封裝結構之剖面示意圖。 圖二係為本創作之CCM鏡頭封裝模組第一較佳實施例 分解剖面示意圖。 圖二係為本創作之CCM鏡頭封裝模組第一較佳實施例 組合剖面示意圖。 圖四係為本創作之CCM鏡頭封裝模組第二較佳實施例 組合剖面不意圖。 【主要元件符號說明】M314431 VIII. New Description: [New Technology Field] This creation is about a CCM lens module package structure, especially a package structure suitable for a Compact Camera Module (XM). The concave step provided in the group is disposed around the light transmissive surface of the sensing chip module, so that the lens module can maintain the same horizontal angle and height synchronously with the transparent surface of the chip module, thereby reducing the process The error of _ is generated, so that the focusing quality of the lens module and the sensing chip module is better, and the manufacturing cost can be further reduced. [Prior Art] With the rapid development of the technology era, various kinds of portable information electronic Products and equipment are produced in response to each other, and all kinds of product components are moving toward the goal of lightness, thinness and shortness. How to make the product more humanized, the concept of multi-machine integration is smaller and easier to carry, conform to human factors engineering, and more suitable for consumers. Convenience • The pursuit of fashion is one of the main topics in the market. Combining mobile phones with digital camera functions and even notebook computers and individuals Digital assistants (PDAs) combine digital camera functions, which is one of the important improvements. Observing all the mobile phones currently on the market, you can find that they are moving towards miniaturization, especially for mobile phones with photo functions. Nowadays, the mobile phone is more integrated with the 3G function, and the network video phone allows both users to communicate with each other. Therefore, the future mobile phone route will be diversified and fully functional, and may even replace the existing digital device. The camera, into the 5 M314431 for photo, communication, Internet access, etc., has a multi-functional integrated model. Please refer to p - shown, which is a conventional miniature lens module lens module (CCM) package structure The conventional CCM lens module package structure includes: a substrate 10' - a sensing chip module 1 and a lens barrel 12, and a carrier 13. The sensing chip module 11 further includes: The image sensing chip m, a transparent cover 112, and a wafer carrier ι13 are formed. The sensing wafer module 11 is bonded to the substrate 10 by a solder ball, and The carrier 13 is surrounded by the sensing chip module n and disposed on the substrate 10. The lens barrel 12 can be internally threaded by the external thread 121 and the other end of the carrier 13 A light-transmissive hole 122 is disposed on the top surface of the lens barrel 12, and a lens pattern 23 and a light-transmitting layer 124 are sequentially disposed behind the light-transmissive hole 122 in the lens barrel 12. However, in the process The resulting error, which in turn affects the imaging quality, is derived from the height (axial) error produced by the sensing wafer module 11 and the substrate 1 when electrically connected by a solder ball, and the sensing The height (axial) error of the transparent cover 112 of the wafer module 11 and the wafer carrier 113 are bonded. The above two error amounts are approximately tO.OSmm and ±0.02mm, respectively, so the total focal length that affects imaging can reach ± 〇e 〇 7mm total axial error. By rotating the lens barrel 12 screwed by the carrier 13 , the axial distance between the lens barrel 12 and the sensing chip module 11 can be adjusted, thereby reducing the error amount and making it better. Chengwei location. However, the conventional technology must spend more time and cost in adjusting the error to the allowable range, and the lens barrel 12 and the carrier 13 must also be separately produced by the two sets of molds before the lens barrel 12 and the carrier 13 are produced. Assembly, resulting in relatively high manufacturing and assembly costs. [New content] The first purpose of the present invention is to provide a CCM lens module package structure, which uses a concave step provided at the open end of the lens module to fit around the light transmissive surface of the sensing chip module. The lens module can maintain the same horizontal angle and height synchronously with the transparent surface of the chip module, further eliminating the height error caused by the combination of the solder ball and the substrate of the sensing chip module, and achieving the tolerance range of the specification. within. Another object of the present invention is to provide a CCM lens module sealing structure, which forms a lens module integrally formed by a conventional carrier and a lens barrel, so as to reduce the manufacturing cost by using only a single mold. . To achieve the above purpose, a CCM lens module package structure is provided, which mainly comprises: a substrate, a sensing chip module, and a lens module. The substrate has a printed circuit board having a first substrate surface and a second substrate surface. The sensing chip module has a light transmitting surface and a bonding surface, and the bonding surface is electrically connected to the first substrate surface by a solder ball. The lens module includes a hollow cylinder seat, and a concave end is disposed on an inner edge of one of the open ends, and a light transmission hole is disposed on the other end surface of the open end in the receiving chamber. A lens and a light transmissive layer are provided. The lens module can use the concave step in the lens module to fit around the light transmissive surface of the 7 M314431 洌 chip module, and the sensing chip module can be framed and covered to make the lens module The same horizontal angle and height can be synchronously controlled with the transparent surface of the sensing chip module, and the height error generated by the combination of the solder ball and the substrate in the sensing crystal module is further eliminated in the process, and the error falls. In the scope of the specification, the production cost can be reduced at the same time. [Embodiment] In order to more clearly describe the CC1V [lens module package structure] proposed in this creation, the following detailed description will be provided with reference to the drawings. Referring to FIG. 2, it is an exploded cross-sectional view of a first preferred embodiment of the CCM lens module package structure of the present invention. The CCM head module package structure 2 is mainly composed of a substrate 21, a sensing chip module 22, and a lens module 23. The substrate 21 has a first substrate surface 211 and a second substrate surface 212. Generally, the substrate 21 is a printed circuit board, and is provided on the first substrate surface 211 and the first substrate surface 212. Circuit. The sensing chip module 22 has a light transmitting surface 221 and a bonding surface 222 for capturing external images. The sensing die module 22 further includes a wafer carrier 223, an image sensing die 224, a plurality of metal wires 225, and a transparent cover plate 226. The image sensing wafer 224 is typically a charge coupled device (CCD) or a complementary metal oxide semiconductor (CMOS), and the image sensing wafer 224 has an 8 M314431 actuation surface 2241 and a non- The actuating surface 2242, the so-called actuating surface 2241, refers to the side that has the function of capturing the external image. The image sensing chip 224 is bonded to the wafer carrier 223, and the image sensing chip 224 is electrically connected to the wafer carrier 223 by a plurality of metal wires 225, and is electrically connected. The hole 2231 is electrically connected to the side of the non-joining surface 222. In addition, the transparent cover 226 is overlaid on the image sensing wafer 224 and bonded to the wafer carrier 223 to form a complete sensing module 22 . The lens module 23 further includes: a hollow cylinder holder 230, a receiving chamber 231, an opening end 232, a top surface 233, a concave step 234, a light transmission hole 236, and at least one lens. One of the mirror groups 237. The hollow cylinder holder 230 is a single member made by plastic injection molding and has a receiving chamber 231 penetrating therethrough. The concave end 234 is disposed on the inner edge of the open end 232 of the hollow cylinder block 230 of the lens module 23, and a top light transmission hole 236 is disposed with respect to the top surface 233 of the opening 232. A mirror group 237 is disposed in the accommodating chamber 231. The mirror group 237 further includes a lens group 2371 and a light transmissive layer 2372, and is arranged in the accommodating chamber 231 in sequence behind the light transmission hole 236. The light transmissive layer 2372 can be an infrared filter lens. Referring to FIG. 3, it is a schematic cross-sectional view of a first preferred embodiment of the CCM lens module package structure of the present invention. The sensing chip module 22 is disposed on the first substrate surface 211 of the substrate 21 by a plurality of solder balls 30, and is electrically connected to the substrate 21. The lens group 23 is disposed around the light transmissive surface 221 of the sensing chip module 22 by using a concave step 9 M314431 234 disposed in the lens module 23, and the lens module 23 is The open end 232 covers its sensing wafer module 22 to the frame. At this time, one end face 2321 of the open end 232 does not normally abut directly on the first substrate surface 211 of the substrate 21, but a small gap is left. The lens module 23 can maintain the same axial height and horizontal angle with the transparent surface 221 of the sensing wafer module 22, and simultaneously enable the operating surface 2241 of the image sensing wafer 224 and the lens module. The light-transmitting hole 236 of the 23 is located on the same center glaze line as the lens group 2371 and the light-transmitting layer 2372, and can be used for focusing and capturing images. The lens module 23 and the sensing chip module 22 are located at the periphery of the light transmissive surface 221 of the sensing chip module 22 by the concave step 234 disposed in the lens module 23 . The same height and horizontal angle. The lens module 23 and the sensing chip module 22 can maintain the same center line, and the height error caused by the solder ball 30 electrically connected to the substrate 21 can not be caused. A better imaging focal length can be obtained by affecting the distance from the lens group 2371 of the lens module 23 to the actuation surface 2241 of the image sensing wafer 224. Therefore, in the process of the CCM lens module package structure 2, the solder ball 30 is substantially soiled, and the focal length error of 05 mm is completely excluded, so that the imaging error of the focus can be greatly reduced. In other words, in the CCM lens model and the package structure 2 of the present invention, no matter the axial error caused by the solder ball 30, the lens module 23 and the sensing chip module 22 are not affected at all. The axial relative distance between the two (ie, the axial height between the lens group 2371 and the light transmissive surface 221 of the sensing wafer module M314431 22 is constant). Therefore, the variable affecting the focus imaging is only left in the manufacturing process of the sensing wafer module 22, and the focal length error amount of the ±0.2 mm is generated on the transparent cover 226 bonded to the wafer carrier 223. However, the slight error within 0.02 mm of this soil belongs to the range acceptable to the general industry', and the axial position fine adjustment action of the wafer module 22 is no longer required for the axial error caused by the solder ball 30. Therefore, the CCM lens module package structure 2 of the present invention can specifically make the hollow cylinder holder 230 of the lens module 23 into a single component in an integrally formed manner, without providing a spiral for the conventional technology as shown in FIG. The fine adjustment function is separated into two components of the lens barrel 12 舆 carrier 13. Therefore, the integrally formed and single-element lens module 23 only needs to be manufactured by a single mold, and does not require a threaded assembly process, which not only saves production costs such as mold and assembly, but is also more suitable for mass production of the lens. Module 23 does not need to adjust the error to the appropriate focal length again. Please refer to FIG. 4, which is a schematic cross-sectional view of a first preferred embodiment of the CCM lens module package structure of the present invention. Since the second preferred embodiment of the CCM lens module package structure of FIG. 4 is substantially similar to the first preferred embodiment shown in FIG. 3, the same components and structures will not be described below. The second preferred embodiment is different in that the substrate 21 s has at least one positioning hole 213, and the end surface 2321 of the open end 232 of the hollow cylinder 230 is provided with at least one positioning tab 235. The positioning clip 235 is inserted into the positioning hole 213. The positioning card 235 provided on the lens module 23 not only provides the M314431 lens module 23 in the positioning hole 213 of the substrate 21, because the positioning card 235 is not tightly fixed to the positioning hole. In 213, the frictional resistance between the surface of the positioning tab 235 and the inner edge of the positioning hole 213 can be utilized to share the lens module 23 when the concave module 234 is engaged with the sensing wafer module 22 The gravity of the lens module 23 is transferred onto the substrate 21 so that the sensing chip module 22 is not damaged by the gravity of the lens module 23. At this time, the end face 2321 of the lens module 23 usually does not directly point on the first substrate surface 211 of the substrate 21, and a small gap is left, mainly for the lens module 23 by the concave portion. The step 234 is disposed around the light transmissive surface 221 of the sensing chip module 22, and maintains the same axial height and horizontal angle in synchronization with the light transmissive surface 221 of the sensing wafer module 22, thereby simultaneously making the image sense The light-emitting surface 2241 of the wafer 224 and the light-transmissive hole 236 of the lens module 23 are also on the same central axis as the lens group 2371 and the light-transmitting layer 2372. In summary, the CCM lens module package structure of the present invention, wherein the lens module 21 can frame and cover the sensing chip module 22, and the concave step 234 in the lens module 21 is used. The lens module 21 can maintain the same horizontal angle and height synchronously with the light transmissive surface 221 of the sensing chip module 22 around the light transmissive surface 221 of the sensing chip module 22, further eliminating the feeling in the process. The height error caused by the combination of the solder balls 3〇 and the substrate 21 of the wafer module 22 causes the process error to fall within the tolerance of the industry standard, thereby eliminating the adjustment of the focal length and making the image quality better. 12 12 M314431 or more The present invention is described in detail by the preferred embodiments, and is not intended to limit the scope of the present invention. Anyone who is familiar with such a skill can understand, and appropriate changes and adjustments will not lose the essence of this creation, and will not deviate from the spirit and scope of this creation. [Simple diagram of the diagram] Figure 1 is a schematic cross-sectional view of a conventional CCM package structure. FIG. 2 is an exploded cross-sectional view showing a first preferred embodiment of the CCM lens package module of the present invention. FIG. 2 is a schematic cross-sectional view showing a first preferred embodiment of the CCM lens package module of the present invention. FIG. 4 is a second preferred embodiment of the CCM lens package module of the present invention. [Main component symbol description]
1〜習用之CCM鏡頭模組封裝結構 10〜基板 11〜感測晶片模組 111〜影像感測晶片 112〜透明蓋板 12〜鏡筒 122〜透光孔 124〜透光層 131〜内螺紋 211〜第一基板面 113〜晶片載板 121〜外螺紋 123〜鏡片組 13〜承載座 2〜CCM鏡頭模組封裝結構 21〜基板 13 M3144311 to conventional CCM lens module package structure 10 to substrate 11 to sense wafer module 111 to image sensing wafer 112 to transparent cover 12 to lens barrel 122 to light transmission hole 124 to light transmission layer 131 to internal thread 211 〜1st substrate surface 113~ wafer carrier 121~external thread 123~lens group 13~carrier 2~CCM lens module package structure 21~substrate 13 M314431
212〜第二基板面 22〜感測晶片模組 222〜接合面 2231〜導通孔 2241〜作動面 225〜金屬導線 23〜鏡片模組 230〜中空筒座 232〜開口端 2333〜頂面 235〜定位卡榫 237〜鏡群 2372〜透光層 213〜定位孔^ 221〜透光面 223〜晶片載板 224〜影像感測晶片 2242〜非作動面 226〜透明蓋板 231〜容置室 2321〜端面處 234〜凹階 236〜透光孔 2371〜鏡片組 30〜錫球212 to the second substrate surface 22 to the sensing wafer module 222 to the bonding surface 2231 to the via hole 2241 to the operating surface 225 to the metal wire 23 to the lens module 230 to the hollow tube holder 232 to the open end 2333 to the top surface 235 to Cartridge 237~mirror group 2372~light transmission layer 213~positioning hole^221~transmission surface 223~ wafer carrier 224~image sensing wafer 2242~non-active surface 226~transparent cover 231~accommodation chamber 2321~end 234 ~ concave step 236 ~ light transmission hole 2371 ~ lens group 30 ~ solder ball