TWM308849U - Multi-layer composite material - Google Patents

Multi-layer composite material Download PDF

Info

Publication number
TWM308849U
TWM308849U TW95211583U TW95211583U TWM308849U TW M308849 U TWM308849 U TW M308849U TW 95211583 U TW95211583 U TW 95211583U TW 95211583 U TW95211583 U TW 95211583U TW M308849 U TWM308849 U TW M308849U
Authority
TW
Taiwan
Prior art keywords
powder
composite material
layer
electromagnetic wave
electromagnetic
Prior art date
Application number
TW95211583U
Other languages
Chinese (zh)
Inventor
Chung-Cheng Chien
Fu-Chiang Lu
Yu-Cheng Chen
Original Assignee
Shiu Li Technology Co Ltd
Solvetek Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shiu Li Technology Co Ltd, Solvetek Technology Corp filed Critical Shiu Li Technology Co Ltd
Priority to TW95211583U priority Critical patent/TWM308849U/en
Publication of TWM308849U publication Critical patent/TWM308849U/en

Links

Landscapes

  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Laminated Bodies (AREA)

Description

M308849 ' 八、新型說明: 【新型所屬之技術領域】 本創作係有關於-種多層複合材料,特別是—種適用於配置 在電子元件表面與散熱器之間,用以傳導排除電子元件的發熱, 以及吸收或隔離電子元件的電磁波之多層複合材料。 【先前技術】 • 按’許多電子零件,尤其是大型的積體電路、微處理器等, '在運作中通常無可避免地會伴隨著產生高熱,而這種高熱若無法 及時排除’不僅會減損電子零件的運作效率及使用壽命,更甚者 =會導致電子元件的故_喪失功能,_是現今電子產品為了 符合輕薄短巧的時代趨勢,相關微處理器大都逐漸採用高積合度 (dyee of integration)的設計方式,使元件之每單位面積所釋放的 熱量倍增,目此不足的冷卻所導致的孩辟或損害,也將益形 ••嚴重。 又如所知者’―般的電②元件係藉由電流的驅動而運作,而 電流的流動作功因為阻抗匹配未達完美境界,以至於產生了電磁 輻射,而電流的流動作功會伴隨著產生電磁輻射,所以運作中的 電器元件都會產生強弱不專的電磁波,這些電磁波不僅會影響到 自身或干擾其他電子元件之運作,_是對於—些精密的積體電 路或微處理器而言,外來的電磁干擾(Electr〇 Magnetk Interference,_ EM)可能導致錯誤的運算、衍生無法預測的後 5 M308849 ” 果;另外,電器元件運作時大量溢散到環境中的電磁輻射,也可 能會傷害人體健康,因此,如何維護精密的電子元件運作時不受 外界電磁干擾,以及阻絕那些電子元件運作時對外界環境發射電 磁波,以維持人體健康,均屬業界當前積極尋求解決的課題。 習知用以促進電器產品散熱效能的手段,通常是藉由在會發 熱的電器元件與散熱器之間配置散熱介質,例如導熱膏及相變化 材專之導熱材,以便有效地將熱自電子元件轉移至散熱器上,達 鲁冷卻電器設備之目的;但這種散熱技術無論其熱介質或散熱器皆 不能有效吸收電魏或抑儀_訊’所以並無法魏前述電磁 波引致的故障或異常的問題。 另外,習知用以吸收電磁波或抑制雜訊的手段中,最廣泛常 見的是利用在電器產品的塑膠殼體中添加入各種導電物質,例如 銅、鎳、鋅及其他金屬化合物製成的金屬片、金屬粉或金屬絲, 有·是在塑賴體上塗佈-層導錢料或鑲嵌金舰、金屬網 -專以作為反射阻隔電磁波的結構,然而這些手段不僅使加工流程 -及製造成本倍增’在實質的效能上也只是消極性地剛遮蔽電磁 輻射’降低外溢至删環境中的程度而已,真正對於電磁波所產 生的輻射能量,並未因該等阻隔而消除,因此t不慎有電磁幸畐射 外洩時,所引致的危害依舊存在。 有些更先進的吸收電磁波輪她訊手段,則是彻在阻隔 材料的基材中添加電磁波吸收素材,例如日本專利 係藉由在郷基财添祕鋅細m秦鋅舰㈣電磁波吸 6 M308849 '收材料,它雖可以吸收或抑制電磁波,但有時候僅娜於低頻區 圍’又因鐵酸歸料容㈣起生鏽的_,長雛用及材料 安定性都會造成困擾’又例如細糊公告第⑷㈣號係揭露以 鈦酸鋇(BaTi〇3)粉末為電磁波吸收劑,但由於鈦酸鋇與阻隔材 料的基材(通常是塑膠或橡膠原料)比重相差懸殊,以致於難以均勻 分佈成型,常造成局部性的電磁輻射外沒,而且實務上欽酸鎖的 加添«比也崎超過52%以上才能獲致較佳的電磁波吸收效 果’不僅成本所費不贅,沉重的質量亦不符合現今產品輕量化的 潮流;此外,鈦酸鋇(罐03)粉末雖然具有電磁波吸收效果, 但是在熱傳機上,卻不具有好的熱傳絲,所以並不適合拿來 做為導熱暨吸收電磁波的複合材料。 【新型内容】 、本創作目的在於解決上述_、提供—種具導鐘吸收電磁 φ波的多層複合材料,可同時革除電器元件運作時產生的熱與電磁 波所衍生的不良影響。 為了解決上述課題,本創作所提供之多層複合材料,其至少 包含-導熱層及-電磁波吸收層,且各材料層之間彼此疊置密接 在-起以形成-多層複合材料;而在合宜的應财,本創作係可 藉由選擇性地將-或若干導朗以及一或若干電磁波吸收層彼此 之間以交互層疊組成多層複合材料,據以獲得具備所欲導数及電 磁波吸收性能的材料;又本創作的多層複合材料具有質地柔動及 7 M308849 可撓的材料特性,因此可被密職包覆财產生電磁波的電子元 件外周圍,以有__輻射源,避免_射相,且該材料 的電磁波吸收層會將财的電磁輻射加以魏轉換成微量的執 能’同時也利用該多層複合材料的導熱層服貼地配置在發孰元件 表面’便可有鱗着元件上缝科傳送職器上,避免在電 子元件上累積鍾,造成故障;贱—舉解決電器元件運作時的 散熱與消除電磁輻射的問題。 根據本解,該歸複合材财的導朗縣含有熱傳導性 粉體以及絲結合前賴料性粉贿粒子轉材,並利用混練 製程使該熱傳導崎_料佈於騎巾,崎固定賴如第一 圖及參考圖一所示)。 其中,該熱傳導性粉體可選,:氧她、氮她、氮化删、 石墨、銘粉、銅粉...等,雜傳導性粉體可能是前述材料之一或 是由二種以上材料混合而成者;導熱粉體材料為不規則型之顆 粒’選用適宜的平均粒度約在〇1〜1〇〇μιη。 而該膠_可顧如··環氧樹脂、壓克力樹脂、祕樹脂、 聚醋樹脂、聚醋酸乙醋樹脂(PVAC)、石夕素卿c〇n)樹脂或合成橡 膠…等’ X,該膠材可以是前述材料之一或是由二種以上材料混 合而成。 前述導熱層通常被製成0.02〜15mm厚度之面狀薄層,且由 於該導熱層之材料質地柔勃’具備可撓性及塑性變形的特性,因 此可緊密、服貼的配置在發熱電子元件的表面,以降低界面之接 M308849 觸熱阻,從而迅速將電子元件所產生的熱傳導排除。 再者,該導熱層可藉由膠材與熱傳導粉體的不同比例混合, 以獲得所欲的熱傳性及其他材料物性;一般性的原則,當混合材 料中的熱傳導粉體佔有比例越高,其傳熱效能越佳,然而材料的 撓性與塑性等物性則較差,反之,當膠材佔有的比例越多,傳熱 效能較差,而材料的撓性與塑性等物性則較佳。通常係選用 10%〜70%之間的膠材與9〇〇/〇〜30〇/〇之間的熱傳導粉體搭配,以便獲 齡付約0.5W/mk〜7W/mk熱傳系數的導熱材料層(請參閱第二圖)。 再根據本創作,該多層複合材料中的電磁波吸收層乃包含有 屯磁波吸收粉體以及用來結合前述電磁波吸收粉體微粒子的膠 材,並利用混練製程使該電磁波吸收粉體均勻分佈於膠材中,然 後固定成型(如第三圖及參考圖二所示)。 該電磁波魏粉體可_下難_材料之—或是由二種以 上材料混合而成者: (一)介電吸收材料:係在高分子介質中添加電損耗性物質,如 碳纖維、導電碳黑、碳化石夕、奈米級的碳管、碳纖維、 導電碳黑、碳化♦等,其係藉由電抗以損耗人射的電磁 波能量;最好,這種介電吸收材料的電阻率cr是在1〇-3 s/cm〜1 s/cm 之間。 (一)電磁吸收材料··係由磁性合金材料製成之粉體材料,例如 多晶鐵氧體、六角形鐵氧體、奈米級鐵氧體、金屬粉末(羥 基鐵粉、羰基鐵粉、羰基鐵_鎳合金)、磁性超細粉末等, 9 M308849 其係利用磁性材料在高頻電磁場作用下產生電磁損耗原 理,使該材料具有吸收電磁波能量的效果。 ㈢複合吸收材料:其係-種同時具有介電和電磁吸收性質的 複合粉體材料’如:(鐵鎳>銀合金(Fe Ni_Ag AU〇y)、'銀 鎳合金(Ni-Ag Alloy)、銀鐵合金⑦匕Ag AU〇y)、鐵錦鉬_ 銀合金(FeNiMo-Ag Alloy)或鐵鎳鈷_銀合金(FeNic〇_Ag Alloy)、鐵基碳化矽(Fe_SiC)等;此種複合吸收材料具有 較前述介電吸收材料或電磁吸收材料更高之電磁波吸收 性能以及更寬廣的電磁波吸收頻寬。 前述電磁波吸收粉體材料為不規則型之顆粒,最好,其平均 粒度約在〇·〇3〜150μιη。 再者,前述膠材則可選用如:環氧樹脂、壓克力樹脂、酚醛 樹脂、丙烯酸樹脂、聚醋酸乙烯樹脂(PVAC)、矽素(siUc〇n)樹脂或 合成橡膠…等,且該膠材可以是前述材料之一或是由二種以上材 料混合而成。 該電磁波吸收層通常被配置於前述導熱層之一表面上,形成 0·02〜15mm厚度之面狀薄層,由於其係與前述導熱層併同層疊配 置,且二層材料質地均屬柔韌,具備可撓性及塑性變形的特性, 口此便於圍覆在會產生電磁波的電子元件外周圍,對電磁輻射源 作出有效阻絕’即時地將滋生的電磁韓射加以吸收抑制,同時亦 可防止敏感的電子元件遭受周圍(外界)的電磁雜訊干擾。 又’該電磁波吸收層可藉由膠材與電磁波吸收粉體的不同比 M308849 '例混合,以獲得所欲的電磁輻射衰減量及其他材料物性;一般而 言,混合材料中的電磁波吸收粉體佔有的比例越多,吸收電磁輕 射的放i摘佳,然*材料的撓倾雜等物性聰差,反之, 當膠材佔有的比例越多’吸收電磁輕射效能較差,而材料的挽性 與塑性等物性職佳。最好,咖跳〜麗之間的膠材與 90%〜30%之間的電磁波吸收粉體搭配,以便麟約⑼此〜2仙電 磁輻射衰減值的電磁波吸收層(請參閱第四圖所示) • 此外’該電磁波吸收層亦可藉由選用前述不同種類的電磁波 吸㈣斷料或娜比鄉麟崎需的電磁輻射衰減量及其他 材料物性,例如··選用介電吸收材料之粉體與膠舰練後:當基 體樹脂是電絕緣體,體積阻抗率在1〇14〜1016Ω · cm之間,碳纖 維是電的良導體,體積阻抗率在a8〜18xl〇-3Q · cm之間,由它 們組成的複合材料有一定的導電能力,介於導體和絕緣體之間; 當然,並不是所有的碳纖維品種都可被選作吸波材料,而只有經 ' 過特殊處理的碳纖維製成的複合材料才具有較高的吸收特性;當 , 選用不同的介電吸收材料與膠材混練後,其體積阻抗率阻抗值在 1〇_3〜1066Ω .cm之間,可獲得不同頻寬的電磁輻射衰減dB值。 又例如··選用電磁吸收材料之粉體與膠材混練後··一般體積 阻抗率在106〜1〇14Ω·αη之間,根據電磁場理論一般用複介电常數 ε和複數導磁率#來描述吸波材料的電磁性能;當使用的膠材保 持複數介電常數和使用的電磁吸收粉體的複數磁導率實部和虛部 分別相等的條件下,並使材料與自由空間阻抗匹配或接近匹配 11 M308849 守入射電磁波月b里才能透入材料或較多地透入材料中傳播,就 可以降低入射波的反射係數和提高材料的吸波性能;當成型之厚 度越厚吸波的電磁輻射衰減dB值性能越高及頻寬越寬。 再例如··選用該種兼具介電吸收性質和電磁吸收性質的複合 粉體材料與膠材混練後:由於此種粉體具有良好的電導率及電磁 特性,因此該種粉體與膠材混練後可獲的體積阻抗率約1〇_3〜ι〇6 Ω · cm ’厚度在〇.〇imm以上時,頻寬在1MHz〜12GHz具有 籲 6dB〜7〇dB的電磁輻射的衰減值。 基於前述揭露說明可知,藉由將本創作之具導熱暨吸收電磁 波的多層複合材料配置在電磁波發射源上,確可達同時改善電器 元件運作時產生的熱與電磁波所衍生的不良影響。 本創作並非侷限於以上所述形式,很明顯地,就熟習此項技 藝人士而言,在參考上述說明後,能有更多的改良與變化,是以, 凡有在相同之創作精神下所作有關本創作之任何修飾或變更, 仍應包括在本創作意圖保護之範疇,併予陳明。而緊接於後將以 . 一具體實施例繼續說明,以進一步闡明本創作之創新特徵。 【實施方式】 以下茲列舉二種多層式的導熱暨吸收電磁波材料作為本創作 實施例,以作進一步說明。 弟一貫施例係一種雙層複合的導熱暨吸收電磁波材料,如第 五圖所示,該導熱暨吸收電磁波材料包含有第一導熱層1及電磁 12 .M308849 ' 波吸收層2,其中,該電磁波吸收層2以一表面疊合貼接第一導熱 層1的表面上,以組成一多層複合的面狀薄片材料。該雙層複合 的導熱暨吸收電磁波材料,係經由后述製造方法獲得·· (一) 首先形成第一導熱層: A、 將約70的氧化|呂粉體(選用的熱傳導性粉體)與約如% 的石夕素(Silicon)樹脂(選用的膠材),並搭配約1%的二烧 基有機過氧化物作為架橋劑(選用的熟化劑),置入混練槽 驗中,於常溫下(約25。〇對該等混合材料實施3〇分鐘的混 練操作,使該等材料均勻混合備用。 B、 以熱壓成型的技術手段施作,使前述混合材料固定成型 為一厚度約〇·〇2〜15mm的面狀薄層,且藉由該膠材的分 子結構可將該等均勻分佈的熱傳導性粉體結合(bin①定 位,使該導熱層具有穩定的導熱效能。 (二) 再次,將電磁波吸收層形成在前述第一導熱層之一表面上: * A、將約70%的鐵鎳銀合金粉體(選用的電磁波吸收粉體) 與約30%的石夕素(Silicon)樹脂(選用的膠材)並搭配約1〇/〇 的二烧基有機過氧化物作為架橋劑(選用的熟化劑),置入 混練槽中,於常溫下(約25。〇對該等混合材料實施30分 鐘的混練操作,使該等材料均勻混合備用。 B、當前述膠材與該第一導熱層丨所採用之膠材為相同或不相 同材質時,乃可將該混合材料以喷塗或網版印刷或熱塵 成型的技術手段直接施作在該第一導熱層之一表面上, 13 M308849 使該混合材料固定成型為一厚度約0.02〜I5mm的面狀 薄層,由於該電磁波吸收層2與前述第一導熱層丨的膠材 具有相同的性質,因此可直接成型非常密合穩固。 然而當前述膠材與該第一導熱層1所採用之膠材為 不相同性質或相同性質時,則須先將前述混合材料以塗 佈或喷塗或網版印刷或熱壓成型的技術手段施作以固定 成型為-厚度約G.G2〜15mm賴狀薄層後,然後再將該 電磁波吸收層2疊接貼合或直接成型到該第一導熱層上 之一表面上。 而第二實_係—種三層複合式的導熱暨吸收電磁波材料, 该導熱暨吸收電磁波材料包含有第—導熱層卜電磁波吸收層2 以及第二導熱層3,其中,該電磁波吸收層2以其上、下表面分別 疊合貼接第-導熱層i及第二導熱層3,以組成—多層複合的面狀 薄片材料。該多層式的導熱暨吸收電磁波材料的製造方法如后述·· β (—)首先,形成第一導熱層1 : A、 將約70%的氧化銘粉體(選用的熱傳導性粉體)與約篇 的壓克力樹脂(選用的膠材),並搭配約1%的架橋劑(選 用的熟化劑),置入混練槽中,於常溫下(約25。匸)對該等 混合材料實施30分鐘的混練操作,使該等材料均勻混合。 B、 將該經混練的材料以塗佈的技術塗佈於離型紙p上,在 約80-200°C的溫度下,使該混合材料逐漸地固定成型為 厚度約0.02〜(Umm面狀薄層,據此獲得一熱傳系數約為 14 -M308849 、 1.8W/mk的導熱層。 (二)其次,形成電磁波吸收層2 : A、將約70%的鐵鎳銀合金粉體(選用的電磁波吸收粉體) 與約30%的壓克力樹脂(選用的膠材)並搭配約1%的架 橋劑(選用的熟化劑),置入混練槽中,於常溫下(約25。〇 對該等混合材料實施30分鐘的混練操作,使該等材料均 ^ 句混合。 -、 B、將該經混練的材料以塗佈的技術塗佈於離型紙p上,在 約80-200°C的溫度下,使該混合材料逐漸地固定成型為 厚度約0·02〜0.5mm面狀薄層,並且形成具有約25北的 電磁波吸收衰減值。 (二)然後,形成第二導熱層2 : A、 將約70%的氧化鋁粉體(選用的熱傳導性粉體)與約3〇% φ 的壓克力樹脂(選用的膠材),並搭配約1%的架橋劑(選 用的熟化劑),置入混練槽中,於常溫下(約25。〇對該等 ^ 混合材料實施30分鐘的混練操作,使該等材料均勻混合。 B、 將該經混練的材料以塗佈的技術塗佈於離型紙p上,在 約80-200 C的溫度下,使該混合材料逐漸地固定成型為 厚度約0.02〜0.5mm面狀薄層,據此獲得一熱傳系數約為 l8W/mk的導熱層。 ()最後’將前述各導熱層與電磁波吸收層相互疊接貼合成一體: 先將第一導熱層1與電磁波吸收層2以疊接貼合後,再撕去電 15 M308849 . 磁波吸收層2上的離型紙P之後與第二導熱層3臺接貼合,成 為具導熱暨吸收電磁波的多層複合材料(參閱第六圖所示)。 通本’本創作之多層複合材料係被配置於電子元件與散熱片 或金屬機構件之間,其中,如第七圖所示之雙層複合式的導熱暨 吸收電猶㈣,錢第—導歸1之下表岐密_於該電子 元件5的表® ’而電磁波吸收層2之上表面則緊密觸貼於該散熱 片或金屬機構件6上’再如第八圖所示之三賴合式的導熱暨吸 收電磁波材料,係使第一導熱層i之下表面緊密觸貼於該電子元 件5的表面,而第二導熱層3之上表面則緊密觸貼於該散熱片或 金屬機構件6上’據此可將該電子元件運作時的發熱,透過各導 熱層及電磁波吸收層的傳導而迅速地將熱量傳送到該散熱片或金 屬機構件上加以排除’畴藉由該多層複合材料的電磁波吸收層 來吸收抑制該電子元件自身產生的電磁輻射並阻絕外來電磁干 丨擾。 【圖式簡單說明】 第一圖係本創作的導熱層剖面的示意圖,顯示在材料中該膠 材與該等熱傳導性粉體的結合態樣; 第二圖係本創作之導的雜與熱傳導粉航合比例與熱 傳系數的變化表; ^… 第三圖係本創作的電磁吸收層剖面的示意圖,顯示在材料中 該膠材與該等電磁吸收粉體的結合態樣; 16M308849 ' VIII, new description: [New technical field] This creation is about a kind of multi-layer composite material, especially for the configuration between the surface of the electronic component and the heat sink to conduct the heat removal of the electronic component And multilayer composite materials that absorb or isolate electromagnetic waves of electronic components. [Prior Art] • According to 'many electronic parts, especially large integrated circuits, microprocessors, etc., 'In operation, it is inevitably accompanied by high heat, and this high heat cannot be eliminated in time. Decrease the operation efficiency and service life of electronic components, and even worse, it will lead to the loss of function of electronic components. _ is the current trend of electronic products in order to meet the trend of light and thin, most of the relevant microprocessors gradually adopt high integration (dyee Of integration) is designed to multiply the amount of heat released per unit area of the component, and the resulting damage or damage caused by insufficient cooling will also be severe. As is known, the general electric 2 component is operated by the driving of current, and the current flow of the current is not perfected due to the impedance matching, so that electromagnetic radiation is generated, and the current flow is accompanied. Electromagnetic radiation is generated, so the electrical components in operation will generate electromagnetic waves that are not strong or weak. These electromagnetic waves will not only affect themselves or interfere with the operation of other electronic components, but also for some sophisticated integrated circuits or microprocessors. External electromagnetic interference (Electr〇Magnetk Interference, _ EM) may lead to erroneous calculations, resulting in unpredictable post-5 M308849 ”; in addition, electromagnetic components that overflow into the environment during operation of electrical components may also harm Human health, therefore, how to maintain the operation of precision electronic components without external electromagnetic interference, and to prevent those electronic components from emitting electromagnetic waves to the external environment to maintain human health, are currently actively seeking solutions in the industry. The means to promote the heat dissipation performance of electrical products, usually by means of electrical appliances that can generate heat A heat dissipating medium is disposed between the component and the heat sink, for example, a thermal conductive paste and a heat conductive material for the phase change material, so as to effectively transfer the heat from the electronic component to the heat sink, the purpose of the Dalu cooling electrical device; The heat medium or the heat sink can not effectively absorb the electric Wei or the inhibitor _ _ 'there is no problem caused by the above electromagnetic waves caused by faults or abnormalities. In addition, the most widely used means for absorbing electromagnetic waves or suppressing noise It is common to use a metal sheet, metal powder or metal wire made of various conductive materials such as copper, nickel, zinc and other metal compounds in the plastic case of the electrical product, and is coated on the plastic body. - Layer guide materials or inlaid gold ships, metal nets - designed to reflect electromagnetic waves as a structure, but these means not only double the processing flow - and manufacturing costs - in the real performance is only passively shielded electromagnetic radiation ' Reducing the spillover to the extent of deleting the environment, the radiant energy generated by the electromagnetic waves is not eliminated by the barriers, so there is no electricity. When the magnetic lucky shot leaks, the damage caused by it still exists. Some of the more advanced methods of absorbing electromagnetic waves are to add electromagnetic wave absorption materials to the substrate of the barrier material, for example, the Japanese patent system is based on Caitian secret zinc fine m Qin Zinc ship (four) electromagnetic wave suction 6 M308849 'Receive material, although it can absorb or suppress electromagnetic waves, but sometimes only in the low frequency area around 'and due to ferric acid returning capacity (four) from the rust _, Long chicks and material stability can cause problems. Also, for example, the fine paste announcement (4) (4) reveals that barium titanate (BaTi〇3) powder is used as an electromagnetic wave absorber, but because of the substrate of barium titanate and barrier material (usually Plastic or rubber raw materials) have a large difference in specific gravity, so that it is difficult to evenly distribute the molding, often causing local electromagnetic radiation, and the addition of the acidity lock in the practice of more than 52% can achieve better electromagnetic wave absorption. The effect 'not only cost is not expensive, but the heavy quality is not in line with the current trend of lightweight products; in addition, the barium titanate (pot 03) powder has electromagnetic wave absorption effect, but on the heat transfer machine However, it does not have a good heat transfer wire, so it is not suitable for use as a composite material for heat conduction and electromagnetic wave absorption. [New content] The purpose of this creation is to solve the above-mentioned _, providing a multi-layer composite material with a guide clock absorbing electromagnetic φ wave, which can simultaneously remove the adverse effects of heat and electromagnetic waves generated by the operation of electrical components. In order to solve the above problems, the multilayer composite material provided by the present invention comprises at least a heat conductive layer and an electromagnetic wave absorbing layer, and each material layer is superposed on each other to form a multilayer composite material; In order to obtain a material having the desired derivative and electromagnetic wave absorption properties, the present invention can be formed by selectively laminating - or a plurality of guides and one or several electromagnetic wave absorbing layers to each other to form a multilayer composite material. The multi-layer composite material of this creation has the texture softness and the flexible material properties of 7 M308849, so it can be covered by the external parts of the electronic components that generate electromagnetic waves, so as to avoid the _shooting phase, and The electromagnetic wave absorbing layer of the material converts the electromagnetic radiation into a small amount of energy. At the same time, the thermal conductive layer of the multilayer composite material is also disposed on the surface of the hairpin component by the heat conductive layer of the multilayer composite material. On the transmitter, avoid accumulating clocks on the electronic components, causing malfunctions; 贱--solving the problem of heat dissipation and elimination of electromagnetic radiation when the electrical components operate. According to the solution, the guideline of the composite material contains heat-conducting powder and the material of the silk-bonded powder, and uses the kneading process to make the heat-conducting material to the riding towel. The first picture and the reference figure 1). Among them, the thermal conductive powder may be selected, such as oxygen, nitrogen, nitriding, graphite, powder, copper powder, etc., and the heteroconductive powder may be one of the above materials or two or more of them. The material is mixed; the thermally conductive powder material is an irregular type of particles 'the appropriate average particle size is about 〜1~1〇〇μιη. And the glue _ can be like _ epoxy resin, acrylic resin, secret resin, polyester resin, polyethylene acetate resin (PVAC), Shi Xi Suqing c〇n) resin or synthetic rubber, etc. 'X The glue may be one of the foregoing materials or a mixture of two or more materials. The heat conducting layer is usually formed into a planar thin layer having a thickness of 0.02 to 15 mm, and since the material of the heat conducting layer is soft and flexible, it can be closely and conformally disposed in the heat generating electronic component. The surface is designed to reduce the thermal resistance of the interface M308849, thus quickly eliminating the heat conduction generated by the electronic components. Furthermore, the heat conducting layer can be mixed by different ratios of the rubber material and the heat conducting powder to obtain the desired heat transfer property and other material properties; the general principle is that the proportion of the heat conducting powder in the mixed material is higher. The better the heat transfer performance, but the physical properties such as flexibility and plasticity of the material are worse. Conversely, the more the proportion of the rubber material is occupied, the heat transfer performance is poor, and the physical properties such as flexibility and plasticity of the material are better. Usually, 10%~70% of the rubber material is used together with the heat transfer powder between 9〇〇/〇~30〇/〇 to obtain the heat transfer coefficient of about 0.5W/mk~7W/mk. Material layer (see the second figure). According to the present invention, the electromagnetic wave absorbing layer in the multilayer composite material comprises a ytterbium magnetic wave absorbing powder and a rubber material for combining the electromagnetic wave absorbing powder particles, and the electromagnetic wave absorbing powder is uniformly distributed in the glue by a kneading process. In the material, then fixed molding (as shown in Figure 3 and Figure 2). The electromagnetic wave Wei powder can be _ under difficult _ material - or a mixture of two or more materials: (1) Dielectric absorbing material: is added to the polymer medium, such as carbon fiber, conductive carbon black, Carbonized carbon, carbon fiber, conductive carbon black, carbonized ♦, etc., which are used to reduce the electromagnetic energy of human radiation by the reactance; preferably, the resistivity cr of the dielectric absorbing material is 1 〇-3 s/cm~1 s/cm. (1) Electromagnetic absorption materials · Powder materials made of magnetic alloy materials, such as polycrystalline ferrite, hexagonal ferrite, nano-ferrite, metal powder (hydroxy iron powder, carbonyl iron powder) , carbonyl iron _ nickel alloy), magnetic ultra-fine powder, etc., 9 M308849 The use of magnetic materials in the high-frequency electromagnetic field to generate electromagnetic loss principle, so that the material has the effect of absorbing electromagnetic energy. (3) Composite absorbing material: a composite powder material having both dielectric and electromagnetic absorption properties such as: (iron nickel) silver alloy (Fe Ni_Ag AU〇y), 'silver nickel alloy (Ni-Ag Alloy) , silver-iron alloy 7匕Ag AU〇y), iron-molybdenum _ silver alloy (FeNiMo-Ag Alloy) or iron-nickel-cobalt-silver alloy (FeNic〇_Ag Alloy), iron-based lanthanum carbide (Fe_SiC), etc.; The absorbing material has higher electromagnetic wave absorbing properties than the aforementioned dielectric absorbing material or electromagnetic absorbing material and a wider electromagnetic wave absorbing bandwidth. The electromagnetic wave absorbing powder material is irregular particles, and preferably has an average particle size of about 〜3 to 150 μm. Furthermore, the foregoing rubber material may be selected from the group consisting of epoxy resin, acrylic resin, phenolic resin, acrylic resin, polyvinyl acetate resin (PVAC), bismuth (siUc〇n) resin or synthetic rubber, etc., and the like. The rubber material may be one of the foregoing materials or a mixture of two or more materials. The electromagnetic wave absorbing layer is usually disposed on one surface of the heat conducting layer to form a planar thin layer having a thickness of 0·02 to 15 mm. Since the heat conducting layer is laminated with the heat conducting layer, and the texture of the two layers is flexible, It has the characteristics of flexibility and plastic deformation. It is easy to cover the periphery of electronic components that generate electromagnetic waves. It can effectively block the electromagnetic radiation source and instantly absorb and suppress the electromagnetic radiation generated by the electromagnetic radiation. The electronic components are subject to electromagnetic noise interference from the surrounding (outside). Moreover, the electromagnetic wave absorbing layer can be mixed by the different ratio of the glue material to the electromagnetic wave absorbing powder M308849 to obtain the desired amount of electromagnetic radiation attenuation and other material properties; in general, the electromagnetic wave absorbing powder in the mixed material The more the proportion of possession, the better the absorption of electromagnetic light, but the physical properties of the material are poor, and vice versa, the more the proportion of the rubber material is occupied, the absorption efficiency of the electromagnetic light is poor, and the material is pulled. Physical and plastic properties are good. It is best to mix the gel between the gel and the lacquer between 90% and 30% of the electromagnetic wave absorbing powder so that the lining (9) is less than 2 sen electromagnetic radiation absorbing layer of electromagnetic radiation attenuation value (please refer to the fourth figure示) • In addition, the electromagnetic wave absorbing layer can also be selected by the above-mentioned different types of electromagnetic wave (4) material breakage or the electromagnetic radiation attenuation required by Nabi Xianglinqi and other material properties, for example, the powder of dielectric absorbing material is selected. After the body and rubber warship: When the matrix resin is an electrical insulator, the volume resistivity is between 1〇14~1016Ω·cm, the carbon fiber is a good conductor of electricity, and the volume resistivity is between a8~18xl〇-3Q·cm. Composite materials composed of them have a certain electrical conductivity between the conductor and the insulator; of course, not all carbon fiber varieties can be selected as absorbing materials, but only composites made of specially treated carbon fibers. The material has higher absorption characteristics; when different dielectric absorbing materials are mixed with the rubber material, the volume resistivity of the material is between 1 〇 3 and 1066 Ω·cm, and electromagnetic radiation of different bandwidths can be obtained. Attenuation dB valueFor example, if the powder of the electromagnetic absorbing material is mixed with the rubber material, the general volume resistivity is between 106 〜1 〇 14 Ω·αη, and the complex permittivity ε and the complex magnetic permeability # are generally used according to the electromagnetic field theory. The electromagnetic properties of the absorbing material; when the used rubber material maintains the complex dielectric constant and the real and imaginary parts of the complex magnetic permeability of the electromagnetic absorbing powder used are equal, and the material is matched or close to the free space impedance Matching 11 M308849 The incident electromagnetic wave can be penetrated into the material or diffused into the material, which can reduce the reflection coefficient of the incident wave and improve the absorbing property of the material. The thicker the thickness of the molded electromagnetic radiation The attenuation dB value is higher in performance and wider in bandwidth. For example, after selecting a composite powder material having both dielectric absorption properties and electromagnetic absorption properties, it is mixed with a rubber material: since the powder has good electrical conductivity and electromagnetic properties, the powder and the rubber material are suitable. The volume resistivity obtained after the mixing is about 1〇_3~ι〇6 Ω · cm 'When the thickness is above 〇.〇imm, the bandwidth has an attenuation value of electromagnetic radiation of 6dB~7〇dB from 1MHz to 12GHz. Based on the foregoing disclosure, it can be seen that by arranging the multilayer composite material of the present invention with heat conduction and absorbing electromagnetic waves on the electromagnetic wave emitting source, it is possible to simultaneously improve the adverse effects of heat and electromagnetic waves generated when the electrical components are operated. This creation is not limited to the above-mentioned forms. Obviously, as far as the skilled person is concerned, after making reference to the above description, there can be more improvements and changes, so that all are made under the same creative spirit. Any modifications or changes to this creation should still be included in the scope of this Creative Intent. The description will continue with the following detailed description to further clarify the innovative features of the present invention. [Embodiment] Two types of multilayer heat conduction and absorption electromagnetic wave materials are listed below as an embodiment of the present invention for further explanation. The consistent application of the brother is a two-layer composite heat conduction and absorption electromagnetic wave material. As shown in the fifth figure, the heat conduction and absorption electromagnetic wave material comprises a first heat conduction layer 1 and an electromagnetic 12. M308849 'wave absorption layer 2, wherein The electromagnetic wave absorbing layer 2 is laminated on the surface of the first heat conductive layer 1 with a surface superposed to constitute a multilayer composite planar sheet material. The double-layer composite heat-conducting and absorbing electromagnetic wave material is obtained by a manufacturing method described later. (1) First, a first heat-conducting layer is formed: A, about 70 oxidized | Lu powder (optional heat-conductive powder) and about % of Silicon resin (selected rubber), with about 1% of dialkyl-based organic peroxide as a bridging agent (optional curing agent), placed in the mixing tank test, at room temperature ( About 25. The mixing materials are subjected to a mixing operation of 3 minutes for the materials to be uniformly mixed for use. B. The hot-press molding technique is applied to fix the mixed material into a thickness of about 〇·〇. 2~15mm planar thin layer, and the uniform distribution of thermal conductive powder can be combined by the molecular structure of the rubber material (bin1 positioning, so that the thermal conductive layer has stable thermal conductivity. (2) Again, An electromagnetic wave absorbing layer is formed on one surface of the first heat conducting layer: * A, about 70% of the iron-nickel-silver alloy powder (optional electromagnetic wave absorbing powder) and about 30% of the silicon resin (Silicon resin) The selected glue) is matched with about 1 inch/〇 The second-burning organic peroxide is used as a bridging agent (the selected curing agent), placed in the mixing tank, and subjected to a 30-minute mixing operation at room temperature (about 25 〇) to uniformly mix the materials. B. When the rubber material and the rubber material used in the first heat conductive layer are the same or different materials, the mixed material may be directly applied by spraying or screen printing or hot dust forming. On the surface of one of the first heat conducting layers, 13 M308849 fixes the mixed material into a planar thin layer having a thickness of about 0.02 to I5 mm, since the electromagnetic wave absorbing layer 2 has the same rubber as the first heat conducting layer The nature of the material can be directly formed into a very close and stable. However, when the foregoing rubber material and the rubber material used in the first heat conductive layer 1 have different properties or the same properties, the foregoing mixed material must be coated or sprayed. The coating or screen printing or hot press forming technique is applied to form a thin layer having a thickness of about G.G 2 15 15 mm, and then the electromagnetic wave absorbing layer 2 is laminated or directly molded to the first layer. One of the heat conducting layers On the surface, the second solid-type three-layer composite heat-conducting and absorbing electromagnetic wave material, the heat-conducting and absorbing electromagnetic wave material comprises a first heat-conducting layer electromagnetic wave absorbing layer 2 and a second heat-conducting layer 3, wherein the electromagnetic wave The absorbing layer 2 is laminated with the first heat conducting layer i and the second heat conducting layer 3 on the upper and lower surfaces thereof to form a multi-layer composite planar sheet material. The manufacturing method of the multilayer heat conducting and absorbing electromagnetic wave material is as follows: Hereinafter, β (-) First, the first heat conductive layer 1 is formed: A, about 70% of the oxidized powder (optional heat conductive powder) and about the acrylic resin (optional rubber) And with about 1% of the bridging agent (the selected curing agent), placed in the mixing tank, and subjected to a 30-minute mixing operation at room temperature (about 25 匸) to uniformly mix the materials. B. Applying the kneaded material to the release paper p by a coating technique, and gradually fixing the mixed material to a thickness of about 0.02 〜 (Umm surface thin) at a temperature of about 80-200 ° C The layer, according to which a heat transfer coefficient of about 14 -M308849 and 1.8 W/mk is obtained. (2) Secondly, an electromagnetic wave absorbing layer 2 is formed: A, about 70% of iron-nickel-silver alloy powder (optional) Electromagnetic wave absorbing powder) together with about 30% acrylic resin (optional rubber) and about 1% bridging agent (optional curing agent), placed in the mixing tank at room temperature (about 25. 〇 The mixed materials are subjected to a 30-minute kneading operation to uniformly mix the materials. -, B. The kneaded material is applied to the release paper p by a coating technique at about 80-200 ° C. At the temperature, the mixed material is gradually fixed into a planar thin layer having a thickness of about 0. 02 to 0.5 mm, and an electromagnetic wave absorption attenuation value of about 25 north is formed. (2) Then, the second heat conductive layer 2 is formed: A. About 70% of the alumina powder (the selected heat conductive powder) and about 3〇% φ of the acrylic resin (the selected glue) ()), with about 1% of bridging agent (optional curing agent), placed in the mixing tank, at room temperature (about 25 〇 〇 〇 ^ ^ ^ ^ 混合 混合 ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ B. The kneaded material is coated on the release paper p by a coating technique, and the mixed material is gradually fixed to a thickness of about 0.02 to 0.5 mm at a temperature of about 80 to 200 C. A thin layer is obtained according to which a heat conducting layer having a heat transfer coefficient of about 18 W/mk is obtained. () Finally, the foregoing heat conducting layer and the electromagnetic wave absorbing layer are laminated and integrated with each other: the first heat conducting layer 1 and the electromagnetic wave absorbing layer are firstly integrated. 2 After laminating and laminating, then tear off the electricity 15 M308849. The release paper P on the magnetic wave absorbing layer 2 is then attached to the second heat-conducting layer 3 to form a multi-layer composite material with heat conduction and electromagnetic wave absorption (see the sixth Figure:) The multi-layer composite material of this book is arranged between the electronic component and the heat sink or metal machine component, wherein the double-layer composite heat conduction and absorption electricity as shown in the seventh figure (4) , money---------------------- ® 'and the upper surface of the electromagnetic wave absorbing layer 2 is in close contact with the heat sink or the metal member 6'. The third heat conduction and absorption electromagnetic wave material as shown in the eighth figure is such that the first heat conducting layer i The lower surface is in close contact with the surface of the electronic component 5, and the upper surface of the second thermal conductive layer 3 is in close contact with the heat sink or the metal member 6, so that the electronic component can be heated when operated. Rapidly transferring heat to the heat sink or the metal member through the conduction of the heat conducting layer and the electromagnetic wave absorbing layer to exclude the domain from absorbing and suppressing the electromagnetic radiation generated by the electronic component itself by the electromagnetic wave absorbing layer of the multilayer composite And to prevent external electromagnetic interference. [Simple description of the diagram] The first figure is a schematic diagram of the cross section of the heat conductive layer of the present invention, showing the combination of the rubber material and the thermal conductive powder in the material; the second figure is the impurity and heat conduction of the guide of the present invention. Table of changes in the ratio of powder flying and heat transfer coefficient; ^... The third figure is a schematic view of the cross section of the electromagnetic absorbing layer of the present invention, showing the combination of the rubber material and the electromagnetic absorbing powder in the material;

Claims (1)

.M308849 ·* 九、申請專利範圍: 1、 -種多層複合材料’係包含一或若干導熱層以及一或若干電 磁波吸收層’且各層之間彼此以交互疊置而密接組成一多層複 合材料。 2、 如申請專利範圍第1項所述之多層複合材料,其+,該導熱 層係包含有熱傳導性粉體以及用來結合(bind)前述熱傳祕粉 體微粒子的闕’並彻混S製程使該熱傳導性粉體均句分佈 馨於膠材中,然後固定成型者。 -3、如申請專利範圍第2項所述之多層複合材料,其中,該熱傳 導性粉體為氧她粉、統絲、氮伽粉、^紐、銘粉或 銅粉的其中之-或是由二種以上材料混合而成者。 4、 如申請專利範圍第2項所述之多層複合材料,其中,該熱傳 導性粉體為不規則型之顆粒且平均粒度約在〇丨〜%^^。 5、 如申請專利範圍第2項所述之多層複合材料,其中,該勝材 籲為環驗脂、壓克力樹脂、祕樹脂、聚_脂、聚醋酸乙醋 樹脂(PVAC)、矽素(Silicon)樹脂或合成橡膠的其中之一或是由 二種以上材料混合而成者。 6、 如申請專利範圍第2項所述之多層複合材料,其中,詨導熱 層為0.02〜15mm厚度之面狀薄層者。 7、 如申請專利範圍第2項所述之多層複合材料,其中,該導熱 層的熱傳導粉體約佔30%〜90%重量比例。 8、 如申請專利範圍第2項所述之多層複合材料,其中,該導熱 18 .M308849 • 層的膠材約佔10%〜70%重量比例。 9、 如申請專利範圍第1項所述之多層複合材料,其中,該電磁 波吸收層係包含有電魏吸收粉體錢絲結合前述電磁皮 吸收粉體微粒子的膠材,並利用混練製程使該電磁波吸收粉體 均勻分佈於膠材中,然後固定成型者。 / 一 10、 如申請專利範圍第9項所述之多層複合材料其中,該熱 魯魏魏粉體縣介電吸收獅、電觀收材料或是同時具有 ' 介電和電磁吸收性質的複合粉體材料之單一種或是由二種 上材料混合而成者。 M 11、 如申請專利範圍第10項所述之多層複合材料其中,該介電 吸收材料触在高分子介質巾添加賴耗性物_ 二 體材料者。 12、 如申請專利範圍第11項所述之多層複合材料,其巾,該介電 • 吸收材料為碳纖維、導電碳黑、碳化石夕、奈米級的碳管、碳纖 維、導電碳黑或碳化矽者。 、、 13、 如申請專利範圍第u項所述之多層複合材料,其中,該介電 吸收材料的電阻率σ是在l〇-3s/cm〜丨s/cm2間者。W Η、如申請專利制第1G項所述之多層複合材料其中,該電磁 吸收材料係指由磁性合金材料製成之粉體材料者。 t μ、如申請專利範_ 14項所述之多層複合材料,其中,該電磁 吸收材料為多晶鐵氧體、六角賴氧體、奈米級鐵氧體、金屬 粉權基鐵粉、縣鐵粉、絲鐵_錄合金)或磁性超細粉末者。 19.M308849 ·* IX. Scope of application: 1. A multi-layer composite material consists of one or several heat-conducting layers and one or several electromagnetic wave absorbing layers, and the layers are superposed on each other to form a multi-layer composite. . 2. The multi-layer composite material according to claim 1, wherein the heat-conducting layer comprises a thermally conductive powder and a crucible for binding the heat-transporting powder microparticles and is thoroughly mixed. The process allows the heat conductive powder to be uniformly distributed in the rubber material and then fixed to the molder. The multi-layer composite material according to claim 2, wherein the heat conductive powder is one of oxygen powder, monofilament, nitrogen gamma powder, nucleus, powder or copper powder - or It is a mixture of two or more materials. 4. The multilayer composite material of claim 2, wherein the thermally conductive powder is an irregular type of granule and the average particle size is about %~%^^. 5. The multi-layer composite material according to claim 2, wherein the winning material is a ring-reformed grease, an acrylic resin, a secret resin, a poly-lipid, a polyvinyl acetate resin (PVAC), a halogen. One of (Silicon) resin or synthetic rubber or a mixture of two or more materials. 6. The multilayer composite material according to claim 2, wherein the heat conductive layer is a planar thin layer having a thickness of 0.02 to 15 mm. 7. The multilayer composite material of claim 2, wherein the thermally conductive powder of the thermally conductive layer comprises about 30% to 90% by weight. 8. The multi-layer composite material according to claim 2, wherein the heat conductive 18 .M308849 • layer of the rubber material accounts for about 10% to 70% by weight. 9. The multi-layer composite material according to claim 1, wherein the electromagnetic wave absorbing layer comprises a rubber material in which the electric Wei absorbent powder money silk is combined with the electromagnetic skin absorbing powder microparticles, and the kneading process is used to make the multi-layer composite material. The electromagnetic wave absorbing powder is uniformly distributed in the rubber material and then fixed to the mold. / 10, as claimed in claim 9 of the multi-layer composite material, wherein the Rulu Weiwei powder county dielectric absorption lion, electric observation material or composite material with both dielectric and electromagnetic absorption properties Single or a mixture of two materials. M11. The multilayer composite material according to claim 10, wherein the dielectric absorbing material touches the polymer medium towel to add a consuming material to the bismuth material. 12. The multi-layer composite material according to claim 11, wherein the dielectric/absorbent material is carbon fiber, conductive carbon black, carbon carbide, carbon nanotube, carbon fiber, conductive carbon black or carbonization. The leader. The multilayer composite material according to claim 5, wherein the dielectric absorbing material has a resistivity σ of from 1 〇 to 3 s/cm to 丨 s/cm 2 . W Η , The multilayer composite material as described in claim 1G, wherein the electromagnetic absorbing material refers to a powder material made of a magnetic alloy material. The multi-layer composite material according to the application of the invention, wherein the electromagnetic absorbing material is polycrystalline ferrite, hexagonal lysine, nano-scale ferrite, metal powder-based iron powder, county Iron powder, wire iron _ recorded alloy) or magnetic ultrafine powder. 19 M308849 16、如申請專利範圍第1〇項所述之多層複合材料,其中,該複合 吸收材料為(鐵鎳)_銀合金(Fe Ni-Ag A11〇y)、銀鎳合金(Ni_~ Alloy)、銀鐵合金(Fe_ Ag Alloy)、鐵鎳鉬_銀合金(FeNiM〇 Ag Alloy)或鐵鎳鈷-銀合金(FeNiC0_Ag A11〇y)或鐵基碳化矽 (Fe-SiC)者。 17、 如申請專利範圍第1〇項所述之多層複合材料,其中,該電磁 波吸收粉體為不酬狀雜且平均粒度約在⑽〜1鄉㈤。 18、 如申請專利範圍第9項所述之多層複合材料,其中,該膠材 為環氧樹脂、壓克力樹脂、祕樹脂、丙烯酸樹脂、聚醋酸乙 烯樹脂(PVAC)、石夕素(Silicon)樹脂或合絲膠的其中之一或是 由二種以上材料混合而成者。 19、如申請專利範圍第9項所述之多層複合材料其中,該電磁 波吸收層為〇·〇2〜15mm厚度之面狀薄層者。 、如㈣專利範圍第9項所述之多層複合材料其中,該電磁 波吸收層的電磁波吸收粉體約佔3〇%〜9〇%重量。 2卜如中請專利範圍第9項所述之多層複合材料里其中該電磁 波吸收層的膠材約佔10%〜70%重量。 20The multi-layer composite material according to the first aspect of the invention, wherein the composite absorbing material is (iron-nickel)_silver alloy (Fe Ni-Ag A11〇y), silver-nickel alloy (Ni_~ Alloy). , Fe_Ag Alloy, FeNiM〇Ag Alloy or Fe-NiCo-silver alloy (FeNiC0_Ag A11〇y) or Fe-based niobium carbide (Fe-SiC). 17. The multilayer composite material of claim 1, wherein the electromagnetic wave absorbing powder is non-paid and has an average particle size of about (10) to 1 (five). 18. The multilayer composite material according to claim 9, wherein the adhesive material is epoxy resin, acrylic resin, secret resin, acrylic resin, polyvinyl acetate resin (PVAC), and stone scent (Silicon) One of the resin or the silk gel or a mixture of two or more materials. 19. The multilayer composite material according to claim 9, wherein the electromagnetic wave absorbing layer is a planar thin layer having a thickness of 2 to 15 mm. The multilayer composite material according to the invention of claim 9, wherein the electromagnetic wave absorbing powder of the electromagnetic wave absorbing layer accounts for about 3 % by weight to about 9 % by weight. In the multilayer composite material according to claim 9, the rubber material of the electromagnetic wave absorbing layer accounts for about 10% to 70% by weight. 20
TW95211583U 2006-06-30 2006-06-30 Multi-layer composite material TWM308849U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW95211583U TWM308849U (en) 2006-06-30 2006-06-30 Multi-layer composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW95211583U TWM308849U (en) 2006-06-30 2006-06-30 Multi-layer composite material

Publications (1)

Publication Number Publication Date
TWM308849U true TWM308849U (en) 2007-04-01

Family

ID=38643392

Family Applications (1)

Application Number Title Priority Date Filing Date
TW95211583U TWM308849U (en) 2006-06-30 2006-06-30 Multi-layer composite material

Country Status (1)

Country Link
TW (1) TWM308849U (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI409377B (en) * 2008-02-19 2013-09-21
TWI475733B (en) * 2011-12-27 2015-03-01 Univ Chienkuo Technology Method of making graphite graphite radiator base
US9622338B2 (en) 2013-01-25 2017-04-11 Laird Technologies, Inc. Frequency selective structures for EMI mitigation

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI409377B (en) * 2008-02-19 2013-09-21
TWI475733B (en) * 2011-12-27 2015-03-01 Univ Chienkuo Technology Method of making graphite graphite radiator base
US9622338B2 (en) 2013-01-25 2017-04-11 Laird Technologies, Inc. Frequency selective structures for EMI mitigation

Similar Documents

Publication Publication Date Title
CN104981138B (en) A kind of manufacturing method for being electromagnetically shielded heat dissipation film
Luo et al. Superhydrophobic and multi-responsive fabric composite with excellent electro-photo-thermal effect and electromagnetic interference shielding performance
TW201524335A (en) Electromagnetic wave absorption heat-dissipating sheet and electronic equipment
Li et al. Ti3C2Tx/PANI/liquid metal composite microspheres with 3D nanoflower structure: Preparation, characterization, and applications in EMI shielding
Ma et al. Ultrathin, flexible, and high-strength Ni/Cu/metallic glass/Cu/Ni composite with alternate magneto-electric structures for electromagnetic shielding
JP4893415B2 (en) Heat dissipation film
KR20130106169A (en) Composite for shielding electromagnetic wave
CN104972708B (en) One kind inhales the difunctional composite of wave dispersion heat and its manufacture method
TW201313114A (en) Microwave-absorbing film having high heat dissipation
US20110159317A1 (en) Flexible sheet with high magnetic permeability and fabrication method thereof
TWI330400B (en)
CN204669808U (en) A kind of electromagnetic shielding film with thermal conductive resin
KR101603582B1 (en) Thermal diffusion sheet having a flexible layer of ceramic-carbon composite
CN104972709A (en) High-heat-dissipation wave-absorbing composite film and manufacturing method thereof
TWM308849U (en) Multi-layer composite material
CN108659536A (en) Heat Conduction Material and preparation method thereof
JP2017107731A (en) Conductive sheet, method for producing the same, and semiconductor device and electronic component obtained by using the same
TW200800606A (en) Multi-layered composite capable of conducting heat and absorbing electromagnetic wave and manufacturing method thereof
Chakraborty et al. Enhancement of EMI shielding effectiveness of flexible Co2U-type hexaferrite (Ba4Co2Fe36O60)-poly (vinylidene fluoride) heterostructure composite materials: An improved radar absorbing material to combat against electromagnetic pollution
Qin et al. PVDF-based composites for electromagnetic shielding application: a review
JP5424606B2 (en) Noise suppressor and manufacturing method thereof
CN202135441U (en) Composite radiating fin
CN200941382Y (en) High heat transferring metal-base copper coated board
KR101458832B1 (en) A composite film of copper layers with insulation layers and conductive adhesion layers and method of fabricating the same.
JP6939551B2 (en) Ferrite laminate and noise suppression sheet

Legal Events

Date Code Title Description
MM4K Annulment or lapse of a utility model due to non-payment of fees