TWI849988B - Light-emitting element - Google Patents
Light-emitting element Download PDFInfo
- Publication number
- TWI849988B TWI849988B TW112123070A TW112123070A TWI849988B TW I849988 B TWI849988 B TW I849988B TW 112123070 A TW112123070 A TW 112123070A TW 112123070 A TW112123070 A TW 112123070A TW I849988 B TWI849988 B TW I849988B
- Authority
- TW
- Taiwan
- Prior art keywords
- light
- emitting element
- extension portion
- width
- layer
- Prior art date
Links
- 239000004065 semiconductor Substances 0.000 claims abstract description 52
- 239000000463 material Substances 0.000 claims description 32
- 239000000758 substrate Substances 0.000 claims description 20
- 239000005022 packaging material Substances 0.000 claims description 7
- 238000004806 packaging method and process Methods 0.000 claims description 5
- 238000000605 extraction Methods 0.000 abstract description 3
- 239000010410 layer Substances 0.000 description 171
- 229910052751 metal Inorganic materials 0.000 description 11
- 239000002184 metal Substances 0.000 description 11
- 239000000956 alloy Substances 0.000 description 8
- 229910045601 alloy Inorganic materials 0.000 description 8
- 239000002019 doping agent Substances 0.000 description 8
- 239000010931 gold Substances 0.000 description 7
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 6
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 6
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 6
- 230000007423 decrease Effects 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 150000002739 metals Chemical class 0.000 description 6
- 230000005693 optoelectronics Effects 0.000 description 6
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 6
- 239000012790 adhesive layer Substances 0.000 description 5
- 229910052782 aluminium Inorganic materials 0.000 description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 5
- 239000010949 copper Substances 0.000 description 5
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 5
- 229910052737 gold Inorganic materials 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 4
- 239000011651 chromium Substances 0.000 description 4
- JAONJTDQXUSBGG-UHFFFAOYSA-N dialuminum;dizinc;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Al+3].[Al+3].[Zn+2].[Zn+2] JAONJTDQXUSBGG-UHFFFAOYSA-N 0.000 description 4
- 229910052733 gallium Inorganic materials 0.000 description 4
- 210000001624 hip Anatomy 0.000 description 4
- 239000011777 magnesium Substances 0.000 description 4
- 239000011241 protective layer Substances 0.000 description 4
- SKRWFPLZQAAQSU-UHFFFAOYSA-N stibanylidynetin;hydrate Chemical compound O.[Sn].[Sb] SKRWFPLZQAAQSU-UHFFFAOYSA-N 0.000 description 4
- JBQYATWDVHIOAR-UHFFFAOYSA-N tellanylidenegermanium Chemical compound [Te]=[Ge] JBQYATWDVHIOAR-UHFFFAOYSA-N 0.000 description 4
- 239000010936 titanium Substances 0.000 description 4
- 229910000980 Aluminium gallium arsenide Inorganic materials 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 229910052732 germanium Inorganic materials 0.000 description 3
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 3
- 229910052738 indium Inorganic materials 0.000 description 3
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 3
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- YVTHLONGBIQYBO-UHFFFAOYSA-N zinc indium(3+) oxygen(2-) Chemical compound [O--].[Zn++].[In+3] YVTHLONGBIQYBO-UHFFFAOYSA-N 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- -1 GaN Chemical class 0.000 description 2
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 229910052787 antimony Inorganic materials 0.000 description 2
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 2
- 229910052785 arsenic Inorganic materials 0.000 description 2
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 229910052793 cadmium Inorganic materials 0.000 description 2
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 2
- BEQNOZDXPONEMR-UHFFFAOYSA-N cadmium;oxotin Chemical compound [Cd].[Sn]=O BEQNOZDXPONEMR-UHFFFAOYSA-N 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 229910017052 cobalt Inorganic materials 0.000 description 2
- 239000010941 cobalt Substances 0.000 description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- ATFCOADKYSRZES-UHFFFAOYSA-N indium;oxotungsten Chemical compound [In].[W]=O ATFCOADKYSRZES-UHFFFAOYSA-N 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 2
- NQBRDZOHGALQCB-UHFFFAOYSA-N oxoindium Chemical compound [O].[In] NQBRDZOHGALQCB-UHFFFAOYSA-N 0.000 description 2
- KYKLWYKWCAYAJY-UHFFFAOYSA-N oxotin;zinc Chemical compound [Zn].[Sn]=O KYKLWYKWCAYAJY-UHFFFAOYSA-N 0.000 description 2
- 229910052763 palladium Inorganic materials 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 238000002310 reflectometry Methods 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 2
- 229910001887 tin oxide Inorganic materials 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 239000011787 zinc oxide Substances 0.000 description 2
- 239000004593 Epoxy Substances 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 229910004205 SiNX Inorganic materials 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- ORUIBWPALBXDOA-UHFFFAOYSA-L magnesium fluoride Chemical compound [F-].[F-].[Mg+2] ORUIBWPALBXDOA-UHFFFAOYSA-L 0.000 description 1
- 229910001635 magnesium fluoride Inorganic materials 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910052714 tellurium Inorganic materials 0.000 description 1
- PORWMNRCUJJQNO-UHFFFAOYSA-N tellurium atom Chemical compound [Te] PORWMNRCUJJQNO-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Led Devices (AREA)
Abstract
Description
本發明關於一種發光元件,特別是關於一種具有良好電流散佈效果的發光元件。 The present invention relates to a light-emitting element, and in particular to a light-emitting element with good current spreading effect.
光電元件,例如發光二極體(Light-Emitting Diode;LED),目前已經廣泛地使用在光學顯示裝置、交通號誌、資料儲存裝置、通訊裝置、照明裝置與醫療器材上。目前,發光二極體仍具有電流散佈不均的問題,進而造成發光效率低落。 Optoelectronic components, such as light-emitting diodes (LEDs), are now widely used in optical display devices, traffic signs, data storage devices, communication devices, lighting devices, and medical equipment. Currently, LEDs still have the problem of uneven current distribution, which results in low luminous efficiency.
本揭露內容提供一種發光元件,包含發光疊層、上電極、電流通道區及接觸層。發光疊層具有一出光面。發光疊層包含複數個半導體層。上電極位於出光面上且包含電極部、第一延伸部與第二延伸部彼此電連接。第一延伸部具有第一寬度,第二延伸部具有第二寬度。第一寬度大於第二寬度。電流通道區位於第一延伸部及第二延伸部之間。接觸層位於第二延伸部與發光疊層之間,且具有第三寬度小於或等於第二寬度。電流通道區與第一延伸部之間具有第一距離,電流通道區與第二延伸部之間具有第二距離,且第一距離大於第二距離。 The present disclosure provides a light-emitting element, including a light-emitting stack, an upper electrode, a current channel region and a contact layer. The light-emitting stack has a light-emitting surface. The light-emitting stack includes a plurality of semiconductor layers. The upper electrode is located on the light-emitting surface and includes an electrode portion, a first extension portion and a second extension portion electrically connected to each other. The first extension portion has a first width, and the second extension portion has a second width. The first width is greater than the second width. The current channel region is located between the first extension portion and the second extension portion. The contact layer is located between the second extension portion and the light-emitting stack, and has a third width that is less than or equal to the second width. There is a first distance between the current channel area and the first extension portion, there is a second distance between the current channel area and the second extension portion, and the first distance is greater than the second distance.
本揭露內容提供一種發光元件,包含基板、發光疊層、上電極、接觸結構以及接觸層。發光疊層位於基板上,具有出光面且包含複數個半導體層。上電極位於出光面上。上電極包含電極部、第一延伸部以及複數條第二延伸部。電極部包含具有第一寬度的第一電極部以及第二電極部。第一延伸部與電極部電連接且具有第二寬度。複數條第二延伸部其中之一與第一延伸部、第一電極部或第二電極部相連接且具有第三寬度,且第二寬度介於第一寬度與第三寬度之間。接觸結構位於發光疊層及基板之間。接觸層包含III-V族半導體材料且位於上電極與發光疊層之間。在出光面上對應於接觸結構的位置定義出電流通道區,電流通道區位於兩條相鄰的複數條第二延伸部與第一延伸部之間,接觸層具有一端部,端部與電流通道區之間具有一個最短的距離s1,電流通道區與接觸層之間具有一個最短的距離s2,且s1/s2的範圍大於0且小於5。 The present disclosure provides a light-emitting element, comprising a substrate, a light-emitting stack, an upper electrode, a contact structure and a contact layer. The light-emitting stack is located on the substrate, has a light-emitting surface and comprises a plurality of semiconductor layers. The upper electrode is located on the light-emitting surface. The upper electrode comprises an electrode portion, a first extension portion and a plurality of second extension portions. The electrode portion comprises a first electrode portion having a first width and a second electrode portion. The first extension portion is electrically connected to the electrode portion and has a second width. One of the plurality of second extension portions is connected to the first extension portion, the first electrode portion or the second electrode portion and has a third width, and the second width is between the first width and the third width. The contact structure is located between the light-emitting stack and the substrate. The contact layer includes III-V semiconductor material and is located between the upper electrode and the light-emitting stack. A current channel region is defined at a position on the light-emitting surface corresponding to the contact structure. The current channel region is located between two adjacent second extensions and the first extension. The contact layer has an end, and there is a shortest distance s1 between the end and the current channel region. There is a shortest distance s2 between the current channel region and the contact layer, and the range of s1/s2 is greater than 0 and less than 5.
本揭露內容提供一種封裝結構,包含載體、發光元件以及封裝材料層。發光元件位於載體上。封裝材料層覆蓋於發光元件上。 The present disclosure provides a packaging structure, including a carrier, a light-emitting element, and a packaging material layer. The light-emitting element is located on the carrier. The packaging material layer covers the light-emitting element.
本揭露內容提供一種光電系統,包含底板、發光元件以及控制模組。發光元件位於底板上。控制模組電性連接底板。 The present disclosure provides an optoelectronic system, including a base plate, a light-emitting element, and a control module. The light-emitting element is located on the base plate. The control module is electrically connected to the base plate.
100~800:發光元件 100~800: Light-emitting element
1S:出光面 1S: Light-emitting surface
1031:第一側 1031: First side
1032:第二側 1032: Second side
1033:第三側 1033: Third side
1034:第四側 1034: Fourth side
103:基板 103: Substrate
111:第一窗口層 111: First window layer
112:第二窗口層 112: Second window layer
120:發光疊層 120: Luminous layer
121:第一半導體層 121: First semiconductor layer
122:主動層 122: Active layer
123:第二半導體層 123: Second semiconductor layer
130:接觸結構 130: Contact structure
13:延伸電極 13: Extended electrode
131:第一延伸部 131: First extension part
1311~1313:線段 1311~1313: Line segment
132:第二延伸部 132: Second extension
132’:第一端 132’: First end
132”:第二端 132”: Second end
140:第一接觸層 140: First contact layer
140b:電流通道區 140b: Current channel area
140b1~140b3:電流通道區 140b1~140b3: Current channel area
140c:電流通道 140c: Current channel
140c’:區域 140c’: Area
140c”:區域 140c”: Area
140e:孔洞 140e: Hole
145:絕緣層 145: Insulation layer
150:反射層 150:Reflective layer
160:導電黏著層 160: Conductive adhesive layer
170:電流散佈層 170: Current spreading layer
171:電極部 171:Electrode part
171a:第一電極部 171a: first electrode part
171b:第二電極部 171b: Second electrode part
172:背面電極 172: Back electrode
180:保護層 180: Protective layer
190:第二接觸層 190: Second contact layer
190a’:側表面 190a’: side surface
190e:端部 190e: End
I、II、III、IV:區域 I, II, III, IV: Regions
X、Y:方向 X, Y: direction
b1:第一區域 b1: first area
b2:第二區域 b2: Second area
b3:第三區域 b3: The third area
b4:第四區域 b4: The fourth area
D1~D7:距離 D 1 ~D 7 : Distance
b61:上底 b61: Top bottom
b62:下底 b62: bottom
b6’、b6”:腰 b6’, b6”: waist
P11、P12:端點 P 11 , P 12 : Endpoints
P21、P22:端點 P 21 , P 22 : Endpoints
W0~W4:寬度 W 0 ~W 4 : Width
H1:距離 H1: Distance
60:半導體元件 60:Semiconductor components
61:封裝基板 61:Packaging substrate
62:通孔 62:Through hole
63:載體 63: Carrier
63a、190a:第一部分 63a, 190a: Part I
63b、190b:第二部分 63b, 190b: Part II
65:接合線 65:Joining line
66:接觸結構 66: Contact structure
66a:第一接觸墊 66a: First contact pad
66b:第二接觸墊 66b: Second contact pad
68:封裝材料層 68: Packaging material layer
4b:光電系統 4b: Optoelectronic system
49:底板 49: Base plate
40’:畫素 40’: Pixels
49’:控制模組 49’: Control module
40b:發光元件 40b: Light-emitting element
d、d’:距離 d, d’: distance
L1~L4:邊長 L 1 ~L 4 : Side length
s1~s3:距離 s1~s3: distance
C1、C2:區域 C 1 , C 2 : Area
第1A圖繪示一實施例之發光元件的上視圖;第1B圖繪示第1A圖中發光元件的放大圖;第1C~1H圖繪示電流通道之上視圖;第2圖繪示第1B圖中沿著A-A’線的發光元件剖面圖;第3圖繪示發光元件之內部電流散佈示意圖; 第4圖繪示根據一實施例之發光元件之上視圖;第5A圖繪示根據另一實施例之發光元件之上視圖;第5B圖繪示第5A圖中發光元件的放大圖;第6A圖繪示根據一實施例之發光元件之上視圖;第6B圖繪示第5A圖中發光元件的局部放大圖;第7圖繪示根據一實施例之發光元件之上視圖;第8圖繪示根據一實施例之發光元件之上視圖;第9A圖繪示根據一實施例之發光元件之上視圖;第9B圖繪示第9A圖中發光元件的局部放大圖;第9C圖繪示第9B圖中沿B-B’線的發光元件一實施例之剖面圖;第9D圖繪示第9B圖中沿C-C’線的發光元件一實施例之剖面圖;第9E圖繪示另一實施例的發光元件的局部放大圖;第9F圖繪示另一實施例的發光元件的局部放大圖;第9G圖繪示根據另一實施例之發光元件之上視圖;第10圖繪示半導體元件的封裝結構示意圖;第11圖繪示光電系統示意圖。 FIG. 1A shows a top view of a light-emitting element of an embodiment; FIG. 1B shows an enlarged view of the light-emitting element in FIG. 1A; FIG. 1C to FIG. 1H show a top view of a current channel; FIG. 2 shows a cross-sectional view of the light-emitting element along line A-A’ in FIG. 1B; FIG. 3 shows a schematic diagram of the internal current distribution of the light-emitting element; FIG. 4 shows a top view of a light-emitting element according to an embodiment; FIG. 5A shows a top view of a light-emitting element according to another embodiment; FIG. 5B shows an enlarged view of the light-emitting element in FIG. 5A; FIG. 6A shows a top view of a light-emitting element according to an embodiment; FIG. 6B shows a partial enlarged view of the light-emitting element in FIG. 5A; FIG. 7 shows a top view of a light-emitting element according to an embodiment; FIG. 8 is a top view of a light-emitting element according to an embodiment; FIG. 9A is a top view of a light-emitting element according to an embodiment; FIG. 9B is a partial enlarged view of the light-emitting element in FIG. 9A; FIG. 9C is a cross-sectional view of a light-emitting element in an embodiment along line B-B’ in FIG. 9B; FIG. 9D is a cross-sectional view of a light-emitting element in an embodiment along line C-C’ in FIG. 9B; FIG. 9E is a partial enlarged view of a light-emitting element in another embodiment; FIG. 9F is a partial enlarged view of a light-emitting element in another embodiment; FIG. 9G is a top view of a light-emitting element in another embodiment; FIG. 10 is a schematic diagram of a semiconductor element packaging structure; FIG. 11 is a schematic diagram of an optoelectronic system.
本發明之實施例會被詳細地描述,並且繪製於圖式中,相同或類似的部分會以相同的號碼在各圖式以及說明出現。 The embodiments of the present invention will be described in detail and illustrated in the drawings, and the same or similar parts will appear in each drawing and description with the same numbers.
第1A圖繪示一實施例之發光元件100的上視圖,第1B圖繪示第1A圖中區域I的放大圖,第2圖繪示第1B圖中沿著A-A’線的發光元件100剖面圖。 於第1A圖中,區域140c’係表示電流通道140c的對應位置,相關描述可參考後面段落。 FIG. 1A shows a top view of a light-emitting element 100 of an embodiment, FIG. 1B shows an enlarged view of region I in FIG. 1A, and FIG. 2 shows a cross-sectional view of the light-emitting element 100 along line A-A' in FIG. 1B. In FIG. 1A, region 140c' indicates the corresponding position of current channel 140c, and the relevant description can be referred to the following paragraphs.
如第1A圖所示,發光元件100包含一出光面1S及複數個側壁,複數個側壁包含一第一側1031、一第二側1032相對於第一側1031、一第三側1033位於第一側1031及第二側1032之間以及一第四側1034相對於第三側1033且位於第一側1031及第二側1032之間。第一側1031、第二側1032、第三側1033及第四側1034圍繞出光面1S,第一側1031、第二側1032、第三側1033及第四側1034分別具有邊長L1、邊長L2、邊長L3以及邊長L4。在本實施例中,發光元件100包含一上電極位於出光面1S上。上電極包含兩個電極部171及延伸電極13。電極部171及延伸電極13的材料可包含單層或多層(圖未示)的金屬或合金。金屬例如鋁(Al)、鉻(Cr)、銅(Cu)、錫(Sn)、金(Au)、鎳(Ni)、鈦(Ti)、鉑(Pt)、鉛(Pb)、鋅(Zn)、鎘(Cd)、銻(Sb)、鈷(Co)、鍺(Ge)、鈀(Pd)。合金為包含上述金屬之合金。電極部171用以導入外部電流,複數條延伸電極13連接電極部171用以將電流散佈到電極部171以外的區域。兩個電極部171靠近第一側1031,延伸電極13包含一第一延伸部131及複數條第二延伸部132。相較於第二側1032,第一延伸部131較靠近第一側1031且實質上與第一側1031平行。此外,第一延伸部131具有一第一區連接兩個電極部171及兩第二區係分別從兩個電極部171向第三側1033及第四側1034延伸。複數條第二延伸部132與兩個電極部171及第一延伸部131連接並向第一側1031及第二側1032延伸。 As shown in FIG. 1A , the light emitting element 100 includes a light emitting surface 1S and a plurality of side walls, wherein the plurality of side walls include a first side 1031, a second side 1032 opposite to the first side 1031, a third side 1033 located between the first side 1031 and the second side 1032, and a fourth side 1034 opposite to the third side 1033 and located between the first side 1031 and the second side 1032. The first side 1031, the second side 1032, the third side 1033 and the fourth side 1034 surround the light emitting surface 1S, and the first side 1031, the second side 1032, the third side 1033 and the fourth side 1034 have side lengths L1 , L2 , L3 and L4 , respectively. In this embodiment, the light emitting element 100 includes an upper electrode located on the light emitting surface 1S. The upper electrode includes two electrode portions 171 and an extended electrode 13. The material of the electrode portion 171 and the extended electrode 13 may include a single layer or multiple layers (not shown) of metal or alloy. Metals include aluminum (Al), chromium (Cr), copper (Cu), tin (Sn), gold (Au), nickel (Ni), titanium (Ti), platinum (Pt), lead (Pb), zinc (Zn), cadmium (Cd), antimony (Sb), cobalt (Co), germanium (Ge), and palladium (Pd). The alloy is an alloy containing the above metals. The electrode portion 171 is used to introduce external current, and a plurality of extended electrodes 13 are connected to the electrode portion 171 to spread the current to an area outside the electrode portion 171. The two electrode portions 171 are close to the first side 1031, and the extended electrode 13 includes a first extension portion 131 and a plurality of second extension portions 132. Compared to the second side 1032, the first extension portion 131 is closer to the first side 1031 and substantially parallel to the first side 1031. In addition, the first extension portion 131 has a first region connected to the two electrode portions 171 and two second regions extending from the two electrode portions 171 to the third side 1033 and the fourth side 1034 respectively. A plurality of second extension portions 132 are connected to the two electrode portions 171 and the first extension portion 131 and extend to the first side 1031 and the second side 1032.
如第1B圖所示,在本實施例中,第一延伸部131與第二延伸部132實質上係垂直設置,且第一延伸部131具有一寬度W1,第二延伸部具有一寬度W2,寬度W1為寬度W2的1.5~3倍。由於電極部171一開始引入的電流密度較大, 具有較大的寬度W1的第一延伸部131可有效率地將電流往第三側1033及第四側1034散開,接著再藉複數條第二延伸部132將電流往第一側1031及第二側1032散佈,使得電流可以均勻地在出光面1S分散開。 As shown in FIG. 1B , in this embodiment, the first extension portion 131 and the second extension portion 132 are substantially vertically arranged, and the first extension portion 131 has a width W1, and the second extension portion has a width W2, and the width W1 is 1.5 to 3 times the width W2. Since the current density introduced into the electrode portion 171 is relatively large at the beginning, the first extension portion 131 with a relatively large width W1 can efficiently disperse the current to the third side 1033 and the fourth side 1034, and then the current is dispersed to the first side 1031 and the second side 1032 by a plurality of second extension portions 132, so that the current can be evenly dispersed on the light-emitting surface 1S.
接著,參考第2圖繪示的發光元件100剖面圖,發光元件100包含一基板103、一背面電極172位於基板103之下、一導電黏著層160位於基板103之上、一反射層150位於導電黏著層160之上、一電流散佈層170位於反射層150之上、一絕緣層145位於反射層150之上、一第一接觸層140位於絕緣層145及電流散佈層170之間、一第一窗口層111位於絕緣層145之上、一發光疊層120位於第一窗口層111之上、一第二窗口層112位於發光疊層120之上、一保護層180位於第二窗口層112之上,一第二接觸層190位於第二窗口層112之上以及第二延伸部132位於第二接觸層190之上。 Next, referring to the cross-sectional view of the light emitting element 100 shown in FIG. 2, the light emitting element 100 includes a substrate 103, a back electrode 172 located below the substrate 103, a conductive adhesive layer 160 located above the substrate 103, a reflective layer 150 located above the conductive adhesive layer 160, a current spreading layer 170 located above the reflective layer 150, an insulating layer 145 located above the reflective layer 150, and a first contact layer 140 located above the reflective layer 150. Between the insulating layer 145 and the current spreading layer 170, a first window layer 111 is located on the insulating layer 145, a light-emitting stack 120 is located on the first window layer 111, a second window layer 112 is located on the light-emitting stack 120, a protective layer 180 is located on the second window layer 112, a second contact layer 190 is located on the second window layer 112, and a second extension portion 132 is located on the second contact layer 190.
在本實施例中,發光疊層120包含一第一半導體層121,一主動層122位於第一半導體層121上,一第二半導體層123位於主動層122上,第一半導體層121與第二半導體層123包含摻雜物以增加導電性且具有相異的導電型態,用以分別提供電子及電洞在主動層122中複合(recombination)以發射光線。當第一半導體層121包含p型III-V族半導體材料時,第二半導體層123包含n型III-V族半導體材料;當第二半導體層123包含p型III-V族半導體材料時,第一半導體層121包含n型III-V族半導體材料。第一半導體層121或第二半導體層123具有摻雜物為鋅(Zn)、碳(C)或鎂(Mg),以形成p型III-V族半導體材料。第一半導體層121或第二半導體層123具有摻雜物為矽(Si)或碲(Te),以形成n型III-V族半導體材料。摻雜物的摻雜濃度介於5x1016cm-3到5x1019cm-3之間。主動層122包含複數個彼此交錯堆疊的井層(well layers)及阻障層(barrier layers),井層與阻障層包含III-V族半 導體材料。依據井層材料組成,主動層122可發出可發出峰值波長(peak wavelength)介於700nm及1700nm的紅外光、峰值波長介於610nm及700nm之間的紅光、峰值波長介於530nm及570nm之間的黃光、峰值波長介於490nm及550nm之間的綠光、峰值波長介於400nm及490nm之間的藍光或深藍光、或是峰值波長介於250nm及400nm之間的紫外光。 In this embodiment, the light-emitting stack 120 includes a first semiconductor layer 121, an active layer 122 located on the first semiconductor layer 121, and a second semiconductor layer 123 located on the active layer 122. The first semiconductor layer 121 and the second semiconductor layer 123 contain dopants to increase conductivity and have different conductivity types to provide electrons and holes for recombination in the active layer 122 to emit light. When the first semiconductor layer 121 includes a p-type III-V semiconductor material, the second semiconductor layer 123 includes an n-type III-V semiconductor material; when the second semiconductor layer 123 includes a p-type III-V semiconductor material, the first semiconductor layer 121 includes an n-type III-V semiconductor material. The first semiconductor layer 121 or the second semiconductor layer 123 has a dopant of zinc (Zn), carbon (C) or magnesium (Mg) to form a p-type III-V semiconductor material. The first semiconductor layer 121 or the second semiconductor layer 123 has a dopant of silicon (Si) or tellurium (Te) to form an n-type III-V semiconductor material. The doping concentration of the dopant is between 5x10 16 cm -3 and 5x10 19 cm -3 . The active layer 122 includes a plurality of well layers and barrier layers stacked alternately, and the well layers and barrier layers include III-V semiconductor materials. Depending on the composition of the well material, the active layer 122 can emit infrared light with a peak wavelength between 700nm and 1700nm, red light with a peak wavelength between 610nm and 700nm, yellow light with a peak wavelength between 530nm and 570nm, green light with a peak wavelength between 490nm and 550nm, blue light or deep blue light with a peak wavelength between 400nm and 490nm, or ultraviolet light with a peak wavelength between 250nm and 400nm.
第一窗口層111的材料係包含至少一元素選自於鋁(Al)、鎵(Ga)、銦(In)、砷(As)、磷(P)及氮(N)所構成之群組,例如為GaN、AlGaInP、AlInP、AlGaAs、GaP等之半導體化合物。第一窗口層111和第一半導體層121包含摻雜物且具有相同的導電型態,例如,p型導電型態。第一窗口層111的摻雜濃度大於第一半導體層121的摻雜濃度,因此第一窗口層111具有較高的導電率。第一窗口層111的厚度介於0.5μm~10μm以提供電流橫向擴散的功能,避免電流侷限在發光元件100的局部區域,並且可協助光線從發光元件100的複數個側壁射出。 The material of the first window layer 111 includes at least one element selected from the group consisting of aluminum (Al), gallium (Ga), indium (In), arsenic (As), phosphorus (P) and nitrogen (N), such as semiconductor compounds such as GaN, AlGaInP, AlInP, AlGaAs, GaP, etc. The first window layer 111 and the first semiconductor layer 121 include dopants and have the same conductivity type, such as p-type conductivity type. The doping concentration of the first window layer 111 is greater than the doping concentration of the first semiconductor layer 121, so the first window layer 111 has a higher conductivity. The thickness of the first window layer 111 is between 0.5μm and 10μm to provide the function of lateral diffusion of current, avoid the current being confined to a local area of the light-emitting element 100, and help light to be emitted from multiple side walls of the light-emitting element 100.
第二窗口層112的材料包含至少一個元素鋁(Al)、鎵(Ga)、銦(In)、砷(As)、磷(P)及氮(N)所構成之群組,例如為GaN、AlGaInP、AlInP、AlGaAs、GaP等之半導體化合物。第二窗口層112包括至少一種材料不同於第二半導體層123。較佳地,第二窗口層112包含摻雜物且具有和第二半導體層123相同的導電型態,例如n型導電型態。發光元件100之出光面1S係為第二窗口層112之一表面且可為一粗化(roughened)表面以降低全反射,提升發光元件100之發光效率。保護層180共形地覆蓋於第二窗口層112的粗化表面上。於一些實施例中,保護層180的材料包含矽(Si)之氮化物或氧化物,例如SiO2、SiNx。在本實施例中,第二窗口層112的厚度大於第一窗口層111的厚度,第二窗口層112的厚度1μm~20μm之間,用以提供電流橫向擴散的功能並提高發光元件100出光效率。 The material of the second window layer 112 includes at least one element of a group consisting of aluminum (Al), gallium (Ga), indium (In), arsenic (As), phosphorus (P) and nitrogen (N), such as semiconductor compounds such as GaN, AlGaInP, AlInP, AlGaAs, GaP, etc. The second window layer 112 includes at least one material different from the second semiconductor layer 123. Preferably, the second window layer 112 includes dopants and has the same conductivity type as the second semiconductor layer 123, such as an n-type conductivity type. The light-emitting surface 1S of the light-emitting element 100 is a surface of the second window layer 112 and can be a roughened surface to reduce total reflection and improve the light-emitting efficiency of the light-emitting element 100. The protective layer 180 conformally covers the roughened surface of the second window layer 112. In some embodiments, the material of the protective layer 180 includes silicon (Si) nitride or oxide, such as SiO 2 or SiN x . In this embodiment, the thickness of the second window layer 112 is greater than that of the first window layer 111 . The thickness of the second window layer 112 is between 1 μm and 20 μm, so as to provide the function of lateral current diffusion and improve the light extraction efficiency of the light emitting element 100 .
參照第1A~1H圖及第2圖,第二接觸層190位於第二窗口層112與延伸電極13之間,第二接觸層190與延伸電極13之間的接觸電阻小於10-2Ω-cm2,較佳的是小於10-4Ω-cm2,用以將電流從延伸電極13導入第二窗口層112。在本實施例中,第二接觸層190僅位於延伸電極13之下未形成於電極部171之下。從上視觀之,第二接觸層190與延伸電極13具有相同的圖形。第二接觸層190的材料包含III-V族半導體材料,例如GaAs、AlGaAs或InGaP。第二接觸層190包含摻雜物並與第二窗口層112具有相同的導電型態,例如n型導電型態。第二接觸層190具有一摻雜濃度大於1018/cm3,較佳的是介於1019/cm3~5*1020/cm3之間。 Referring to FIGS. 1A to 1H and FIG. 2, the second contact layer 190 is located between the second window layer 112 and the extended electrode 13, and the contact resistance between the second contact layer 190 and the extended electrode 13 is less than 10-2 Ω- cm2 , preferably less than 10-4 Ω- cm2 , for conducting current from the extended electrode 13 to the second window layer 112. In this embodiment, the second contact layer 190 is only located under the extended electrode 13 and is not formed under the electrode portion 171. When viewed from above, the second contact layer 190 and the extended electrode 13 have the same pattern. The material of the second contact layer 190 includes a III-V semiconductor material, such as GaAs, AlGaAs or InGaP. The second contact layer 190 includes dopants and has the same conductivity type as the second window layer 112, such as n-type conductivity type. The second contact layer 190 has a doping concentration greater than 10 18 /cm 3 , preferably between 10 19 /cm 3 and 5*10 20 /cm 3 .
基板103包括金屬,例如鉬,或半導體材料,例如鍺及矽。背面電極172與基板103連接且用以將電流導入發光元件100。背面電極172包含單層或多層(圖未示)的金屬或合金。金屬例如鋁(Al)、鉻(Cr)、銅(Cu)、錫(Sn)、金(Au)、鎳(Ni)、鈦(Ti)、鉑(Pt)、鉛(Pb)、鋅(Zn)、鎘(Cd)、銻(Sb)、鈷(Co)、鍺(Ge)、鈀(Pd)。合金為包含上述金屬之合金。導電黏著層160用以將反射層150及基板103黏合並提供良好的導電路徑,導電黏著層160的材料包含金、錫、鉛、銦或其合金。 The substrate 103 includes a metal, such as molybdenum, or a semiconductor material, such as germanium and silicon. The back electrode 172 is connected to the substrate 103 and is used to conduct current into the light-emitting element 100. The back electrode 172 includes a single layer or multiple layers (not shown) of metal or alloy. Metals include aluminum (Al), chromium (Cr), copper (Cu), tin (Sn), gold (Au), nickel (Ni), titanium (Ti), platinum (Pt), lead (Pb), zinc (Zn), cadmium (Cd), antimony (Sb), cobalt (Co), germanium (Ge), and palladium (Pd). The alloy is an alloy containing the above metals. The conductive adhesive layer 160 is used to bond the reflective layer 150 and the substrate 103 and provide a good conductive path. The material of the conductive adhesive layer 160 includes gold, tin, lead, indium or their alloys.
反射層150的材料包括一對於峰值波長(Wp,peak wavelength)介於600nm~2000nm之光線的反射率大於90%的金屬元素,例如銀或金,用以反射發光疊層120發射出的光線。電流散佈層170與反射層150電連接。電流散佈層170包含金屬氧化物,例如氧化銦錫(ITO)、氧化銦(InO)、氧化錫(SnO)、氧化鎘錫(CTO)、氧化銻錫(ATO)、氧化鋁鋅(AZO)、氧化鋅錫(ZTO)、氧化鎵鋅(GZO)、氧化鋅(ZnO)、氧化銦鋅(IZO)或氧化銦鎢(IWO)。本實施例中,電流散佈層170為氧化銦鋅(IZO)。絕緣層145的材料包含絕緣材料,例如氮化矽(SiNx)、氧化鋁 (AlOx)、氧化矽(SiOx)或氟化鎂(MgFx)。絕緣層145的折射率小於第一窗口層111至少1以上,藉此提高從發光疊層120發射出的光線反射的百分比。 The material of the reflective layer 150 includes a metal element, such as silver or gold, whose reflectivity for light with a peak wavelength (Wp) between 600nm and 2000nm is greater than 90%, and is used to reflect the light emitted by the light-emitting stack 120. The current spreading layer 170 is electrically connected to the reflective layer 150. The current spreading layer 170 includes a metal oxide, such as indium tin oxide (ITO), indium oxide (InO), tin oxide (SnO), cadmium tin oxide (CTO), antimony tin oxide (ATO), aluminum zinc oxide (AZO), zinc tin oxide (ZTO), gallium zinc oxide (GZO), zinc oxide (ZnO), indium zinc oxide (IZO) or indium tungsten oxide (IWO). In this embodiment, the current spreading layer 170 is indium zinc oxide (IZO). The material of the insulating layer 145 includes insulating materials, such as silicon nitride (SiNx), aluminum oxide (AlOx), silicon oxide (SiOx) or magnesium fluoride (MgFx). The refractive index of the insulating layer 145 is at least 1 less than that of the first window layer 111, thereby increasing the percentage of light reflected from the light-emitting stack 120.
如第2圖所示,絕緣層145包含複數個孔洞140e露出部分的第一窗口層111,第一接觸層140共型地覆蓋在絕緣層145相對於第一窗口層111的另一側,並填入複數個孔洞140e且與露出於孔洞140e的第一窗口層111部分電連結以形成複數個電流通道140c讓電流通過。第一接觸層140的材料選自金屬氧化物材料,例如氧化銦錫(ITO)、氧化銦(InO)、氧化錫(SnO)、氧化鎘錫(CTO)、氧化銻錫(ATO)、氧化鋁鋅(AZO)、氧化鋅錫(ZTO)、氧化鎵鋅(GZO)、氧化鋅(ZnO)、氧化銦鋅(IZO)或氧化銦鎢(IWO)。在本實施例中,第一接觸層140的材料選自能夠與第一窗口層111形成低接觸電阻的氧化銦錫(ITO)。 As shown in FIG. 2 , the insulating layer 145 includes a first window layer 111 that exposes a portion of a plurality of holes 140e. The first contact layer 140 conformally covers the other side of the insulating layer 145 opposite to the first window layer 111, fills the plurality of holes 140e, and is electrically connected to the portion of the first window layer 111 exposed in the holes 140e to form a plurality of current channels 140c for current to flow through. The material of the first contact layer 140 is selected from metal oxide materials, such as indium tin oxide (ITO), indium oxide (InO), tin oxide (SnO), cadmium tin oxide (CTO), antimony tin oxide (ATO), aluminum zinc oxide (AZO), zinc tin oxide (ZTO), gallium zinc oxide (GZO), zinc oxide (ZnO), indium zinc oxide (IZO) or indium tungsten oxide (IWO). In this embodiment, the material of the first contact layer 140 is selected from indium tin oxide (ITO) that can form a low contact resistance with the first window layer 111.
在本實施例中,絕緣層145的厚度介於500Å~5000Å之間,較佳的是介於1000Å~2000Å之間;第一接觸層140的厚度介於20Å~200Å之間;電流散佈層170的厚度介於1000Å~5000Å之間,較佳的是介於1500Å~3500Å之間。絕緣層145、第一接觸層140、電流散佈層170以及反射層150形成一全方位反射鏡(omnidirectional reflector,ODR),可提高射向全方位反射鏡的光線的反射率,使其反射率超過95%。 In this embodiment, the thickness of the insulating layer 145 is between 500Å and 5000Å, preferably between 1000Å and 2000Å; the thickness of the first contact layer 140 is between 20Å and 200Å; the thickness of the current spreading layer 170 is between 1000Å and 5000Å, preferably between 1500Å and 3500Å. The insulating layer 145, the first contact layer 140, the current spreading layer 170 and the reflective layer 150 form an omnidirectional reflector (ODR), which can improve the reflectivity of light directed to the omnidirectional reflector to exceed 95%.
第一接觸層140與第一窗口層111直接接觸的部分形成電流通道140c。電流通道140c具有一寬度W3介於1μm~100μm之間,較佳的介於5μm~30μm之間。於第2圖的剖面圖中,電流通道140c在一垂直於發光疊層120的方向(X)上,與延伸電極13及電極部171不重疊。此外,電流通道140c對應在出光面1S的相對位置定義為區域140c’,因此,複數個區域140c’係顯示於第1A圖中且彼此錯開(意即於X方向上不重疊)。再者,區域140c’與延伸電極13及電極部171之間也 彼此錯開,亦即,區域140c’與延伸電極13及電極部171在X方向不重疊(參考第2圖)。複數個區域140c’於上視圖中可呈一點狀陣列。在本實施例中,各電流通道140c之上視圖為一圓形,因此,區域140c’亦為圓形。在其他實施例,如第1C~1F圖所示,電流通道140c(或區域140c’)之上視圖包含但不限於長方形、三角形、菱形或其組合。 The portion where the first contact layer 140 directly contacts the first window layer 111 forms a current channel 140c. The current channel 140c has a width W3 between 1μm and 100μm, preferably between 5μm and 30μm. In the cross-sectional view of FIG. 2, the current channel 140c does not overlap with the extended electrode 13 and the electrode portion 171 in a direction (X) perpendicular to the light-emitting stack 120. In addition, the relative position of the current channel 140c corresponding to the light-emitting surface 1S is defined as region 140c', therefore, a plurality of regions 140c' are shown in FIG. 1A and are staggered from each other (i.e., they do not overlap in the X direction). Furthermore, the region 140c' and the extended electrode 13 and the electrode portion 171 are also staggered, that is, the region 140c' and the extended electrode 13 and the electrode portion 171 do not overlap in the X direction (refer to Figure 2). The plurality of regions 140c' may be arranged in a dot array in the top view. In this embodiment, the top view of each current channel 140c is a circle, so the region 140c' is also a circle. In other embodiments, as shown in Figures 1C to 1F, the top view of the current channel 140c (or region 140c') includes but is not limited to a rectangle, a triangle, a diamond or a combination thereof.
如第1A圖所示,在任兩條相鄰的第二延伸部132與第一延伸部131之間具有一電流通道區140b,電流通道區140b係為複數個最靠近延伸電極13之區域140c’的共同切線所界定的範圍,且在電流通道區140b與延伸電極13之間不具有區域140c’。換言之,在兩條相鄰的第二延伸部132與第一延伸部131之間,電流通道區140b為一圍繞所有區域140c’之多邊形,且電流通道區140b之每一邊皆至少與二個區域140c’相切。在第1A圖中,電流通道區140b係為一四邊形(例如:長方形)且僅畫出一個作為例示,發光元件可包含複數個電流通道區。 As shown in FIG. 1A , there is a current channel region 140b between any two adjacent second extensions 132 and first extensions 131, and the current channel region 140b is a range defined by a common tangent line of a plurality of regions 140c′ closest to the extension electrode 13, and there is no region 140c′ between the current channel region 140b and the extension electrode 13. In other words, between two adjacent second extensions 132 and first extensions 131, the current channel region 140b is a polygon surrounding all regions 140c′, and each side of the current channel region 140b is tangent to at least two regions 140c′. In FIG. 1A, the current channel region 140b is a quadrilateral (e.g., a rectangle) and only one is drawn as an example. The light-emitting element may include multiple current channel regions.
如第1C~1G圖所示,當區域140c’為其他形狀時,電流通道區140b係由複數個最靠近延伸電極13之區域140c’的頂點(如第1D或1F圖)、邊(如第1C或1E圖)或以上至少兩者共同(如第1G圖)所界定的範圍。在第1C或1E圖中,區域140c’為方形,且電流通道區140b為一四邊形;在第1D或1F圖中,區域140c’分別為三角型及菱形,且電流通道區140b為一四邊形;在第1G圖中,區域140c’包含至少兩種不同形狀,且電流通道區140b為一四邊形。如第1B和1H圖所示,電流通道區140b具有相同的形狀,皆為六邊形。第1B圖中,除了界定電流通道區140b的區域140c’外,仍有其他區域140c’被圍繞於其中,意即有些區域140c’未被用來界定電流通道區140b。在第1H圖中,電流通道區140b係由所有的區域140c’所界定。 As shown in Figures 1C to 1G, when the region 140c' is in other shapes, the current channel region 140b is defined by the vertices (such as Figure 1D or 1F), sides (such as Figure 1C or 1E), or at least two of the above (such as Figure 1G) of the region 140c' closest to the extended electrode 13. In Figure 1C or 1E, the region 140c' is a square, and the current channel region 140b is a quadrilateral; in Figure 1D or 1F, the region 140c' is a triangle and a rhombus, respectively, and the current channel region 140b is a quadrilateral; in Figure 1G, the region 140c' includes at least two different shapes, and the current channel region 140b is a quadrilateral. As shown in Figures 1B and 1H, the current channel region 140b has the same shape, which is a hexagon. In FIG. 1B, in addition to the area 140c' defining the current channel area 140b, there are still other areas 140c' surrounded therein, which means that some areas 140c' are not used to define the current channel area 140b. In FIG. 1H, the current channel area 140b is defined by all areas 140c'.
如第1B圖所示,電流通道區140b與第一延伸部131之間有一個最短的距離D1,以及與第二延伸部132之間有一個最短的距離D2,距離D1大於距離D2。由於第一延伸部131的寬度W1為第二延伸部132的寬度W2的1.5~3倍,且第一延伸部131與電極部171直接連接,第二延伸部132再與第一延伸部131直接連接,因此當發光元件100於正常操作下,流經第一延伸部131的電流大於流經第二延伸部132的電流,如第3圖所示。第3圖為發光元件100之內部電流散佈示意圖。圖中電流9的方向僅為示意,根據發光疊層120的電性設計,電流9的方向亦可相反。電流9在電流通道140c與第一延伸部131及第二延伸部132之間,會流經第一窗口層111、發光疊層120及第二窗口層112。由於流經第一延伸部131的電流大於流經第二延伸部132的電流,因此當電流9流經電流通道140c與第一延伸部131及第二延伸部132之間的區域時,電流9中較多的部分會流經電流通道140c與第一延伸部131之間的區域C2,電流9中較少的部分會流經電流通道140c與第二延伸部132之間的區域C1到第二延伸部132。此外,由於把電流通道區140b與第一延伸部131之間的距離設計大於與第二延伸部132之間的距離(D1>D2),因此在區域C2中的電流較分散,在區域C1中的電流較集中;由於在區域C2中的電流較多但是較分散,在區域C1中的電流較少但是較集中,使得通過區域C1中的主動層122的電流密度接近通過區域C2的主動層122的電流密度,達到均勻分散電流的目的。 As shown in FIG. 1B , there is a shortest distance D 1 between the current channel region 140b and the first extension portion 131, and a shortest distance D 2 between the current channel region 140b and the second extension portion 132, and the distance D 1 is greater than the distance D 2 . Since the width W 1 of the first extension portion 131 is 1.5 to 3 times the width W 2 of the second extension portion 132, and the first extension portion 131 is directly connected to the electrode portion 171, and the second extension portion 132 is directly connected to the first extension portion 131, when the light-emitting device 100 is in normal operation, the current flowing through the first extension portion 131 is greater than the current flowing through the second extension portion 132, as shown in FIG. 3 is a schematic diagram of the internal current distribution of the light-emitting device 100. The direction of the current 9 in the figure is only for illustration. According to the electrical design of the light-emitting stack 120, the direction of the current 9 may be opposite. The current 9 flows through the first window layer 111, the light-emitting stack 120 and the second window layer 112 between the current channel 140c and the first extension portion 131 and the second extension portion 132. Since the current flowing through the first extension portion 131 is greater than the current flowing through the second extension portion 132, when the current 9 flows through the area between the current channel 140c and the first extension portion 131 and the second extension portion 132, a larger portion of the current 9 flows through the area C2 between the current channel 140c and the first extension portion 131, and a smaller portion of the current 9 flows through the area C1 between the current channel 140c and the second extension portion 132 to the second extension portion 132. In addition, since the distance between the current channel region 140b and the first extension portion 131 is designed to be greater than the distance between the current channel region 140b and the second extension portion 132 ( D1 > D2 ), the current in region C2 is more dispersed and the current in region C1 is more concentrated; since the current in region C2 is more but more dispersed, and the current in region C1 is less but more concentrated, the current density passing through the active layer 122 in region C1 is close to the current density passing through the active layer 122 in region C2 , thereby achieving the purpose of uniformly dispersing the current.
本實施例中,第一延伸部131的寬度W1介於3μm~50μm之間,較佳的是介於10μm~20μm之間,第二延伸部132的寬度W2介於2μm~33μm之間,較佳的是介於5μm~10μm;距離D1與寬度W1之間具有一個比值R1(=D1/W1),距離D2與寬度W2之間具有一個比值R2(=D2/W2),R1與R2的範圍分別為2≦R1≦3.5,2≦R2≦3.5,因此距離D1的較佳的範圍介於20μm~70μm之間,距離D2的較佳的範 圍介於10μm~35μm之間。當第一延伸部131的寬度是漸變時,係以最大寬度定義為W1且計算上述之比值R1。 In this embodiment, the width W1 of the first extension portion 131 is between 3 μm and 50 μm, preferably between 10 μm and 20 μm, and the width W2 of the second extension portion 132 is between 2 μm and 33 μm, preferably between 5 μm and 10 μm. There is a ratio R1 (= D1 / W1 ) between the distance D1 and the width W1 , and there is a ratio R2 (= D2 / W2 ) between the distance D2 and the width W2 . The ranges of R1 and R2 are 2≦R1≦3.5 and 2≦R2≦3.5, respectively. Therefore, the preferred range of the distance D1 is between 20 μm and 70 μm, and the distance D2 is between 20 μm and 70 μm. The preferred range of 2 is between 10 μm and 35 μm. When the width of the first extension portion 131 is gradual, the maximum width is defined as W1 and the above ratio R1 is calculated.
第4圖繪示根據另一實施例揭露之發光元件200之上視圖,發光元件200類似發光元件100,且相同或相似的結構可參考前述,於此將不再撰述。發光元件200與發光元件100差異在於電流通道區140b中區域140c’分佈不同,亦即發光元件200的電流通道140c與發光元件100的電流通道140c分佈不同。在發光元件200中,電流通道區140b的密度係從第一側1031往第二側1032的方向漸增。詳言之,發光元件200的電流通道區140b包含一第一區域b1與第二區域b2,第一區域b1比第二區域b2較靠近電極部171,第一區域b1中的單位面積中的區域140c’數量小於第二區域b2中的單位面積中的區域140c’數量。換句話說,第一區域b1中的區域140c’的密度(數量/面積)小於第二區域b2中的區域140c’的密度,也就是第一區域b1中電流通道140c的密度小於第二區域b2中電流通道140c的密度,因此相同的面積下,第一區域b1中第一接觸層140與第一窗口層111接觸的總和面積小於第二區域b2中第一接觸層140與第一窗口層111接觸的總和面積,如此,電流通過第二區域b2中第一接觸層140與第一窗口層111介面的總接觸電阻小於通過第一區域b1中第一接觸層140與第一窗口層111介面的總接觸電阻,亦即電流較容易通過第二區域b2中第一接觸層140與第一窗口層111介面,藉此驅使原本要通過第一區域b1中電流通道140c的電流往第二區域b2中電流通道140c流動,以使發光元件200中的電流散佈更均勻。 FIG. 4 shows a top view of a light-emitting device 200 according to another embodiment. The light-emitting device 200 is similar to the light-emitting device 100, and the same or similar structures can be referred to above, and will not be described again here. The light-emitting device 200 is different from the light-emitting device 100 in that the distribution of the region 140c' in the current channel region 140b is different, that is, the distribution of the current channel 140c of the light-emitting device 200 is different from that of the current channel 140c of the light-emitting device 100. In the light-emitting device 200, the density of the current channel region 140b increases gradually from the first side 1031 to the second side 1032. In detail, the current channel region 140b of the light-emitting element 200 includes a first region b1 and a second region b2. The first region b1 is closer to the electrode portion 171 than the second region b2. The number of regions 140c' per unit area in the first region b1 is smaller than the number of regions 140c' per unit area in the second region b2. In other words, the density (number/area) of the region 140c' in the first region b1 is smaller than the density of the region 140c' in the second region b2, that is, the density of the current channel 140c in the first region b1 is smaller than the density of the current channel 140c in the second region b2. Therefore, under the same area, the total contact area of the first contact layer 140 and the first window layer 111 in the first region b1 is smaller than the total contact area of the first contact layer 140 and the first window layer 111 in the second region b2. In this way, the current The total contact resistance through the interface between the first contact layer 140 and the first window layer 111 in the second region b2 is smaller than the total contact resistance through the interface between the first contact layer 140 and the first window layer 111 in the first region b1, that is, the current is easier to pass through the interface between the first contact layer 140 and the first window layer 111 in the second region b2, thereby driving the current that originally needs to pass through the current channel 140c in the first region b1 to flow to the current channel 140c in the second region b2, so that the current distribution in the light-emitting element 200 is more uniform.
第5A圖繪示根據另一實施例之發光元件300之上視圖,第5B圖繪示第5A圖中區域II的放大圖。發光元件300類似發光元件100,且相同或相似的結構可參考前述,於此將不再撰述。發光元件300與發光元件100的差異在於電流通 道區140b與第一延伸部131之間最短的距離不同,亦即發光元件300中電流通道140c與第一延伸部131之間最短的距離不同於發光元件100的電流通道140c與第一延伸部131之間的最短距離。詳敘如下。如第5B圖所示,發光元件300的包含複數個電流通道區140b1、140b2、140b3。電流通道區140b1、電流通道區140b2以及電流通道區140b3分別與第一延伸部131之線段1311、線段1312及線段1313間最近的距離分別為一距離D3、一距離D4及一距離D5,距離D3大於距離D4,距離D4大於距離D5。在本實施例中,線段1311離電極部171最近,線段1312次之,線段1313離電極部171最遠。在第一延伸部131上,離電極部171越近電流密度越高,離電極部171越遠電流密度越低,因此線段1311的電流密度最高,線段1312次之,線段1313最低。類似第3圖,藉由距離D3大於距離D4,距離D4大於距離D5的設計,可以使得在線段1311跟電流通道區140b1之間、線段1312跟電流通道區140b2之間以及線段1313跟電流通道140b3之間的電流密度接近,達到均勻分散電流的目的。距離D3較佳的範圍介於80μm~130μm之間,距離D4較佳的範圍介於50μm~100μm之間,距離D5較佳的範圍介於20μm~70μm之間。 FIG. 5A shows a top view of a light-emitting element 300 according to another embodiment, and FIG. 5B shows an enlarged view of region II in FIG. 5A. The light-emitting element 300 is similar to the light-emitting element 100, and the same or similar structures can be referred to above, and will not be described again here. The difference between the light-emitting element 300 and the light-emitting element 100 is that the shortest distance between the current channel region 140b and the first extension portion 131 is different, that is, the shortest distance between the current channel 140c and the first extension portion 131 in the light-emitting element 300 is different from the shortest distance between the current channel 140c and the first extension portion 131 in the light-emitting element 100. The details are as follows. As shown in FIG. 5B, the light-emitting element 300 includes a plurality of current channel regions 140b1, 140b2, and 140b3. The shortest distances between the current channel region 140b1, the current channel region 140b2, and the current channel region 140b3 and the line segment 1311, the line segment 1312, and the line segment 1313 of the first extension portion 131 are respectively a distance D 3 , a distance D 4 , and a distance D 5 , wherein the distance D 3 is greater than the distance D 4 , and the distance D 4 is greater than the distance D 5. In this embodiment, the line segment 1311 is closest to the electrode portion 171, the line segment 1312 is next, and the line segment 1313 is farthest from the electrode portion 171. On the first extension portion 131, the closer to the electrode portion 171, the higher the current density is, and the farther from the electrode portion 171, the lower the current density is, so the current density of the line segment 1311 is the highest, the line segment 1312 is the second, and the line segment 1313 is the lowest. Similar to FIG. 3, by designing that the distance D3 is greater than the distance D4 , and the distance D4 is greater than the distance D5 , the current density between the line segment 1311 and the current channel area 140b1, between the line segment 1312 and the current channel area 140b2, and between the line segment 1313 and the current channel 140b3 can be close, thereby achieving the purpose of evenly dispersing the current. The optimal range of distance D 3 is between 80μm and 130μm, the optimal range of distance D 4 is between 50μm and 100μm, and the optimal range of distance D 5 is between 20μm and 70μm.
第6A圖繪示根據另一實施例之發光元件400之上視圖,第6B圖繪示第6A圖中區域III的放大圖。發光元件400類似發光元件200,相同或相似的結構可參考前述,於此將不再撰述。發光元件400與發光元件200的差異在於電流通道區140b中區域140c’分佈不同,亦即發光元件400的電流通道140c與發光元件200的電流通道140c分佈不同。此外,電流通道區140b為非長方形為一六邊形。詳言之,發光元件400的電流通道區140b包含第二區域b2與第三區域b3,第二區域b2可參考前面段落之描述,且第三區域b3描述如下。 FIG. 6A shows a top view of a light-emitting element 400 according to another embodiment, and FIG. 6B shows an enlarged view of region III in FIG. 6A. The light-emitting element 400 is similar to the light-emitting element 200, and the same or similar structure can be referred to above, and will not be described here. The difference between the light-emitting element 400 and the light-emitting element 200 is that the distribution of the region 140c' in the current channel region 140b is different, that is, the distribution of the current channel 140c of the light-emitting element 400 is different from that of the current channel 140c of the light-emitting element 200. In addition, the current channel region 140b is not a rectangle but a hexagon. In detail, the current channel region 140b of the light-emitting element 400 includes a second region b2 and a third region b3. The second region b2 can refer to the description in the previous paragraph, and the third region b3 is described as follows.
如第6B圖所示,第三區域b3的形狀為一等腰梯型具有上底b61,下底b62,及兩個具有相同長度的腰b6’及b6”連接上底b61及下底b62。離第一延伸部131最近的等腰梯型的端點P11、P12與鄰近第二延伸部132之間具有一距離D6;離第一延伸部131最遠的等腰梯型的端點P21、P22與相鄰的第二延伸部132之間具有一距離D7,距離D6大於距離D7。區域140c’與其最靠近之第二延伸部132彼此間的距離係從下底b62至上底b61的方向漸減。詳言之,從鄰近下底b62處至鄰近上底b61處,腰部b6’或腰部b6”與第二延伸部132之間的距離從距離D6漸減至距離D7。距離D7較佳的範圍介於10μm~35μm之間,距離D6較佳的範圍介於35μm~100μm之間。第二延伸部132上離第一延伸部131越近的部分電流密度越高,亦即第二延伸部132上靠近下底b62處的電流密度高於靠近上底b61處的電流密度。類似第3圖,藉由距離D6漸減至距離D7的設計,可以使得第三區域b3中從端點P11到端點P21跟鄰近(最靠近)的第二延伸部132之間的電流密度接近,或者從端點P12到端點P22跟鄰近的第二延伸部132之間的電流密度接近,達到均勻分散電流的目的。 As shown in FIG. 6B , the shape of the third region b3 is an isosceles trapezoid having an upper base b61, a lower base b62, and two waists b6′ and b6″ having the same length connecting the upper base b61 and the lower base b62. There is a distance D 6 between the end points P 11 and P 12 of the isosceles trapezoid closest to the first extension portion 131 and the adjacent second extension portion 132; there is a distance D 7 between the end points P 21 and P 22 of the isosceles trapezoid farthest from the first extension portion 131 and the adjacent second extension portion 132, and the distance D 6 is greater than the distance D 7. . The distance between the region 140c' and the second extension portion 132 closest to it gradually decreases from the lower bottom b62 to the upper bottom b61. In detail, from the vicinity of the lower bottom b62 to the vicinity of the upper bottom b61, the distance between the waist b6' or the waist b6" and the second extension portion 132 gradually decreases from the distance D6 to the distance D7 . The preferred range of distance D7 is between 10μm and 35μm, and the preferred range of distance D6 is between 35μm and 100μm. The closer the part of the second extension portion 132 is to the first extension portion 131, the higher the current density, that is, the current density of the second extension portion 132 close to the lower bottom b62 is higher than the current density close to the upper bottom b61. Similar to Figure 3, by designing that the distance D6 gradually decreases to the distance D7 , the current density between the end point P11 to the end point P21 and the adjacent (closest) second extension portion 132 in the third area b3 can be made close, or the current density between the end point P12 to the end point P22 and the adjacent second extension portion 132 can be made close, thereby achieving the purpose of uniformly dispersing the current.
第7圖繪示根據另一實施例之發光元件500之上視圖。發光元件500類似發光元件200,相同或相似的結構可參考前述,於此將不再撰述。發光元件500與發光元件200差異在於第二延伸部132的寬度漸變。詳言之,第二延伸部132具有一第一端132’靠近第一側1031及一第二端132”靠近第二側1032。第一端132’較第二端132”靠近第一延伸部131,且第二延伸部132的寬度係從第一端132’往第二端132”的方向漸減。第二端132”是第二延伸部132的末端,電流從第一端132’散佈到第二端132”時,電流會逐漸降低,因此靠近第二端132”的電流不需要與靠近第一端132’的電流流過相同寬度的電極,即可維持相同的電流密度而不會 產生電流聚集的現象,此外,如前所述,由於第二區域b2的密度大於第一區域b1,電流被驅使往第二區域b2流動,進而更使電流均勻分散。 FIG. 7 shows a top view of a light-emitting element 500 according to another embodiment. The light-emitting element 500 is similar to the light-emitting element 200. The same or similar structures can be referred to above and will not be described again here. The light-emitting element 500 differs from the light-emitting element 200 in that the width of the second extension portion 132 gradually changes. Specifically, the second extension portion 132 has a first end 132' close to the first side 1031 and a second end 132" close to the second side 1032. The first end 132' is closer to the first extension portion 131 than the second end 132", and the width of the second extension portion 132 gradually decreases from the first end 132' to the second end 132". The second end 132" is the end of the second extension portion 132, and the current flows from the first end 132 to the second end 132. ’ is dispersed to the second end 132”, the current will gradually decrease, so the current near the second end 132” does not need to flow through the same width electrode as the current near the first end 132’, and the same current density can be maintained without causing the phenomenon of current concentration. In addition, as mentioned above, since the density of the second area b2 is greater than that of the first area b1, the current is driven to flow to the second area b2, thereby making the current more evenly dispersed.
在另一實施例中,發光元件500的第二延伸部132的寬度係從第一端132’往第二端132”的方向漸增(圖未示),使第二延伸部132上電流更容易從第一端132’往第二端132”擴散,達到均勻分散電流的目的。 In another embodiment, the width of the second extension portion 132 of the light-emitting element 500 gradually increases from the first end 132' to the second end 132" (not shown), so that the current on the second extension portion 132 can be more easily diffused from the first end 132' to the second end 132", thereby achieving the purpose of evenly dispersing the current.
第8圖繪示根據另一實施例之發光元件600之上視圖。發光元件600類似發光元件200,相同或相似的結構可參考前述,於此將不再撰述。發光元件600包含一第一區域b1和第四區域b4。第一區域b1可參考前面段落之描述。第一區域b1與第四區域b4之差異在於區域140c’(140c”)的面積,且第四區域b4中的每一個區域140c”的面積大於第一區域b1中的每一個區域140c’的面積以增加電流散佈之均勻性。詳言之,在相同的面積以及第一區域b1與第四區域b4中的區域(140c’、140c”)數目於此相同面積下的是相同之條件下,當區域140c”的面積大於區域140c’(意即區域140c’彼此間的距離大於區域140c”彼此間的距離)時''',第四區域b4中第一接觸層140與第一窗口層111接觸的總和面積會大於第一區域b1下方中第一接觸層140與第一窗口層111接觸的總和面積,使得第四區域b4與第一區域b1中,對應下方的電流通過第四區域b4中第一接觸層140與第一窗口層111介面的總接觸電阻小於通過第一區域b1中第一接觸層140與第一窗口層111介面的總接觸電阻,藉此驅使原本要通過第一區域b1中電流通道140c的電流往第四區域b4中電流通道140c流動,以使發光元件600中的電流散佈更均勻。 FIG. 8 shows a top view of a light-emitting element 600 according to another embodiment. The light-emitting element 600 is similar to the light-emitting element 200, and the same or similar structures can be referred to above and will not be described again here. The light-emitting element 600 includes a first region b1 and a fourth region b4. The first region b1 can be referred to the description in the previous paragraph. The difference between the first region b1 and the fourth region b4 lies in the area of the region 140c’ (140c”), and the area of each region 140c” in the fourth region b4 is larger than the area of each region 140c’ in the first region b1 to increase the uniformity of current distribution. Specifically, under the same area and the same number of regions (140c', 140c") in the first region b1 and the fourth region b4, when the area of region 140c' is larger than that of region 140c' (i.e., the distance between regions 140c' is larger than the distance between regions 140c'), the total area of the first contact layer 140 and the first window layer 111 in the fourth region b4 will be larger than the total area of the first contact layer 140 and the first window layer 111 in the first region b1. The total contact area of the fourth region b4 and the first region b1, the total contact resistance of the current corresponding to the bottom through the first contact layer 140 and the first window layer 111 in the fourth region b4 is less than the total contact resistance through the first contact layer 140 and the first window layer 111 in the first region b1, thereby driving the current that originally needs to pass through the current channel 140c in the first region b1 to flow to the current channel 140c in the fourth region b4, so that the current distribution in the light-emitting element 600 is more uniform.
在另一實施例中,發光元件(圖未示)與前述發光元件100、200、300、400、500、600差異處在於連接兩個電極部171的第一延伸部131的寬度W1(參考第1B圖)是漸變的。詳言之,第一延伸部131的寬度W1自電極部171往第 三側1033或第四側1034方向漸減。在另一實施例,第一延伸部131的寬度W1自電極部171往第三側1033或第四側1034方向漸增。 In another embodiment, the light-emitting element (not shown) differs from the aforementioned light-emitting elements 100, 200, 300, 400, 500, 600 in that the width W1 of the first extension portion 131 connecting the two electrode portions 171 (refer to FIG. 1B ) is gradually changed. Specifically, the width W1 of the first extension portion 131 gradually decreases from the electrode portion 171 toward the third side 1033 or the fourth side 1034. In another embodiment, the width W1 of the first extension portion 131 gradually increases from the electrode portion 171 toward the third side 1033 or the fourth side 1034.
第9A圖繪示根據另一實施例之發光元件700之上視圖,第9B圖繪示第9A圖中發光元件700的區域IV之局部放大圖。發光元件700類似發光元件100其相同或相似的結構可參考前述,於此將不再撰述。 FIG. 9A shows a top view of a light-emitting element 700 according to another embodiment, and FIG. 9B shows a partial enlarged view of region IV of the light-emitting element 700 in FIG. 9A. The light-emitting element 700 is similar to the light-emitting element 100, and its same or similar structure can be referred to above, and will not be described here.
在本實施例中,上電極包含電極部171及延伸電極13。電極部171包含第一電極部171a以及第二電極部171b。於發光元件700的複數個側壁中,第一電極部171a最靠近第一側1031,且第二電極部171b最靠近第二側1032。延伸電極13可包含二條第一延伸部131a、131b及複數條第二延伸部132。在本實施例中,第一延伸部131a沿第一側1031延伸且與第一電極部171a相連接,第一延伸部131b沿第二側1032延伸且與第二電極部171b相連接。各第二延伸部132可與第一延伸部131a及第一延伸部131b相連接,或者與第一電極部171a及第二電極部171b相連接。各第二延伸部132實質上可與第三側1033或第四側1034平行。 In the present embodiment, the upper electrode includes an electrode portion 171 and an extension electrode 13. The electrode portion 171 includes a first electrode portion 171a and a second electrode portion 171b. Among the plurality of sidewalls of the light-emitting element 700, the first electrode portion 171a is closest to the first side 1031, and the second electrode portion 171b is closest to the second side 1032. The extension electrode 13 may include two first extension portions 131a, 131b and a plurality of second extension portions 132. In the present embodiment, the first extension portion 131a extends along the first side 1031 and is connected to the first electrode portion 171a, and the first extension portion 131b extends along the second side 1032 and is connected to the second electrode portion 171b. Each second extension portion 132 may be connected to the first extension portion 131a and the first extension portion 131b, or connected to the first electrode portion 171a and the second electrode portion 171b. Each second extension portion 132 may be substantially parallel to the third side 1033 or the fourth side 1034.
如第9A圖、9B圖所示,第一電極部171a以及第二電極部171b具有一寬度W0,第一延伸部131a及第一延伸部131b具有一寬度W1,第二延伸部132具有一寬度W2。在本實施例中,寬度W1介於寬度W0與寬度W2之間,且寬度W1大於寬度W2。 As shown in FIG. 9A and FIG. 9B , the first electrode portion 171a and the second electrode portion 171b have a width W 0 , the first extension portion 131a and the first extension portion 131b have a width W 1 , and the second extension portion 132 has a width W 2 . In this embodiment, the width W 1 is between the width W 0 and the width W 2 , and the width W 1 is greater than the width W 2 .
如第9A~9C圖所示,第二接觸層190較佳為在垂直於發光疊層120的方向(X)上不與電流通道區140b重疊。如第9B圖之上視圖所示,第二接觸層190可具有一端部190e。於本實施例中,端部190e為第二接觸層190與第一延伸部131交接處。端部190e與電流通道區140b之間具有一個最短的距離s1,電流通道區140b與第二接觸層190之間具有一個最短的距離s2。於一實施例中,s1/s2的範圍 可大於0且小於5,較佳為大於1且小於3。第一延伸部131與電流通道區140b之間具有一個最短的距離D1,較佳為距離D1大於距離s2。於本實施例中,第二接觸層190可具有一寬度W4,且較佳為寬度W4小於第二延伸部132的寬度W2。 As shown in Figures 9A to 9C, the second contact layer 190 preferably does not overlap with the current channel region 140b in the direction (X) perpendicular to the light-emitting stack 120. As shown in the upper view of Figure 9B, the second contact layer 190 may have an end 190e. In this embodiment, the end 190e is the intersection of the second contact layer 190 and the first extension portion 131. There is a shortest distance s1 between the end 190e and the current channel region 140b, and there is a shortest distance s2 between the current channel region 140b and the second contact layer 190. In one embodiment, the range of s1/s2 can be greater than 0 and less than 5, preferably greater than 1 and less than 3. There is a shortest distance D 1 between the first extension portion 131 and the current channel region 140 b , and preferably the distance D 1 is greater than the distance s2 . In this embodiment, the second contact layer 190 may have a width W 4 , and preferably the width W 4 is smaller than the width W 2 of the second extension portion 132 .
第9C圖繪示第9B圖中沿著B-B’線之剖面圖,第9D圖繪示第9B圖中沿著C-C’線之剖面圖。如第9C圖所示,第二延伸部132可覆蓋於第二接觸層190的側表面190a’以及上表面190s,使第二接觸層190被第二延伸部132包覆而不露出。 FIG. 9C shows a cross-sectional view along the B-B’ line in FIG. 9B, and FIG. 9D shows a cross-sectional view along the C-C’ line in FIG. 9B. As shown in FIG. 9C, the second extension portion 132 can cover the side surface 190a’ and the upper surface 190s of the second contact layer 190, so that the second contact layer 190 is covered by the second extension portion 132 and is not exposed.
如第9C圖及第9D圖所示,發光元件700不具有第一窗戶層111。於本實施例中,絕緣層145鄰接於第一半導體層121,且在第一半導體層121下方進一步包含接觸結構130。如第9C圖所示,接觸結構130可鄰接於第一半導體層121,且位於絕緣層145的複數個孔洞140e中。接觸結構130的材料包含III-V族半導體材料。一實施例中,III-V族半導體材料可為二元III-V族半導體材料,例如GaAs或GaP。接觸結構130包含摻雜物如鋅(Zn)、碳(C)或鎂(Mg)等,且可與第一半導體層121具有相同的導電型態,例如為p型。一實施例中,接觸結構130的厚度大於絕緣層145的厚度。如第9C圖所示,第一接觸層140覆蓋於絕緣層145之側壁及露出於孔洞140e的接觸結構130上。於本實施例中,藉由設置接觸結構130而形成複數個電流通道140c讓電流通過。如第9C圖中所示,在垂直方向(X方向)上第二接觸層190與接觸結構130之間具有一距離H1。於一實施例中,距離s2大於距離H1,且較佳為距離s2大於距離H1的2倍(s2>2H1)。 As shown in FIG. 9C and FIG. 9D , the light emitting element 700 does not have the first window layer 111. In this embodiment, the insulating layer 145 is adjacent to the first semiconductor layer 121, and further includes a contact structure 130 below the first semiconductor layer 121. As shown in FIG. 9C , the contact structure 130 may be adjacent to the first semiconductor layer 121 and located in a plurality of holes 140e of the insulating layer 145. The material of the contact structure 130 includes a III-V semiconductor material. In one embodiment, the III-V semiconductor material may be a binary III-V semiconductor material, such as GaAs or GaP. The contact structure 130 includes dopants such as zinc (Zn), carbon (C) or magnesium (Mg), and may have the same conductivity type as the first semiconductor layer 121, for example, p-type. In one embodiment, the thickness of the contact structure 130 is greater than the thickness of the insulating layer 145. As shown in FIG. 9C , the first contact layer 140 covers the sidewalls of the insulating layer 145 and the contact structure 130 exposed in the hole 140e. In this embodiment, a plurality of current channels 140c are formed by setting the contact structure 130 to allow current to flow. As shown in FIG. 9C , there is a distance H1 between the second contact layer 190 and the contact structure 130 in the vertical direction (X direction). In one embodiment, the distance s2 is greater than the distance H1, and preferably the distance s2 is greater than twice the distance H1 (s2>2H1).
於本實施例中,第二接觸層190僅位於第二延伸部132下方。如第9B圖及第9D圖所示,於垂直方向(X方向)上第二接觸層190不與電極部171及第一 延伸部131重疊。由於第二接觸層190僅位於第二延伸部132下方,可減少主動層122所產生的光被第一延伸部131吸收的機會,提升發光效率。 In this embodiment, the second contact layer 190 is only located below the second extension portion 132. As shown in FIG. 9B and FIG. 9D, the second contact layer 190 does not overlap with the electrode portion 171 and the first extension portion 131 in the vertical direction (X direction). Since the second contact layer 190 is only located below the second extension portion 132, the chance of light generated by the active layer 122 being absorbed by the first extension portion 131 can be reduced, thereby improving the light emitting efficiency.
第9E圖及第9F圖分別繪示了其他實施例的發光元件之局部放大圖。於一實施例中,第二接觸層190可僅位於一部份的第二延伸部132下方而不與第一延伸部131相連接。如第9E圖所示,第二接觸層190的端部190e與第一延伸部131之間還具有一距離s3。距離s3可在10μm至50μm的範圍內,例如約20μm、25μm、30μm、35μm或40μm。於一些實施例中,藉由使第二接觸層190與第一延伸部131之間隔開一距離,可進一步減少主動層122所產生的光被第一延伸部131吸收的機會,以提升發光元件之發光效率。 FIG. 9E and FIG. 9F respectively show partial enlarged views of the light emitting element of other embodiments. In one embodiment, the second contact layer 190 may be located only below a portion of the second extension portion 132 without being connected to the first extension portion 131. As shown in FIG. 9E, there is also a distance s3 between the end 190e of the second contact layer 190 and the first extension portion 131. The distance s3 may be in the range of 10 μm to 50 μm, for example, about 20 μm, 25 μm, 30 μm, 35 μm or 40 μm. In some embodiments, by separating the second contact layer 190 from the first extension portion 131 by a distance, the chance of light generated by the active layer 122 being absorbed by the first extension portion 131 can be further reduced, thereby improving the light-emitting efficiency of the light-emitting element.
於另一實施例中,第二接觸層190可延伸設置於一部分的第一延伸部131下方。如第9F圖所示,第二接觸層190可具有第一部分190a及第二部分190b,第一部分190a設置於第二延伸部132下方,第二部分190b設置於第一延伸部131靠近電流通道區140b一側的邊緣下方。第二部分190b可與第一部分190a相連接。在垂直方向(X方向)上,第二部分190b與第一延伸部131實質上有重疊。詳言之,在垂直方向(X方向)上第二部分190b的一側邊與第一延伸部131靠近電流通道區140b的側邊可實質上重疊。於上視圖中,第二部分190b面積較佳為佔第一延伸部131面積的1/2以下,更佳為1/3以下。第二部分190b較佳為在垂直方向(X方向)上與電極部171不重疊。藉由將第二接觸層190延伸設置於一部分的第一延伸部131下方,有利於改善第一延伸部131與下方第二窗口層112(參考第9D圖)之間的接觸電阻,可進一步降低發光元件的順向電壓值。 In another embodiment, the second contact layer 190 may be extended and disposed below a portion of the first extension portion 131. As shown in FIG. 9F, the second contact layer 190 may have a first portion 190a and a second portion 190b, the first portion 190a being disposed below the second extension portion 132, and the second portion 190b being disposed below an edge of the first extension portion 131 close to a side of the current channel region 140b. The second portion 190b may be connected to the first portion 190a. In the vertical direction (X direction), the second portion 190b substantially overlaps with the first extension portion 131. Specifically, in the vertical direction (X direction), a side of the second portion 190b substantially overlaps with a side of the first extension portion 131 close to the current channel region 140b. In the top view, the area of the second portion 190b is preferably less than 1/2 of the area of the first extension portion 131, and more preferably less than 1/3. The second portion 190b is preferably not overlapped with the electrode portion 171 in the vertical direction (X direction). By extending the second contact layer 190 below a portion of the first extension portion 131, it is beneficial to improve the contact resistance between the first extension portion 131 and the second window layer 112 below (refer to Figure 9D), which can further reduce the forward voltage value of the light-emitting element.
第9G圖繪示根據另一實施例之發光元件800之上視圖。發光元件800與發光元件700之間主要差異在於電極部171的配置方式,其他相同或相似的 結構可參考前述,於此將不再撰述。如第9G圖所示,於本實施例中,電極部171的第一電極部171a以及第二電極部171b在水平方向(Y方向)上不重疊。此外,於本實施例中,第一電極部171a及第二電極部171b分別與不同條第二延伸部132相連接,但不限於此。於另一實施例中,第一電極部171a及第二電極部171b也可與同一條第二延伸部132相連接,同時在水平方向(Y方向)上不重疊。於一些實施例中,藉由使第一電極部171a及第二電極部171b在水平方向(Y方向)上不重疊,可使電流分佈更均勻,有利於元件發光均勻性的改善。 FIG. 9G shows a top view of a light-emitting element 800 according to another embodiment. The main difference between the light-emitting element 800 and the light-emitting element 700 is the configuration of the electrode portion 171. Other identical or similar structures can be referred to above and will not be described here. As shown in FIG. 9G, in this embodiment, the first electrode portion 171a and the second electrode portion 171b of the electrode portion 171 do not overlap in the horizontal direction (Y direction). In addition, in this embodiment, the first electrode portion 171a and the second electrode portion 171b are respectively connected to different second extension portions 132, but are not limited thereto. In another embodiment, the first electrode portion 171a and the second electrode portion 171b may also be connected to the same second extension portion 132, and do not overlap in the horizontal direction (Y direction). In some embodiments, by making the first electrode portion 171a and the second electrode portion 171b non-overlapping in the horizontal direction (Y direction), the current distribution can be made more uniform, which is beneficial to improving the uniformity of the light emission of the device.
第10圖為本揭露內容一實施例之半導體元件的封裝結構示意圖。封裝結構包含半導體元件60、封裝基板61、載體63、接合線65、接觸結構66以及封裝材料層68。封裝基板61可包含陶瓷或玻璃材料。封裝基板61中具有多個通孔62。通孔62中可填充有導電性材料如金屬等而有助於導電或/且散熱。載體63位於封裝基板61一側的表面上,且亦包含導電性材料,如金屬。接觸結構66位於封裝基板61另一側的表面上。在本實施例中,接觸結構66包含第一接觸墊66a以及第二接觸墊66b,且第一接觸墊66a以及第二接觸墊66b可藉由通孔62而與載體63電性連接。在一實施例中,接觸結構66可進一步包含散熱墊(thermal pad)(未繪示),例如位於第一接觸墊66a與第二接觸墊66b之間。半導體元件60位於載體63上,且可為本揭露內容任一實施例所述的發光元件。在本實施例中,載體63包含第一部分63a及第二部分63b,半導體元件60藉由接合線65而與載體63的第二部分63b電性連接。接合線65的材質可包含金屬,例如金、銀、銅、鋁或至少包含上述任一元素之合金。封裝材料層68覆蓋於半導體元件60上,具有保護半導體元件60之效果。具體來說,封裝材料層68可包含樹脂材料如環氧樹脂(epoxy)、矽氧 烷樹脂(silicone)等。封裝材料層68更可包含複數個波長轉換粒子(圖未示)以轉換半導體元件60所發出的第一光為一第二光。第二光的波長大於第一光的波長。 FIG. 10 is a schematic diagram of a semiconductor device package structure of an embodiment of the present disclosure. The package structure includes a semiconductor device 60, a package substrate 61, a carrier 63, a bonding wire 65, a contact structure 66, and a package material layer 68. The package substrate 61 may include a ceramic or glass material. The package substrate 61 has a plurality of through holes 62. The through holes 62 may be filled with conductive materials such as metals to facilitate electrical conduction and/or heat dissipation. The carrier 63 is located on the surface of one side of the package substrate 61 and also includes conductive materials such as metals. The contact structure 66 is located on the surface of the other side of the package substrate 61. In the present embodiment, the contact structure 66 includes a first contact pad 66a and a second contact pad 66b, and the first contact pad 66a and the second contact pad 66b can be electrically connected to the carrier 63 through the through hole 62. In one embodiment, the contact structure 66 can further include a thermal pad (not shown), for example, located between the first contact pad 66a and the second contact pad 66b. The semiconductor element 60 is located on the carrier 63 and can be a light-emitting element described in any embodiment of the present disclosure. In the present embodiment, the carrier 63 includes a first portion 63a and a second portion 63b, and the semiconductor element 60 is electrically connected to the second portion 63b of the carrier 63 through a bonding wire 65. The material of the bonding wire 65 may include metal, such as gold, silver, copper, aluminum, or an alloy containing at least one of the above elements. The packaging material layer 68 covers the semiconductor element 60 and has the effect of protecting the semiconductor element 60. Specifically, the packaging material layer 68 may include resin materials such as epoxy, silicone, etc. The packaging material layer 68 may further include a plurality of wavelength conversion particles (not shown) to convert the first light emitted by the semiconductor element 60 into a second light. The wavelength of the second light is greater than the wavelength of the first light.
本揭露之發光元件或封裝結構可應用於照明、醫療、顯示、通訊、感測、電源系統等領域的產品,例如燈具、監視器、手機、平板電腦、車用儀表板、電視、電腦、穿戴設備(如手錶、手環、項鍊等)、交通號誌、戶外顯示器、醫療器材等。 The light-emitting element or packaging structure disclosed herein can be applied to products in the fields of lighting, medical treatment, display, communication, sensing, power supply system, etc., such as lamps, monitors, mobile phones, tablet computers, car dashboards, televisions, computers, wearable devices (such as watches, bracelets, necklaces, etc.), traffic signs, outdoor displays, medical equipment, etc.
第11圖繪示一光電系統4b示意圖。光電系統4b包含一底板49、複數個畫素40’、以及控制模組49’。複數個畫素40’位於底板49上且與底板49電性連接。一控制模組49’電性連接底板49以控制複數個畫素40’。複數個畫素40’之一包含一個或多個發光元件40b,發光元件40b係包含前述任一實施例所揭露之發光元件100、200、300、400、500、600、700、800,且每一個發光元件40b可被控制模組49’單獨控制。在一實施例中,每一個畫素40’之中包含一用以發出紅光的發光單元、一用以發出藍光的發光單元以及一用以發出綠光的發光單元,且至少上述之一發光單元包含發光元件40b。在一實施例中,底板49上的多個發光元件40b可被放置成一具有行/列之矩陣,或具有非對稱的多邊形的外圍輪廓。在一實施例中,較佳地,兩鄰近之畫素40’之間的距離d在100μm~5mm之間,或兩鄰近之發光元件40b之間的距離d’在100μm~500μm之間。 FIG. 11 is a schematic diagram of an optoelectronic system 4b. The optoelectronic system 4b includes a base plate 49, a plurality of pixels 40', and a control module 49'. The plurality of pixels 40' are located on the base plate 49 and electrically connected to the base plate 49. A control module 49' is electrically connected to the base plate 49 to control the plurality of pixels 40'. One of the plurality of pixels 40' includes one or more light-emitting elements 40b, and the light-emitting element 40b includes the light-emitting element 100, 200, 300, 400, 500, 600, 700, 800 disclosed in any of the aforementioned embodiments, and each light-emitting element 40b can be individually controlled by the control module 49'. In one embodiment, each pixel 40' includes a light-emitting unit for emitting red light, a light-emitting unit for emitting blue light, and a light-emitting unit for emitting green light, and at least one of the light-emitting units includes a light-emitting element 40b. In one embodiment, the plurality of light-emitting elements 40b on the base plate 49 can be placed into a matrix with rows/columns, or have an asymmetric polygonal outer contour. In one embodiment, preferably, the distance d between two adjacent pixels 40' is between 100μm and 5mm, or the distance d' between two adjacent light-emitting elements 40b is between 100μm and 500μm.
應當注意,上述提出的各種實施例是用於說明本發明,但並不限制本發明的範圍。各實施例中類似或相同的元件或在不同實施例中具有相同圖式符號的元件可具有相同的化學或物理特性。此外,不同實施例所示的元件可以在適當的情況下彼此組合或替換,在一個實施例的元件連接關係也可應用於另 一個實施例中。上述各實施例可進行任何可能的修改而不脫離本發明的技術原理與精神,且均為本發明所涵蓋,並為後述之申請專利範圍所保護。 It should be noted that the various embodiments proposed above are used to illustrate the present invention, but do not limit the scope of the present invention. Similar or identical elements in each embodiment or elements with the same schematic symbols in different embodiments may have the same chemical or physical properties. In addition, the elements shown in different embodiments may be combined or replaced with each other under appropriate circumstances, and the element connection relationship in one embodiment may also be applied to another embodiment. The above embodiments may be modified in any possible way without departing from the technical principles and spirit of the present invention, and are all covered by the present invention and protected by the scope of the patent application described below.
100:發光元件 100: Light-emitting element
1S:出光面 1S: Light-emitting surface
103:基板 103: Substrate
1031:第一側 1031: First side
1032:第二側 1032: Second side
1033:第三側 1033: Third side
1034:第四側 1034: Fourth side
13:延伸電極 13: Extension electrode
131:第一延伸部 131: First extension part
132:第二延伸部 132: Second extension
140b:電流通道區 140b: Current channel area
140c’:區域 140c’: Area
171:電極部 171:Electrode part
L1~L4:邊長 L 1 ~L 4 : Side length
I:區域 I: Region
Claims (10)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW108109771 | 2019-03-21 | ||
TW108109771 | 2019-03-21 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202341525A TW202341525A (en) | 2023-10-16 |
TWI849988B true TWI849988B (en) | 2024-07-21 |
Family
ID=73394598
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW112123070A TWI849988B (en) | 2019-03-21 | 2020-03-19 | Light-emitting element |
TW111123746A TWI809953B (en) | 2019-03-21 | 2020-03-19 | Light-emitting element |
TW109109088A TWI771664B (en) | 2019-03-21 | 2020-03-19 | Light-emitting element |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW111123746A TWI809953B (en) | 2019-03-21 | 2020-03-19 | Light-emitting element |
TW109109088A TWI771664B (en) | 2019-03-21 | 2020-03-19 | Light-emitting element |
Country Status (2)
Country | Link |
---|---|
CN (2) | CN213752741U (en) |
TW (3) | TWI849988B (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050236637A1 (en) * | 2002-05-24 | 2005-10-27 | Lumei Optoelectronics Corporation | High power, high luminous flux light emitting diode and method of making same |
US20110210345A1 (en) * | 2010-04-06 | 2011-09-01 | Lim Woo Sik | Light emitting device, light emitting device package, and lighting system |
TW201314958A (en) * | 2011-08-11 | 2013-04-01 | Showa Denko Kk | Light emitting diode and production method thereof |
TW201427075A (en) * | 2012-11-23 | 2014-07-01 | Iljin Led Co Ltd | Light emitting device with excellent current spreading effect and method of manufacturing the same |
TW201703283A (en) * | 2015-02-17 | 2017-01-16 | 新世紀光電股份有限公司 | Light-emitting diode chip |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8154042B2 (en) * | 2010-04-29 | 2012-04-10 | Koninklijke Philips Electronics N V | Light emitting device with trenches and a top contact |
TWI583019B (en) * | 2015-02-17 | 2017-05-11 | 新世紀光電股份有限公司 | Light emitting diode and manufacturing method thereof |
TWI664746B (en) * | 2015-06-17 | 2019-07-01 | 晶元光電股份有限公司 | Semiconductor light-emitting device |
TWI623116B (en) * | 2016-06-07 | 2018-05-01 | 晶元光電股份有限公司 | Light-Emitting Device |
TWM573517U (en) * | 2018-05-04 | 2019-01-21 | 大陸商廈門三安光電有限公司 | Light emitting diode |
-
2020
- 2020-03-19 CN CN202022462171.XU patent/CN213752741U/en active Active
- 2020-03-19 CN CN202020350358.8U patent/CN211980634U/en active Active
- 2020-03-19 TW TW112123070A patent/TWI849988B/en active
- 2020-03-19 TW TW111123746A patent/TWI809953B/en active
- 2020-03-19 TW TW109109088A patent/TWI771664B/en active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050236637A1 (en) * | 2002-05-24 | 2005-10-27 | Lumei Optoelectronics Corporation | High power, high luminous flux light emitting diode and method of making same |
US20110210345A1 (en) * | 2010-04-06 | 2011-09-01 | Lim Woo Sik | Light emitting device, light emitting device package, and lighting system |
TW201314958A (en) * | 2011-08-11 | 2013-04-01 | Showa Denko Kk | Light emitting diode and production method thereof |
TW201427075A (en) * | 2012-11-23 | 2014-07-01 | Iljin Led Co Ltd | Light emitting device with excellent current spreading effect and method of manufacturing the same |
TW201703283A (en) * | 2015-02-17 | 2017-01-16 | 新世紀光電股份有限公司 | Light-emitting diode chip |
Also Published As
Publication number | Publication date |
---|---|
TWI809953B (en) | 2023-07-21 |
TWI771664B (en) | 2022-07-21 |
TW202341525A (en) | 2023-10-16 |
TW202240934A (en) | 2022-10-16 |
CN211980634U (en) | 2020-11-20 |
TW202036932A (en) | 2020-10-01 |
CN213752741U (en) | 2021-07-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11355550B2 (en) | Optoelectronic device having conductor arrangement structures non-overlapped with heat dissipation pads | |
JP4899825B2 (en) | Semiconductor light emitting device, light emitting device | |
CN107579140A (en) | Light emitting diode | |
TWI625868B (en) | Optoelectronic device and method for manufacturing the same | |
US9601674B2 (en) | Light-emitting device | |
JP5736479B2 (en) | Light emitting device and light emitting device manufacturing method | |
CN105280665B (en) | Photoelectric element and manufacturing method thereof | |
CN108963043B (en) | Light emitting element | |
TWI849988B (en) | Light-emitting element | |
KR20230106132A (en) | Light-emitting device | |
WO2021129405A1 (en) | Semiconductor light-emitting element | |
US20230343896A1 (en) | Semiconductor device | |
CN113659052B (en) | Light emitting diode, light emitting module and display device | |
CN112510131B (en) | Optoelectronic component and method for producing the same | |
KR20160002063A (en) | Optoelectronic device and method for manufacturing the same | |
TW202418617A (en) | Semiconductor light-emitting device |