TWI846241B - High thermal conductive metal substrate and preparation method thereof - Google Patents

High thermal conductive metal substrate and preparation method thereof Download PDF

Info

Publication number
TWI846241B
TWI846241B TW111150172A TW111150172A TWI846241B TW I846241 B TWI846241 B TW I846241B TW 111150172 A TW111150172 A TW 111150172A TW 111150172 A TW111150172 A TW 111150172A TW I846241 B TWI846241 B TW I846241B
Authority
TW
Taiwan
Prior art keywords
conductive adhesive
adhesive layer
resin
thermally conductive
layer
Prior art date
Application number
TW111150172A
Other languages
Chinese (zh)
Other versions
TW202426591A (en
Inventor
李韋志
何家華
林志銘
杜伯賢
李建輝
Original Assignee
亞洲電材股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 亞洲電材股份有限公司 filed Critical 亞洲電材股份有限公司
Priority to TW111150172A priority Critical patent/TWI846241B/en
Priority to CN202310297173.3A priority patent/CN117769109A/en
Application granted granted Critical
Publication of TWI846241B publication Critical patent/TWI846241B/en
Publication of TW202426591A publication Critical patent/TW202426591A/en

Links

Images

Landscapes

  • Laminated Bodies (AREA)

Abstract

Provided is a high thermal conductive metal substrate, including: a first thermal conductive adhesive layer with a thickness of 5 to 100 microns; an insulating layer formed on the first thermal conductive adhesive layer and having a thickness of 1 to 150 microns; a second thermal conductive adhesive layer formed on the insulating layer and having a thickness of 5 to 100 microns, so that the insulating layer is between the first thermal conductive adhesive layer and the second thermal conductive adhesive layer; and a copper foil layer formed on the second thermal conductive adhesive layer and having a thickness of 1 to 105 microns, so that the second thermal conductive adhesive layer is between the insulating layer and the copper foil layer, wherein the insulating layer includes 50 to 95 wt% of a resin with imide structures in the polymer backbone, 0 to 25 wt% of an epoxy resin, 0 to 20 wt% of an inorganic filler and 0 to 10 wt% of a catalyst, based on the total weight of the solid content of the insulating layer.

Description

高導熱金屬基板及其製備方法 High thermal conductivity metal substrate and preparation method thereof

本發明係關於一種具有塗布型高導熱薄膜之金屬基板,尤其係關於一種具有高散熱效率的高導熱金屬基板及其製法。 The present invention relates to a metal substrate with a coated high thermal conductivity film, and more particularly to a high thermal conductivity metal substrate with high heat dissipation efficiency and a method for manufacturing the same.

以往的散熱材料由於需要考慮絕緣特性,為此需達到導熱係數2w/(m*k)與破壞電壓7至10(kV),用於黏合銅箔層的膠厚度需達到120至150μm甚至更高的數值方可能達到絕緣要求,以致於產品總厚度大,厚度不足會使散熱與絕緣效果不理想。另外,採用摻雜散熱粉體的TPI(熱塑性聚醯亞胺)的散熱模型,雖然可將產品厚度一定程度的降低且能滿足絕緣的要求,但由於加工TPI時需要高溫操作,溫度大於350℃,因此加工成本高,而無法有效量產化。若採用拉伸法來製備聚醯亞胺膜,絕緣特性能滿足但產品厚度高、熱阻高,導致仍需要夠厚的導熱膠層來確保散熱性能。聚醯亞胺膜生產商為降低薄膜厚度、改善熱阻,採用薄型化厚度設計,然而當薄型化厚度設計為5至7.5μm,其機械強度不佳、太薄而下游加工時加工操作性困難等,無法達到業界規範的要求,且製備良率低落導致成本高。因此,如何開發具有良好抵抗電壓穿透、散熱性和減低整體厚度的產品,並透過簡化的製程生產高導熱金屬基板,成為急需解決的課題。 In the past, heat dissipation materials needed to consider insulation properties, so they needed to achieve a thermal conductivity of 2w/(m*k) and a destruction voltage of 7 to 10(kV). The thickness of the glue used to bond the copper foil layer needed to reach 120 to 150 μm or even higher values to meet the insulation requirements, resulting in a large total thickness of the product. Insufficient thickness will result in unsatisfactory heat dissipation and insulation effects. In addition, the heat dissipation model using TPI (thermoplastic polyimide) doped with heat dissipation powder can reduce the product thickness to a certain extent and meet the insulation requirements, but because TPI processing requires high-temperature operation, the temperature is greater than 350℃, so the processing cost is high and it cannot be effectively mass-produced. If the stretching method is used to prepare polyimide film, the insulation properties can be met, but the product thickness is high and the thermal resistance is high, which means that a sufficiently thick thermal conductive adhesive layer is still required to ensure the heat dissipation performance. In order to reduce the film thickness and improve the thermal resistance, polyimide film manufacturers adopt a thin thickness design. However, when the thin thickness design is 5 to 7.5μm, its mechanical strength is poor, it is too thin and the processing operation is difficult during downstream processing, etc., which cannot meet the requirements of industry standards, and the low manufacturing yield leads to high costs. Therefore, how to develop products with good resistance to voltage penetration, heat dissipation and reduced overall thickness, and produce high thermal conductivity metal substrates through a simplified process, has become an issue that needs to be solved urgently.

為了解決上述技術問題,本發明係提供一種高導熱金屬基板,係包括:厚度為5至100微米之第一導熱黏著層;形成於該第一導熱黏著層上且厚度為1至150微米之絕緣層;形成於該絕緣層上且厚度為5至100微米之第二導熱黏著層,使該絕緣層位於該第一導熱黏著層及第二導熱黏著層之間;以及形成於該第二導熱黏著層上且厚度為1至105微米之銅箔層,使該第二導熱黏著層位於該絕緣層與之銅箔層之間,其中,依該絕緣層之固含量之總重計,該絕緣層包含:50至95wt%之聚合物主鏈中具有醯亞胺結構之樹脂;0至25wt%之環氧系樹脂;0至20wt%之無機填料;及0至10wt%之催化劑。 In order to solve the above technical problems, the present invention provides a high thermal conductivity metal substrate, which includes: a first thermally conductive adhesive layer with a thickness of 5 to 100 microns; an insulating layer formed on the first thermally conductive adhesive layer and with a thickness of 1 to 150 microns; a second thermally conductive adhesive layer formed on the insulating layer and with a thickness of 5 to 100 microns, so that the insulating layer is located between the first thermally conductive adhesive layer and the second thermally conductive adhesive layer; and a second thermally conductive adhesive layer formed on the insulating layer. A copper foil layer with a thickness of 1 to 105 microns is formed on the second thermally conductive adhesive layer, so that the second thermally conductive adhesive layer is located between the insulating layer and the copper foil layer, wherein, based on the total weight of the solid content of the insulating layer, the insulating layer comprises: 50 to 95 wt% of a resin having an imide structure in the polymer main chain; 0 to 25 wt% of an epoxy resin; 0 to 20 wt% of an inorganic filler; and 0 to 10 wt% of a catalyst.

於一具體實施態樣中,該高導熱金屬基板復包括厚度為5至100微米之第三導熱黏著層,係形成於該絕緣層與該第二導熱黏著層之間。 In a specific embodiment, the high thermal conductivity metal substrate further includes a third thermal conductive adhesive layer with a thickness of 5 to 100 microns, which is formed between the insulating layer and the second thermal conductive adhesive layer.

於一具體實施態樣中,該高導熱金屬基板之該聚合物主鏈中具有醯亞胺結構之樹脂係包括聚醯亞胺樹脂或聚醯胺醯亞胺樹脂。 In a specific embodiment, the resin having an imide structure in the polymer main chain of the high thermal conductivity metal substrate includes a polyimide resin or a polyamide imide resin.

於一具體實施態樣中,該高導熱金屬基板之該聚醯亞胺樹脂由包含二胺、酸酐的單體聚合而得,該聚醯胺醯亞胺樹脂由包含該二胺、該酸酐及異氰酸酯系化合物的單體聚合而得。 In a specific implementation, the polyimide resin of the high thermal conductivity metal substrate is obtained by polymerizing monomers containing diamine and acid anhydride, and the polyamide imide resin is obtained by polymerizing monomers containing the diamine, the acid anhydride and an isocyanate compound.

於一具體實施態樣中,所述的二胺係選自由2,2-雙[4-(4-氨基苯氧基)苯基]丙烷(BAPP)、2,2'-二(三氟甲基)二氨基聯苯(TFMB)、2,2-雙(4-氨基苯基)六氟丙烷、4,4'-二氨基二苯醚、雙[4-(3-氨基苯氧基)苯基]磺胺、雙[4-(4-氨基苯氧基)苯基]磺胺、2,2-雙[4-(4-氨基苯氧基)苯基]六氟丙烷、雙[4-(4-氨基苯氧基)苯基]甲烷、4,4'-雙(4-氨基苯氧基)聯苯、雙[4- (4-氨基苯氧基)苯基1乙醚、雙[4-(4-氨基苯氧基)苯基]酮、1,3-雙(4-氨基苯氧基)苯及1,4-雙(4-氨基苯氧基)苯所組成群組中之至少一種。 In a specific embodiment, the diamine is selected from 2,2-bis[4-(4-aminophenoxy)phenyl]propane (BAPP), 2,2'-bis(trifluoromethyl)diaminobenzene (TFMB), 2,2-bis(4-aminophenyl)hexafluoropropane, 4,4'-diaminodiphenyl ether, bis[4-(3-aminophenoxy)phenyl]sulfonamide, bis[4-(4-aminophenoxy)phenyl]sulfonamide, 2, At least one of the group consisting of 2-bis[4-(4-aminophenoxy)phenyl]hexafluoropropane, bis[4-(4-aminophenoxy)phenyl]methane, 4,4'-bis(4-aminophenoxy)biphenyl, bis[4- (4-aminophenoxy)phenyl 1-ethyl ether, bis[4-(4-aminophenoxy)phenyl]ketone, 1,3-bis(4-aminophenoxy)benzene and 1,4-bis(4-aminophenoxy)benzene.

於一具體實施態樣中,所述的酸酐係選自由六氟二酐(6FDA)、雙環[2.2.2]辛-7-烯-2,3,5,6-四羧酸二酐、1,2-亞乙基二[1,3-二氫-1,3-二氧代異苯並呋喃-5-羧酸酯]、3,3',4,4'-二苯甲酮四甲酸二酐、3,3',4,4'-聯苯四羧酸二酐、苯四甲酸二酐、偏苯三酸酐(TMA)及順式烏頭酸酐所組成群組中之至少一種。 In a specific embodiment, the acid anhydride is selected from at least one of the group consisting of hexafluorodianhydride (6FDA), bicyclo[2.2.2]oct-7-ene-2,3,5,6-tetracarboxylic dianhydride, 1,2-ethylenebis[1,3-dihydro-1,3-dioxoisobenzofuran-5-carboxylate], 3,3',4,4'-benzophenonetetracarboxylic dianhydride, 3,3',4,4'-biphenyltetracarboxylic dianhydride, pyromellitic dianhydride, trimellitic anhydride (TMA) and cis-abiotic anhydride.

於一具體實施態樣中,所述的異氰酸酯系化合物係選自由4,4'-二苯甲烷二異氰酸酯(MDI)、2,4-甲苯二異氰酸酯、2,6-甲苯二異氰酸酯、萘-1,5-二異氰酸酯、異佛爾酮二異氰酸酯、二環己基甲烷二異氰酸酯及賴氨酸二異氰酸酯等所組成群組中之至少一種。 In a specific embodiment, the isocyanate compound is selected from at least one of the group consisting of 4,4'-diphenylmethane diisocyanate (MDI), 2,4-toluene diisocyanate, 2,6-toluene diisocyanate, naphthalene-1,5-diisocyanate, isophorone diisocyanate, dicyclohexylmethane diisocyanate and lysine diisocyanate.

於一具體實施態樣中,該聚醯胺醯亞胺樹脂中,該二胺和該酸酐之莫耳比為1:2.05至1:2.20。 In a specific embodiment, the molar ratio of the diamine to the anhydride in the polyamide imide resin is 1:2.05 to 1:2.20.

於一具體實施態樣中,該聚醯亞胺樹脂中,該二胺和該酸酐之莫耳比為1:0.90至1:1.10。 In a specific embodiment, in the polyimide resin, the molar ratio of the diamine to the anhydride is 1:0.90 to 1:1.10.

於一具體實施態樣中,該聚醯胺醯亞胺樹脂中,該二胺和該異氰酸酯之莫耳比為1:1.05至1:1.50。 In a specific embodiment, the molar ratio of the diamine to the isocyanate in the polyamide imide resin is 1:1.05 to 1:1.50.

於一具體實施態樣中,該環氧系樹脂係選自由縮水甘油胺型環氧樹脂、縮水甘油酯型環氧樹脂、環氧化烯烴化合物、脂環族類環氧樹脂、多酚型縮水甘油醚環氧樹脂、雙酚A型環氧樹脂、雙酚F型環氧樹脂、脂肪族縮水甘油醚環氧樹脂、雜環型環氧樹脂及混合型環氧樹脂所組成群組中之至少一種。 In a specific embodiment, the epoxy resin is at least one selected from the group consisting of glycidylamine epoxy resin, glycidyl ester epoxy resin, epoxide alkylene compound, alicyclic epoxy resin, polyphenol glycidyl ether epoxy resin, bisphenol A epoxy resin, bisphenol F epoxy resin, aliphatic glycidyl ether epoxy resin, heterocyclic epoxy resin and mixed epoxy resin.

於一具體實施態樣中,該催化劑係選自由2-甲基咪唑、2-十一烷基咪唑、2-十七烷基咪唑、1,2-二甲基咪唑、2-乙基-4-甲基咪唑、2-苯基咪唑、2-苯基-4-甲基咪唑、1-苄基-2-甲基咪唑及1-苄基-2-苯基咪唑所組成群組中之至少一種。 In a specific embodiment, the catalyst is at least one selected from the group consisting of 2-methylimidazole, 2-undecylimidazole, 2-heptadecylimidazole, 1,2-dimethylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, 1-benzyl-2-methylimidazole and 1-benzyl-2-phenylimidazole.

於一具體實施態樣中,該無機填料係選自由硫酸鈣、碳黑、二氧化矽、二氧化鈦、硫化鋅、氧化鋯、碳酸鈣、碳化矽、氮化硼、氧化鋁、滑石粉、氮化鋁、玻璃粉體、石英粉體及黏土所組成群組中之至少一種。 In a specific embodiment, the inorganic filler is at least one selected from the group consisting of calcium sulfate, carbon black, silicon dioxide, titanium dioxide, zinc sulfide, zirconium oxide, calcium carbonate, silicon carbide, boron nitride, aluminum oxide, talc, aluminum nitride, glass powder, quartz powder and clay.

於一具體實施態樣中,該無機填料為粒徑0.5微米至10微米之粉體。 In a specific embodiment, the inorganic filler is a powder with a particle size of 0.5 microns to 10 microns.

於一具體實施態樣中,形成該第一導熱黏著層、第二導熱黏著層及第三導熱黏著層各者之材料係包括樹脂材料和10至75wt%之導熱粉體,且該第一導熱黏著層、第二導熱黏著層及第三導熱黏著層各者之該樹脂材料係獨立選自環氧樹脂、丙烯酸系樹脂、氨基甲酸酯系樹脂、矽橡膠系樹脂、聚對二甲苯系樹脂、雙馬來醯亞胺系樹脂及聚醯亞胺系樹脂所組成群組中之至少一種。 In a specific embodiment, the material forming each of the first thermally conductive adhesive layer, the second thermally conductive adhesive layer and the third thermally conductive adhesive layer includes a resin material and 10 to 75 wt% of thermally conductive powder, and the resin material of each of the first thermally conductive adhesive layer, the second thermally conductive adhesive layer and the third thermally conductive adhesive layer is independently selected from at least one of the group consisting of epoxy resin, acrylic resin, urethane resin, silicone rubber resin, polyparaxylene resin, dimaleimide resin and polyimide resin.

於一具體實施態樣中,該導熱粉體係獨立選自氧化鋯、碳酸鈣、碳化矽、氮化硼、氧化鋁、滑石粉、氮化鋁、玻璃粉體、石墨及石墨烯所組成群組中之至少一種。 In a specific embodiment, the thermally conductive powder is independently selected from at least one of the group consisting of zirconium oxide, calcium carbonate, silicon carbide, boron nitride, aluminum oxide, talc, aluminum nitride, glass powder, graphite and graphene.

於一具體實施態樣中,高導熱金屬基板之該導熱粉體之含量為10至75wt%。 In a specific embodiment, the content of the thermally conductive powder in the high thermally conductive metal substrate is 10 to 75 wt%.

於一具體實施態樣中,該銅箔層之表面粗糙度(Rz)為0.4至4.0微米,並可選用電解銅箔或壓延銅箔。 In a specific embodiment, the surface roughness (Rz) of the copper foil layer is 0.4 to 4.0 microns, and electrolytic copper foil or rolled copper foil can be used.

於一具體實施態樣中,該高導熱金屬基板復包括鋁板帶,係形成於該第一導熱黏著層上,使該第一導熱黏著層位於該絕緣層和鋁板帶之間。 In a specific embodiment, the high thermal conductivity metal substrate further includes an aluminum plate strip formed on the first thermal conductive adhesive layer, so that the first thermal conductive adhesive layer is located between the insulating layer and the aluminum plate strip.

本發明復提供一種高導熱複合膜,係包括厚度為12.5至250微米之載體層,以及依序形成在該載體層上之絕緣層和第一導熱黏著層。 The present invention further provides a high thermal conductivity composite film, which includes a carrier layer with a thickness of 12.5 to 250 microns, and an insulating layer and a first thermal conductive adhesive layer sequentially formed on the carrier layer.

於另一具體實施態樣中,該高導熱複合膜之絕緣層包括複數絕緣子層。使得本發明之高導熱金屬基板之絕緣層也可包括複數絕緣子層。 In another specific embodiment, the insulating layer of the high thermal conductivity composite film includes a plurality of insulating sub-layers. Thus, the insulating layer of the high thermal conductivity metal substrate of the present invention may also include a plurality of insulating sub-layers.

於一具體實施態樣中,高導熱複合膜之該載體層係選自由聚丙烯、雙向拉伸聚丙烯、聚對苯二甲酸乙二醇酯、聚醯亞胺、聚苯硫醚、聚萘二甲酸乙二醇酯、聚氨酯及聚醯胺所組成群組中之至少一種。 In a specific embodiment, the carrier layer of the high thermal conductivity composite film is selected from at least one of the group consisting of polypropylene, biaxially oriented polypropylene, polyethylene terephthalate, polyimide, polyphenylene sulfide, polyethylene naphthalate, polyurethane and polyamide.

本發明復提供一種高導熱金屬基板的製備方法,係包括:在載體層上塗布清漆層,其中,依該清漆層之固含量之總重計,該清漆層包含50至95wt%之聚合物主鏈中具有醯亞胺結構之樹脂;0至25wt%之環氧系樹脂;0至20wt%之無機填料;及0至10wt%之催化劑;於溫度範圍50至180℃下,固化該清漆層以得到絕緣層;於該絕緣層上塗布形成第一導熱黏著層;自該絕緣層上移除該載體層,以外露出該絕緣層表面;以及於該絕緣層表面壓合背膠銅箔,該背膠銅箔包括銅箔層及形成於該銅箔層上之第二導熱黏著層,且令該第二導熱黏著層位於該絕緣層與銅箔層之間。 The present invention further provides a method for preparing a high thermal conductivity metal substrate, comprising: coating a varnish layer on a carrier layer, wherein the varnish layer comprises, based on the total weight of the solid content of the varnish layer, 50 to 95 wt% of a resin having an imide structure in the polymer main chain; 0 to 25 wt% of an epoxy resin; 0 to 20 wt% of an inorganic filler; and 0 to 10 wt% of a catalyst; and heating the substrate to a temperature range of 5 The varnish layer is cured at 0 to 180°C to obtain an insulating layer; a first thermally conductive adhesive layer is coated on the insulating layer; the carrier layer is removed from the insulating layer to expose the surface of the insulating layer; and a backing copper foil is pressed on the surface of the insulating layer, wherein the backing copper foil includes a copper foil layer and a second thermally conductive adhesive layer formed on the copper foil layer, and the second thermally conductive adhesive layer is located between the insulating layer and the copper foil layer.

於一具體實施態樣中,可重複塗布清漆層和固化之步驟以形成具有二層以上絕緣子層且厚度為1至150微米的絕緣層。 In one specific embodiment, the steps of applying a varnish layer and curing can be repeated to form an insulating layer having two or more insulating sublayers and a thickness of 1 to 150 microns.

於一具體實施態樣中,高導熱金屬基板的製備方法復包括在壓合該背膠銅箔之前,於該外露之該絕緣層表面上形成第三導熱黏著層,再於該第三導熱黏著層上壓合該背膠銅箔。 In a specific embodiment, the method for preparing a high thermal conductivity metal substrate further includes forming a third thermally conductive adhesive layer on the exposed surface of the insulating layer before pressing the backing copper foil, and then pressing the backing copper foil on the third thermally conductive adhesive layer.

於一具體實施態樣中,高導熱金屬基板的製備方法復包括在壓合該背膠銅箔之前,於該銅箔層上形成第三導熱黏著層,再藉由該第三導熱黏著層將該背膠銅箔壓合於該絕緣層表面。 In a specific implementation, the method for preparing a high thermal conductivity metal substrate further includes forming a third thermally conductive adhesive layer on the copper foil layer before pressing the backing copper foil, and then pressing the backing copper foil onto the surface of the insulating layer by the third thermally conductive adhesive layer.

於一具體實施態樣中,高導熱金屬基板的製備方法係於100至120℃,較佳為110℃,及1至3kgf/cm2,較佳為2kgf/cm2之壓力壓合該背膠銅箔。 In a specific embodiment, the method for preparing the high thermal conductivity metal substrate is to press the backing copper foil at 100 to 120° C., preferably 110° C., and a pressure of 1 to 3 kgf/cm 2 , preferably 2 kgf/cm 2 .

於一具體實施態樣中,高導熱金屬基板的製備方法復包括在該第一導熱黏著層上壓合鋁板帶。 In a specific embodiment, the method for preparing a high thermal conductivity metal substrate further includes pressing an aluminum plate strip on the first thermally conductive adhesive layer.

本發明復提供一種高導熱金屬基板的製備方法,係包括:在載體層上塗布清漆層,其中,依該清漆層之固含量之總重計,該清漆層包含50至95wt%之聚合物主鏈中具有醯亞胺結構之樹脂;0至25wt%之環氧系樹脂;0至20wt%之無機填料;及0至10wt%之催化劑;於溫度範圍50至180℃下,固化該清漆層以得到絕緣層;於該絕緣層上塗布形成第一導熱黏著層;自該絕緣層上移除該載體層,以外露出該絕緣層表面;於該絕緣層表面貼合第二導熱黏著層;分別在該第二導熱黏著層和第一導熱黏著層貼合銅箔層和鋁板帶;以及壓合該絕緣層、第一導熱黏著層、第二導熱黏著層、銅箔層和鋁板帶。根據本發明,該高導熱金屬基板係至少具有以下優點: The present invention further provides a method for preparing a high thermal conductivity metal substrate, comprising: coating a varnish layer on a carrier layer, wherein the varnish layer comprises, based on the total weight of the solid content of the varnish layer, 50 to 95 wt% of a resin having an imide structure in the polymer main chain; 0 to 25 wt% of an epoxy resin; 0 to 20 wt% of an inorganic filler; and 0 to 10 wt% of a catalyst; heating the substrate at a temperature range of 50 to 180 ℃, curing the varnish layer to obtain an insulating layer; coating the insulating layer to form a first thermally conductive adhesive layer; removing the carrier layer from the insulating layer to expose the surface of the insulating layer; attaching a second thermally conductive adhesive layer to the surface of the insulating layer; attaching a copper foil layer and an aluminum strip to the second thermally conductive adhesive layer and the first thermally conductive adhesive layer respectively; and pressing the insulating layer, the first thermally conductive adhesive layer, the second thermally conductive adhesive layer, the copper foil layer and the aluminum strip. According to the present invention, the high thermal conductivity metal substrate has at least the following advantages:

一、利用載體層生產薄膜,在絕緣層中添加無機填料,使載體層與絕緣層的表面能、粗糙度設計的匹配而無需在載體層上使用離形劑,且絕緣層的高表面能易於用於貼合、塗布工序,無需另行使用電暈等表面處理工藝。 1. Use the carrier layer to produce the film, add inorganic fillers to the insulating layer, so that the surface energy and roughness of the carrier layer and the insulating layer are designed to match without using a release agent on the carrier layer. The high surface energy of the insulating layer is easy to use in the bonding and coating process, and there is no need to use additional surface treatment processes such as corona.

二、再者,絕緣層能夠多層塗布組成,易於兼顧各項特性且能匹配下游製程加工需求。 Second, the insulating layer can be composed of multiple layers of coating, which is easy to take into account various characteristics and can match the downstream processing requirements.

三、載體層塗布清漆設計,比流延法工藝生產之薄膜來說,成本更低廉,且製成絕緣層或高導熱複合膜後,可收卷備用,而超薄絕緣層在下游工藝無需另外備膜以避免撕破等,更易於操作加工。 3. The carrier layer is coated with varnish, which is cheaper than the film produced by the cast film process. After the insulating layer or high thermal conductivity composite film is made, it can be rolled up for standby use. The ultra-thin insulating layer does not need to be prepared separately in the downstream process to avoid tearing, etc., making it easier to operate and process.

四、清漆型絕緣層相比流延法工藝生產之薄膜由於無製程上拉伸之應力殘留具有更佳的尺寸安定性。 4. Compared with the film produced by the cast film process, the varnish type insulation layer has better dimensional stability because there is no residual stress from the stretching process.

五、薄型化設計,易於生產各種厚度,可取代市面上高單價薄型聚醯亞胺(PI),厚度小於12.5微米,較佳5至8微米。 5. Thin design, easy to produce various thicknesses, can replace the high-priced thin polyimide (PI) on the market, with a thickness of less than 12.5 microns, preferably 5 to 8 microns.

六、配合載體層進行塗布,產品幅寬可以有較大彈性。且作為載體層的PET、PEN等膜材生產幅寬遠大於雙軸延伸聚醯亞胺膜(1500至2000mm),得以配合多元的幅寬生產並仍具有高的利用率。 6. The product width can be more flexible when coated with a carrier layer. The production width of PET, PEN and other film materials used as the carrier layer is much larger than that of biaxially oriented polyimide film (1500 to 2000mm), so it can be produced with multiple widths and still have a high utilization rate.

七、具有良好的散熱性、絕緣性,使用此塗布型薄膜於導熱背膠銅箔RCC(Resin Coating Copper)中,能夠在更輕薄厚度下達到目標之熱阻、破壞電壓,大幅減少原材料成本。 7. With good heat dissipation and insulation properties, this coating film can be used in thermal conductive backing copper foil RCC (Resin Coating Copper) to achieve the target thermal resistance and destruction voltage at a thinner thickness, greatly reducing the cost of raw materials.

八、具備可連續性大米數生產的特性,能夠有效的降低生產成本,大幅度提升良率及效率,提高產品競爭力。 8. It has the characteristics of continuous large-scale production, which can effectively reduce production costs, significantly improve yield and efficiency, and enhance product competitiveness.

100:載體層 100: Carrier layer

200:絕緣層 200: Insulation layer

200a,200b:絕緣子層 200a,200b: insulating sublayer

300:第一導熱黏著層 300: First thermal conductive adhesive layer

400:銅箔層 400: Copper foil layer

500:第二導熱黏著層 500: Second thermal conductive adhesive layer

700:第三導熱黏著層 700: The third thermal conductive adhesive layer

800:鋁板帶 800: Aluminum strip

透過例示性之參考附圖說明本發明的實施方式: The implementation method of the present invention is described through exemplary reference drawings:

圖1A係顯示本發明之高導熱複合膜的製法示意圖,其係用於製備本發明之高導熱金屬基板之第一實施態樣; FIG1A is a schematic diagram showing a method for preparing the high thermal conductivity composite film of the present invention, which is used to prepare the first embodiment of the high thermal conductivity metal substrate of the present invention;

圖2係顯示於該絕緣層表面壓合該背膠銅箔之示意圖; Figure 2 is a schematic diagram showing the backing copper foil being pressed onto the surface of the insulating layer;

圖3係本發明之高導熱金屬基板之第一實施態樣之結構示意圖; Figure 3 is a schematic diagram of the structure of the first embodiment of the high thermal conductivity metal substrate of the present invention;

圖4A係本發明之高導熱金屬基板之第二實施態樣之製法示意圖;圖4B係本發明之高導熱金屬基板之第二實施態樣之製法示意圖; FIG. 4A is a schematic diagram of the manufacturing method of the second embodiment of the high thermal conductivity metal substrate of the present invention; FIG. 4B is a schematic diagram of the manufacturing method of the second embodiment of the high thermal conductivity metal substrate of the present invention;

圖5係本發明之高導熱金屬基板之第二實施態樣之結構示意圖; FIG5 is a schematic diagram of the structure of the second embodiment of the high thermal conductivity metal substrate of the present invention;

圖6係本發明之高導熱金屬基板之第三實施態樣之結構示意圖;以及 FIG6 is a schematic diagram of the structure of the third embodiment of the high thermal conductivity metal substrate of the present invention; and

圖7係本發明之高導熱金屬基板之第四實施態樣之結構示意圖。 Figure 7 is a schematic diagram of the structure of the fourth embodiment of the high thermal conductivity metal substrate of the present invention.

以下係藉由特定的具體實施例說明本發明之實施方式,熟習此技藝之人士可由本說明書所揭示之內容輕易地瞭解本發明之優點及功效。 The following is a specific and concrete example to illustrate the implementation of the present invention. People familiar with this art can easily understand the advantages and effects of the present invention from the content disclosed in this manual.

需瞭解,本說明書所附圖式所繪示之結構、比例、大小等,均僅用以配合說明書所揭示之內容,以供熟悉此技藝之人士之瞭解與閱讀,並非用以限定本發明可實施之限定條件,故不具技術上之實質意義,任何結構之修飾、比例關係之改變或大小之調整,在不影響本發明所能產生之功效及所能達成之目的下,均應仍落在本發明所揭示之技術內容得能涵蓋之範圍內。同時,本說明書中所引用之如「一」、「上」及「下」亦僅為便於敘述之明瞭,而非用以限定本發明可實施之範圍,其相對關係之改變或調整,在無實質變更技術內容下,當亦視為本發明可實施之範疇。此外,本文所有範圍和值都係包含及可合併的。落在本文中所述的範圍內之任何數值或點,例如任何整數都可以作為最小值或最大值以導出下位範圍等。 It should be understood that the structures, proportions, sizes, etc. shown in the drawings attached to this specification are only used to match the contents disclosed in the specification for understanding and reading by people familiar with this technology, and are not used to limit the limiting conditions for the implementation of the present invention, so they have no substantial technical significance. Any modification of the structure, change of the proportion relationship, or adjustment of the size should still fall within the scope of the technical content disclosed by the present invention without affecting the effects and purposes that can be produced by the present invention. At the same time, the references such as "one", "upper" and "lower" in this specification are only for the convenience of description, and are not used to limit the scope of the implementation of the present invention. The changes or adjustments in their relative relationships should also be regarded as the scope of the implementation of the present invention without substantially changing the technical content. Furthermore, all ranges and values herein are inclusive and combinable. Any value or point within the range described in this article, such as any integer, can be used as the minimum or maximum value to derive the lower range, etc.

如圖1A、1B至圖3所示,本發明提供一種高導熱金屬基板的製備方法方法,係包括:在載體層100上塗布清漆層,其中,依該清漆層之固含量之總重計,該清漆層包含50至95wt%之聚合物主鏈中具有醯 亞胺結構之樹脂;0至25wt%之環氧系樹脂;0至20wt%之無機填料;及0至10wt%之催化劑;於溫度範圍50至180℃下,固化該清漆層以得到絕緣層200;接著,於該絕緣層200上塗布形成第一導熱黏著層300。於此,如圖1A所示,本發明提供一種高導熱複合膜以供製備高導熱金屬基板,該高導熱複合膜係包括:厚度為12.5至250微米之載體層100;以及依序形成在該載體層100上之絕緣層200和第一導熱黏著層300。 As shown in FIG. 1A, 1B to FIG. 3, the present invention provides a method for preparing a high thermal conductivity metal substrate, which includes: coating a varnish layer on a carrier layer 100, wherein the varnish layer comprises 50 to 95 wt% of a resin having an acylimide structure in a polymer main chain, 0 to 25 wt% of an epoxy resin, 0 to 20 wt% of an inorganic filler, and 0 to 10 wt% of a catalyst, based on the total weight of the solid content of the varnish layer; curing the varnish layer at a temperature range of 50 to 180°C to obtain an insulating layer 200; and then coating the insulating layer 200 to form a first thermally conductive adhesive layer 300. Here, as shown in FIG. 1A , the present invention provides a high thermal conductivity composite film for preparing a high thermal conductivity metal substrate, the high thermal conductivity composite film comprising: a carrier layer 100 having a thickness of 12.5 to 250 microns; and an insulating layer 200 and a first thermal conductive adhesive layer 300 sequentially formed on the carrier layer 100.

於一具體實施態樣中,該載體層100係選自由聚丙烯、雙向拉伸聚丙烯、聚對苯二甲酸乙二醇酯、聚醯亞胺、聚苯硫醚、聚萘二甲酸乙二醇酯、聚氨酯及聚醯胺所組成群組中之至少一種。 In a specific embodiment, the carrier layer 100 is selected from at least one of the group consisting of polypropylene, biaxially oriented polypropylene, polyethylene terephthalate, polyimide, polyphenylene sulfide, polyethylene naphthalate, polyurethane and polyamide.

於另一具體實施態樣中,如圖1B所示,該絕緣層200包括複數絕緣子層200a,200b。具體實施上,可重複塗布清漆層和固化之步驟以形成具有二層以上絕緣子層且厚度為1至150微米的絕緣層。同理,該高導熱複合膜之絕緣層也可包括複數絕緣子層。 In another specific embodiment, as shown in FIG. 1B , the insulating layer 200 includes a plurality of insulating sublayers 200a, 200b. In a specific embodiment, the steps of applying a varnish layer and curing can be repeated to form an insulating layer having two or more insulating sublayers and a thickness of 1 to 150 microns. Similarly, the insulating layer of the high thermal conductivity composite film can also include a plurality of insulating sublayers.

如圖2所示,自該絕緣層200上移除該載體層100,以外露出該絕緣層100表面,再於該絕緣層200表面以例如100至120℃及1至3kgf/cm2之壓力壓合該背膠銅箔。該背膠銅箔包括銅箔層400及形成於該銅箔層400上之第二導熱黏著層500。 As shown in FIG. 2 , the carrier layer 100 is removed from the insulating layer 200 to expose the surface of the insulating layer 100, and then the backing copper foil is pressed on the surface of the insulating layer 200 at, for example, 100 to 120° C. and a pressure of 1 to 3 kgf/cm 2. The backing copper foil includes a copper foil layer 400 and a second thermally conductive adhesive layer 500 formed on the copper foil layer 400.

如圖3所示,該第二導熱黏著層500位於該絕緣層200與銅箔層400之間,以得到本發明之高導熱金屬基板。基此,該高導熱金屬基板包括:厚度為5至100微米之第一導熱黏著層300;形成於該第一導熱黏著層300上且厚度為1至150微米之絕緣層200;形成於該絕緣層200上且厚度為5至100微米之第二導熱黏著層500,使該絕緣層200位於該第一導熱黏著層300及第二導熱黏著層500之間;以及形成於該第二導熱 黏著層500上且厚度為1至105微米之銅箔層400,使該第二導熱黏著層500位於該絕緣層200與之銅箔層400之間,其中,依該絕緣層200之固含量之總重計,該絕緣層200包含:50至95wt%之聚合物主鏈中具有醯亞胺結構之樹脂;0至25wt%之環氧系樹脂;0至20wt%之無機填料;及0至10wt%之催化劑。 As shown in FIG3 , the second thermally conductive adhesive layer 500 is located between the insulating layer 200 and the copper foil layer 400 to obtain the high thermally conductive metal substrate of the present invention. Based on this, the high thermally conductive metal substrate includes: a first thermally conductive adhesive layer 300 with a thickness of 5 to 100 microns; an insulating layer 200 formed on the first thermally conductive adhesive layer 300 and with a thickness of 1 to 150 microns; a second thermally conductive adhesive layer 500 formed on the insulating layer 200 and with a thickness of 5 to 100 microns, so that the insulating layer 200 is located between the first thermally conductive adhesive layer 300 and the second thermally conductive adhesive layer 500; and a second thermally conductive adhesive layer formed on the second thermally conductive adhesive layer 300. The copper foil layer 400 with a thickness of 1 to 105 microns is disposed on the insulating layer 200, so that the second thermally conductive adhesive layer 500 is located between the insulating layer 200 and the copper foil layer 400, wherein, based on the total weight of the solid content of the insulating layer 200, the insulating layer 200 comprises: 50 to 95 wt% of a resin having an imide structure in the polymer main chain; 0 to 25 wt% of an epoxy resin; 0 to 20 wt% of an inorganic filler; and 0 to 10 wt% of a catalyst.

於一些具體實施態樣中,該第一導熱黏著層之厚度可為5、10、15、20、25、30、35、40、45、50、55、65、70、75、80、85、90、95或100微米。 In some specific embodiments, the thickness of the first thermally conductive adhesive layer may be 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 65, 70, 75, 80, 85, 90, 95 or 100 microns.

於一些具體實施態樣中,該絕緣層之厚度可為1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、25、30、35、40、45、50、60、70、80、90、100、110、120、130、140或150微米。 In some specific embodiments, the thickness of the insulating layer may be 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140 or 150 microns.

於一些具體實施態樣中,該第二導熱黏著層之厚度可為5、10、15、20、25、30、35、40、45、50、55、65、70、75、80、85、90、95或100微米。 In some specific embodiments, the thickness of the second thermally conductive adhesive layer may be 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 65, 70, 75, 80, 85, 90, 95 or 100 microns.

於一些具體實施態樣中,該銅箔層之厚度可為1、2、3、4、5、6、7、8、9、10、15、20、25、30、35、40、45、50、55、65、70、75、80、85、90、95、100或105微米。 In some embodiments, the copper foil layer may have a thickness of 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 65, 70, 75, 80, 85, 90, 95, 100 or 105 microns.

於一些具體實施態樣中,該絕緣層中之聚合物主鏈中具有醯亞胺結構之樹脂的含量可為50、55、60、65、66、67、68、69、70、71、72、73、74、75、76、77、78、79、80、81、82、83、84、85、90或95wt%。 In some specific embodiments, the content of the resin having an imide structure in the polymer main chain in the insulating layer may be 50, 55, 60, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 90 or 95 wt%.

於一些具體實施態樣中,該絕緣層中之環氧系樹脂的含量可為0、1、2、3、4、5、6、7、8、9、10、15、20或25wt%。 In some specific embodiments, the content of the epoxy resin in the insulating layer may be 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20 or 25 wt%.

於一些具體實施態樣中,該絕緣層中之無機填料的含量可為0、1、2、3、4、5、6、7、8、9、10、15或20wt%。 In some specific embodiments, the content of the inorganic filler in the insulating layer may be 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15 or 20 wt%.

於一些具體實施態樣中,該絕緣層中之催化劑的含量可為0、1、2、3、4、5、6、7、8、9或10wt%。 In some specific embodiments, the content of the catalyst in the insulating layer may be 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10 wt%.

於一具體實施態樣中,該高導熱金屬基板之該聚合物主鏈中具有醯亞胺結構之樹脂係包括聚醯亞胺樹脂或聚醯胺醯亞胺樹脂。 In a specific embodiment, the resin having an imide structure in the polymer main chain of the high thermal conductivity metal substrate includes a polyimide resin or a polyamide imide resin.

於一具體實施態樣中,該高導熱金屬基板之該聚醯亞胺樹脂由包含二胺、酸酐的單體聚合而得,該聚醯胺醯亞胺樹脂由包含該二胺、該酸酐及異氰酸酯系化合物的單體聚合而得。 In a specific implementation, the polyimide resin of the high thermal conductivity metal substrate is obtained by polymerizing monomers containing diamine and acid anhydride, and the polyamide imide resin is obtained by polymerizing monomers containing the diamine, the acid anhydride and an isocyanate compound.

於一具體實施態樣中,該二胺係選自由2,2-雙[4-(4-氨基苯氧基)苯基]丙烷(BAPP)、2,2'-二(三氟甲基)二氨基聯苯(TFMB)、2,2-雙(4-氨基苯基)六氟丙烷、4,4'-二氨基二苯醚、雙[4-(3-氨基苯氧基)苯基]磺胺、雙[4-(4-氨基苯氧基)苯基]磺胺、2,2-雙[4-(4-氨基苯氧基)苯基]六氟丙烷、雙[4-(4-氨基苯氧基)苯基]甲烷、4,4'-雙(4-氨基苯氧基)聯苯、雙[4-(4-氨基苯氧基)苯基]乙醚、雙[4-(4-氨基苯氧基)苯基]酮、1,3-雙(4-氨基苯氧基)苯及1,4-雙(4-氨基苯氧基)苯所組成群組中之至少一種。 In a specific embodiment, the diamine is selected from 2,2-bis[4-(4-aminophenoxy)phenyl]propane (BAPP), 2,2'-bis(trifluoromethyl)diaminobenzene (TFMB), 2,2-bis(4-aminophenyl)hexafluoropropane, 4,4'-diaminodiphenyl ether, bis[4-(3-aminophenoxy)phenyl]sulfonamide, bis[4-(4-aminophenoxy)phenyl]sulfonamide, 2, At least one of the group consisting of 2-bis[4-(4-aminophenoxy)phenyl]hexafluoropropane, bis[4-(4-aminophenoxy)phenyl]methane, 4,4'-bis(4-aminophenoxy)biphenyl, bis[4-(4-aminophenoxy)phenyl]ethyl ether, bis[4-(4-aminophenoxy)phenyl]ketone, 1,3-bis(4-aminophenoxy)benzene and 1,4-bis(4-aminophenoxy)benzene.

於一具體實施態樣中,該酸酐係選自由六氟二酐(6FDA)、雙環[2.2.2]辛-7-烯-2,3,5,6-四羧酸二酐、1,2-亞乙基二[1,3-二氫-1,3-二氧代異苯並呋喃-5-羧酸酯]、3,3',4,4'-二苯甲酮四甲酸二酐、3,3',4,4'-聯苯四羧酸二酐、苯四甲酸二酐、偏苯三酸酐(TMA)及順式烏頭酸酐所組成群組中之至少一種。 In a specific embodiment, the acid anhydride is at least one selected from the group consisting of hexafluorodianhydride (6FDA), bicyclo[2.2.2]oct-7-ene-2,3,5,6-tetracarboxylic dianhydride, 1,2-ethylenebis[1,3-dihydro-1,3-dioxoisobenzofuran-5-carboxylate], 3,3',4,4'-benzophenonetetracarboxylic dianhydride, 3,3',4,4'-biphenyltetracarboxylic dianhydride, pyromellitic dianhydride, trimellitic anhydride (TMA) and cis-abiotic anhydride.

於一具體實施態樣中,該異氰酸酯系化合物係選自由4,4'-二苯甲烷二異氰酸酯(MDI)、2,4-甲苯二異氰酸酯、2,6-甲苯二異氰酸酯、 萘-1,5-二異氰酸酯、異佛爾酮二異氰酸酯、二環己基甲烷二異氰酸酯及賴氨酸二異氰酸酯等所組成群組中之至少一種。 In a specific embodiment, the isocyanate compound is selected from at least one of the group consisting of 4,4'-diphenylmethane diisocyanate (MDI), 2,4-toluene diisocyanate, 2,6-toluene diisocyanate, naphthalene-1,5-diisocyanate, isophorone diisocyanate, dicyclohexylmethane diisocyanate and lysine diisocyanate.

於一具體實施態樣中,該聚醯胺醯亞胺樹脂中,該二胺和該酸酐之莫耳比為1:2.05至1:2.20。例如,1:2.05、1:2.06、1:2.07、1:2.08、1:2.09、1:2.1、1:2.15或1:2.2。 In a specific embodiment, in the polyamide imide resin, the molar ratio of the diamine to the anhydride is 1:2.05 to 1:2.20. For example, 1:2.05, 1:2.06, 1:2.07, 1:2.08, 1:2.09, 1:2.1, 1:2.15 or 1:2.2.

於一具體實施態樣中,該聚醯亞胺樹脂中,該二胺和該酸酐之莫耳比為1:0.90至1:1.10。例如,1:0.90、1:1.0或1:1.0。 In a specific embodiment, in the polyimide resin, the molar ratio of the diamine to the anhydride is 1:0.90 to 1:1.10. For example, 1:0.90, 1:1.0 or 1:1.0.

於一具體實施態樣中,該聚醯胺醯亞胺樹脂中,該二胺和該異氰酸酯之莫耳比為1:1.05至1:1.50。例如,1:1.05、1:1.1、1:1.15、1:1.2、1:1.25、1:1.3、1:1.35、1:1.4、1:1.45或1:1.5。 In a specific embodiment, in the polyamide imide resin, the molar ratio of the diamine to the isocyanate is 1:1.05 to 1:1.50. For example, 1:1.05, 1:1.1, 1:1.15, 1:1.2, 1:1.25, 1:1.3, 1:1.35, 1:1.4, 1:1.45 or 1:1.5.

於一具體實施態樣中,該環氧系樹脂係選自由縮水甘油胺型環氧樹脂、縮水甘油酯型環氧樹脂、環氧化烯烴化合物、脂環族類環氧樹脂、多酚型縮水甘油醚環氧樹脂、雙酚A型環氧樹脂、雙酚F型環氧樹脂、脂肪族縮水甘油醚環氧樹脂、雜環型環氧樹脂及混合型環氧樹脂所組成群組中之至少一種。 In a specific embodiment, the epoxy resin is at least one selected from the group consisting of glycidylamine epoxy resin, glycidyl ester epoxy resin, epoxide alkylene compound, alicyclic epoxy resin, polyphenol glycidyl ether epoxy resin, bisphenol A epoxy resin, bisphenol F epoxy resin, aliphatic glycidyl ether epoxy resin, heterocyclic epoxy resin and mixed epoxy resin.

於一具體實施態樣中,該催化劑係選自由2-甲基咪唑、2-十一烷基咪唑、2-十七烷基咪唑、1,2-二甲基咪唑、2-乙基-4-甲基咪唑、2-苯基咪唑、2-苯基-4-甲基咪唑、1-苄基-2-甲基咪唑及1-苄基-2-苯基咪唑所組成群組中之至少一種。 In a specific embodiment, the catalyst is at least one selected from the group consisting of 2-methylimidazole, 2-undecylimidazole, 2-heptadecylimidazole, 1,2-dimethylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, 1-benzyl-2-methylimidazole and 1-benzyl-2-phenylimidazole.

於一具體實施態樣中,該無機填料係選自由硫酸鈣、碳黑、二氧化矽、二氧化鈦、硫化鋅、氧化鋯、碳酸鈣、碳化矽、氮化硼、氧化鋁、滑石粉、氮化鋁、玻璃粉體、石英粉體及黏土所組成群組中之至少一種。 In a specific embodiment, the inorganic filler is at least one selected from the group consisting of calcium sulfate, carbon black, silicon dioxide, titanium dioxide, zinc sulfide, zirconium oxide, calcium carbonate, silicon carbide, boron nitride, aluminum oxide, talc, aluminum nitride, glass powder, quartz powder and clay.

於一具體實施態樣中,該無機填料為粒徑0.5微米至10微米之粉體。例如,粒徑為0.5、1、2、3、4、5、6、7、8、9或10微米之粉體。 In a specific embodiment, the inorganic filler is a powder with a particle size of 0.5 microns to 10 microns. For example, the particle size is 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10 microns.

於本發明之高導熱金屬基板的第二實施態樣中,如圖4A和圖5所示,該高導熱金屬基板的製備方法復包括在壓合該背膠銅箔之前,於該外露之該絕緣層200表面上形成第三導熱黏著層700,再於該第三導熱黏著層700上以例如100至120℃及1至3kgf/cm2之壓力壓合該背膠銅箔,以令該高導熱金屬基板復包括厚度為5至100微米之第三導熱黏著層700,係形成於該絕緣層200與該第二導熱黏著層500之間。 In the second embodiment of the high thermal conductivity metal substrate of the present invention, as shown in Figures 4A and 5, the preparation method of the high thermal conductivity metal substrate further includes forming a third thermally conductive adhesive layer 700 on the exposed surface of the insulating layer 200 before pressing the backing copper foil, and then pressing the backing copper foil on the third thermally conductive adhesive layer 700 at, for example, 100 to 120°C and a pressure of 1 to 3 kgf/ cm2 , so that the high thermal conductivity metal substrate further includes a third thermally conductive adhesive layer 700 with a thickness of 5 to 100 microns, which is formed between the insulating layer 200 and the second thermally conductive adhesive layer 500.

於本發明之圖5所示之高導熱金屬基板的實施態樣中,亦可參照圖4B所示之方法在壓合該背膠銅箔之前,於該銅箔層400上形成第三導熱黏著層700,再藉由該第三導熱黏著層700將該背膠銅箔以例如100至120℃及1至3kgf/cm2之壓力壓合於該絕緣層200表面,以令該高導熱金屬基板復包括厚度為5至100微米之第三導熱黏著層700,係形成於該絕緣層200與該第二導熱黏著層500之間。 In the implementation mode of the high thermal conductivity metal substrate shown in FIG. 5 of the present invention, a third thermally conductive adhesive layer 700 can be formed on the copper foil layer 400 before the backing copper foil is pressed with reference to the method shown in FIG. 4B , and then the backing copper foil is pressed onto the surface of the insulating layer 200 by the third thermally conductive adhesive layer 700 at, for example, 100 to 120° C. and a pressure of 1 to 3 kgf/cm 2 , so that the high thermally conductive metal substrate further includes a third thermally conductive adhesive layer 700 with a thickness of 5 to 100 microns, which is formed between the insulating layer 200 and the second thermally conductive adhesive layer 500.

於一具體實施態樣中,形成該第一導熱黏著層300、第二導熱黏著層500及第三導熱黏著層700各者之材料係包括樹脂材料和10至75wt%之導熱粉體,且該第一導熱黏著層300、第二導熱黏著層500及第三導熱黏著層700各者之該樹脂材料係獨立選自環氧樹脂、丙烯酸系樹脂、氨基甲酸酯系樹脂、矽橡膠系樹脂、聚對二甲苯系樹脂、雙馬來醯亞胺系樹脂及聚醯亞胺系樹脂所組成群組中之至少一種,該導熱粉體係獨立選自氧化鋯、碳酸鈣、碳化矽、氮化硼、氧化鋁、滑石粉、氮化鋁、玻璃粉體、石墨及石墨烯所組成群組中之至少一種。 In a specific embodiment, the material forming each of the first thermally conductive adhesive layer 300, the second thermally conductive adhesive layer 500 and the third thermally conductive adhesive layer 700 includes a resin material and 10 to 75 wt % of a thermally conductive powder, and the resin material of each of the first thermally conductive adhesive layer 300, the second thermally conductive adhesive layer 500 and the third thermally conductive adhesive layer 700 is independently selected from epoxy resin. , acrylic resin, urethane resin, silicone rubber resin, polyparaxylene resin, dimaleimide resin and polyimide resin, and the thermal conductive powder is independently selected from at least one of the group consisting of zirconium oxide, calcium carbonate, silicon carbide, boron nitride, aluminum oxide, talc, aluminum nitride, glass powder, graphite and graphene.

較佳地,該導熱粉體之含量為10至75wt%。例如,10、15、20、25、30、35、40、45、50、55、60、65、70或75wt%。 Preferably, the content of the thermally conductive powder is 10 to 75wt%. For example, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70 or 75wt%.

於本發明之高導熱金屬基板的第三實施態樣中,復包括在圖3所示之高導熱金屬基板之第一導熱黏著層300上壓合鋁板帶800。 In the third embodiment of the high thermal conductivity metal substrate of the present invention, an aluminum plate strip 800 is pressed onto the first thermal conductive adhesive layer 300 of the high thermal conductivity metal substrate shown in FIG. 3 .

復參照圖7所示的第四實施態樣,亦可在沒有第三導熱黏著層700的高導熱金屬基板的第一導熱黏著層300上壓合鋁板帶800。此外,本發明亦提供另一製備第四實施態樣之高導熱金屬基板的方法,係包括在載體層100上塗布清漆層,其中,依該清漆層之固含量之總重計,該清漆層包含50至95wt%之聚合物主鏈中具有醯亞胺結構之樹脂;0至25wt%之環氧系樹脂;0至20wt%之無機填料;及0至10wt%之催化劑;於溫度範圍50至180℃下,固化該清漆層以得到絕緣層200;於該絕緣層200上塗布形成第一導熱黏著層300;自該絕緣層200上移除該載體層100,以外露出該絕緣層200表面;於該絕緣層200表面貼合第二導熱黏著層500;分別在該第二導熱黏著層500和第一導熱黏著層300貼合銅箔層400和鋁板帶800;以及於例如溫度175℃,壓力40Kgf/cm2同時壓合該絕緣層200、第一導熱黏著層300、第二導熱黏著層500、銅箔層400和鋁板帶800。 Referring again to the fourth embodiment shown in FIG. 7 , the aluminum plate strip 800 may also be pressed onto the first thermally conductive adhesive layer 300 of the high thermally conductive metal substrate without the third thermally conductive adhesive layer 700. In addition, the present invention also provides another method for preparing the high thermally conductive metal substrate of the fourth embodiment, which includes applying a varnish layer on the carrier layer 100, wherein the varnish layer comprises, based on the total weight of the solid content of the varnish layer, 50 to 95 wt% of a resin having an imide structure in the polymer main chain; 0 to 25 wt% of an epoxy resin; 0 to 20 wt% of an inorganic filler; and 0 to 10 wt% of a catalyst; curing the varnish layer at a temperature range of 50 to 180° C. The invention relates to a method for forming a heat conductive adhesive layer 300 by coating the heat conductive adhesive layer 300 on the heat conductive adhesive layer 200; removing the carrier layer 100 from the heat conductive adhesive layer 200 to expose the surface of the heat conductive adhesive layer 200; laminating the heat conductive adhesive layer 500 on the surface of the heat conductive adhesive layer 200; laminating the copper foil layer 400 and the aluminum plate strip 800 on the heat conductive adhesive layer 500 and the first heat conductive adhesive layer 300 respectively; and performing the heat conductive adhesive layer 300 under a temperature of 175°C and a pressure of 40 kgf/cm 2 The insulating layer 200, the first thermally conductive adhesive layer 300, the second thermally conductive adhesive layer 500, the copper foil layer 400 and the aluminum plate tape 800 are pressed together at the same time.

測試方法 Test method

導熱係數與導熱阻值測試方法參見ASTM D5470。 For the test methods of thermal conductivity and thermal resistance, please refer to ASTM D5470.

破壞電壓與介電強度的測試方法參照ASTM D149。 The test methods for breaking voltage and dielectric strength refer to ASTM D149.

尺寸安定性測試參照IPC-TM-650 2.2.4C。 The dimensional stability test refers to IPC-TM-650 2.2.4C.

抗張強度、彈性模量、延伸率的量測按照IPC-TM-650 2.4.19。 The measurement of tensile strength, elastic modulus, and elongation shall comply with IPC-TM-650 2.4.19.

離型力測試按照ASTM D3330。 Release force test is in accordance with ASTM D3330.

[實施例][Example]

實施例1合成聚醯胺醯亞胺 Example 1 Synthesis of polyamide imide

首先,將4.11g 2,2-雙[4-(4-氨基苯氧基)苯基]丙烷(BAPP)加到33g N-甲基吡咯烷酮(NMP)中,通入氮氣,80℃攪拌溶解。接著加入4.03g偏苯三酸酐(TMA),80℃反應1小時。加入甲苯後升溫到170℃,將水分蒸出,最後升溫至190℃移除甲苯。降回室溫後加入3.00g 4,4'-二苯甲烷二異氰酸酯(MDI)及0.13g三乙胺(Et3N),升溫至120℃反應3小時,完成可溶之聚醯胺醯亞胺的溶液。 First, add 4.11g of 2,2-bis[4-(4-aminophenoxy)phenyl]propane (BAPP) to 33g of N-methylpyrrolidone (NMP), introduce nitrogen, and stir at 80°C to dissolve. Then add 4.03g of trimellitic anhydride (TMA) and react at 80°C for 1 hour. After adding toluene, heat up to 170°C to evaporate the water, and finally heat up to 190°C to remove toluene. After returning to room temperature, add 3.00g of 4,4'-diphenylmethane diisocyanate (MDI) and 0.13g of triethylamine (Et 3 N), heat up to 120°C and react for 3 hours to complete the solution of soluble polyamide imide.

實施例2合成聚醯亞胺 Example 2 Synthesis of polyimide

通氮氣下,於80℃依序加入單體至349g NMP中,先加32.02g 2,2'-二(三氟甲基)二氨基聯苯(TFMB)再加入21.99g六氟二酐(6FDA)和12.41g雙環[2.2.2]辛-7-烯-2,3,5,6-四羧酸二酐(B1317)。等比例追加6FDA和B1317,追加量為添加量的5%。升溫至150℃,加入0.80g N-乙基哌啶(N-ethylpiperidine)。升溫至190℃反應4小時,得到可溶之聚醯亞胺溶液。 Under nitrogen, add monomers to 349g NMP at 80℃ in sequence, first add 32.02g 2,2'-bis(trifluoromethyl)diaminobiphenyl (TFMB), then add 21.99g hexafluorodianhydride (6FDA) and 12.41g bicyclo[2.2.2]oct-7-ene-2,3,5,6-tetracarboxylic dianhydride (B1317). Add 6FDA and B1317 in equal proportions, the additional amount is 5% of the added amount. Raise the temperature to 150℃ and add 0.80g N-ethylpiperidine. Raise the temperature to 190℃ and react for 4 hours to obtain a soluble polyimide solution.

根據表1所示之清漆層係以PET作為載體(Dupont Teijin Films,YG0),通過在載體層上塗布清漆層,採用50至180℃低溫固化形成絕緣層,得到如圖1表示之疊構塗布型絕緣層薄膜並做成對應實施例與比較例特性數據,其中聚醯亞胺和聚醯胺醯亞胺各別組成比例可參考上述合成的步驟。使用之環氧樹脂是雙環戊二烯酚醛型環氧樹脂(DCPD,南亞,EH272H),催化劑是2-乙基-4-甲基咪唑(日本四國化成,2E4MZ-CN),無機填料是SiO2(D50=0.93μm)(亞都瑪,P30-C1)。 The varnish layer shown in Table 1 uses PET as a carrier (Dupont Teijin Films, YG0). The varnish layer is coated on the carrier layer and cured at a low temperature of 50 to 180°C to form an insulating layer, thereby obtaining a laminated coating type insulating layer film as shown in FIG. 1 and making corresponding embodiment and comparative example characteristic data, wherein the respective composition ratios of polyimide and polyamide imide can refer to the above-mentioned synthesis steps. The epoxy resin used was dicyclopentadiene phenolic epoxy resin (DCPD, Nan Ya, EH272H), the catalyst was 2-ethyl-4-methylimidazole (Shikoku Chemical, Japan, 2E4MZ-CN), and the inorganic filler was SiO 2 (D50=0.93 μm ) (Yadum, P30-C1).

表1

Figure 111150172-A0101-12-0016-1
Table 1
Figure 111150172-A0101-12-0016-1

表2的結果可以得知,本發明的塗布型絕緣層薄膜配比合理,從結果中可以得出導熱與絕緣性能平衡且容易離型的薄膜。其中機械特性、電氣特性、熱性能、尺寸安定性等皆為移除載體層之後再進行測試。 The results in Table 2 show that the coating-type insulating film of the present invention has a reasonable ratio, and the results show that the film has a balanced thermal conductivity and insulation performance and is easy to release. The mechanical properties, electrical properties, thermal properties, dimensional stability, etc. are all tested after removing the carrier layer.

表2

Figure 111150172-A0101-12-0016-2
Table 2
Figure 111150172-A0101-12-0016-2

此外,也可將表1比較例2之清漆層配比做為第二聚醯亞胺清漆層。搭配表1的其他實施例,如表3中以實施例1之清漆層配比作為第一聚醯亞胺清漆層,取得以下表3之實施例7至10之塗布型絕緣層薄膜特性。如下表3所示,所得絕緣層薄膜之機械特性與介電強度皆有較明顯的提升。 In addition, the varnish layer ratio of Example 2 in Table 1 can also be used as the second polyimide varnish layer. In combination with other embodiments in Table 1, such as using the varnish layer ratio of Example 1 as the first polyimide varnish layer in Table 3, the coating-type insulating layer film properties of Examples 7 to 10 in Table 3 below are obtained. As shown in Table 3 below, the mechanical properties and dielectric strength of the obtained insulating layer film are significantly improved.

表3

Figure 111150172-A0101-12-0017-3
table 3
Figure 111150172-A0101-12-0017-3

實施例3塗布型聚醯亞胺薄膜之絕緣特性 Example 3 Insulation properties of coated polyimide film

將上述表1之實施例6搭配PET載體(Dupont Teijin Films,YG0),通過在載體層上塗布聚醯亞胺清漆層,採用50至180℃低溫固化,得到塗布型聚醯亞胺薄膜並移除載體層後做成對應實施例A1至A3,與市售黑色、黃色聚醯亞胺薄膜進行比較,比較例B1至B6分別為PIAM GF050(黃色)、PIAM GF030(黃色)、杜邦20EN(黃色)、杜邦35KBC(黑色)、達邁BK012(黑色)、TL012(黃色),將這些實施例和比較例相對破壞電壓進行比較,得到表4。 Example 6 in Table 1 is matched with a PET carrier (Dupont Teijin Films, YG0), and a polyimide varnish layer is coated on the carrier layer, and low-temperature curing is performed at 50 to 180°C to obtain a coated polyimide film. After removing the carrier layer, the corresponding examples A1 to A3 are made and compared with commercially available black and yellow polyimide films. Comparative examples B1 to B6 are PIAM GF050 (yellow), PIAM GF030 (yellow), Dupont 20EN (yellow), Dupont 35KBC (black), Damai BK012 (black), and TL012 (yellow). The relative destruction voltages of these examples and comparative examples are compared to obtain Table 4.

由表4可以得到本發明之塗布型聚醯亞胺薄膜,其介電強度能達到市售黃色聚醯亞胺薄膜的等級,遠優於市售黑色聚醯亞胺膜,且能夠對應現有薄膜厚度規格之外也能輕易的製備出更薄的厚度,如1至5微米。 From Table 4, it can be seen that the dielectric strength of the coated polyimide film of the present invention can reach the level of commercially available yellow polyimide film, which is far superior to commercially available black polyimide film. In addition to being able to correspond to the existing film thickness specifications, it can also be easily prepared to a thinner thickness, such as 1 to 5 microns.

Figure 111150172-A0101-12-0017-4
Figure 111150172-A0101-12-0017-4

實施例4高導熱金屬基板之特性比對 Example 4: Comparison of properties of high thermal conductivity metal substrates

以表4實施例A1與A2之塗布型聚醯亞胺薄膜作為實施例中的5微米與8微米絕緣層,得到實施例C1至C4。同時比較例D1、D2分別使用比較例B6與B4之市售聚醯亞胺薄膜做成導熱金屬基板。比較例D3、D4使用銅導熱黏著層之導熱金屬基板,做成表5之導熱金屬基板特性比對。實施例與比較例使用之銅箔層為35微米(μm)之福田CF-TGFB-HTE,使用之導熱黏著層為丙烯酸系樹脂30%(BAP-01)且含有70%的氮化硼(D50=2.78微米)。表5之實施例除C1在破壞電壓稍有不足,C2至C4結構可得到能使得導熱係數接近3w/(m*k)且破壞電壓達到7至10KV的技術特性指標,同時清漆型絕緣層在薄膜場景下直接生成於載體層上對下游製程更易加工。由比較例D1、D2可以發現聚醯亞胺薄膜用於導熱金屬基板在導熱係數或破壞電壓上仍具有不足。比較例D3於破壞電壓仍有不足的前提下,比較例D4可以看出需達到總厚度185微米時達到導熱係數3w/(m*k)且破壞電壓達到7KV之技術指標,但實施例C3和C4可在具有相當的導熱係數下,得到更高的破壞電壓。 The coated polyimide films of Examples A1 and A2 in Table 4 were used as the 5-micron and 8-micron insulating layers in the examples to obtain Examples C1 to C4. At the same time, Comparative Examples D1 and D2 used the commercially available polyimide films of Comparative Examples B6 and B4 to make thermally conductive metal substrates, respectively. Comparative Examples D3 and D4 used thermally conductive metal substrates with copper thermally conductive adhesive layers to make the thermally conductive metal substrate property comparison in Table 5. The copper foil layer used in the examples and comparative examples was 35 microns ( μm ) of Futian CF-TGFB-HTE, and the thermally conductive adhesive layer used was 30% acrylic resin (BAP-01) containing 70% boron nitride (D50=2.78 microns). Except for C1, which is slightly insufficient in terms of the breaking voltage, the structures C2 to C4 in Table 5 can obtain technical characteristic indicators that can make the thermal conductivity close to 3w/(m*k) and the breaking voltage reach 7 to 10KV. At the same time, the varnish-type insulation layer is directly generated on the carrier layer in the thin film scene, which is easier to process in the downstream process. From the comparison of examples D1 and D2, it can be found that the polyimide film used for the thermal conductive metal substrate still has deficiencies in terms of thermal conductivity or breaking voltage. Comparative Example D3 still has insufficient breaking voltage, while Comparative Example D4 shows that the total thickness needs to be 185 microns to reach the technical indicators of thermal conductivity 3w/(m*k) and breaking voltage 7KV, but Examples C3 and C4 can obtain higher breaking voltages with comparable thermal conductivity.

Figure 111150172-A0101-12-0018-5
Figure 111150172-A0101-12-0018-5

上述實施例僅為例示性說明,而非用於限制本發明。任何熟習此項技藝之人士均可在不違背本發明之精神及範疇下,對上述實施例 進行修飾與改變。因此,本發明之權利保護範圍係由本發明所附之申請專利範圍所定義,只要不影響本發明之效果及實施目的,應涵蓋於此公開技術內容中。 The above embodiments are only illustrative and not intended to limit the present invention. Anyone familiar with this technology may modify and change the above embodiments without violating the spirit and scope of the present invention. Therefore, the scope of protection of the present invention is defined by the scope of the patent application attached to the present invention. As long as it does not affect the effect and implementation purpose of the present invention, it should be covered by this public technical content.

200:絕緣層 200: Insulation layer

300:第一導熱黏著層 300: First thermal conductive adhesive layer

400:銅箔層 400: Copper foil layer

500:第二導熱黏著層 500: Second thermal conductive adhesive layer

Claims (25)

一種高導熱金屬基板,係包括:厚度為5至100微米之第一導熱黏著層;形成於該第一導熱黏著層上且厚度為1至150微米之絕緣層;形成於該絕緣層上且厚度為5至100微米之第二導熱黏著層,使該絕緣層位於該第一導熱黏著層及第二導熱黏著層之間;以及形成於該第二導熱黏著層上且厚度為1至105微米之銅箔層,使該第二導熱黏著層位於該絕緣層與之銅箔層之間,其中,依該絕緣層之固含量之總重計,該絕緣層包含:50至95wt%之聚合物主鏈中具有醯亞胺結構之樹脂;1至25wt%之環氧系樹脂;1至20wt%之無機填料;及1至10wt%之催化劑,其中,該第一導熱黏著層及第二導熱黏著層各者之材料係包括樹脂材料和10至75wt%之導熱粉體,該樹脂材料係獨立選自環氧樹脂、丙烯酸系樹脂、氨基甲酸酯系樹脂、矽橡膠系樹脂、聚對二甲苯系樹脂、雙馬來醯亞胺系樹脂及聚醯亞胺系樹脂所組成群組中之至少一種,該導熱粉體係獨立選自氧化鋯、碳酸鈣、碳化矽、氮化硼、氧化鋁、滑石粉、氮化鋁、玻璃粉體、石墨及石墨烯所組成群組中之至少一種。 A high thermal conductivity metal substrate comprises: a first thermal conductive adhesive layer with a thickness of 5 to 100 microns; an insulating layer formed on the first thermal conductive adhesive layer and with a thickness of 1 to 150 microns; a second thermal conductive adhesive layer formed on the insulating layer and with a thickness of 5 to 100 microns, wherein the insulating layer is located between the first thermal conductive adhesive layer and the second thermal conductive adhesive layer. and a copper foil layer formed on the second thermally conductive adhesive layer and having a thickness of 1 to 105 microns, so that the second thermally conductive adhesive layer is located between the insulating layer and the copper foil layer, wherein, based on the total weight of the solid content of the insulating layer, the insulating layer comprises: 50 to 95 wt% of a resin having an imide structure in the polymer main chain; 1 to 2 5wt% of epoxy resin; 1 to 20wt% of inorganic filler; and 1 to 10wt% of catalyst, wherein the material of each of the first thermally conductive adhesive layer and the second thermally conductive adhesive layer comprises a resin material and 10 to 75wt% of thermally conductive powder, and the resin material is independently selected from epoxy resin, acrylic resin, urethane The thermal conductive powder is at least one selected from the group consisting of zirconium oxide, calcium carbonate, silicon carbide, boron nitride, aluminum oxide, talc, aluminum nitride, glass powder, graphite and graphene. 如請求項1所述之高導熱金屬基板,其中,該絕緣層包括複數絕緣子層。 A high thermal conductivity metal substrate as described in claim 1, wherein the insulating layer includes a plurality of insulating sub-layers. 如請求項1所述之高導熱金屬基板,復包括厚度為5至100微米之第三導熱黏著層,係形成於該絕緣層與該第二導熱黏著層之間。 The high thermal conductivity metal substrate as described in claim 1 further includes a third thermally conductive adhesive layer with a thickness of 5 to 100 microns, which is formed between the insulating layer and the second thermally conductive adhesive layer. 如請求項1所述之高導熱金屬基板,其中,該聚合物主鏈中具有醯亞胺結構之樹脂係包括聚醯亞胺樹脂或聚醯胺醯亞胺樹脂。 The high thermal conductivity metal substrate as described in claim 1, wherein the resin having an imide structure in the polymer main chain includes a polyimide resin or a polyamide imide resin. 如請求項4所述之高導熱金屬基板,其中,該聚醯亞胺樹脂由包含二胺、酸酐的單體聚合而得,該聚醯胺醯亞胺樹脂由包含該二胺、該酸酐及異氰酸酯系化合物的單體聚合而得。 The high thermal conductivity metal substrate as described in claim 4, wherein the polyimide resin is obtained by polymerizing monomers containing diamine and acid anhydride, and the polyamide imide resin is obtained by polymerizing monomers containing the diamine, the acid anhydride and an isocyanate compound. 如請求項5所述之高導熱金屬基板,其中,該二胺係選自由2,2-雙[4-(4-氨基苯氧基)苯基]丙烷(BAPP)、2,2'-二(三氟甲基)二氨基聯苯(TFMB)、2,2-雙(4-氨基苯基)六氟丙烷、4,4'-二氨基二苯醚、雙[4-(3-氨基苯氧基)苯基]磺胺、雙[4-(4-氨基苯氧基)苯基]磺胺、2,2-雙[4-(4-氨基苯氧基)苯基]六氟丙烷、雙[4-(4-氨基苯氧基)苯基]甲烷、4,4'-雙(4-氨基苯氧基)聯苯、雙[4-(4-氨基苯氧基)苯基]乙醚、雙[4-(4-氨基苯氧基)苯基]酮、1,3-雙(4-氨基苯氧基)苯及1,4-雙(4-氨基苯氧基)苯所組成群組中之至少一種。 The high thermal conductivity metal substrate as described in claim 5, wherein the diamine is selected from 2,2-bis[4-(4-aminophenoxy)phenyl]propane (BAPP), 2,2'-bis(trifluoromethyl)diaminobenzene (TFMB), 2,2-bis(4-aminophenyl)hexafluoropropane, 4,4'-diaminodiphenyl ether, bis[4-(3-aminophenoxy)phenyl]sulfonamide, bis[4-(4-aminophenoxy)phenyl]sulfonamide, At least one of the group consisting of 2,2-bis[4-(4-aminophenoxy)phenyl]hexafluoropropane, bis[4-(4-aminophenoxy)phenyl]methane, 4,4'-bis(4-aminophenoxy)biphenyl, bis[4-(4-aminophenoxy)phenyl]ethyl ether, bis[4-(4-aminophenoxy)phenyl]ketone, 1,3-bis(4-aminophenoxy)benzene and 1,4-bis(4-aminophenoxy)benzene. 如請求項5所述之高導熱金屬基板,其中,該酸酐係選自由六氟二酐(6FDA)、雙環[2.2.2]辛-7-烯-2,3,5,6-四羧酸二酐、1,2-亞乙基二[1,3-二氫-1,3-二氧代異苯並呋喃-5-羧酸酯]、3,3',4,4'-二苯甲酮四甲酸二酐、3,3',4,4'-聯苯四羧酸二酐、苯四甲酸二酐、偏苯三酸酐(TMA)及順式烏頭酸酐所組成群組中之至少一種。 A high thermal conductivity metal substrate as described in claim 5, wherein the acid anhydride is at least one selected from the group consisting of hexafluorodianhydride (6FDA), bicyclo[2.2.2]oct-7-ene-2,3,5,6-tetracarboxylic dianhydride, 1,2-ethylenebis[1,3-dihydro-1,3-dioxoisobenzofuran-5-carboxylate], 3,3',4,4'-benzophenonetetracarboxylic dianhydride, 3,3',4,4'-biphenyltetracarboxylic dianhydride, pyromellitic dianhydride, trimellitic anhydride (TMA) and cis-abiotic anhydride. 如請求項5所述之高導熱金屬基板,其中,該異氰酸酯系化合物係選自由4,4'-二苯甲烷二異氰酸酯(MDI)、2,4-甲苯二異氰酸酯、2,6-甲 苯二異氰酸酯、萘-1,5-二異氰酸酯、異佛爾酮二異氰酸酯、二環己基甲烷二異氰酸酯及賴氨酸二異氰酸酯等所組成群組中之至少一種。 A high thermal conductivity metal substrate as described in claim 5, wherein the isocyanate compound is at least one selected from the group consisting of 4,4'-diphenylmethane diisocyanate (MDI), 2,4-toluene diisocyanate, 2,6-toluene diisocyanate, naphthalene-1,5-diisocyanate, isophorone diisocyanate, dicyclohexylmethane diisocyanate and lysine diisocyanate. 如請求項5所述之高導熱金屬基板,其中,在該聚醯胺醯亞胺樹脂中,該二胺和該酸酐之莫耳比為1:2.05至1:2.20。 A high thermal conductivity metal substrate as described in claim 5, wherein in the polyamide imide resin, the molar ratio of the diamine to the anhydride is 1:2.05 to 1:2.20. 如請求項5所述之高導熱金屬基板,其中,在該聚醯亞胺樹脂中,該二胺和該酸酐之莫耳比為1:0.90至1:1.10。 A high thermal conductivity metal substrate as described in claim 5, wherein in the polyimide resin, the molar ratio of the diamine to the anhydride is 1:0.90 to 1:1.10. 如請求項5所述之高導熱金屬基板,其中,在該聚醯胺醯亞胺樹脂中,該二胺和該異氰酸酯之莫耳比為1:1.05至1:1.50。 A high thermal conductivity metal substrate as described in claim 5, wherein in the polyamide imide resin, the molar ratio of the diamine to the isocyanate is 1:1.05 to 1:1.50. 如請求項1所述之高導熱金屬基板,其中,該環氧系樹脂係選自由縮水甘油胺型環氧樹脂、縮水甘油酯型環氧樹脂、環氧化烯烴化合物、脂環族類環氧樹脂、多酚型縮水甘油醚環氧樹脂、雙酚A型環氧樹脂、雙酚F型環氧樹脂、脂肪族縮水甘油醚環氧樹脂及雜環型環氧樹脂所組成群組中之至少一種。 The high thermal conductivity metal substrate as described in claim 1, wherein the epoxy resin is at least one selected from the group consisting of glycidylamine epoxy resin, glycidyl ester epoxy resin, epoxide alkylene compound, aliphatic epoxy resin, polyphenol glycidyl ether epoxy resin, bisphenol A epoxy resin, bisphenol F epoxy resin, aliphatic glycidyl ether epoxy resin and heterocyclic epoxy resin. 如請求項1所述之高導熱金屬基板,其中,該催化劑係選自由2-甲基咪唑、2-十一烷基咪唑、2-十七烷基咪唑、1,2-二甲基咪唑、2-乙基-4-甲基咪唑、2-苯基咪唑、2-苯基-4-甲基咪唑、1-苄基-2-甲基咪唑及1-苄基-2-苯基咪唑所組成群組中之至少一種。 A high thermal conductivity metal substrate as described in claim 1, wherein the catalyst is at least one selected from the group consisting of 2-methylimidazole, 2-undecylimidazole, 2-heptadecylimidazole, 1,2-dimethylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, 1-benzyl-2-methylimidazole and 1-benzyl-2-phenylimidazole. 如請求項1所述之高導熱金屬基板,其中,該無機填料係選自由硫酸鈣、碳黑、二氧化矽、二氧化鈦、硫化鋅、氧化鋯、碳酸鈣、碳化矽、氮化硼、氧化鋁、滑石粉、氮化鋁、玻璃粉體、石英粉體及黏土所組成群組中之至少一種。 The high thermal conductivity metal substrate as described in claim 1, wherein the inorganic filler is at least one selected from the group consisting of calcium sulfate, carbon black, silicon dioxide, titanium dioxide, zinc sulfide, zirconium oxide, calcium carbonate, silicon carbide, boron nitride, aluminum oxide, talc, aluminum nitride, glass powder, quartz powder and clay. 如請求項1所述之高導熱金屬基板,其中,該無機填料為粒徑0.5微米至10微米之粉體。 The high thermal conductivity metal substrate as described in claim 1, wherein the inorganic filler is a powder with a particle size of 0.5 microns to 10 microns. 如請求項3所述之高導熱金屬基板,其中,形成該第三導熱黏著層之材料係包括樹脂材料和10至75wt%之導熱粉體,且該第三導熱黏著層之該樹脂材料係獨立選自環氧樹脂、丙烯酸系樹脂、氨基甲酸酯系樹脂、矽橡膠系樹脂、聚對二甲苯系樹脂、雙馬來醯亞胺系樹脂及聚醯亞胺系樹脂所組成群組中之至少一種,該導熱粉體係獨立選自氧化鋯、碳酸鈣、碳化矽、氮化硼、氧化鋁、滑石粉、氮化鋁、玻璃粉體、石墨及石墨烯所組成群組中之至少一種。 The high thermal conductivity metal substrate as described in claim 3, wherein the material forming the third thermally conductive adhesive layer includes a resin material and 10 to 75 wt% of thermally conductive powder, and the resin material of the third thermally conductive adhesive layer is independently selected from at least one of the group consisting of epoxy resin, acrylic resin, urethane resin, silicone rubber resin, polyparaxylene resin, dimaleimide resin and polyimide resin, and the thermally conductive powder is independently selected from at least one of the group consisting of zirconium oxide, calcium carbonate, silicon carbide, boron nitride, aluminum oxide, talc, aluminum nitride, glass powder, graphite and graphene. 如請求項1所述之高導熱金屬基板,復包括鋁板帶,係形成於該第一導熱黏著層上,使該第一導熱黏著層位於該絕緣層和鋁板帶之間。 The high thermal conductivity metal substrate as described in claim 1 further includes an aluminum plate strip formed on the first thermally conductive adhesive layer, so that the first thermally conductive adhesive layer is located between the insulating layer and the aluminum plate strip. 一種高導熱複合膜,係包括:厚度為12.5至250微米之載體層;以及依序形成在該載體層上之如請求項1之絕緣層和第一導熱黏著層。 A high thermal conductivity composite film comprises: a carrier layer with a thickness of 12.5 to 250 microns; and an insulating layer and a first thermally conductive adhesive layer sequentially formed on the carrier layer. 如請求項19所述之高導熱複合膜,其中,該載體層係選自由聚丙烯、雙向拉伸聚丙烯、聚對苯二甲酸乙二醇酯、聚醯亞胺、聚苯硫醚、聚萘二甲酸乙二醇酯、聚氨酯及聚醯胺所組成群組中之至少一種。 The high thermal conductivity composite film as described in claim 19, wherein the carrier layer is selected from at least one of the group consisting of polypropylene, biaxially oriented polypropylene, polyethylene terephthalate, polyimide, polyphenylene sulfide, polyethylene naphthalate, polyurethane and polyamide. 一種高導熱金屬基板的製備方法,係包括:在載體層上塗布清漆層,其中,依該清漆層之固含量之總重計,該清漆層包含50至95wt%之聚合物主鏈中具有醯亞胺結構之樹脂;1至25wt%之環氧系樹脂;1至20wt%之無機填料;及1至10wt%之催化劑;於溫度範圍50至180℃下,固化該清漆層以得到絕緣層; 於該絕緣層上塗布形成第一導熱黏著層;自該絕緣層上移除該載體層,以外露出該絕緣層表面;以及於該絕緣層表面壓合背膠銅箔,該背膠銅箔包括銅箔層及形成於該銅箔層上之第二導熱黏著層,且令該第二導熱黏著層位於該絕緣層與銅箔層之間,其中,該第一導熱黏著層及第二導熱黏著層各者之材料係包括樹脂材料和10至75wt%之導熱粉體,該樹脂材料係獨立選自環氧樹脂、丙烯酸系樹脂、氨基甲酸酯系樹脂、矽橡膠系樹脂、聚對二甲苯系樹脂、雙馬來醯亞胺系樹脂及聚醯亞胺系樹脂所組成群組中之至少一種,該導熱粉體係獨立選自氧化鋯、碳酸鈣、碳化矽、氮化硼、氧化鋁、滑石粉、氮化鋁、玻璃粉體、石墨及石墨烯所組成群組中之至少一種。 A method for preparing a high thermal conductivity metal substrate comprises: coating a varnish layer on a carrier layer, wherein the varnish layer comprises, based on the total weight of the solid content of the varnish layer, 50 to 95 wt% of a resin having an imide structure in the polymer main chain; 1 to 25 wt% of an epoxy resin; 1 to 20 wt% of an inorganic filler; and 1 to 1 0wt% of catalyst; curing the varnish layer at a temperature range of 50 to 180°C to obtain an insulating layer; coating the insulating layer with a first thermally conductive adhesive layer; removing the carrier layer from the insulating layer to expose the insulating layer surface; and pressing a backing copper foil on the insulating layer surface, the backing copper foil comprising a copper foil layer and a thermal conductive adhesive layer formed on the insulating layer. A second thermally conductive adhesive layer is formed on the copper foil layer, and the second thermally conductive adhesive layer is located between the insulating layer and the copper foil layer, wherein the material of each of the first thermally conductive adhesive layer and the second thermally conductive adhesive layer includes a resin material and 10 to 75 wt% of a thermally conductive powder, and the resin material is independently selected from epoxy resin, acrylic resin, urethane resin, At least one of the group consisting of resin, silicone rubber resin, polyparaxylene resin, dimaleimide resin and polyimide resin, and the thermal conductive powder is independently selected from at least one of the group consisting of zirconium oxide, calcium carbonate, silicon carbide, boron nitride, aluminum oxide, talc, aluminum nitride, glass powder, graphite and graphene. 如請求項20所述之高導熱金屬基板的製備方法,復包括在壓合該背膠銅箔之前,於該外露之該絕緣層表面上形成第三導熱黏著層,再於該第三導熱黏著層上壓合該背膠銅箔。 The method for preparing a high thermal conductivity metal substrate as described in claim 20 further includes forming a third thermally conductive adhesive layer on the exposed surface of the insulating layer before pressing the backing copper foil, and then pressing the backing copper foil on the third thermally conductive adhesive layer. 如請求項20所述之高導熱金屬基板的製備方法,復包括在壓合該背膠銅箔之前,於該銅箔層上形成第三導熱黏著層,再藉由該第三導熱黏著層將該背膠銅箔壓合於該絕緣層表面。 The method for preparing a high thermal conductivity metal substrate as described in claim 20 further includes forming a third thermally conductive adhesive layer on the copper foil layer before pressing the backing copper foil, and then pressing the backing copper foil onto the surface of the insulating layer by the third thermally conductive adhesive layer. 如請求項20所述之高導熱金屬基板的製備方法,係於100至120℃及1至3kgf/cm2之壓力壓合該背膠銅箔。 The method for preparing a high thermal conductivity metal substrate as described in claim 20 comprises pressing the backing copper foil at 100 to 120°C and a pressure of 1 to 3 kgf/ cm2 . 如請求項20所述之高導熱金屬基板的製備方法,復包括在該第一導熱黏著層上壓合鋁板帶。 The method for preparing a high thermal conductivity metal substrate as described in claim 20 further includes pressing an aluminum plate strip onto the first thermally conductive adhesive layer. 一種高導熱金屬基板的製備方法,係包括: 在載體層上塗布清漆層,其中,依該清漆層之固含量之總重計,該清漆層包含50至95wt%之聚合物主鏈中具有醯亞胺結構之樹脂;1至25wt%之環氧系樹脂;1至20wt%之無機填料;及1至10wt%之催化劑;於溫度範圍50至180℃下,固化該清漆層以得到絕緣層;於該絕緣層上塗布形成第一導熱黏著層;自該絕緣層上移除該載體層,以外露出該絕緣層表面;於該絕緣層表面貼合第二導熱黏著層;分別在該第二導熱黏著層和第一導熱黏著層貼合銅箔層和鋁板帶;以及壓合該絕緣層、第一導熱黏著層、第二導熱黏著層、銅箔層和鋁板帶,其中,該第一導熱黏著層及第二導熱黏著層各者之材料係包括樹脂材料和10至75wt%之導熱粉體,該樹脂材料係獨立選自環氧樹脂、丙烯酸系樹脂、氨基甲酸酯系樹脂、矽橡膠系樹脂、聚對二甲苯系樹脂、雙馬來醯亞胺系樹脂及聚醯亞胺系樹脂所組成群組中之至少一種,該導熱粉體係獨立選自氧化鋯、碳酸鈣、碳化矽、氮化硼、氧化鋁、滑石粉、氮化鋁、玻璃粉體、石墨及石墨烯所組成群組中之至少一種。 A method for preparing a high thermal conductivity metal substrate comprises: Coating a varnish layer on a carrier layer, wherein, based on the total weight of the solid content of the varnish layer, the varnish layer comprises 50 to 95 wt% of a resin having an imide structure in the polymer main chain; 1 to 25 wt% of an epoxy resin; 1 to 20 wt% of an inorganic filler; and 1 to 10 wt% of a t% of a catalyst; curing the varnish layer at a temperature range of 50 to 180° C. to obtain an insulating layer; coating the insulating layer with a first thermally conductive adhesive layer; removing the carrier layer from the insulating layer to expose the surface of the insulating layer; attaching a second thermally conductive adhesive layer to the surface of the insulating layer; attaching a second thermally conductive adhesive layer to the second thermally conductive adhesive layer and the first thermally conductive adhesive layer respectively; The copper foil layer and the aluminum strip are combined; and the insulating layer, the first thermally conductive adhesive layer, the second thermally conductive adhesive layer, the copper foil layer and the aluminum strip are pressed together, wherein the material of each of the first thermally conductive adhesive layer and the second thermally conductive adhesive layer includes a resin material and 10 to 75 wt % of a thermally conductive powder, and the resin material is independently selected from epoxy resin, acrylic resin, urethane resin, At least one of the group consisting of ester resin, silicone rubber resin, polyparaxylene resin, dimaleimide resin and polyimide resin, and the thermal conductive powder is independently selected from at least one of the group consisting of zirconium oxide, calcium carbonate, silicon carbide, boron nitride, aluminum oxide, talc, aluminum nitride, glass powder, graphite and graphene.
TW111150172A 2022-12-27 2022-12-27 High thermal conductive metal substrate and preparation method thereof TWI846241B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW111150172A TWI846241B (en) 2022-12-27 2022-12-27 High thermal conductive metal substrate and preparation method thereof
CN202310297173.3A CN117769109A (en) 2022-12-27 2023-03-24 High-heat-conductivity metal substrate and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW111150172A TWI846241B (en) 2022-12-27 2022-12-27 High thermal conductive metal substrate and preparation method thereof

Publications (2)

Publication Number Publication Date
TWI846241B true TWI846241B (en) 2024-06-21
TW202426591A TW202426591A (en) 2024-07-01

Family

ID=90315042

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111150172A TWI846241B (en) 2022-12-27 2022-12-27 High thermal conductive metal substrate and preparation method thereof

Country Status (2)

Country Link
CN (1) CN117769109A (en)
TW (1) TWI846241B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200701852A (en) * 2005-03-31 2007-01-01 Nippon Steel Chemical Co Method for producing flexible copper-clad laminated substrate and multi-layer laminate
TW200936371A (en) * 2007-10-24 2009-09-01 Ube Industries Metal foil laminated polyimide resin substrate
CN102825861A (en) * 2012-08-16 2012-12-19 新高电子材料(中山)有限公司 Heat-conductive two-sided flexible copper clad laminate and manufacturing method thereof
TW202132519A (en) * 2020-02-28 2021-09-01 韓商利諾士尖端材料有限公司 Bonding film, bonding film laminate comprising the same and metal clad laminate comprising the same
TW202239583A (en) * 2021-03-31 2022-10-16 日商日鐵化學材料股份有限公司 Resin film, lamitate, coverlay film, copper foil with resin, metal-clad laminate plate, circuit board and multilayer circuit board

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200701852A (en) * 2005-03-31 2007-01-01 Nippon Steel Chemical Co Method for producing flexible copper-clad laminated substrate and multi-layer laminate
TW200936371A (en) * 2007-10-24 2009-09-01 Ube Industries Metal foil laminated polyimide resin substrate
CN102825861A (en) * 2012-08-16 2012-12-19 新高电子材料(中山)有限公司 Heat-conductive two-sided flexible copper clad laminate and manufacturing method thereof
TW202132519A (en) * 2020-02-28 2021-09-01 韓商利諾士尖端材料有限公司 Bonding film, bonding film laminate comprising the same and metal clad laminate comprising the same
TW202239583A (en) * 2021-03-31 2022-10-16 日商日鐵化學材料股份有限公司 Resin film, lamitate, coverlay film, copper foil with resin, metal-clad laminate plate, circuit board and multilayer circuit board

Also Published As

Publication number Publication date
TW202426591A (en) 2024-07-01
CN117769109A (en) 2024-03-26

Similar Documents

Publication Publication Date Title
KR102438820B1 (en) Resin composition
KR102066280B1 (en) Transparent flexible laminate and laminate roll
TWI513575B (en) Thermally conductive polyimide film and a thermally conductive laminate using such thermally conductive polyimide film
TWI564145B (en) Metal-clad laminate and method of manufacturing the same
TWI385198B (en) Double-sided metal clad laminate and fabrication method thereof
EP2325000A1 (en) Highly heat conductive polyimide film, highly heat conductive metal-clad laminate and method for producing same
TW200934654A (en) Highly adhesive polyimide copper clad laminate and method of making the same
WO2013136807A1 (en) Polyimide precursor varnish and polyimide resin, and use thereof
TW201522409A (en) Resin composition
TW201113327A (en) Polyamic acid resin composition and polyimide film prepared therefrom
KR20220138011A (en) Polyimide precursor resin composition for forming flexible device substrate
JP2010229274A (en) Resin composition and adhesive for electronic part
CN108727942A (en) Resin combination
US20070042202A1 (en) Double-sided metallic laminate and method for manufacturing the same
TW200819000A (en) Laminate for wiring board
TWI846241B (en) High thermal conductive metal substrate and preparation method thereof
JP7192674B2 (en) resin sheet
JP2023021385A (en) Manufacturing method for semiconductor device, and resin sheet
TW202419269A (en) High thermal conductive metal substrate and preparation method thereof
JP5665449B2 (en) Metal-clad laminate and thermally conductive polyimide film
TW202239932A (en) Method for manufacturing printed wiring board
TW202225269A (en) Resin composition,adhesive film, laminate, coverlay film, copper foil with resin, metal-crad laminate and circuit board
TWI388260B (en) Single - sided soft copper foil laminated board and its manufacturing method
TWI310780B (en)
TWI327520B (en) Polyimide composite flexible board and its preparation