TWI842807B - Semiconductor light emitting element and method for manufacturing the same - Google Patents

Semiconductor light emitting element and method for manufacturing the same Download PDF

Info

Publication number
TWI842807B
TWI842807B TW109100405A TW109100405A TWI842807B TW I842807 B TWI842807 B TW I842807B TW 109100405 A TW109100405 A TW 109100405A TW 109100405 A TW109100405 A TW 109100405A TW I842807 B TWI842807 B TW I842807B
Authority
TW
Taiwan
Prior art keywords
layer
covering
type semiconductor
aforementioned
contact electrode
Prior art date
Application number
TW109100405A
Other languages
Chinese (zh)
Other versions
TW202044616A (en
Inventor
稲津哲彦
丹羽紀隆
Original Assignee
日商日機裝股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2019151150A external-priority patent/JP7312056B2/en
Application filed by 日商日機裝股份有限公司 filed Critical 日商日機裝股份有限公司
Publication of TW202044616A publication Critical patent/TW202044616A/en
Application granted granted Critical
Publication of TWI842807B publication Critical patent/TWI842807B/en

Links

Images

Abstract

本發明的目的是提升半導體發光元件的可靠性。本發明的半導體發光元件10係具有:n型半導體層24;活性層26,係設置於n型半導體層24上的第一區域;p型半導體層30,係設置於活性層26上;第一覆蓋層34,係由氧化鋁(Al2 O3 )所構成,且以覆蓋與n型半導體層24上的第一區域不同的第二區域、活性層26的側面以及p型半導體層30的方式設置;n側接觸電極36,係貫通第一覆蓋層34且接觸n型半導體層24;p側接觸電極40,係貫通第一覆蓋層34且接觸p型半導體層30;以及第二覆蓋層44,係以覆蓋第一覆蓋層34、n側接觸電極36以及p側接觸電極40的方式設置。The purpose of the present invention is to improve the reliability of semiconductor light-emitting devices. The semiconductor light-emitting device 10 of the present invention comprises: an n-type semiconductor layer 24; an active layer 26 disposed in a first region on the n-type semiconductor layer 24; a p-type semiconductor layer 30 disposed on the active layer 26; a first cover layer 34 made of aluminum oxide (Al 2 O 3 ) and is arranged in a manner to cover a second region different from the first region on the n-type semiconductor layer 24, a side surface of the active layer 26 and the p-type semiconductor layer 30; an n-side contact electrode 36 passes through the first cover layer 34 and contacts the n-type semiconductor layer 24; a p-side contact electrode 40 passes through the first cover layer 34 and contacts the p-type semiconductor layer 30; and a second cover layer 44 is arranged in a manner to cover the first cover layer 34, the n-side contact electrode 36 and the p-side contact electrode 40.

Description

半導體發光元件以及半導體發光元件的製造方法Semiconductor light emitting element and method for manufacturing semiconductor light emitting element

本發明係有關於一種半導體發光元件以及半導體發光元件的製造方法。 The present invention relates to a semiconductor light-emitting element and a method for manufacturing the semiconductor light-emitting element.

深紫外光用的發光元件係具有於基板上依序積層的氮化鋁鎵(AlGaN)系的n型被覆層(n-type clad layer)、活性層以及p型被覆層。於藉由蝕刻露出的n型被覆層之一部分的區域上形成n側電極,於p型被覆層上形成p側電極。於n側電極以及p側電極上設置氧化矽(SiO2)或氧化鋁(Al2O3)等的保護絕緣膜(例如參照專利文獻1)。 The deep ultraviolet light emitting element has an aluminum gallium nitride (AlGaN) system n-type clad layer, an active layer, and a p-type clad layer stacked in sequence on a substrate. An n-side electrode is formed on a portion of the n-type clad layer exposed by etching, and a p-side electrode is formed on the p-type clad layer. A protective insulating film such as silicon oxide (SiO 2 ) or aluminum oxide (Al 2 O 3 ) is provided on the n-side electrode and the p-side electrode (see, for example, Patent Document 1).

[先前技術文獻] [Prior Art Literature]

[專利文獻] [Patent Literature]

[專利文獻1]日本特許第5985782號公報。 [Patent Document 1] Japanese Patent No. 5985782.

較佳為能更合適地覆蓋發光元件的表面。 It is better to be able to cover the surface of the light-emitting element more appropriately.

本發明係有鑑於上述課題而研發,本發明的例示性目的之一為提升半導體發光元件的可靠性。 This invention is developed in view of the above-mentioned issues. One of the exemplary purposes of this invention is to improve the reliability of semiconductor light-emitting elements.

本發明之一態樣的半導體發光元件係具有:n型半導體層,係n型氮化鋁鎵(AlGaN)系半導體材料且設置於基板上;活性層,係AlGaN系半導 體材料且設置於n型半導體層上的第一區域;p型半導體層,係p型AlGaN系半導體材料且設置於活性層上;第一覆蓋層,係由氧化鋁(Al2O3)所構成,且以覆蓋與n型半導體層上的第一區域不同的第二區域、活性層的側面以及p型半導體層的方式設置;n側接觸電極,係貫通第一覆蓋層且接觸n型半導體層;p側接觸電極,係貫通第一覆蓋層且接觸p型半導體層;第二覆蓋層,係以覆蓋第一覆蓋層、n側接觸電極以及p側接觸電極的方式設置;n側墊電極,係貫通第二覆蓋層且與n側接觸電極連接;以及p側墊電極,係貫通第二覆蓋層且與p側接觸電極連接。 The semiconductor light emitting device of one embodiment of the present invention comprises: an n-type semiconductor layer, which is an n-type aluminum gallium nitride (AlGaN) semiconductor material and is disposed on a substrate; an active layer, which is an AlGaN semiconductor material and is disposed in a first region on the n-type semiconductor layer; a p-type semiconductor layer, which is a p-type AlGaN semiconductor material and is disposed on the active layer; a first cover layer, which is made of aluminum oxide ( Al2O3 ) and is arranged in a manner of covering a second region different from a first region on the n-type semiconductor layer, a side surface of the active layer, and a p-type semiconductor layer; an n-side contact electrode penetrates the first covering layer and contacts the n-type semiconductor layer; and a p-side contact electrode penetrates the first covering layer and contacts the p-type semiconductor layer. type semiconductor layer; a second cover layer is arranged in a manner of covering the first cover layer, the n-side contact electrode and the p-side contact electrode; an n-side pad electrode penetrates the second cover layer and is connected to the n-side contact electrode; and a p-side pad electrode penetrates the second cover layer and is connected to the p-side contact electrode.

依據該態樣,由於以AlGaN系半導體材料所構成的n型半導體層、活性層以及p型半導體層被耐濕性優的氧化鋁(Al2O3)覆蓋,故可更合適地覆蓋這些半導體層的表面。進一步地,設置將第一覆蓋層、n側接觸電極以及p側接觸電極進一步覆蓋的第二覆蓋層,藉此可保護第一覆蓋層並且將接觸電極的表面合適地覆蓋。藉此,能提供可靠性高的半導體發光元件。 According to this aspect, since the n-type semiconductor layer, the active layer, and the p-type semiconductor layer composed of the AlGaN-based semiconductor material are covered with aluminum oxide (Al 2 O 3 ) having excellent moisture resistance, the surfaces of these semiconductor layers can be covered more appropriately. Furthermore, a second covering layer is provided to further cover the first covering layer, the n-side contact electrode, and the p-side contact electrode, thereby protecting the first covering layer and appropriately covering the surface of the contact electrode. In this way, a semiconductor light-emitting element with high reliability can be provided.

亦可為進一步具有:第三覆蓋層,係由氧化鋁(Al2O3)所構成,且以覆蓋基板的表面、第二覆蓋層、n側墊電極的側面以及p側墊電極的側面之各自的至少一部分的方式設置。 It may further include a third cover layer made of aluminum oxide (Al 2 O 3 ) and provided to cover at least a portion of the surface of the substrate, the second cover layer, the side surface of the n-side pad electrode, and the side surface of the p-side pad electrode.

亦可為進一步具有:安裝基板,係包含與n側墊電極連接的n側安裝電極以及與p側墊電極連接的p側安裝電極。亦可為第三覆蓋層係進一步以覆蓋安裝基板的表面的至少一部分的方式設置。 It may also further include: a mounting substrate including an n-side mounting electrode connected to the n-side pad electrode and a p-side mounting electrode connected to the p-side pad electrode. It may also be that the third covering layer is further provided in a manner of covering at least a portion of the surface of the mounting substrate.

第一覆蓋層所含的氫的濃度係較第三覆蓋層所含的氫的濃度還低。 The concentration of hydrogen contained in the first covering layer is lower than the concentration of hydrogen contained in the third covering layer.

亦可為進一步具有:保護絕緣層,係由氧化矽(SiO2)或氮氧化矽(SiON)所構成且設置於p型半導體層與第一覆蓋層之間。 The semiconductor device may further include a protective insulating layer made of silicon oxide (SiO 2 ) or silicon oxynitride (SiON) and disposed between the p-type semiconductor layer and the first capping layer.

亦可為n型半導體層係氮化鋁(AlN)的莫耳分率為20%以上,活性層係以發出波長350nm以下的紫外光的方式所構成。 Alternatively, the molar fraction of the n-type semiconductor layer of aluminum nitride (AlN) may be greater than 20%, and the active layer may be configured to emit ultraviolet light with a wavelength of less than 350nm.

本發明之另一態樣係半導體發光元件的製造方法。該半導體發光元件的製造方法係具有:於基板上依序積層以下各層的步驟:n型半導體層,係n型氮化鋁鎵(AlGaN)系半導體材料;活性層,係n型半導體層上的AlGaN系半導體材料;以及p型半導體層,係活性層上的p型AlGaN系半導體材料;以露出n型半導體層的一部分的方式去除p型半導體層的一部分、活性層的一部分以及n型半導體層的一部分的步驟;以覆蓋n型半導體層的露出區域上、活性層的側面以及p型半導體層的方式形成由氧化鋁(Al2O3)所構成的第一覆蓋層的步驟;將第一覆蓋層部分地去除且形成接觸n型半導體層的n側接觸電極的步驟;將第一覆蓋層部分地去除且形成接觸p型半導體層的p側接觸電極的步驟;形成將第一覆蓋層、n側接觸電極以及p側接觸電極覆蓋的第二覆蓋層的步驟;將第二覆蓋層部分地去除且形成與n側接觸電極連接的n側墊電極的步驟;以及將第二覆蓋層部分地去除且形成與p側接觸電極連接的p側墊電極的步驟。 Another aspect of the present invention is a method for manufacturing a semiconductor light-emitting device. The method for manufacturing a semiconductor light-emitting device comprises: sequentially stacking the following layers on a substrate: an n-type semiconductor layer, which is an n-type aluminum gallium nitride (AlGaN) semiconductor material; an active layer, which is an AlGaN semiconductor material on the n-type semiconductor layer; and a p-type semiconductor layer, which is a p-type AlGaN semiconductor material on the active layer; removing a portion of the p-type semiconductor layer, a portion of the active layer, and a portion of the n-type semiconductor layer in a manner that a portion of the n-type semiconductor layer is exposed; forming an aluminum oxide ( Al2O3 ) layer in a manner that covers the exposed region of the n-type semiconductor layer, the side of the active layer, and the p-type semiconductor layer; ) formed by the first covering layer; the step of partially removing the first covering layer and forming an n-side contact electrode contacting the n-type semiconductor layer; the step of partially removing the first covering layer and forming a p-side contact electrode contacting the p-type semiconductor layer; forming the first covering layer, the n-side The invention further comprises a step of forming a second covering layer covering the p-side contact electrode and the p-side contact electrode; a step of partially removing the second covering layer and forming an n-side pad electrode connected to the n-side contact electrode; and a step of partially removing the second covering layer and forming a p-side pad electrode connected to the p-side contact electrode.

依據該態樣,由於以AlGaN系半導體材料所構成的n型半導體層、活性層以及p型半導體層被耐濕性優的氧化鋁(Al2O3)覆蓋,故可更合適地覆蓋這些半導體層的表面。進一步地,設置將第一覆蓋層、n側接觸電極以及p側接觸電極進一步覆蓋的第二覆蓋層,藉此可保護第一覆蓋層並且將接觸電極的表面合適地覆蓋。藉此,能提供可靠性高的半導體發光元件。 According to this aspect, since the n-type semiconductor layer, the active layer, and the p-type semiconductor layer composed of the AlGaN-based semiconductor material are covered with aluminum oxide (Al 2 O 3 ) having excellent moisture resistance, the surfaces of these semiconductor layers can be covered more appropriately. Furthermore, a second covering layer is provided to further cover the first covering layer, the n-side contact electrode, and the p-side contact electrode, thereby protecting the first covering layer and appropriately covering the surface of the contact electrode. In this way, a semiconductor light-emitting element with high reliability can be provided.

亦可為第一覆蓋層係藉由以有機鋁化合物和氧氣(O2)電漿或臭氧氣(O3)作為原料的原子層堆積法而形成。 Alternatively, the first covering layer may be formed by an atomic layer deposition method using an organic aluminum compound and oxygen (O 2 ) plasma or ozone (O 3 ) as raw materials.

亦可進一步具有以覆蓋基板的表面、第二覆蓋層、n側墊電極的側面以及p側墊電極的側面的至少一部分的方式形成由氧化鋁(Al2O3)所構成的第三覆蓋層的步驟。第三覆蓋層係藉由以有機鋁化合物和水(H2O)作為原料的原子層堆積法而形成。 There may be a further step of forming a third covering layer made of aluminum oxide ( Al2O3 ) so as to cover the surface of the substrate, the second covering layer, the side surface of the n-side pad electrode, and at least a portion of the side surface of the p-side pad electrode. The third covering layer is formed by an atomic layer deposition method using an organic aluminum compound and water ( H2O ) as raw materials.

依據本發明,可提升半導體發光元件的可靠性。 According to the present invention, the reliability of semiconductor light-emitting elements can be improved.

10,110:半導體發光元件 10,110:Semiconductor light-emitting element

12,112:裸晶 12,112: Bare crystal

14:安裝基板 14: Install the substrate

16n,16p:金屬接合材 16n,16p:Metal bonding material

18:覆蓋層(第三覆蓋層) 18: Covering layer (third covering layer)

20:基板 20: Substrate

20a:第一主表面 20a: first main surface

20b:第二主表面 20b: Second main surface

20c:外周面 20c: Outer surface

20d:側面 20d: Side

22:緩衝層 22: Buffer layer

24:n型被覆層 24: n-type coating layer

24a:第一上表面 24a: first upper surface

24b:第二上表面 24b: Second upper surface

26:活性層 26: Active layer

28:電子阻擋層 28:Electron blocking layer

30:p型被覆層 30: p-type coating layer

32:保護絕緣層 32: Protect the insulating layer

34:第一覆蓋層 34: First covering layer

36:n側接觸電極 36: n-side contact electrode

38:n側保護金屬層(保護金屬層) 38: n-side protective metal layer (protective metal layer)

40:p側接觸電極 40: p-side contact electrode

42:p側保護金屬層(保護金屬層) 42: p-side protective metal layer (protective metal layer)

44:第二覆蓋層 44: Second covering layer

46:n側墊電極(墊電極) 46: n-side pad electrode (pad electrode)

48:p側墊電極(墊電極) 48: p side pad electrode (pad electrode)

50:基部 50: Base

50a:第一主表面 50a: first main surface

50b:第二主表面 50b: Second main surface

50c:側面 50c: Side

52n:n側安裝電極 52n:n side mounted electrode

52p:p側安裝電極 52p:p side mounted electrode

54n:n側外部端子 54n: n-side external terminal

54p:p側外部端子 54p:p side external terminal

61:第一遮罩 61: First mask

62:第二遮罩 62: Second mask

63:第三遮罩 63: The third mask

64:第四遮罩 64: The fourth mask

65:第五遮罩 65: The fifth mask

66:第六遮罩 66: The sixth mask

67:第七遮罩 67: The Seventh Mask

71,72,73,75,76,77:乾蝕刻 71,72,73,75,76,77: Dry etching

81:第一開口 81: First opening

82:第二開口 82: Second opening

83:第三開口 83: The third opening

84:第四開口 84: The fourth opening

85:第五開口 85: The fifth opening

86:第六開口 86: The sixth opening

87:第七開口 87: The seventh opening

88:第八開口 88: The eighth opening

89:第九開口 89: The ninth opening

144:第二覆蓋層 144: Second covering layer

144a:第一層 144a: First level

144b:第二層 144b: Second level

W1:第一區域(露出區域) W1: The first area (exposed area)

W2:第二區域(外周區域) W2: The second area (peripheral area)

W3n,W5n,W6n,W7n:n側電極區域 W3n,W5n,W6n,W7n: n-side electrode region

W3p,W5p,W6p,W7p:p側電極區域 W3p,W5p,W6p,W7p: p-side electrode region

W4:第四區域 W4: The fourth area

[圖1]係概略性地顯示半導體發光元件的構成之剖面圖。 [Figure 1] is a cross-sectional view schematically showing the structure of a semiconductor light-emitting element.

[圖2]係概略性地顯示半導體發光元件的製造步驟之圖。 [Figure 2] is a diagram schematically showing the manufacturing steps of a semiconductor light-emitting element.

[圖3]係概略性地顯示半導體發光元件的製造步驟之圖。 [Figure 3] is a diagram schematically showing the manufacturing steps of a semiconductor light-emitting element.

[圖4]係概略性地顯示半導體發光元件的製造步驟之圖。 [Figure 4] is a diagram schematically showing the manufacturing steps of a semiconductor light-emitting element.

[圖5]係概略性地顯示半導體發光元件的製造步驟之圖。 [Figure 5] is a diagram schematically showing the manufacturing steps of a semiconductor light-emitting element.

[圖6]係概略性地顯示半導體發光元件的製造步驟之圖。 [Figure 6] is a diagram schematically showing the manufacturing steps of a semiconductor light-emitting element.

[圖7]係概略性地顯示半導體發光元件的製造步驟之圖。 [Figure 7] is a diagram schematically showing the manufacturing steps of a semiconductor light-emitting element.

[圖8]係概略性地顯示半導體發光元件的製造步驟之圖。 [Figure 8] is a diagram schematically showing the manufacturing steps of a semiconductor light-emitting element.

[圖9]係概略性地顯示半導體發光元件的製造步驟之圖。 [Figure 9] is a diagram schematically showing the manufacturing steps of a semiconductor light-emitting element.

[圖10]係概略性地顯示半導體發光元件的製造步驟之圖。 [Figure 10] is a diagram schematically showing the manufacturing steps of a semiconductor light-emitting element.

[圖11]係概略性地顯示半導體發光元件的製造步驟之圖。 [Figure 11] is a diagram schematically showing the manufacturing steps of a semiconductor light-emitting element.

[圖12]係概略性地顯示半導體發光元件的製造步驟之圖。 [Figure 12] is a diagram schematically showing the manufacturing steps of a semiconductor light-emitting element.

[圖13]係概略性地顯示半導體發光元件的製造步驟之圖。 [Figure 13] is a diagram schematically showing the manufacturing steps of a semiconductor light-emitting element.

[圖14]係概略性地顯示另一實施形態的半導體發光元件的構成之圖。 [Figure 14] is a diagram schematically showing the structure of another embodiment of a semiconductor light-emitting element.

[圖15]係概略性地顯示半導體發光元件的製造步驟之圖。 [Figure 15] is a diagram schematically showing the manufacturing steps of a semiconductor light-emitting element.

[圖16]係概略性地顯示半導體發光元件的製造步驟之圖。 [Figure 16] is a diagram schematically showing the manufacturing steps of a semiconductor light-emitting element.

[圖17]係概略性地顯示半導體發光元件的製造步驟之圖。 [Figure 17] is a diagram schematically showing the manufacturing steps of a semiconductor light-emitting element.

[圖18]係概略性地顯示半導體發光元件的製造步驟之圖。 [Figure 18] is a diagram schematically showing the manufacturing steps of a semiconductor light-emitting element.

以下,一邊參照圖式一邊詳細說明用以實施本發明的形態。此外,於說明中對同一要件賦予同一符號且適宜省略重複的說明。另外,為了有助於理解說明,各圖式中的各構成要件的尺寸比不見得必然與實際的發光元件的尺寸比一致。 Below, the form for implementing the present invention is described in detail with reference to the drawings. In addition, the same symbol is given to the same element in the description and repeated descriptions are omitted as appropriate. In addition, in order to help understand the description, the size ratio of each component in each drawing may not necessarily be consistent with the size ratio of the actual light-emitting element.

圖1係概略性地顯示實施形態的半導體發光元件10的構成之剖面圖。半導體發光元件10係以發出中心波長λ為約360nm以下的「深紫外光」的方式構成的LED(Light Emitting Diode;發光二極體)晶片。為了輸出這樣的波長的深紫外光,故半導體發光元件10係由能隙(bandgap)為約3.4eV以上的氮化鋁鎵(AlGaN)系半導體材料所構成。於本實施形態中,尤其針對發出中心波長λ為約240nm至350nm的深紫外光的情形進行表示。 FIG1 is a cross-sectional view schematically showing the structure of a semiconductor light-emitting element 10 of an embodiment. The semiconductor light-emitting element 10 is an LED (Light Emitting Diode) chip configured to emit "deep ultraviolet light" with a central wavelength λ of about 360nm or less. In order to output deep ultraviolet light of such a wavelength, the semiconductor light-emitting element 10 is composed of an aluminum gallium nitride (AlGaN) semiconductor material with a bandgap of about 3.4eV or more. In this embodiment, the case of emitting deep ultraviolet light with a central wavelength λ of about 240nm to 350nm is particularly shown.

於本說明書中,所謂「AlGaN系半導體材料」係指至少含有氮化鋁(AlN)以及氮化鎵(GaN)的半導體材料,亦包含尚含有氮化銦(InN)等的其他的材料的半導體材料。如此,本說明書所稱的「AlGaN系半導體材料」係例如可用In1-x-yAlxGayN(0<x+y≦1,0<x<1,0<y<1)的組成表示,包含氮化鋁鎵(AlGaN)或氮化銦鋁鎵(InAlGaN)。本說明書的「AlGaN系半導體材料」係例如AlN以及GaN的個別的莫耳分率為1%以上,較佳為5%以上、10%以上或20%以上。 In this specification, the so-called "AlGaN-based semiconductor material" refers to a semiconductor material containing at least aluminum nitride (AlN) and gallium nitride (GaN), and also includes a semiconductor material containing other materials such as indium nitride (InN). Thus, the "AlGaN-based semiconductor material" referred to in this specification can be represented by the composition of In1-xyAlxGayN ( 0<x+y≦1, 0<x<1, 0<y<1), for example, and includes aluminum gallium nitride (AlGaN) or indium aluminum gallium nitride (InAlGaN). The "AlGaN-based semiconductor material" in this specification is, for example, a material in which the molar fraction of each of AlN and GaN is 1% or more, preferably 5% or more, 10% or more, or 20% or more.

另外,亦有為了區別不含AlN的材料而稱為「GaN系半導體材料」的情況。「GaN系半導體材料」包含GaN或InGaN。相同地,亦有為了區別不含GaN的材料而稱為「AlN系半導體材料」的情況。「AlN系半導體材料」包含AlN或InAlN。 In addition, in order to distinguish materials that do not contain AlN, it is called "GaN-based semiconductor materials". "GaN-based semiconductor materials" include GaN or InGaN. Similarly, in order to distinguish materials that do not contain GaN, it is called "AlN-based semiconductor materials". "AlN-based semiconductor materials" include AlN or InAlN.

半導體發光元件10係具有裸晶(die)12、安裝基板14、金屬接合材16n、16p以及覆蓋層(亦稱第三覆蓋層)18。裸晶12係具有基板20、緩衝層22、n型被覆層24、活性層26、電子阻擋層(electron block layer)28、p型被覆層30、保 護絕緣層32、第一覆蓋層34、n側接觸電極36、n側保護金屬層38、p側接觸電極40、p側保護金屬層42、第二覆蓋層44、n側墊電極46以及p側墊電極48。 The semiconductor light emitting device 10 includes a bare chip (die) 12 , a mounting substrate 14 , metal bonding materials 16 n and 16 p , and a cover layer (also called a third cover layer) 18 . The bare crystal 12 has a substrate 20, a buffer layer 22, an n-type cladding layer 24, an active layer 26, an electron block layer 28, a p-type cladding layer 30, a protective insulating layer 32, a first capping layer 34, an n-side contact electrode 36, an n-side protective metal layer 38, a p-side contact electrode 40, a p-side protective metal layer 42, a second capping layer 44, an n-side pad electrode 46, and a p-side pad electrode 48.

於圖1中,亦有將從基板20朝向安裝基板14的方向稱為「上側」的情況。此乃因於後述的圖2至圖12的製造步驟中係於基板20上積層各層後將裸晶12的方向上下反轉且安裝於安裝基板14上之故。 In FIG. 1 , the direction from the substrate 20 toward the mounting substrate 14 is also referred to as the "upper side". This is because in the manufacturing steps of FIG. 2 to FIG. 12 described later, after laminating each layer on the substrate 20, the direction of the bare die 12 is reversed upside down and mounted on the mounting substrate 14.

基板20係對於半導體發光元件10所發出的深紫外光具有透光性的基板,例如藍寶石(Al2O3)基板(sapphire substrate)。基板20係具有第一主表面20a以及第一主表面20a的相反側的第二主表面20b。第一主表面20a係成為結晶成長面的一主表面,該結晶成長面係用以使較緩衝層22靠上的各層成長。於第一主表面20a的外周設置有高度與第一主表面20a不同的外周面20c。第二主表面20b係成為光取出面的一主表面,該光取出面係用以將活性層26所發出的深紫外光取出至外部。變形例中,基板20可為氮化鋁(AlN)基板亦可為氮化鋁鎵(AlGaN)基板。 The substrate 20 is a substrate that is transparent to the deep ultraviolet light emitted by the semiconductor light-emitting element 10, such as a sapphire (Al 2 O 3 ) substrate. The substrate 20 has a first main surface 20a and a second main surface 20b on the opposite side of the first main surface 20a. The first main surface 20a is a main surface that becomes a crystal growth surface, and the crystal growth surface is used to grow each layer above the buffer layer 22. An outer peripheral surface 20c with a height different from that of the first main surface 20a is provided on the periphery of the first main surface 20a. The second main surface 20b is a main surface that becomes a light extraction surface, and the light extraction surface is used to extract the deep ultraviolet light emitted by the active layer 26 to the outside. In a modified example, the substrate 20 can be an aluminum nitride (AlN) substrate or an aluminum gallium nitride (AlGaN) substrate.

緩衝層22係形成於基板20的第一主表面20a上。緩衝層22係基底層(樣板(template)層),該基底層係用以形成較n型被覆層24靠上的各層。緩衝層22係例如未摻雜的AlN層,具體而言是高溫成長的AlN(HT-AlN(High Temperature AlN;高溫氮化鋁))層。緩衝層22亦可包含形成於AlN層上的未摻雜的AlGaN層。變形例中,於基板20為AlN基板或AlGaN基板的情形中,緩衝層22亦可為僅由未摻雜的AlGaN層所構成。亦即,緩衝層22包含未摻雜的AlN層以及未摻雜的AlGaN層的至少一方。 The buffer layer 22 is formed on the first main surface 20a of the substrate 20. The buffer layer 22 is a base layer (template layer) used to form the layers above the n-type cladding layer 24. The buffer layer 22 is, for example, an undoped AlN layer, specifically, an AlN (HT-AlN (High Temperature AlN; high temperature aluminum nitride)) layer grown at a high temperature. The buffer layer 22 may also include an undoped AlGaN layer formed on the AlN layer. In a modified example, when the substrate 20 is an AlN substrate or an AlGaN substrate, the buffer layer 22 may also be composed only of an undoped AlGaN layer. That is, the buffer layer 22 includes at least one of an undoped AlN layer and an undoped AlGaN layer.

n型被覆層24係n型半導體層且形成於緩衝層22上。n型被覆層24係n型的AlGaN系半導體材料層,例如為摻雜有矽(Si)作為n型的雜質的AlGaN層。n型被覆層24係以透過活性層26所發出的深紫外光的方式選擇組成比例,例如以AlN的莫耳分率成為25%以上、較佳為40%以上或50%以上的方式所形成。n型被覆層24係以具有較活性層26所發出的深紫外光的波長還大的能隙的 方式所形成,例如以具有能隙成為4.3eV以上的方式所形成。較佳為n型被覆層24係以AlN的莫耳分率成為80%以下的方式所形成,亦即以能隙成為5.5eV以下的方式所形成,更佳為以AlN的莫耳分率成為70%以下(亦即,能隙成為5.2eV以下)的方式所形成。n型被覆層24係具有1μm至3μm左右的厚度,例如具有2μm左右的厚度。 The n-type cladding layer 24 is an n-type semiconductor layer and is formed on the buffer layer 22. The n-type cladding layer 24 is an n-type AlGaN-based semiconductor material layer, for example, an AlGaN layer doped with silicon (Si) as an n-type impurity. The n-type cladding layer 24 is formed by selecting a composition ratio in a manner to transmit deep ultraviolet light emitted through the active layer 26, for example, in a manner in which the molar fraction of AlN is 25% or more, preferably 40% or more or 50% or more. The n-type cladding layer 24 is formed in a manner to have an energy gap larger than the wavelength of the deep ultraviolet light emitted by the active layer 26, for example, in a manner in which the energy gap is 4.3 eV or more. Preferably, the n-type cladding layer 24 is formed in such a way that the molar fraction of AlN is less than 80%, that is, the energy gap is less than 5.5 eV, and more preferably, the molar fraction of AlN is less than 70% (that is, the energy gap is less than 5.2 eV). The n-type cladding layer 24 has a thickness of about 1 μm to 3 μm, for example, a thickness of about 2 μm.

n型被覆層24係以屬於雜質的矽(Si)之濃度成為1×1018/cm3以上至5×1019/cm3以下的方式所形成。較佳為n型被覆層24係以Si濃度成為5×1018/cm3以上至3×1019/cm3以下的方式所形成,更佳為以成為7×1018/cm3以上至2×1019/cm3以下的方式所形成。於一實施例中,n型被覆層24的Si濃度為1×1019/cm3前後,位於8×1018/cm3以上至1.5×1019/cm3以下的範圍。 The n-type cladding layer 24 is formed in such a manner that the concentration of silicon (Si) as an impurity becomes 1×10 18 /cm 3 or more and 5×10 19 /cm 3 or less. Preferably, the n-type cladding layer 24 is formed in such a manner that the Si concentration becomes 5×10 18 /cm 3 or more and 3×10 19 /cm 3 or less, and more preferably, it is formed in such a manner that the Si concentration becomes 7×10 18 /cm 3 or more and 2×10 19 /cm 3 or less. In one embodiment, the Si concentration of the n-type cladding layer 24 is about 1×10 19 /cm 3 and is in the range of 8×10 18 /cm 3 or more and 1.5×10 19 /cm 3 or less.

活性層26係由AlGaN系半導體材料所構成,夾在n型被覆層24與電子阻擋層28之間而形成雙異質接合(double heterojunction)構造。活性層26亦可具有單層或多層的量子井(quantum well)構造,例如亦可由屏障(barrier)層以及井層的積層體所構成,該屏障層係由未摻雜的AlGaN系半導體材料所形成,該井層係由未摻雜的AlGaN系半導體材料所形成。活性層26係為了輸出波長355nm以下的深紫外光而以能隙成為3.4eV以上的方式構成,例如用可輸出波長310nm以下的深紫外光的方式選擇AlN組成比例。活性層26係設置於n型被覆層24的第一上表面24a而不設置於與第一上表面24a相鄰的第二上表面24b。亦即,活性層26並非形成於n型被覆層24的全部表面而是僅形成於n型被覆層24的一部分的區域。 The active layer 26 is made of AlGaN semiconductor material, and is sandwiched between the n-type cladding layer 24 and the electron blocking layer 28 to form a double heterojunction structure. The active layer 26 may also have a single-layer or multi-layer quantum well structure, for example, it may also be composed of a laminate of a barrier layer and a well layer, the barrier layer being formed of an undoped AlGaN semiconductor material, and the well layer being formed of an undoped AlGaN semiconductor material. The active layer 26 is constructed in such a way that the energy gap becomes 3.4 eV or more in order to output deep ultraviolet light with a wavelength below 355 nm, for example, the AlN composition ratio is selected in such a way that deep ultraviolet light with a wavelength below 310 nm can be output. The active layer 26 is disposed on the first upper surface 24a of the n-type cladding layer 24 but not on the second upper surface 24b adjacent to the first upper surface 24a. That is, the active layer 26 is not formed on the entire surface of the n-type cladding layer 24 but is formed only on a portion of the n-type cladding layer 24.

電子阻擋層28係形成於活性層26上。電子阻擋層28係未摻雜的AlGaN系半導體材料層,例如以AlN的莫耳分率成為40%以上較佳為50%以上的方式所形成。電子阻擋層28亦可以AlN的莫耳分率成為80%以上的方式所形成,或亦可由不含GaN的AlN系半導體材料所形成。電子阻擋層具有1nm至 10nm左右的厚度,例如具有2nm至5nm左右的厚度。電子阻擋層28亦可為p型的AlGaN系半導體材料層。 The electron blocking layer 28 is formed on the active layer 26. The electron blocking layer 28 is an undoped AlGaN-based semiconductor material layer, for example, formed in a manner in which the molar fraction of AlN is 40% or more, preferably 50% or more. The electron blocking layer 28 can also be formed in a manner in which the molar fraction of AlN is 80% or more, or can also be formed by an AlN-based semiconductor material that does not contain GaN. The electron blocking layer has a thickness of about 1nm to 10nm, for example, a thickness of about 2nm to 5nm. The electron blocking layer 28 can also be a p-type AlGaN-based semiconductor material layer.

p型被覆層30係p型半導體層且形成於電子阻擋層28上。p型被覆層30係p型的AlGaN系半導體材料層,例如為摻雜有鎂(Mg)作為p型的雜質的AlGaN層。p型被覆層30係具有300nm至700nm左右的厚度,例如具有400nm至600nm左右的厚度。p型被覆層30亦可由不含AlN的p型GaN系半導體材料所形成。 The p-type cladding layer 30 is a p-type semiconductor layer and is formed on the electron blocking layer 28. The p-type cladding layer 30 is a p-type AlGaN-based semiconductor material layer, for example, an AlGaN layer doped with magnesium (Mg) as a p-type impurity. The p-type cladding layer 30 has a thickness of about 300nm to 700nm, for example, a thickness of about 400nm to 600nm. The p-type cladding layer 30 can also be formed of a p-type GaN-based semiconductor material that does not contain AlN.

保護絕緣層32係設置於p型被覆層30上。保護絕緣層32係由氧化矽(SiO2)或氮氧化矽(SiON)所構成。保護絕緣層32係由對於從活性層26輸出的深紫外光的折射率與p型被覆層30相比較低的材料所構成。構成p型被覆層30之AlGaN系半導體材料的折射率係視組成比例而為2.1至2.56左右。另一方面,構成保護絕緣層32之SiO2的折射率為1.4左右,SiON的折射率為1.4至2.1左右。設置低折射率的保護絕緣層32,藉此可以在p型被覆層30與保護絕緣層32的界面使更多來自活性層26的紫外光全反射而朝向屬於光取出面的基板20的第二主表面20b。尤其,由於氧化矽(SiO2)與p型被覆層30的折射率差大,故可更提高反射特性。保護絕緣層32的厚度係50nm以上,例如可以設為100nm以上至500nm以下。 The protective insulating layer 32 is provided on the p-type cladding layer 30. The protective insulating layer 32 is made of silicon oxide (SiO 2 ) or silicon oxynitride (SiON). The protective insulating layer 32 is made of a material having a lower refractive index for deep ultraviolet light output from the active layer 26 than the p-type cladding layer 30. The refractive index of the AlGaN-based semiconductor material constituting the p-type cladding layer 30 is about 2.1 to 2.56 depending on the composition ratio. On the other hand, the refractive index of SiO 2 constituting the protective insulating layer 32 is about 1.4, and the refractive index of SiON is about 1.4 to 2.1. By providing the protective insulating layer 32 with a low refractive index, more ultraviolet light from the active layer 26 can be totally reflected at the interface between the p-type cladding layer 30 and the protective insulating layer 32 and directed toward the second main surface 20b of the substrate 20, which is the light extraction surface. In particular, since there is a large difference in refractive index between silicon oxide (SiO 2 ) and the p-type cladding layer 30, the reflection characteristics can be further improved. The thickness of the protective insulating layer 32 is 50 nm or more, and can be, for example, 100 nm or more and 500 nm or less.

第一覆蓋層34係以覆蓋保護絕緣層32上、n型被覆層24的第二上表面24b上、n型被覆層24的側面、活性層26的側面以及電子阻擋層28的側面的方式設置。第一覆蓋層34亦可用如圖示的方式覆蓋緩衝層22的側面、基板20的外周面20c。第一覆蓋層34係由氧化鋁(Al2O3)所構成。構成第一覆蓋層34的氧化鋁(Al2O3)係與氧化矽(SiO2)相比較耐濕性優。因此,以第一覆蓋層34覆蓋半導體層的上表面以及側面的整體,藉此可以提供耐濕性優的保護功能。另外,由於構成第一覆蓋層34的氧化鋁(Al2O3)係對從活性層26輸出的深紫外光的吸收 率低,故亦可抑制因設置第一覆蓋層34所致的光輸出的降低。第一覆蓋層34的厚度可設為10nm以上至50nm以下,例如可設為10nm至30nm左右。 The first cover layer 34 is provided to cover the protective insulating layer 32, the second upper surface 24b of the n-type cover layer 24, the side surface of the n-type cover layer 24, the side surface of the active layer 26, and the side surface of the electron blocking layer 28. The first cover layer 34 may also cover the side surface of the buffer layer 22 and the outer peripheral surface 20c of the substrate 20 in the manner shown in the figure. The first cover layer 34 is made of aluminum oxide (Al 2 O 3 ). The aluminum oxide (Al 2 O 3 ) constituting the first cover layer 34 is more resistant to moisture than silicon oxide (SiO 2 ). Therefore, the first cover layer 34 covers the entire upper surface and side surface of the semiconductor layer, thereby providing a protective function with excellent moisture resistance. In addition, since the aluminum oxide ( Al2O3 ) constituting the first cover layer 34 has a low absorption rate for deep ultraviolet light output from the active layer 26, the reduction in light output due to the provision of the first cover layer 34 can also be suppressed. The thickness of the first cover layer 34 can be set to be greater than 10nm and less than 50nm, for example, can be set to about 10nm to 30nm.

較佳為構成第一覆蓋層34的Al2O3係膜密度高的緻密的構造,較佳為使用例如原子層堆積(ALD;Atomic Layer Deposition)法而形成。另外,第一覆蓋層34係較佳為氫濃度低。若於第一覆蓋層34含有高濃度的氫(H),則氫會擴散至活性層26、p型被覆層30而成為使這些半導體層劣化的原因。為了設為氫濃度低的Al2O3,較佳是並非使用水(H2O)而是使用氧氣(O2)電漿或臭氧氣(O3)作為氧原子的供給源。亦即,較佳為第一覆蓋層34係藉由以三甲基鋁(TMA;Trimethyl aluminum)等的有機鋁化合物、O2電漿或O3作為原料的ALD法而形成。 The Al 2 O 3 film constituting the first capping layer 34 preferably has a dense structure with a high film density, and is preferably formed using, for example, an atomic layer deposition (ALD) method. In addition, the first capping layer 34 preferably has a low hydrogen concentration. If the first capping layer 34 contains a high concentration of hydrogen (H), hydrogen diffuses into the active layer 26 and the p-type cladding layer 30 and causes degradation of these semiconductor layers. In order to use Al 2 O 3 with a low hydrogen concentration, it is preferred to use oxygen (O 2 ) plasma or ozone (O 3 ) as a supply source of oxygen atoms instead of water (H 2 O). That is, it is preferred that the first cover layer 34 is formed by an ALD method using an organic aluminum compound such as trimethyl aluminum (TMA), O 2 plasma or O 3 as raw materials.

n側接觸電極36係設置於n型被覆層24的第二上表面24b,且於n型被覆層24的第二上表面24b通過將第一覆蓋層34貫通的開口而與n型被覆層24接觸。n側接觸電極36係包含例如接觸於n型被覆層24上的Ti層以及接觸於Ti層上的Al層。Ti層的厚度係1nm至10nm左右,較佳為5nm以下,更佳為2nm以下。藉由縮小Ti層的厚度而可提高從n型被覆層24觀看時的n側接觸電極36的紫外光反射率。Al層的厚度係100nm至1000nm左右,較佳為200nm以上,更佳為300nm以上。藉由增大Al層的厚度而可提高n側接觸電極36的紫外光反射率。此外,較佳為於n側接觸電極36不包含可能成為紫外光反射率的降低之要因的金(Au)。 The n-side contact electrode 36 is disposed on the second upper surface 24b of the n-type cladding layer 24, and contacts the n-type cladding layer 24 through an opening that penetrates the first cladding layer 34 on the second upper surface 24b of the n-type cladding layer 24. The n-side contact electrode 36 includes, for example, a Ti layer that contacts the n-type cladding layer 24 and an Al layer that contacts the Ti layer. The thickness of the Ti layer is about 1 nm to 10 nm, preferably less than 5 nm, and more preferably less than 2 nm. By reducing the thickness of the Ti layer, the ultraviolet light reflectivity of the n-side contact electrode 36 when viewed from the n-type cladding layer 24 can be improved. The thickness of the Al layer is about 100nm to 1000nm, preferably more than 200nm, and more preferably more than 300nm. By increasing the thickness of the Al layer, the ultraviolet light reflectivity of the n-side contact electrode 36 can be improved. In addition, it is preferred that the n-side contact electrode 36 does not contain gold (Au) which may be a factor in reducing the ultraviolet light reflectivity.

p側接觸電極40設置於p型被覆層30上,且通過將p型被覆層30上的保護絕緣層32以及第一覆蓋層34貫通的開口而與p型被覆層30接觸。p側接觸電極40係由氧化錫(SnO2)、氧化鋅(ZnO)、銦錫氧化物(ITO)等的透明導電性氧化物(TCO)所構成。p側接觸電極40的厚度係20nm至500nm左右,較佳為50nm以上,更佳為100nm以上。 The p-side contact electrode 40 is disposed on the p-type cladding layer 30 and contacts the p-type cladding layer 30 through the openings penetrating the protective insulating layer 32 and the first cladding layer 34 on the p-type cladding layer 30. The p-side contact electrode 40 is made of a transparent conductive oxide (TCO) such as tin oxide (SnO 2 ), zinc oxide (ZnO), indium tin oxide (ITO), etc. The thickness of the p-side contact electrode 40 is about 20 nm to 500 nm, preferably 50 nm or more, and more preferably 100 nm or more.

n側保護金屬層38係設置於n側接觸電極36上,p側保護金屬層42係設置於p側接觸電極40上。n側保護金屬層38以及p側保護金屬層42(亦可統稱為保護金屬層38、42)係由以與第二覆蓋層44的密合性高的金屬材料所形成,且由單一金屬膜或金屬積層膜所構成。為了使保護金屬層38、42在用以形成將第二覆蓋層44貫通的開口的乾蝕刻步驟中作為停止層而發揮功能,較佳為由對於蝕刻氣體的耐性高的金屬材料所構成。作為保護金屬層38、42的材料可使用例如鉑族金屬,可以使用鈀(Pd)。保護金屬層38、42的厚度較佳為50nm以上,更佳為100nm以上。 The n-side protective metal layer 38 is disposed on the n-side contact electrode 36, and the p-side protective metal layer 42 is disposed on the p-side contact electrode 40. The n-side protective metal layer 38 and the p-side protective metal layer 42 (also collectively referred to as protective metal layers 38 and 42) are formed of a metal material having high adhesion to the second cover layer 44, and are composed of a single metal film or a metal laminate film. In order for the protective metal layers 38 and 42 to function as a stop layer in the dry etching step for forming an opening penetrating the second cover layer 44, it is preferably composed of a metal material having high resistance to etching gas. As the material of the protective metal layers 38 and 42, for example, platinum group metals can be used, and palladium (Pd) can be used. The thickness of the protective metal layers 38 and 42 is preferably greater than 50nm, and more preferably greater than 100nm.

第二覆蓋層44係以覆蓋第一覆蓋層34、n側接觸電極36、n側保護金屬層38、p側接觸電極40以及p側保護金屬層42的方式設置。第二覆蓋層44係由絕緣性的氧化物、氮化物或氮氧化物所構成,例如可使用氧化矽(SiO2)、氮化矽(SiN)、氮化鋁(AlN)、氮氧化矽(SiON)或氮氧化鋁(AlON)。第二覆蓋層44的厚度為50nm以上,較佳為100nm以上。第二覆蓋層44的厚度亦可為500nm至1000nm左右。藉由第二覆蓋層44的厚度增大而可合適地覆蓋與半導體層相比厚度較大的n側接觸電極36、p側接觸電極40以及保護金屬層38、42。 The second capping layer 44 is provided to cover the first capping layer 34, the n-side contact electrode 36, the n-side protective metal layer 38, the p-side contact electrode 40, and the p-side protective metal layer 42. The second capping layer 44 is made of insulating oxide, nitride, or oxynitride, such as silicon oxide (SiO 2 ), silicon nitride (SiN), aluminum nitride (AlN), silicon oxynitride (SiON), or aluminum oxynitride (AlON). The thickness of the second capping layer 44 is greater than 50 nm, preferably greater than 100 nm. The thickness of the second capping layer 44 may also be about 500 nm to 1000 nm. By increasing the thickness of the second cover layer 44 , the n-side contact electrode 36 , the p-side contact electrode 40 , and the protective metal layers 38 and 42 , which are thicker than the semiconductor layer, can be properly covered.

n側墊電極46以及p側墊電極48(亦可統稱為墊電極46、48)係於將裸晶12安裝於安裝基板14時打線(bonding)接合的部分。n側墊電極46係設置於n側保護金屬層38上,且通過將第二覆蓋層44貫通的開口而與n側保護金屬層38接觸。n側墊電極46係經由n側保護金屬層38而與n側接觸電極36電性連接。p側墊電極48係設置於p側保護金屬層42上,且通過將第二覆蓋層44貫通的開口而與p側保護金屬層42接觸。p側墊電極48係經由p側保護金屬層42而與p側接觸電極40電性連接。 The n-side pad electrode 46 and the p-side pad electrode 48 (also collectively referred to as pad electrodes 46, 48) are the bonding parts when the bare die 12 is mounted on the mounting substrate 14. The n-side pad electrode 46 is disposed on the n-side protection metal layer 38 and contacts the n-side protection metal layer 38 through the opening penetrating the second cover layer 44. The n-side pad electrode 46 is electrically connected to the n-side contact electrode 36 through the n-side protection metal layer 38. The p-side pad electrode 48 is disposed on the p-side protective metal layer 42 and contacts the p-side protective metal layer 42 through an opening that penetrates the second cover layer 44. The p-side pad electrode 48 is electrically connected to the p-side contact electrode 40 through the p-side protective metal layer 42.

墊電極46、48係從耐腐蝕性的觀點而以包含金(Au)的方式所構成,以例如鎳(Ni)/Au、鈦(Ti)/Au或Ti/鉑(Pt)/Au的積層構造所構成。在墊電極 46、48以金錫(AuSn)接合的情形中,墊電極46、48亦可含有作為金屬接合材的AuSn層。 The pad electrodes 46 and 48 are formed in a manner including gold (Au) from the viewpoint of corrosion resistance, and are formed in a multilayer structure of, for example, nickel (Ni)/Au, titanium (Ti)/Au, or Ti/platinum (Pt)/Au. When the pad electrodes 46 and 48 are bonded with gold tin (AuSn), the pad electrodes 46 and 48 may also contain an AuSn layer as a metal bonding material.

裸晶12係安裝於安裝基板14上。安裝基板14係具有基部50、n側安裝電極52n、p側安裝電極52p、n側外部端子54n以及p側外部端子54p。基部50係由氮化鋁(AlN)等的陶瓷材料所構成的板狀構件。n側安裝電極52n、p側安裝電極52p係設置於基部50的第一主表面50a。n側安裝電極52n、p側安裝電極52p係與裸晶12的墊電極46、48接合的金屬電極,從耐腐蝕性的觀點而以包含金(Au)的方式所構成。n側外部端子54n、p側外部端子54p係金屬端子,用以將半導體發光元件10焊接於印刷基板等,且設置於與基部50的第一主表面50a成相反側的第二主表面50b。基部50的內部中,n側安裝電極52n與n側外部端子54n係電性連接,p側安裝電極52p與p側外部端子54p係電性連接。 The bare crystal 12 is mounted on the mounting substrate 14. The mounting substrate 14 has a base 50, an n-side mounting electrode 52n, a p-side mounting electrode 52p, an n-side external terminal 54n, and a p-side external terminal 54p. The base 50 is a plate-shaped member made of a ceramic material such as aluminum nitride (AlN). The n-side mounting electrode 52n and the p-side mounting electrode 52p are provided on the first main surface 50a of the base 50. The n-side mounting electrode 52n and the p-side mounting electrode 52p are metal electrodes bonded to the pad electrodes 46 and 48 of the bare crystal 12, and are formed in a manner including gold (Au) from the viewpoint of corrosion resistance. The n-side external terminal 54n and the p-side external terminal 54p are metal terminals used to solder the semiconductor light-emitting element 10 to a printed circuit board, etc., and are disposed on the second main surface 50b opposite to the first main surface 50a of the base 50. Inside the base 50, the n-side mounting electrode 52n is electrically connected to the n-side external terminal 54n, and the p-side mounting electrode 52p is electrically connected to the p-side external terminal 54p.

金屬接合材16n、16p係將裸晶12與安裝基板14接合。金屬接合材16n、16p係由金錫(AuSn)或錫鋅(SnZn)系的焊接材料所構成。n側金屬接合材16n係將n側墊電極46與n側安裝電極52n接合,p側金屬接合材16p係將p側墊電極48與p側安裝電極52p接合。 The metal bonding materials 16n and 16p bond the bare die 12 to the mounting substrate 14. The metal bonding materials 16n and 16p are made of solder materials of the AuSn or SnZn series. The n-side metal bonding material 16n bonds the n-side pad electrode 46 to the n-side mounting electrode 52n, and the p-side metal bonding material 16p bonds the p-side pad electrode 48 to the p-side mounting electrode 52p.

第三覆蓋層18係以覆蓋裸晶12的表面整體、安裝基板14的表面的一部分以及金屬接合材16n、16p的方式設置。第三覆蓋層18係覆蓋基板20的第二主表面20b以及側面20d、第二覆蓋層44的表面、n側墊電極46的側面以及p側墊電極48的側面。另外,第三覆蓋層18係覆蓋安裝基板14的第一主表面50a以及側面50c、n側安裝電極52n的表面、p側安裝電極52p的表面。 The third cover layer 18 is provided to cover the entire surface of the bare die 12, a portion of the surface of the mounting substrate 14, and the metal bonding materials 16n and 16p. The third cover layer 18 covers the second main surface 20b and the side surface 20d of the substrate 20, the surface of the second cover layer 44, the side surface of the n-side pad electrode 46, and the side surface of the p-side pad electrode 48. In addition, the third cover layer 18 covers the first main surface 50a and the side surface 50c of the mounting substrate 14, the surface of the n-side mounting electrode 52n, and the surface of the p-side mounting electrode 52p.

第三覆蓋層18係由氧化鋁(Al2O3)所構成,較佳為與上述第一覆蓋層34相同地以成為膜密度高的緻密的構造的方式使用原子層堆積(ALD)法而形成。另一方面,第三覆蓋層18由於不與裸晶12的活性層26等的半導體層直接接觸,故亦可不必使氫濃度低。亦即,亦可為第三覆蓋層18的氫濃度係較第一覆蓋層34的氫濃度高。如此,作為構成第三覆蓋層18的Al2O3的氧原子的供給源 可使用水(H2O),亦可藉由以TMA等的有機鋁化合物、H2O作為原料的ALD法而形成。藉由使用H2O作為原料,與使用O2電漿或O3的情形相比,成為容易使原料遍及至狹窄的間隙,即使在裸晶12與安裝基板14之間的狹窄的間隙中仍可合適地形成緻密的Al2O3。可以將第三覆蓋層18的厚度設為10nm以上至50nm以下,例如設為10nm至30nm左右。 The third capping layer 18 is made of aluminum oxide (Al 2 O 3 ) and is preferably formed by atomic layer deposition (ALD) in a manner to form a dense structure with a high film density, similar to the first capping layer 34 described above. On the other hand, since the third capping layer 18 is not in direct contact with the semiconductor layer such as the active layer 26 of the bare wafer 12, it is not necessary to have a low hydrogen concentration. In other words, the hydrogen concentration of the third capping layer 18 may be higher than that of the first capping layer 34. Thus, water ( H2O ) can be used as a supply source of oxygen atoms of Al2O3 constituting the third capping layer 18, or the third capping layer 18 can be formed by an ALD method using an organic aluminum compound such as TMA and H2O as raw materials. By using H2O as a raw material, it is easier to spread the raw material to a narrow gap than when using O2 plasma or O3 , and dense Al2O3 can be properly formed even in a narrow gap between the bare die 12 and the mounting substrate 14. The thickness of the third capping layer 18 can be set to be greater than 10nm and less than 50nm, for example, about 10nm to 30nm.

接下來,說明半導體發光元件10的製造方法。圖2至圖13係概略性地顯示半導體發光元件10的製造步驟之圖。首先,如圖2所示,於基板20的第一主表面20a上依序形成緩衝層22、n型被覆層24、活性層26、電子阻擋層28、p型被覆層30以及保護絕緣層32。 Next, the manufacturing method of the semiconductor light-emitting element 10 is described. Figures 2 to 13 schematically show the manufacturing steps of the semiconductor light-emitting element 10. First, as shown in Figure 2, a buffer layer 22, an n-type cladding layer 24, an active layer 26, an electron blocking layer 28, a p-type cladding layer 30, and a protective insulating layer 32 are sequentially formed on the first main surface 20a of the substrate 20.

基板20為藍寶石(Al2O3)基板,例如於藍寶石基板的(0001)面上形成緩衝層22。緩衝層22係包含例如高溫成長的AlN(HT-AlN)層以及未摻雜的AlGaN(u-AlGaN)層。n型被覆層24、活性層26、電子阻擋層28以及p型被覆層30係由AlGaN系半導體材料、AlN系半導體材料或GaN系半導體材料所形成的層,可以使用金屬有機化學氣相沉積(MOVPE;metal organic chemical vapor deposition)法或分子束磊晶(MBE;molecular beam epitaxy)法等的習知的磊晶成長法而形成。保護絕緣層32係由SiO2或SiON所構成,可使用化學氣相沉積(CVD;chemical vapor deposition)法等的習知技術而形成。 The substrate 20 is a sapphire (Al 2 O 3 ) substrate, and a buffer layer 22 is formed on the (0001) plane of the sapphire substrate, for example. The buffer layer 22 includes, for example, a high temperature grown AlN (HT-AlN) layer and an undoped AlGaN (u-AlGaN) layer. The n-type cladding layer 24, the active layer 26, the electron blocking layer 28, and the p-type cladding layer 30 are layers formed of AlGaN-based semiconductor materials, AlN-based semiconductor materials, or GaN-based semiconductor materials, and can be formed using a known epitaxial growth method such as metal organic chemical vapor deposition (MOVPE) or molecular beam epitaxy (MBE). The protective insulating layer 32 is made of SiO 2 or SiON and can be formed using a known technique such as chemical vapor deposition (CVD).

然後,如圖3所示,於保護絕緣層32上形成第一遮罩61,未形成有第一遮罩61的第一區域W1的保護絕緣層32、p型被覆層30、電子阻擋層28、活性層26以及n型被覆層24的一部分係被去除。藉此,於第一區域(亦稱為露出區域)W1形成n型被覆層24的第二上表面24b(露出面)。於形成n型被覆層24的露出面的步驟中係能藉由乾蝕刻71去除各層。例如可使用由蝕刻氣體的電漿化所致的反應性離子蝕刻,或可使用例如電感耦合型電漿(ICP;Inductive Coupled Plasma)蝕刻。之後,第一遮罩61被去除。 Then, as shown in FIG. 3 , a first mask 61 is formed on the protective insulating layer 32, and the protective insulating layer 32, the p-type cladding layer 30, the electron blocking layer 28, the active layer 26, and a portion of the n-type cladding layer 24 in the first region W1 where the first mask 61 is not formed are removed. Thus, the second upper surface 24b (exposed surface) of the n-type cladding layer 24 is formed in the first region (also referred to as the exposed region) W1. In the step of forming the exposed surface of the n-type cladding layer 24, each layer can be removed by dry etching 71. For example, reactive ion etching caused by plasmatization of the etching gas can be used, or etching such as inductively coupled plasma (ICP; Inductive Coupled Plasma) can be used. Afterwards, the first mask 61 is removed.

然後,如圖4所示,於保護絕緣層32上以及n型被覆層24的第二上表面24b上形成第二遮罩62。之後,未形成有第二遮罩62的第二區域(亦稱為外周區域)W2的保護絕緣層32、p型被覆層30、電子阻擋層28、活性層26以及n型被覆層24藉由乾蝕刻72而被去除。第二區域W2係在一片基板上形成複數個發光元件(裸晶)之情形中的元件間的分離區域。第二區域W2中,緩衝層22可部分地被去除,亦可為緩衝層22完全地被去除而露出基板20。第二區域W2中,亦可為基板20的一部分被去除而露出高度與第一主表面20a不同的基板20的外周面20c。之後,第二遮罩62被去除。 Then, as shown in FIG. 4 , a second mask 62 is formed on the protective insulating layer 32 and the second upper surface 24b of the n-type cladding layer 24. Thereafter, the protective insulating layer 32, the p-type cladding layer 30, the electron blocking layer 28, the active layer 26, and the n-type cladding layer 24 in the second region W2 (also referred to as the peripheral region) where the second mask 62 is not formed are removed by dry etching 72. The second region W2 is a separation region between elements in the case where a plurality of light-emitting elements (bare crystal) are formed on a substrate. In the second region W2, the buffer layer 22 may be partially removed, or the buffer layer 22 may be completely removed to expose the substrate 20. In the second area W2, a portion of the substrate 20 may be removed to expose the outer peripheral surface 20c of the substrate 20 having a height different from that of the first main surface 20a. Afterwards, the second mask 62 is removed.

然後,如圖5所示,以覆蓋元件構造的上表面的整體的方式形成第一覆蓋層34。第一覆蓋層34係由Al2O3所構成,例如藉由以TMA與O2電漿或O3作為原料的ALD法而形成。第一覆蓋層34係以覆蓋保護絕緣層32上、n型被覆層24的第二上表面24b上、n型被覆層24、活性層26、電子阻擋層28以及p型被覆層30的側面的方式所形成。保護絕緣層32亦可覆蓋緩衝層22的側面,或亦可覆蓋基板20的外周面20c、側面的至少一部分。 Then, as shown in FIG5 , a first cover layer 34 is formed to cover the entire upper surface of the device structure. The first cover layer 34 is made of Al 2 O 3 , and is formed, for example, by an ALD method using TMA and O 2 plasma or O 3 as raw materials. The first cover layer 34 is formed to cover the protective insulating layer 32, the second upper surface 24b of the n-type cladding layer 24, the n-type cladding layer 24, the active layer 26, the electron blocking layer 28, and the side surface of the p-type cladding layer 30. The protective insulating layer 32 may also cover the side surface of the buffer layer 22, or may also cover the outer peripheral surface 20c of the substrate 20 or at least a portion of the side surface.

然後,如圖6所示,於第一覆蓋層34上形成第三遮罩63。第三遮罩63係在除了n型被覆層24的第二上表面24b上的n側電極區域W3n以及p型被覆層30上的p側電極區域W3p以外所形成。接下來,在n側電極區域W3n以及p側電極區域W3p中第一覆蓋層34係藉由乾蝕刻73而被去除。藉此,於n側電極區域W3n形成使n型被覆層24露出的第一開口81,於p側電極區域W3p形成使保護絕緣層32露出的第二開口82。之後,第三遮罩63被去除。 Then, as shown in FIG. 6 , a third mask 63 is formed on the first cover layer 34. The third mask 63 is formed except for the n-side electrode region W3n on the second upper surface 24b of the n-type cover layer 24 and the p-side electrode region W3p on the p-type cover layer 30. Next, the first cover layer 34 is removed by dry etching 73 in the n-side electrode region W3n and the p-side electrode region W3p. Thereby, a first opening 81 is formed in the n-side electrode region W3n to expose the n-type cover layer 24, and a second opening 82 is formed in the p-side electrode region W3p to expose the protective insulating layer 32. Thereafter, the third mask 63 is removed.

然後,如圖7所示,以疊置於第一覆蓋層34以及露出於第一開口81的n型被覆層24上的方式形成n側接觸電極36,於n側接觸電極36上形成n側保護金屬層38。n側接觸電極36係例如為Ti層與Al層的積層構造,n側保護金屬層38係例如Pd層。n側接觸電極36以及n側保護金屬層38係能藉由濺鍍法或電子束(EB;electron beam)蒸鍍法而形成。 Then, as shown in FIG. 7 , an n-side contact electrode 36 is formed by stacking on the first cover layer 34 and the n-type cover layer 24 exposed in the first opening 81, and an n-side protective metal layer 38 is formed on the n-side contact electrode 36. The n-side contact electrode 36 is, for example, a multilayer structure of a Ti layer and an Al layer, and the n-side protective metal layer 38 is, for example, a Pd layer. The n-side contact electrode 36 and the n-side protective metal layer 38 can be formed by sputtering or electron beam (EB; electron beam) evaporation.

然後,如圖8所示,於除了對應第二開口82的第四區域W4以外形成第四遮罩64。接下來,於第四區域中保護絕緣層32係藉由濕蝕刻而被去除,形成使p型被覆層30露出的第三開口83。保護絕緣層32係可使用例如氫氟酸(HF)與氟化銨(NH4F)之混合液的緩衝氫氟酸(BHF;Buffered Hydrogen Fluoride)而去除。藉由將保護絕緣層32濕蝕刻,如此與將保護絕緣層32乾蝕刻的情形相比可減低對於在第三開口83露出的p型被覆層30的損傷影響。之後,第四遮罩64被去除。 Then, as shown in FIG. 8 , a fourth mask 64 is formed in the fourth region W4 except for the second opening 82. Next, the protective insulating layer 32 is removed by wet etching in the fourth region to form a third opening 83 that exposes the p-type cladding layer 30. The protective insulating layer 32 can be removed using, for example, buffered hydrofluoric acid (BHF) which is a mixture of hydrofluoric acid (HF) and ammonium fluoride (NH 4 F). By wet etching the protective insulating layer 32, the damage to the p-type cladding layer 30 exposed in the third opening 83 can be reduced compared to the case where the protective insulating layer 32 is dry etched. Thereafter, the fourth mask 64 is removed.

然後,如圖9所示,以疊置於第一覆蓋層34以及露出於第三開口83的p型被覆層30上的方式形成p側接觸電極40,於p側接觸電極40上形成p側保護金屬層42。p側接觸電極40係例如為ITO層,p側保護金屬層42係例如為Pd層。p側接觸電極40以及p側保護金屬層42係可藉由濺鍍法或電子束(EB)蒸鍍法而形成。 Then, as shown in FIG. 9 , a p-side contact electrode 40 is formed by stacking on the first cover layer 34 and the p-type cladding layer 30 exposed in the third opening 83, and a p-side protective metal layer 42 is formed on the p-side contact electrode 40. The p-side contact electrode 40 is, for example, an ITO layer, and the p-side protective metal layer 42 is, for example, a Pd layer. The p-side contact electrode 40 and the p-side protective metal layer 42 can be formed by sputtering or electron beam (EB) evaporation.

然後,如圖10所示,以覆蓋元件構造的上表面的整體的方式形成第二覆蓋層44。第二覆蓋層44係以覆蓋第一覆蓋層34上並且覆蓋n側接觸電極36、n側保護金屬層38、p側接觸電極40以及p側保護金屬層42上的方式所形成。第二覆蓋層44係例如為SiO2層,並使用化學氣相沉積(CVD)法等的習知技術而形成。 Then, as shown in Fig. 10, a second cover layer 44 is formed to cover the entire upper surface of the device structure. The second cover layer 44 is formed to cover the first cover layer 34 and to cover the n-side contact electrode 36, the n-side protective metal layer 38, the p-side contact electrode 40, and the p-side protective metal layer 42. The second cover layer 44 is, for example, a SiO2 layer and is formed using a known technique such as a chemical vapor deposition (CVD) method.

然後,如圖11所示,於第二覆蓋層44上形成第五遮罩65。第五遮罩65係在除了對應於n側接觸電極36的n側電極區域W5n以及對應於p側接觸電極40的p側電極區域W5p以外所形成。接下來,在n側電極區域W5n以及p側電極區域W5p中第二覆蓋層44藉由乾蝕刻75而被去除。第二覆蓋層44係可以使用CF系的蝕刻氣體進行乾蝕刻,例如可以使用六氟乙烷(C2F6)。於該乾蝕刻步驟中,n側保護金屬層38以及p側保護金屬層42係作為蝕刻停止層而發揮功能,可以防止對於n側保護金屬層38以及p側保護金屬層42下的n側接觸電極36以及p側接觸電極40的損傷。藉此,形成於n側電極區域W5n露出n側保護金屬層38的第 四開口84以及於p側電極區域W5p露出p側保護金屬層42的第五開口85。之後,第五遮罩65被去除。 Then, as shown in FIG. 11 , a fifth mask 65 is formed on the second cover layer 44. The fifth mask 65 is formed except for the n-side electrode region W5n corresponding to the n-side contact electrode 36 and the p-side electrode region W5p corresponding to the p-side contact electrode 40. Next, the second cover layer 44 is removed in the n-side electrode region W5n and the p-side electrode region W5p by dry etching 75. The second cover layer 44 can be dry-etched using a CF-based etching gas, such as hexafluoroethane (C 2 F 6 ). In the dry etching step, the n-side protection metal layer 38 and the p-side protection metal layer 42 function as an etching stop layer to prevent damage to the n-side contact electrode 36 and the p-side contact electrode 40 under the n-side protection metal layer 38 and the p-side protection metal layer 42. Thus, a fourth opening 84 exposing the n-side protection metal layer 38 in the n-side electrode region W5n and a fifth opening 85 exposing the p-side protection metal layer 42 in the p-side electrode region W5p are formed. Thereafter, the fifth mask 65 is removed.

然後,如圖12所示,於第四開口84露出的n側保護金屬層38上形成n側墊電極46,於第五開口85露出的p側保護金屬層42上形成p側墊電極48。墊電極46、48係可藉由例如堆積Ni層或Ti層且於Ni層或Ti層上堆積Au層而形成。亦可於Au層上進一步設置其他的金屬層,例如亦可形成Sn層、AuSn層、Sn/Au的積層構造。藉由以上的步驟而完成圖1的裸晶12。 Then, as shown in FIG. 12 , an n-side pad electrode 46 is formed on the n-side protective metal layer 38 exposed by the fourth opening 84, and a p-side pad electrode 48 is formed on the p-side protective metal layer 42 exposed by the fifth opening 85. The pad electrodes 46 and 48 can be formed by, for example, stacking a Ni layer or a Ti layer and stacking an Au layer on the Ni layer or the Ti layer. Other metal layers can also be further provided on the Au layer, for example, a Sn layer, an AuSn layer, or a Sn/Au stacking structure can also be formed. The bare crystal 12 of FIG. 1 is completed by the above steps.

然後,如圖13所示,將裸晶12安裝於安裝基板14上。首先,以n側墊電極46位置於n側安裝電極52n上且p側墊電極48位置於p側安裝電極52p上的方式配置裸晶12。接下來,使金錫(AuSn)或焊料等的金屬接合材16n、16p溶融,且將墊電極46、48與n側安裝電極52n、p側安裝電極52p接合。 Then, as shown in FIG. 13 , the bare crystal 12 is mounted on the mounting substrate 14. First, the bare crystal 12 is arranged so that the n-side pad electrode 46 is located on the n-side mounting electrode 52n and the p-side pad electrode 48 is located on the p-side mounting electrode 52p. Next, the metal bonding material 16n, 16p such as gold tin (AuSn) or solder is melted, and the pad electrodes 46, 48 are bonded to the n-side mounting electrode 52n and the p-side mounting electrode 52p.

之後,以將安裝於安裝基板14的裸晶12的表面整體覆蓋的方式形成第三覆蓋層18。第三覆蓋層18係由Al2O3所構成,藉由例如以TMA與H2O作為原料的ALD法而形成。藉此,完成如圖1所示的半導體發光元件10。 Thereafter, the third cover layer 18 is formed to cover the entire surface of the die 12 mounted on the mounting substrate 14. The third cover layer 18 is made of Al 2 O 3 and is formed by, for example, ALD using TMA and H 2 O as raw materials. Thus, the semiconductor light emitting device 10 shown in FIG. 1 is completed.

依據本實施形態,將與n型被覆層24、活性層26以及電子阻擋層28等的半導體層直接接觸的第一覆蓋層34設為藉由ALD法而形成的Al2O3層,藉此可提高對於這些半導體層的耐濕性。另外,不使用水(H2O)作為第一覆蓋層34的原料,藉此可降低第一覆蓋層34所含的氫濃度。亦即,可使第一覆蓋層34的氫濃度較第三覆蓋層18還低。藉此,可合適地防止因第一覆蓋層34所含的氫擴散至半導體層所致的半導體層的劣化。 According to the present embodiment, the first capping layer 34 directly in contact with the semiconductor layers such as the n-type cladding layer 24, the active layer 26, and the electron blocking layer 28 is formed as an Al 2 O 3 layer by the ALD method, thereby improving the moisture resistance of these semiconductor layers. In addition, water (H 2 O) is not used as a raw material for the first capping layer 34, thereby reducing the hydrogen concentration contained in the first capping layer 34. That is, the hydrogen concentration of the first capping layer 34 can be made lower than that of the third capping layer 18. In this way, the degradation of the semiconductor layer due to the diffusion of hydrogen contained in the first capping layer 34 into the semiconductor layer can be appropriately prevented.

依據本實施形態,藉由於第一覆蓋層34上進一步地設置第二覆蓋層44而可提高裸晶12的保護功能。由於由Al2O3所構成的第一覆蓋層34係藉由ALD法而形成,故難以增大膜厚,50nm左右的厚度成為實用上的上限。另一方面,由於n側接觸電極36、p側接觸電極40的膜厚為50nm以上,較佳為具有100nm以上的厚度,故若只有第一覆蓋層34則會有接觸電極的覆蓋性能降低之 虞。另一方面,由於藉由CVD法等所形成的第二覆蓋層44容易設為100nm以上的膜厚,故可合適地覆蓋膜厚大的接觸電極。依據本實施形態,將緻密但膜厚小的第一覆蓋層34與膜厚大的第二覆蓋層44組合,藉此提高裸晶12的封裝性。 According to the present embodiment, the protection function of the bare die 12 can be improved by further providing the second covering layer 44 on the first covering layer 34. Since the first covering layer 34 composed of Al2O3 is formed by the ALD method, it is difficult to increase the film thickness, and a thickness of about 50nm becomes the upper limit in practical use. On the other hand, since the film thickness of the n-side contact electrode 36 and the p-side contact electrode 40 is greater than 50nm, preferably greater than 100nm, there is a risk that the covering performance of the contact electrode will be reduced if there is only the first covering layer 34. On the other hand, since the second covering layer 44 formed by the CVD method or the like can be easily set to a film thickness of more than 100nm, it can appropriately cover the contact electrode with a large film thickness. According to this embodiment, a first cover layer 34 which is dense but thin in thickness is combined with a second cover layer 44 which is thick in thickness, thereby improving the packaging performance of the bare die 12.

依據本實施形態,由於在安裝基板14上安裝裸晶12後以第三覆蓋層18進一步地將整體覆蓋,故可以提高半導體發光元件10的封裝性。尤其藉由覆蓋墊電極46、48、n側安裝電極52n、p側安裝電極52p以及金屬接合材16n、16p等的金屬材料的表面,而可合適地防止金屬材料的腐蝕。另外,藉由以Al2O3構成第三覆蓋層18,而可提高與含有金(Au)的金屬材料的密合性,可抑制因第三覆蓋層18的剝落等所致的可靠性降低。 According to the present embodiment, after the bare die 12 is mounted on the mounting substrate 14, the entire die is further covered with the third cover layer 18, so that the packaging of the semiconductor light-emitting element 10 can be improved. In particular, by covering the surfaces of metal materials such as the pad electrodes 46, 48, the n-side mounting electrode 52n, the p-side mounting electrode 52p, and the metal bonding materials 16n, 16p , corrosion of the metal materials can be appropriately prevented. In addition, by forming the third cover layer 18 with Al2O3 , the adhesion with the metal material containing gold (Au) can be improved, and the reduction in reliability due to the peeling of the third cover layer 18 can be suppressed.

依據本實施形態,藉由用水(H2O)作為原料的ALD法形成第三覆蓋層18,藉此即使在裸晶12與安裝基板14接合的狀態下仍可用覆蓋裸晶12以及安裝基板14的整體的方式形成第三覆蓋層18。假設在與第一覆蓋層34相同地使用O2電漿、O3作為原料的情形中,已活性化的氧在到達裸晶12與安裝基板14之間的間隙等前便已失活,而可能產生未適切地形成Al2O3層之處。另一方面,在以H2O作為原料的情形,由於不需要設為電漿狀態,故可以使原料充分地遍及裸晶12與安裝基板14之間的間隙而可更適切地形成Al2O3層。藉此,可以提高第三覆蓋層18的可靠性。 According to the present embodiment, the third cover layer 18 is formed by the ALD method using water (H 2 O) as a raw material, thereby forming the third cover layer 18 in a manner that covers the entirety of the die 12 and the mounting substrate 14 even when the die 12 and the mounting substrate 14 are bonded. Assuming that O 2 plasma or O 3 is used as a raw material as in the first cover layer 34, activated oxygen is deactivated before reaching the gap between the die 12 and the mounting substrate 14, and the Al 2 O 3 layer may not be properly formed. On the other hand, when H 2 O is used as a raw material, since it is not necessary to set it to a plasma state, the raw material can be fully spread throughout the gap between the die 12 and the mounting substrate 14, and the Al 2 O 3 layer can be formed more appropriately. Thereby, the reliability of the third cover layer 18 can be improved.

依據本實施形態,藉由於p型被覆層30與第一覆蓋層34之間設置保護絕緣層32,而可減低在用以使p型被覆層30露出的蝕刻步驟中的對於p型被覆層30的損傷影響。藉此,可以改善p側接觸電極40的接觸電阻,而可提升半導體發光元件10的輸出特性。 According to this embodiment, by providing a protective insulating layer 32 between the p-type cladding layer 30 and the first cladding layer 34, the damage to the p-type cladding layer 30 during the etching step for exposing the p-type cladding layer 30 can be reduced. In this way, the contact resistance of the p-side contact electrode 40 can be improved, and the output characteristics of the semiconductor light-emitting element 10 can be enhanced.

圖14係概略性地顯示另一實施形態的半導體發光元件110的構成之剖面圖。於本實施形態中,在第二覆蓋層144成為第一層144a以及第二層144b之二層構造的點與上述實施形態有所差異。以下,針對本實施形態以與上述實施形態的差異點為中心進行說明。 FIG. 14 is a cross-sectional view schematically showing the structure of a semiconductor light-emitting element 110 of another embodiment. In this embodiment, the second covering layer 144 is a two-layer structure of a first layer 144a and a second layer 144b, which is different from the above embodiment. Hereinafter, this embodiment will be described with the focus on the differences from the above embodiment.

半導體發光元件110係具有裸晶112、安裝基板14、金屬接合材16n、16p以及第三覆蓋層18。安裝基板14、金屬接合材16n、16p以及第三覆蓋層18係以與上述實施形態相同的方式所構成。 The semiconductor light-emitting element 110 has a bare die 112, a mounting substrate 14, metal bonding materials 16n, 16p, and a third covering layer 18. The mounting substrate 14, metal bonding materials 16n, 16p, and the third covering layer 18 are constructed in the same manner as the above-mentioned embodiment.

裸晶112係具有基板20、緩衝層22、n型被覆層24、活性層26、電子阻擋層28、p型被覆層30、保護絕緣層32、第一覆蓋層34、n側接觸電極36、n側保護金屬層38、p側接觸電極40、p側保護金屬層42、第二覆蓋層144、n側墊電極46以及p側墊電極48。裸晶112係除了第二覆蓋層144成為二層構造之點以外以與上述實施形態的裸晶12相同的方式所構成。 The bare crystal 112 has a substrate 20, a buffer layer 22, an n-type cladding layer 24, an active layer 26, an electron blocking layer 28, a p-type cladding layer 30, a protective insulating layer 32, a first capping layer 34, an n-side contact electrode 36, an n-side protective metal layer 38, a p-side contact electrode 40, a p-side protective metal layer 42, a second capping layer 144, an n-side pad electrode 46, and a p-side pad electrode 48. The bare crystal 112 is constructed in the same manner as the bare crystal 12 of the above-mentioned embodiment except that the second capping layer 144 is a two-layer structure.

第二覆蓋層144係包含第一層144a以及第二層144b。第一層144a係以與第一覆蓋層34、n側接觸電極36、n側保護金屬層38、p側接觸電極40以及p側保護金屬層42直接接觸的方式設置。第二層144b係以覆蓋第一層144a的方式設置,且從第一覆蓋層34、n側接觸電極36、n側保護金屬層38、p側接觸電極40以及p側保護金屬層42分離設置。 The second cover layer 144 includes a first layer 144a and a second layer 144b. The first layer 144a is provided in direct contact with the first cover layer 34, the n-side contact electrode 36, the n-side protective metal layer 38, the p-side contact electrode 40, and the p-side protective metal layer 42. The second layer 144b is provided in a manner covering the first layer 144a and is provided separately from the first cover layer 34, the n-side contact electrode 36, the n-side protective metal layer 38, the p-side contact electrode 40, and the p-side protective metal layer 42.

第一層144a係由例如SiO2所構成,且成為較第一覆蓋層34以及第二層144b還低的折射率。第一層144a係以厚度較第一覆蓋層34以及第二層144b還大的方式所構成。第一層144a的厚度係100nm以上,例如500nm至1000nm左右。第一層144a的厚度係以成為第一覆蓋層34的厚度的10倍以上的方式所構成。第一層144a的厚度亦可較n側接觸電極36、p側接觸電極40的厚度還大。第一層144a的厚度可為較n側接觸電極36與n側保護金屬層38的厚度之合計還大,亦可為較p側接觸電極40與p側保護金屬層42的厚度之合計還大。 The first layer 144a is made of, for example, SiO2 , and has a lower refractive index than the first cover layer 34 and the second layer 144b. The first layer 144a is formed in a manner that is thicker than the first cover layer 34 and the second layer 144b. The thickness of the first layer 144a is greater than 100nm, for example, about 500nm to 1000nm. The thickness of the first layer 144a is formed in a manner that is more than 10 times the thickness of the first cover layer 34. The thickness of the first layer 144a may also be greater than the thickness of the n-side contact electrode 36 and the p-side contact electrode 40. The thickness of the first layer 144 a may be greater than the sum of the thicknesses of the n-side contact electrode 36 and the n-side protective metal layer 38 , and may also be greater than the sum of the thicknesses of the p-side contact electrode 40 and the p-side protective metal layer 42 .

第二層144b係由與第一層144a不同材料所構成,且為由AlN或SiN等的氮化物所構成。第二層144b係由例如SiN所構成,且成為較保護絕緣層32、第一覆蓋層34以及第一層144a還高的折射率。對於波長280nm的紫外光,SiO2的折射率為1.49,Al2O3的折射率為1.82,SiN的折射率為2.18,AlN的折射率為2.28。如此,由SiN或AlN所構成的第二層144b的折射率(2.18或2.28)係較由 SiO2所構成的保護絕緣層32以及第一層144a的折射率(1.49)還大,且較由Al2O3所構成的第一覆蓋層34的折射率(1.82)還大。第二層144b的厚度係較第一層144a的厚度還小,為50nm至200nm左右。第二層144b的厚度係較保護絕緣層32的厚度還小。第二層144b的厚度亦可較第一覆蓋層34、第三覆蓋層18的厚度還大。 The second layer 144b is made of a different material from the first layer 144a, and is made of a nitride such as AlN or SiN. The second layer 144b is made of, for example, SiN, and has a higher refractive index than the protective insulating layer 32, the first cover layer 34, and the first layer 144a. For ultraviolet light with a wavelength of 280nm, the refractive index of SiO2 is 1.49, the refractive index of Al2O3 is 1.82, the refractive index of SiN is 2.18, and the refractive index of AlN is 2.28. Thus, the refractive index (2.18 or 2.28) of the second layer 144b composed of SiN or AlN is greater than the refractive index (1.49) of the protective insulating layer 32 and the first layer 144a composed of SiO2 , and greater than the refractive index (1.82) of the first cover layer 34 composed of Al2O3 . The thickness of the second layer 144b is smaller than the thickness of the first layer 144a, which is about 50nm to 200nm. The thickness of the second layer 144b is smaller than the thickness of the protective insulating layer 32. The thickness of the second layer 144b can also be greater than the thickness of the first cover layer 34 and the third cover layer 18.

依據本實施形態,於第一層144a上積層材料與第一層144a不同的第二層144b,藉此可合適地塞住可能於第一層144a發生的空洞(pinhole),而可提高由第二覆蓋層144所致的封裝性。 According to this embodiment, a second layer 144b having a material different from that of the first layer 144a is deposited on the first layer 144a, thereby appropriately plugging the pinholes that may occur in the first layer 144a, thereby improving the packaging performance caused by the second covering layer 144.

依據本實施形態,在將保護絕緣層32的材料的折射率設為n1、將第一覆蓋層34的材料的折射率設為n2、將第二覆蓋層144的第一層144a的折射率設為n3、將第二覆蓋層144的第二層144b的折射率設為n4的情形中,成立n1<n2<n4之關係式以及n3<n2<n4之關係式。依據本實施形態,將第一層144a的折射率n3設為較第一覆蓋層34的折射率n2還小,藉此能使於活性層26產生的深紫外光在第一覆蓋層34與第一層144a的界面全反射且朝向成為光取出面的第二主表面20b。藉此,可以提高半導體發光元件10的光取出效率。另外,藉由以較第一層144a的材料還高的折射率的氮化物所構成的第二層144b覆蓋第一層144a,藉此可以提高第二覆蓋層144的封裝性以及可靠性。 According to the present embodiment, when the refractive index of the material of the protective insulating layer 32 is set to n1, the refractive index of the material of the first cover layer 34 is set to n2, the refractive index of the first layer 144a of the second cover layer 144 is set to n3, and the refractive index of the second layer 144b of the second cover layer 144 is set to n4, the relationship of n1<n2<n4 and the relationship of n3<n2<n4 are established. According to the present embodiment, the refractive index n3 of the first layer 144a is set to be smaller than the refractive index n2 of the first cover layer 34, so that the deep ultraviolet light generated in the active layer 26 can be totally reflected at the interface between the first cover layer 34 and the first layer 144a and directed toward the second main surface 20b which becomes the light extraction surface. This can improve the light extraction efficiency of the semiconductor light-emitting element 10. In addition, by covering the first layer 144a with the second layer 144b composed of a nitride with a higher refractive index than the material of the first layer 144a, the packaging and reliability of the second covering layer 144 can be improved.

接下來,說明半導體發光元件110的製造方法。半導體發光元件110的製造步驟的一部分係與上述半導體發光元件10的製造步驟的一部分共通,首先執行如圖2至圖9所示的步驟。圖15至圖18係概略性地顯示半導體發光元件110的製造步驟之圖,顯示較圖9還後面的步驟。 Next, the manufacturing method of the semiconductor light-emitting element 110 is described. A part of the manufacturing steps of the semiconductor light-emitting element 110 is common with a part of the manufacturing steps of the semiconductor light-emitting element 10 described above, and the steps shown in Figures 2 to 9 are first performed. Figures 15 to 18 are diagrams schematically showing the manufacturing steps of the semiconductor light-emitting element 110, showing the steps after Figure 9.

如圖15所示,以覆蓋元件構造之上表面的整體的方式形成第二覆蓋層144。第二覆蓋層144係包含第一層144a以及第二層144b。第一層144a係以覆蓋第一覆蓋層34的露出面並且覆蓋n側接觸電極36、n側保護金屬層38、p側接觸電極40以及p側保護金屬層42的露出面的方式所形成。第二層144b係以覆蓋第一層144a的露出面的方式所形成。第一層144a係例如SiO2層,可使用電 漿CVD法等的習知技術而形成。第二層144b係例如為SiN層,可使用電漿CVD法等的習知技術而形成。 As shown in FIG. 15 , the second cover layer 144 is formed to cover the entire upper surface of the device structure. The second cover layer 144 includes a first layer 144a and a second layer 144b. The first layer 144a is formed to cover the exposed surface of the first cover layer 34 and to cover the exposed surfaces of the n-side contact electrode 36, the n-side protective metal layer 38, the p-side contact electrode 40, and the p-side protective metal layer 42. The second layer 144b is formed to cover the exposed surface of the first layer 144a. The first layer 144a is, for example, a SiO2 layer, and can be formed using a known technique such as a plasma CVD method. The second layer 144b is, for example, a SiN layer, and can be formed using a known technique such as a plasma CVD method.

然後,如圖16所示,於第二覆蓋層144上形成第六遮罩66。第六遮罩66係在除了對應於n側接觸電極36的n側電極區域W6n以及對應於p側接觸電極40的p側電極區域W6p以外而形成。接下來,在n側電極區域W6n以及p側電極區域W6p中第二覆蓋層144的第二層144b藉由乾蝕刻76而被去除。第二覆蓋層144係可以使用CF系的蝕刻氣體進行乾蝕刻,例如可以使用六氟乙烷(C2F6)。該乾蝕刻步驟係被執行至n側電極區域W6n以及p側電極區域W6p中第二層144b被去除且第一層144a露出為止。藉此,形成於n側電極區域W6n露出第一層144a的第六開口86,且形成於p側電極區域W6p露出p側保護金屬層42的第七開口87。此外,如圖16所示,該乾蝕刻步驟中,亦可為第一層144a的露出部分被進一步去除達預定深度。亦即,亦可於第一層144a的上表面形成段差。之後,第六遮罩66被去除。 Then, as shown in FIG. 16 , a sixth mask 66 is formed on the second capping layer 144. The sixth mask 66 is formed except for the n-side electrode region W6n corresponding to the n-side contact electrode 36 and the p-side electrode region W6p corresponding to the p-side contact electrode 40. Next, the second layer 144b of the second capping layer 144 in the n-side electrode region W6n and the p-side electrode region W6p is removed by dry etching 76. The second capping layer 144 can be dry-etched using a CF-based etching gas, such as hexafluoroethane (C 2 F 6 ). The dry etching step is performed until the second layer 144b is removed and the first layer 144a is exposed in the n-side electrode region W6n and the p-side electrode region W6p. Thus, the sixth opening 86 is formed in the n-side electrode region W6n to expose the first layer 144a, and the seventh opening 87 is formed in the p-side electrode region W6p to expose the p-side protective metal layer 42. In addition, as shown in FIG. 16 , in the dry etching step, the exposed portion of the first layer 144a can be further removed to a predetermined depth. That is, a step difference can also be formed on the upper surface of the first layer 144a. Thereafter, the sixth mask 66 is removed.

然後,如圖17所示,於第二覆蓋層144上形成第七遮罩67。第七遮罩67係在除了對應於n側接觸電極36的n側電極區域W7n以及對應於p側接觸電極40的p側電極區域W7p以外所形成。第七遮罩67係以完全覆蓋第二層144b的方式設置,且以覆蓋並保護第六開口86以及第七開口87中的第二層144b的側壁的方式設置。如此,第七遮罩67的n側電極區域W7n的開口幅度係較第六遮罩66的n側電極區域W6n的開口幅度還小。相同地,第七遮罩67的p側電極區域W7p的開口幅度係較第六遮罩66的p側電極區域W6p的開口幅度還小。接下來,n側電極區域W7n以及p側電極區域W7p中第二覆蓋層144的第一層144a藉由乾蝕刻77而被去除。第二覆蓋層144係可以使用CF系的蝕刻氣體進行乾蝕刻,例如可以使用六氟乙烷(C2F6)。該乾蝕刻步驟係被執行至n側電極區域W7n以及p側電極區域W7p中第一層144a被去除且n側保護金屬層38以及p側保護金屬層42露出為止。於該乾蝕刻步驟,n側保護金屬層38以及p側保護金屬層42係作為蝕刻 停止層發揮功能,可以防止對於n側保護金屬層38以及p側保護金屬層42下的n側接觸電極36以及p側接觸電極40的損傷。藉此,於n側電極區域W7n形成使n側保護金屬層38露出的第八開口88,於p側電極區域W7p形成使p側保護金屬層42露出的第九開口89。之後,第七遮罩67被去除。 Then, as shown in FIG. 17 , a seventh mask 67 is formed on the second cover layer 144. The seventh mask 67 is formed except for the n-side electrode region W7n corresponding to the n-side contact electrode 36 and the p-side electrode region W7p corresponding to the p-side contact electrode 40. The seventh mask 67 is provided in a manner to completely cover the second layer 144b, and is provided in a manner to cover and protect the side walls of the second layer 144b in the sixth opening 86 and the seventh opening 87. In this way, the opening width of the n-side electrode region W7n of the seventh mask 67 is smaller than the opening width of the n-side electrode region W6n of the sixth mask 66. Similarly, the opening width of the p-side electrode region W7p of the seventh mask 67 is smaller than the opening width of the p-side electrode region W6p of the sixth mask 66. Next, the first layer 144a of the second cover layer 144 in the n-side electrode region W7n and the p-side electrode region W7p is removed by dry etching 77. The second cover layer 144 can be dry etched using a CF-based etching gas, such as hexafluoroethane (C 2 F 6 ). The dry etching step is performed until the first layer 144a in the n-side electrode region W7n and the p-side electrode region W7p is removed and the n-side protection metal layer 38 and the p-side protection metal layer 42 are exposed. In the dry etching step, the n-side protection metal layer 38 and the p-side protection metal layer 42 function as an etching stop layer to prevent damage to the n-side contact electrode 36 and the p-side contact electrode 40 under the n-side protection metal layer 38 and the p-side protection metal layer 42. Thereby, an eighth opening 88 for exposing the n-side protective metal layer 38 is formed in the n-side electrode region W7n, and a ninth opening 89 for exposing the p-side protective metal layer 42 is formed in the p-side electrode region W7p. Thereafter, the seventh mask 67 is removed.

然後,如圖18所示,於第八開口88露出的n側保護金屬層38上形成n側墊電極46,於第九開口89露出的p側保護金屬層42上形成p側墊電極48。墊電極46、48係可藉由例如堆積Ni層或Ti層且於Ni層或Ti層上堆積Au層而形成。亦可於Au層上進一步設置其他的金屬層,例如亦可形成Sn層、AuSn層、Sn/Au的積層構造。藉由以上的步驟而完成圖14所示的裸晶112。 Then, as shown in FIG. 18 , an n-side pad electrode 46 is formed on the n-side protective metal layer 38 exposed by the eighth opening 88, and a p-side pad electrode 48 is formed on the p-side protective metal layer 42 exposed by the ninth opening 89. The pad electrodes 46 and 48 can be formed by, for example, stacking a Ni layer or a Ti layer and stacking an Au layer on the Ni layer or the Ti layer. Other metal layers can also be further provided on the Au layer, for example, a Sn layer, an AuSn layer, or a Sn/Au stacking structure can also be formed. The above steps complete the bare crystal 112 shown in FIG. 14 .

接下來,與圖13相同地,將裸晶112安裝於安裝基板14上,且以將被安裝於安裝基板14的裸晶112之表面整體覆蓋的方式形成第三覆蓋層18。第三覆蓋層18係由Al2O3所構成,藉由例如以TMA與H2O作為原料的ALD法所形成。藉此,完成如圖14所示的半導體發光元件110。 Next, similarly to FIG13 , the bare die 112 is mounted on the mounting substrate 14, and a third covering layer 18 is formed to cover the entire surface of the bare die 112 mounted on the mounting substrate 14. The third covering layer 18 is made of Al 2 O 3 and is formed by, for example, an ALD method using TMA and H 2 O as raw materials. Thus, the semiconductor light emitting device 110 shown in FIG14 is completed.

以上,根據實施例說明了本發明。本發明不限定於上述實施形態,可有各種設計變更和各種各樣的變形例,且本發明所屬技術領域中具有通常知識者可理解此種變形例亦屬本發明之範圍。 The present invention is described above based on the embodiments. The present invention is not limited to the above embodiments, and may have various design changes and various variations, and those with ordinary knowledge in the technical field to which the present invention belongs can understand that such variations also fall within the scope of the present invention.

上述實施形態中,藉由ALD法形成Al2O3層的情形中,投入TMA的第一步驟與投入O2電漿、O3或H2O的第二步驟係交互重複。此時,亦可為於最初執行第一步驟,藉此使應以Al2O3層覆蓋的表面於最初被TMA覆蓋的方式。亦即,亦可為不產生因於最初執行第二步驟而使應以Al2O3層覆蓋的表面被O2電漿等氧化或蝕刻而導致的損傷的方式。尤其於覆蓋活性層26的側面之第一覆蓋層34的形成時於最初投入TMA,藉此可以防止對於活性層26的側面的損傷。藉此,可以提高半導體發光元件10、110的可靠性。 In the above-mentioned embodiment, when the Al 2 O 3 layer is formed by the ALD method, the first step of introducing TMA and the second step of introducing O 2 plasma, O 3 or H 2 O are repeated alternately. At this time, the first step may be performed initially, so that the surface to be covered with the Al 2 O 3 layer is initially covered with TMA. That is, it is also possible to adopt a method that does not cause damage to the surface to be covered with the Al 2 O 3 layer due to oxidation or etching by O 2 plasma, etc. caused by the initial execution of the second step. In particular, when the first covering layer 34 covering the side surface of the active layer 26 is formed, TMA is introduced initially, thereby preventing damage to the side surface of the active layer 26. Thereby, the reliability of the semiconductor light emitting elements 10 and 110 can be improved.

上述實施形態中,亦可取代n側保護金屬層38而使用由導電性的氮化鈦(TiN)所構成的n側保護層。相同地,亦可取代p側保護金屬層42而使用由 氮化鈦(TiN)所構成的p側保護層。即使在使用TiN所構成的n側保護層以及p側保護層的情形中,TiN層仍可作為乾蝕刻步驟的停止層發揮功能。另外,藉由使用TiN而可提高對於第二覆蓋層44或第二覆蓋層144的密合性,而可合適地防止第二覆蓋層44或第二覆蓋層144從n側接觸電極36、p側接觸電極40剝離。 In the above-mentioned embodiment, an n-side protective layer made of conductive titanium nitride (TiN) may be used instead of the n-side protective metal layer 38. Similarly, a p-side protective layer made of titanium nitride (TiN) may be used instead of the p-side protective metal layer 42. Even in the case of using the n-side protective layer and the p-side protective layer made of TiN, the TiN layer can still function as a stop layer in the dry etching step. In addition, by using TiN, the adhesion to the second cover layer 44 or the second cover layer 144 can be improved, and the second cover layer 44 or the second cover layer 144 can be appropriately prevented from being peeled off from the n-side contact electrode 36 and the p-side contact electrode 40.

上述實施形態中,顯示了於安裝基板14安裝有裸晶12、112的半導體發光元件10、110。其他的實施形態中,亦可使用未安裝於安裝基板14的裸晶12、112作為半導體發光元件。於該情形中,可於裸晶12、112的表面設置第三覆蓋層18,亦可不設置第三覆蓋層18。 In the above-mentioned embodiment, semiconductor light-emitting elements 10 and 110 are shown in which bare die 12 and 112 are mounted on the mounting substrate 14. In other embodiments, bare die 12 and 112 that are not mounted on the mounting substrate 14 can also be used as semiconductor light-emitting elements. In this case, a third covering layer 18 can be provided on the surface of the bare die 12 and 112, or the third covering layer 18 can be omitted.

10:半導體發光元件 10: Semiconductor light-emitting element

12:裸晶 12: Bare crystal

14:安裝基板 14: Install the baseboard

16n,16p:金屬接合材 16n,16p:Metal bonding material

18:覆蓋層(第三覆蓋層) 18: Covering layer (third covering layer)

20:基板 20: Substrate

20a:第一主表面 20a: first main surface

20b:第二主表面 20b: Second main surface

20c:外周面 20c: Outer surface

20d:側面 20d: Side

22:緩衝層 22: Buffer layer

24:n型被覆層 24: n-type coating layer

24a:第一上表面 24a: first upper surface

24b:第二上表面 24b: Second upper surface

26:活性層 26: Active layer

28:電子阻擋層 28:Electron blocking layer

30:p型被覆層 30: p-type coating layer

32:保護絕緣層 32: Protect the insulating layer

34:第一覆蓋層 34: First covering layer

36:n側接觸電極 36: n-side contact electrode

38:n側保護金屬層(保護金屬層) 38: n-side protective metal layer (protective metal layer)

40:p側接觸電極 40: p-side contact electrode

42:p側保護金屬層(保護金屬層) 42: p-side protective metal layer (protective metal layer)

44:第二覆蓋層 44: Second covering layer

46:n側墊電極(墊電極) 46: n-side pad electrode (pad electrode)

48:p側墊電極(墊電極) 48: p side pad electrode (pad electrode)

50:基部 50: Base

50a:第一主表面 50a: first main surface

50b:第二主表面 50b: Second main surface

50c:側面 50c: Side

52n:n側安裝電極 52n:n side mounted electrode

52p:p側安裝電極 52p:p side mounted electrode

54n:n側外部端子 54n: n-side external terminal

54p:p側外部端子 54p:p side external terminal

Claims (12)

一種半導體發光元件,係具有:n型半導體層,係n型氮化鋁鎵系半導體材料且設置於基板上;活性層,係氮化鋁鎵系半導體材料且設置於前述n型半導體層上的第一區域;p型半導體層,係p型氮化鋁鎵系半導體材料且設置於前述活性層上;第一覆蓋層,係由氧化鋁所構成,膜厚為10nm以上至50nm以下,且以覆蓋與前述n型半導體層上的前述第一區域不同的第二區域、前述活性層的側面以及前述p型半導體層的方式設置;n側接觸電極,係貫通前述第一覆蓋層且接觸前述n型半導體層,並疊置於前述第一覆蓋層上;p側接觸電極,係貫通前述第一覆蓋層且接觸前述p型半導體層,並疊置於前述第一覆蓋層上;第二覆蓋層,係膜厚為100nm以上,且以覆蓋前述第一覆蓋層、前述n側接觸電極以及前述p側接觸電極的方式設置;n側墊電極,係貫通前述第二覆蓋層且與前述n側接觸電極連接;以及p側墊電極,係貫通前述第二覆蓋層且與前述p側接觸電極連接;前述第二覆蓋層係包含:氧化矽層,係具有前述第一覆蓋層的厚度的10倍以上的厚度;前述第二覆蓋層係進一步包含覆蓋前述氧化矽層的氮化物層。 A semiconductor light emitting element comprises: an n-type semiconductor layer, which is an n-type aluminum gallium nitride semiconductor material and is disposed on a substrate; an active layer, which is an aluminum gallium nitride semiconductor material and is disposed in a first region on the n-type semiconductor layer; a p-type semiconductor layer, which is a p-type aluminum gallium nitride semiconductor material and is disposed on the active layer; a first covering layer, which is composed of aluminum oxide and has a film thickness of not less than 10 nm and not more than 50 nm and is disposed in a manner of covering a second region different from the first region on the n-type semiconductor layer, a side surface of the active layer, and the p-type semiconductor layer; an n-side contact electrode, which passes through the first covering layer and contacts the n-type semiconductor layer, and is stacked on the first covering layer; a cover layer; a p-side contact electrode that penetrates the first cover layer and contacts the p-type semiconductor layer and is stacked on the first cover layer; a second cover layer that has a film thickness of more than 100 nm and is provided in a manner covering the first cover layer, the n-side contact electrode and the p-side contact electrode; an n-side pad electrode that penetrates the first cover layer and contacts the p-type semiconductor layer and is stacked on the first cover layer; The second covering layer is connected to the aforementioned n-side contact electrode; and the p-side pad electrode passes through the aforementioned second covering layer and is connected to the aforementioned p-side contact electrode; the aforementioned second covering layer includes: a silicon oxide layer having a thickness more than 10 times that of the aforementioned first covering layer; the aforementioned second covering layer further includes a nitride layer covering the aforementioned silicon oxide layer. 一種半導體發光元件,係具有:n型半導體層,係n型氮化鋁鎵系半導體材料且設置於基板上;活性層,係氮化鋁鎵系半導體材料且設置於前述n型半導體層上的第一區域;p型半導體層,係p型氮化鋁鎵系半導體材料且設置於前述活性層上;第一覆蓋層,係由氧化鋁所構成,且以覆蓋與前述n型半導體層上的前述第一區域不同的第二區域、前述活性層的側面以及前述p型半導體層的方式設置;n側接觸電極,係貫通前述第一覆蓋層且接觸前述n型半導體層,並疊置於前述第一覆蓋層上;p側接觸電極,係貫通前述第一覆蓋層且接觸前述p型半導體層,並疊置於前述第一覆蓋層上;第二覆蓋層,係以覆蓋前述第一覆蓋層、前述n側接觸電極以及前述p側接觸電極的方式設置;n側墊電極,係貫通前述第二覆蓋層且與前述n側接觸電極連接;以及p側墊電極,係貫通前述第二覆蓋層且與前述p側接觸電極連接;前述第二覆蓋層係包含:第一層,係由較前述第一覆蓋層的材料還低折射率的材料所構成;以及第二層,係由較前述第一覆蓋層的材料還高折射率的材料所構成且將前述第一層覆蓋。 A semiconductor light emitting element comprises: an n-type semiconductor layer, which is an n-type aluminum-gallium nitride semiconductor material and is disposed on a substrate; an active layer, which is an aluminum-gallium nitride semiconductor material and is disposed in a first region on the n-type semiconductor layer; a p-type semiconductor layer, which is a p-type aluminum-gallium nitride semiconductor material and is disposed on the active layer; a first covering The cap layer is made of aluminum oxide and is arranged to cover a second region different from the first region on the n-type semiconductor layer, a side of the active layer, and the p-type semiconductor layer; the n-side contact electrode penetrates the first cap layer and contacts the n-type semiconductor layer, and is stacked on the first cap layer; the p-side contact electrode The electrode is passed through the first cover layer and contacts the p-type semiconductor layer and is stacked on the first cover layer; the second cover layer is provided in a manner of covering the first cover layer, the n-side contact electrode and the p-side contact electrode; the n-side pad electrode is passed through the second cover layer and connected to the n-side contact electrode; and a p-side pad electrode, which passes through the aforementioned second covering layer and is connected to the aforementioned p-side contact electrode; the aforementioned second covering layer comprises: a first layer, which is composed of a material with a lower refractive index than the material of the aforementioned first covering layer; and a second layer, which is composed of a material with a higher refractive index than the material of the aforementioned first covering layer and covers the aforementioned first layer. 如請求項1或2所記載之半導體發光元件,其中進一步具有:第三覆蓋層,係由氧化鋁所構成,且以覆蓋前述基板的表面、前述第 二覆蓋層、前述n側墊電極的側面以及前述p側墊電極的側面之各自的至少一部分的方式設置。 The semiconductor light-emitting element as described in claim 1 or 2 further comprises: a third covering layer, which is composed of aluminum oxide and is arranged to cover at least a portion of the surface of the substrate, the second covering layer, the side surface of the n-side pad electrode, and the side surface of the p-side pad electrode. 如請求項3所記載之半導體發光元件,其中進一步具有:安裝基板,係包含與前述n側墊電極連接的n側安裝電極以及與前述p側墊電極連接的p側安裝電極;前述第三覆蓋層係進一步以覆蓋前述安裝基板的表面的至少一部分的方式設置。 The semiconductor light-emitting element as described in claim 3 further comprises: a mounting substrate including an n-side mounting electrode connected to the aforementioned n-side pad electrode and a p-side mounting electrode connected to the aforementioned p-side pad electrode; the aforementioned third covering layer is further provided in a manner covering at least a portion of the surface of the aforementioned mounting substrate. 如請求項3所記載之半導體發光元件,其中前述第一覆蓋層所含的氫的濃度係較前述第三覆蓋層所含的氫的濃度還低。 The semiconductor light-emitting element as described in claim 3, wherein the concentration of hydrogen contained in the first coating layer is lower than the concentration of hydrogen contained in the third coating layer. 如請求項1或2所記載之半導體發光元件,其中進一步具有:保護絕緣層,係由氧化矽或氮氧化矽所構成且設置於前述p型半導體層與前述第一覆蓋層之間。 The semiconductor light-emitting element as described in claim 1 or 2 further comprises: a protective insulating layer composed of silicon oxide or silicon oxynitride and disposed between the aforementioned p-type semiconductor layer and the aforementioned first cover layer. 如請求項2所記載之半導體發光元件,其中前述第二覆蓋層係包含:氧化矽層,係具有前述第一覆蓋層的厚度的10倍以上的厚度。 The semiconductor light-emitting element as described in claim 2, wherein the second covering layer comprises: a silicon oxide layer having a thickness that is more than 10 times the thickness of the first covering layer. 如請求項7所記載之半導體發光元件,其中前述第二覆蓋層係進一步包含覆蓋前述氧化矽層的氮化物層。 The semiconductor light-emitting element as described in claim 7, wherein the second covering layer further comprises a nitride layer covering the silicon oxide layer. 如請求項1或2所記載之半導體發光元件,其中前述n型半導體層係氮化鋁的莫耳分率為20%以上;前述活性層係以發出波長350nm以下的紫外光的方式所構成。 A semiconductor light-emitting element as described in claim 1 or 2, wherein the molar fraction of the n-type semiconductor layer is aluminum nitride is greater than 20%; and the active layer is configured to emit ultraviolet light with a wavelength of less than 350nm. 一種半導體發光元件的製造方法,係具有:於基板上依序積層以下各層的步驟:n型半導體層,係n型氮化鋁鎵系 半導體材料;活性層,係前述n型半導體層上的氮化鋁鎵系半導體材料;以及p型半導體層,係前述活性層上的p型氮化鋁鎵系半導體材料;以露出前述n型半導體層的一部分的方式去除前述p型半導體層的一部分、前述活性層的一部分以及前述n型半導體層的一部分的步驟;以覆蓋前述n型半導體層的露出區域上、前述活性層的側面以及前述p型半導體層的方式形成由氧化鋁所構成且膜厚為10nm以上至50nm以下的第一覆蓋層的步驟;將前述第一覆蓋層部分地去除且形成接觸前述n型半導體層的n側接觸電極的步驟;將前述第一覆蓋層部分地去除且形成接觸前述p型半導體層的p側接觸電極的步驟;形成膜厚為100nm以上且將前述第一覆蓋層、前述n側接觸電極以及前述p側接觸電極覆蓋的第二覆蓋層的步驟;將前述第二覆蓋層部分地去除且形成與前述n側接觸電極連接的n側墊電極的步驟;以及將前述第二覆蓋層部分地去除且形成與前述p側接觸電極連接的p側墊電極的步驟;形成前述第二覆蓋層的步驟係包含:形成具有前述第一覆蓋層的厚度的10倍以上的厚度的氧化矽層的步驟;以及形成覆蓋前述氧化矽層的氮化物層的步驟。 A method for manufacturing a semiconductor light-emitting element comprises the steps of: sequentially stacking the following layers on a substrate: an n-type semiconductor layer, which is an n-type aluminum-gallium nitride semiconductor material; an active layer, which is an aluminum-gallium nitride semiconductor material on the n-type semiconductor layer; and a p-type semiconductor layer, which is a p-type aluminum-gallium nitride semiconductor material on the active layer; and exposing a portion of the n-type semiconductor layer. The steps of removing a portion of the p-type semiconductor layer, a portion of the active layer, and a portion of the n-type semiconductor layer in a manner of forming a first covering layer composed of aluminum oxide and having a film thickness of not less than 10 nm and not more than 50 nm in a manner covering the exposed region of the n-type semiconductor layer, the side surface of the active layer, and the p-type semiconductor layer; and partially removing the first covering layer. The step of removing the first covering layer and forming an n-side contact electrode in contact with the n-type semiconductor layer; the step of partially removing the first covering layer and forming a p-side contact electrode in contact with the p-type semiconductor layer; the step of forming a second covering layer having a film thickness of 100 nm or more and covering the first covering layer, the n-side contact electrode and the p-side contact electrode; the step of partially removing the second covering layer and forming The step of forming an n-side pad electrode connected to the aforementioned n-side contact electrode; and the step of partially removing the aforementioned second covering layer and forming a p-side pad electrode connected to the aforementioned p-side contact electrode; the step of forming the aforementioned second covering layer includes: the step of forming a silicon oxide layer having a thickness of more than 10 times the thickness of the aforementioned first covering layer; and the step of forming a nitride layer covering the aforementioned silicon oxide layer. 一種半導體發光元件的製造方法,係具有:於基板上依序積層以下各層的步驟:n型半導體層,係n型氮化鋁鎵系半導體材料;活性層,係前述n型半導體層上的氮化鋁鎵系半導體材料;以及p型半導體層,係前述活性層上的p型氮化鋁鎵系半導體材料;以露出前述n型半導體層的一部分的方式去除前述p型半導體層的一部分、前述活性層的一部分以及前述n型半導體層的一部分的步驟;以覆蓋前述n型半導體層的露出區域上、前述活性層的側面以及前述p型半導體層的方式形成由氧化鋁所構成的第一覆蓋層的步驟;將前述第一覆蓋層部分地去除且形成接觸前述n型半導體層的n側接觸電極的步驟;將前述第一覆蓋層部分地去除且形成接觸前述p型半導體層的p側接觸電極的步驟;形成將前述第一覆蓋層、前述n側接觸電極以及前述p側接觸電極覆蓋的第二覆蓋層的步驟;將前述第二覆蓋層部分地去除且形成與前述n側接觸電極連接的n側墊電極的步驟;以及將前述第二覆蓋層部分地去除且形成與前述p側接觸電極連接的p側墊電極的步驟;形成前述第二覆蓋層的步驟係包含:形成用較前述第一覆蓋層的材料還低折射率的材料所構成的第一層的步驟;以及形成用較前述第一覆蓋層的材料還高折射率的材料所構成且將前述第一層覆蓋之第二層的步驟。 A method for manufacturing a semiconductor light-emitting element comprises the steps of: sequentially stacking the following layers on a substrate: an n-type semiconductor layer, which is an n-type aluminum-gallium nitride semiconductor material; an active layer, which is an aluminum-gallium nitride semiconductor material on the n-type semiconductor layer; and a p-type semiconductor layer, which is a p-type aluminum-gallium nitride semiconductor material on the active layer; exposing a portion of the n-type semiconductor layer; The steps of removing a portion of the p-type semiconductor layer, a portion of the active layer, and a portion of the n-type semiconductor layer in a manner of removing the p-type semiconductor layer, a portion of the active layer, and a portion of the n-type semiconductor layer; forming a first covering layer composed of aluminum oxide in a manner of covering the exposed region of the n-type semiconductor layer, the side of the active layer, and the p-type semiconductor layer; partially removing the first covering layer and forming a first covering layer in contact with the n-type semiconductor layer; The step of partially removing the aforementioned first covering layer and forming a p-side contact electrode contacting the aforementioned p-type semiconductor layer; the step of forming a second covering layer covering the aforementioned first covering layer, the aforementioned n-side contact electrode and the aforementioned p-side contact electrode; the step of partially removing the aforementioned second covering layer and forming an n-side pad electrode connected to the aforementioned n-side contact electrode; and the step of removing the aforementioned first covering layer and forming a p-side pad electrode connected to the aforementioned n-side contact electrode. The second covering layer is partially removed and a p-side pad electrode connected to the p-side contact electrode is formed; the step of forming the second covering layer includes: forming a first layer composed of a material with a lower refractive index than the material of the first covering layer; and forming a second layer composed of a material with a higher refractive index than the material of the first covering layer and covering the first layer. 如請求項10或11所記載之半導體發光元件的製造方法,其中進一步具有以覆蓋前述基板的表面、前述第二覆蓋層、前述n側墊電極的側面以及前述p側墊電極的側面的至少一部分的方式形成由氧化鋁所構成的第三覆蓋層的步驟;前述第一覆蓋層係藉由以有機鋁化合物和氧氣電漿或臭氧氣作為原料的原子層堆積法而形成;前述第三覆蓋層係藉由以有機鋁化合物和水作為原料的原子層堆積法而形成。 The method for manufacturing a semiconductor light-emitting element as described in claim 10 or 11 further comprises the step of forming a third covering layer composed of aluminum oxide in a manner covering the surface of the substrate, the second covering layer, the side of the n-side pad electrode, and at least a portion of the side of the p-side pad electrode; the first covering layer is formed by an atomic layer stacking method using an organic aluminum compound and oxygen plasma or ozone gas as raw materials; and the third covering layer is formed by an atomic layer stacking method using an organic aluminum compound and water as raw materials.
TW109100405A 2019-01-07 2020-01-07 Semiconductor light emitting element and method for manufacturing the same TWI842807B (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019-000758 2019-01-07
JP2019000758 2019-01-07
JP2019-151150 2019-08-21
JP2019151150A JP7312056B2 (en) 2019-01-07 2019-08-21 Semiconductor light emitting device and method for manufacturing semiconductor light emitting device

Publications (2)

Publication Number Publication Date
TW202044616A TW202044616A (en) 2020-12-01
TWI842807B true TWI842807B (en) 2024-05-21

Family

ID=

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016181625A1 (en) 2015-05-12 2016-11-17 パナソニックIpマネジメント株式会社 Semiconductor light emitting element and method for manufacturing same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016181625A1 (en) 2015-05-12 2016-11-17 パナソニックIpマネジメント株式会社 Semiconductor light emitting element and method for manufacturing same

Similar Documents

Publication Publication Date Title
JP7312056B2 (en) Semiconductor light emitting device and method for manufacturing semiconductor light emitting device
JP5857786B2 (en) Manufacturing method of semiconductor light emitting device
JP7307662B2 (en) Semiconductor light emitting device and method for manufacturing semiconductor light emitting device
TWI753536B (en) Semiconductor light-emitting element and method of manufacturing semiconductor light-emitting element
TWI741638B (en) Semiconductor light-emitting element
US11387386B2 (en) Semiconductor light emitting element and method of manufacturing semiconductor light emitting element
JP7049186B2 (en) Manufacturing method of semiconductor light emitting device and semiconductor light emitting device
JP6902569B2 (en) Semiconductor light emitting element and manufacturing method of semiconductor light emitting element
JP7146589B2 (en) Semiconductor light emitting device and method for manufacturing semiconductor light emitting device
KR102480037B1 (en) Semiconductor light emitting device and manufacturing method of the semiconductor light emitting device
CN113675310B (en) Semiconductor light emitting element and method for manufacturing semiconductor light emitting element
CN113675309B (en) Semiconductor light emitting element and method for manufacturing semiconductor light emitting element
JP7146562B2 (en) Semiconductor light emitting device and method for manufacturing semiconductor light emitting device
TWI842807B (en) Semiconductor light emitting element and method for manufacturing the same
KR101591966B1 (en) Semiconductor light emitting device and method of manufacturing the same
JP7296001B2 (en) Semiconductor light emitting device and method for manufacturing semiconductor light emitting device
JP7296002B2 (en) Semiconductor light emitting device and method for manufacturing semiconductor light emitting device
JP7472354B1 (en) Semiconductor light emitting device and method for manufacturing the same
JP2019208056A (en) Semiconductor light-emitting element
JP5682427B2 (en) Light emitting element