TWI842063B - Operating voltage supply circuit - Google Patents

Operating voltage supply circuit Download PDF

Info

Publication number
TWI842063B
TWI842063B TW111131109A TW111131109A TWI842063B TW I842063 B TWI842063 B TW I842063B TW 111131109 A TW111131109 A TW 111131109A TW 111131109 A TW111131109 A TW 111131109A TW I842063 B TWI842063 B TW I842063B
Authority
TW
Taiwan
Prior art keywords
clock signal
circuit
load state
switch
pump
Prior art date
Application number
TW111131109A
Other languages
Chinese (zh)
Other versions
TW202409998A (en
Inventor
黃獻霆
Original Assignee
奕力科技股份有限公司
Filing date
Publication date
Application filed by 奕力科技股份有限公司 filed Critical 奕力科技股份有限公司
Publication of TW202409998A publication Critical patent/TW202409998A/en
Application granted granted Critical
Publication of TWI842063B publication Critical patent/TWI842063B/en

Links

Images

Abstract

An operating voltage supply circuit is provided. The operating voltage supply circuit includes an operating circuit and a charge pump circuit. The operating circuit provides pumping clock signals under different load states. The charge pump circuit receives the pumping clock signal and provides an operating voltage based on a duty cycle of the pumping clock signal. The load states are alternately switched in a time interval. Duty cycles of the pumping clock signals are not identical completely.

Description

操作電壓供應電路Operating voltage supply circuit

本發明是有關於一種操作電壓供應電路,且特別是有關於一種具有低功率消耗的操作電壓供應電路。 The present invention relates to an operating voltage supply circuit, and in particular to an operating voltage supply circuit with low power consumption.

一般來說,電子裝置(如,觸控裝置、顯示裝置或觸控顯示裝置)會利用操作電壓來運作。操作電壓供應電路會透過電荷泵電路的泵升操作來提供操作電壓。然而,為維持電荷泵電路的高工作效率。電荷泵電路始終會處於固定的工作狀態來提供操作電壓。因此,操作電壓供應電路的功率消耗並不會下降。 Generally speaking, electronic devices (such as touch devices, display devices, or touch display devices) operate using an operating voltage. The operating voltage supply circuit provides the operating voltage through the pumping operation of the charge pump circuit. However, in order to maintain the high working efficiency of the charge pump circuit, the charge pump circuit is always in a fixed working state to provide the operating voltage. Therefore, the power consumption of the operating voltage supply circuit does not decrease.

本發明提供一種具有低功率消耗的操作電壓供應電路。 The present invention provides an operating voltage supply circuit with low power consumption.

本發明的操作電壓供應電路包括操作電路以及電荷泵電路。操作電路在不同的多個負載狀態下提供多個泵升時脈訊號。電荷泵電路耦接於操作電路。電荷泵電路接收泵升時脈訊號,並基於泵升時脈訊號的工作週期來提供操作電壓。所述多個負載狀態在不同負載狀態的時間區間中被輪替切換。在特定模式中所述 多個負載狀態下所提供的所述多個泵升時脈訊號的工作週期不完全相同。 The operating voltage supply circuit of the present invention includes an operating circuit and a charge pump circuit. The operating circuit provides multiple pump-up clock signals under different multiple load states. The charge pump circuit is coupled to the operating circuit. The charge pump circuit receives the pump-up clock signal and provides an operating voltage based on the duty cycle of the pump-up clock signal. The multiple load states are switched alternately in the time interval of different load states. In a specific mode, the duty cycles of the multiple pump-up clock signals provided under the multiple load states are not completely the same.

基於上述,操作電路在不同的多個負載狀態下提供泵升時脈訊號。所述多個泵升時脈訊號的工作週期不完全相同。如此一來,單一時間區間中,操作電壓供應電路的功率消耗可以間歇性的下降。 Based on the above, the operating circuit provides a pump-up clock signal under different multiple load conditions. The working cycles of the multiple pump-up clock signals are not exactly the same. In this way, the power consumption of the operating voltage supply circuit can be intermittently reduced in a single time period.

為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。 In order to make the above features and advantages of the present invention more clearly understood, the following is a detailed description of the embodiments with the accompanying drawings.

100:操作電壓供應電路 100: Operating voltage supply circuit

110、210、310、410:操作電路 110, 210, 310, 410: Operation circuit

120、220-1、220-2、220-3、220-4:電荷泵電路 120, 220-1, 220-2, 220-3, 220-4: Charge pump circuit

211、311、411:選擇電路 211, 311, 411: Select circuit

212、312、412:時脈訊號產生電路 212, 312, 412: Clock signal generation circuit

221、222-1、222-2:電壓調節電路 221, 222-1, 222-2: Voltage regulation circuit

CC、CCA:電容器 CC, CCA: Capacitor

CCK1、CCK2:充電時脈訊號 CCK1, CCK2: Charging timing signal

DT:時間區間 DT: Time Zone

DTC1、DTC2、DTC3:工作週期 DTC1, DTC2, DTC3: working cycle

ED:電子裝置 ED: Electronic devices

GND:接地 GND: Ground

MUX、MUX1、MUX2:多工器 MUX, MUX1, MUX2: Multiplexer

MUXC:多工器電路 MUXC: Multiplexer circuit

PCK1、PCK2、PCK3:泵升時脈訊號 PCK1, PCK2, PCK3: pump up clock signal

PCKH、PCKL:閘極電壓泵升時脈訊號 PCKH, PCKL: Gate voltage pump rising clock signal

REG1、REG2、REG3:暫存器 REG1, REG2, REG3: registers

S101~S109、S201~S212:步驟 S101~S109, S201~S212: Steps

SS、SS1、SS2:選擇訊號 SS, SS1, SS2: Select signal

ST1、ST2、ST2’、ST3:負載狀態 ST1, ST2, ST2’, ST3: Load status

STG1~STG9、STG5’~STG7’:階段 STG1~STG9, STG5’~STG7’: stage

SV1、SV2、SV3:狀態資料 SV1, SV2, SV3: Status data

SW1~SW11:開關 SW1~SW11: switch

VCI:充電電壓 VCI: Charging voltage

VGH:閘極高電壓 VGH: Gate high voltage

VGL:閘極低電壓 VGL: Gate Low Voltage

VR、VR1、VR2:調節電壓 VR, VR1, VR2: voltage regulation

VRI:參考電壓 VRI: Reference voltage

VSN、VSP:操作電壓 VSN, VSP: operating voltage

圖1是依據本發明第一實施例所繪示的操作電壓供應電路的示意圖。 FIG1 is a schematic diagram of an operating voltage supply circuit according to the first embodiment of the present invention.

圖2是依據本發明一實施例所繪示的負載狀態與泵升時脈訊號的工作週期的示意圖以及狀態圖。 FIG2 is a schematic diagram and a state diagram showing the load state and the working cycle of the pump-up clock signal according to an embodiment of the present invention.

圖3是依據本發明第二實施例所繪示的操作電壓供應電路的示意圖。 FIG3 is a schematic diagram of an operating voltage supply circuit according to the second embodiment of the present invention.

圖4A~4C分別是依據本發明一實施例所繪示的電荷泵電路的示意圖。 Figures 4A to 4C are schematic diagrams of a charge pump circuit according to an embodiment of the present invention.

圖5是依據圖3所繪示的狀態圖。 Figure 5 is a state diagram based on Figure 3.

圖6是依據本發明一實施例所繪示的電荷泵電路的示意圖。 FIG6 is a schematic diagram of a charge pump circuit according to an embodiment of the present invention.

圖7是依據圖6所繪示的狀態圖。 Figure 7 is a state diagram based on Figure 6.

圖8是依據本發明一實施例所繪示的操作電路的示意圖。 FIG8 is a schematic diagram of an operating circuit according to an embodiment of the present invention.

圖9是依據本發明另一實施例所繪示的操作電路的示意圖。 FIG9 is a schematic diagram of an operating circuit according to another embodiment of the present invention.

圖10是依據本發明再一實施例所繪示的操作電路的示意圖。 FIG10 is a schematic diagram of an operating circuit according to another embodiment of the present invention.

圖11是依據本發明一實施例所繪示的操作流程圖。 Figure 11 is an operation flow chart drawn according to an embodiment of the present invention.

圖12是依據本發明另一實施例所繪示的操作流程圖。 Figure 12 is an operation flow chart drawn according to another embodiment of the present invention.

圖13是依據本發明另一實施例所繪示的負載狀態與泵升時脈訊號的工作週期的示意圖以及狀態圖。 FIG13 is a schematic diagram and a state diagram showing the load state and the working cycle of the pump-up clock signal according to another embodiment of the present invention.

本發明的部份實施例接下來將會配合附圖來詳細描述,以下的描述所引用的元件符號,當不同附圖出現相同的元件符號將視為相同或相似的元件。這些實施例只是本發明的一部份,並未揭示所有本發明的可實施方式。更確切的說,這些實施例只是本發明的專利申請範圍中的範例。 Some embodiments of the present invention will be described in detail with the accompanying drawings. The component symbols cited in the following description will be regarded as the same or similar components when the same component symbols appear in different drawings. These embodiments are only part of the present invention and do not disclose all possible implementation methods of the present invention. More precisely, these embodiments are only examples within the scope of the patent application of the present invention.

請參考圖1,圖1是依據本發明一實施例所繪示的操作電壓供應電路的示意圖。在本實施例中,操作電壓供應電路100用以對電子裝置ED提供操作電壓VSP。電子裝置ED會基於操作電壓VSP而運行。電子裝置ED可以是可攜式裝置或穿戴裝置中的觸控裝置、顯示裝置或者是觸控顯示裝置。在本實施例中,操作電壓供應電路100包括操作電路110以及電荷泵電路120。操作電路110在不同的多個負載狀態下提供泵升時脈訊號。所述多個負載狀態在特定模式的單一時間區間DT中被輪替切換。此外,所述 多個泵升時脈訊號的工作週期不完全相同。舉例來說,以本實施例為例,操作電路110在負載狀態ST1下提供泵升時脈訊號PCK1。操作電路110在負載狀態ST2下提供泵升時脈訊號PCK2。負載狀態ST1不同於負載狀態ST2。負載狀態ST1的功率消耗不同於ST2的功率消耗。泵升時脈訊號PCK1的工作週期不同於泵升時脈訊號PCK2的工作週期。此外,負載狀態ST1、ST2在處於不同負載狀態的時間區間DT被輪替切換。換言之,在時間區間DT,操作電路110處於特定模式,並且輪替地提供泵升時脈訊號PCK1、PCK2。舉例來說,特定模式可以是各種類型的待機模式。舉例來說,特定模式(或稱待機模式)包括暗屏觸控模式以及常時顯示(Always-on Display,AOD)模式的至少其中之一。 Please refer to FIG. 1, which is a schematic diagram of an operating voltage supply circuit according to an embodiment of the present invention. In this embodiment, the operating voltage supply circuit 100 is used to provide an operating voltage VSP to an electronic device ED. The electronic device ED operates based on the operating voltage VSP. The electronic device ED can be a touch device, a display device, or a touch display device in a portable device or a wearable device. In this embodiment, the operating voltage supply circuit 100 includes an operating circuit 110 and a charge pump circuit 120. The operating circuit 110 provides a pump-up clock signal under multiple different load states. The multiple load states are switched alternately in a single time interval DT of a specific mode. In addition, the working cycles of the multiple pump-up clock signals are not exactly the same. For example, taking the present embodiment as an example, the operating circuit 110 provides a pump-up clock signal PCK1 under the load state ST1. The operating circuit 110 provides a pump-up clock signal PCK2 under the load state ST2. The load state ST1 is different from the load state ST2. The power consumption of the load state ST1 is different from the power consumption of ST2. The duty cycle of the pump-up clock signal PCK1 is different from the duty cycle of the pump-up clock signal PCK2. In addition, the load states ST1 and ST2 are switched alternately in the time period DT in different load states. In other words, in the time period DT, the operating circuit 110 is in a specific mode and provides the pump-up clock signals PCK1 and PCK2 alternately. For example, the specific mode can be various types of standby modes. For example, the specific mode (or standby mode) includes at least one of a dark screen touch mode and an always-on display (AOD) mode.

在本實施例中,電荷泵電路120耦接於操作電路110。電荷泵電路120接收操作電路110所提供的泵升時脈訊號,並基於所接收到的泵升時脈訊號的工作週期來提供操作電壓VSP。 In this embodiment, the charge pump circuit 120 is coupled to the operating circuit 110. The charge pump circuit 120 receives the pump-up clock signal provided by the operating circuit 110, and provides the operating voltage VSP based on the duty cycle of the received pump-up clock signal.

在此值得一提的是,操作電路110在不同的多個負載狀態下所提供的泵升時脈訊號的工作週期不完全相同。所述多個負載狀態在單一時間區間DT中被輪替切換。所述多個負載狀態的多個功率消耗彼此不同。如此一來,單一時間區間中,操作電壓供應電路100的功率消耗可以間歇性的下降。 It is worth mentioning here that the operating cycle of the pump-up clock signal provided by the operating circuit 110 under different multiple load states is not exactly the same. The multiple load states are switched alternately in a single time interval DT. The multiple power consumptions of the multiple load states are different from each other. In this way, the power consumption of the operating voltage supply circuit 100 can be intermittently reduced in a single time interval.

為了便於說明,本實施例以兩個負載狀態ST1、ST2來示例。本發明的負載狀態的數量可以是多個,並不以本實施例為限。 For ease of explanation, this embodiment uses two load states ST1 and ST2 as examples. The number of load states of the present invention can be multiple and is not limited to this embodiment.

請同時參考圖1以及圖2,圖2是依據本發明一實施例所 繪示的負載狀態與泵升時脈訊號的工作週期的示意圖以及狀態圖。在本實施例中,在時間區間DT,操作電路110在負載狀態ST1下提供泵升時脈訊號PCK1。泵升時脈訊號PCK1具有工作週期DTC1。操作電路110在負載狀態ST2下提供泵升時脈訊號PCK2。泵升時脈訊號PCK2具有工作週期DTC2。操作電路110可以在特定模式下輪替地提供泵升時脈訊號PCK1、PCK2。 Please refer to FIG. 1 and FIG. 2 at the same time. FIG. 2 is a schematic diagram and a state diagram of a load state and a duty cycle of a pump-up clock signal according to an embodiment of the present invention. In this embodiment, in the time interval DT, the operating circuit 110 provides a pump-up clock signal PCK1 under the load state ST1. The pump-up clock signal PCK1 has a duty cycle DTC1. The operating circuit 110 provides a pump-up clock signal PCK2 under the load state ST2. The pump-up clock signal PCK2 has a duty cycle DTC2. The operating circuit 110 can alternately provide the pump-up clock signals PCK1 and PCK2 in a specific mode.

舉例來說,電子裝置ED是觸控顯示裝置。操作電路110可以在電子裝置ED的暗屏觸控模式中輪替地提供泵升時脈訊號PCK1、PCK2。暗屏觸控模式是電子裝置ED在顯示面板停止顯示畫面時的觸控模式。因此,電荷泵電路120依據工作週期DTC1、DTC2來提供操作電壓VSP。在此例中,負載狀態ST1是電子裝置ED的觸控感測狀態。在負載狀態ST1中,操作電路110提供具有工作週期DTC1的泵升時脈訊號PCK1。工作週期DTC1例如是50%(本發明並不以此為限)。因此,電荷泵電路120會在負載狀態ST1中基於工作週期DTC1提供操作電壓VSP。負載狀態ST2是電子裝置ED的閒置狀態。操作電路110提供具有工作週期DTC2的泵升時脈訊號PCK2。工作週期DTC2小於工作週期DTC1。工作週期DTC2例如是12%(本發明並不以此為限)。因此,電荷泵電路120會在負載狀態ST2中基於工作週期DTC2提供操作電壓VSP。操作電壓VSP用以驅動電子裝置ED的觸控感測電路。 For example, the electronic device ED is a touch display device. The operating circuit 110 can alternately provide pump-up clock signals PCK1 and PCK2 in the dark screen touch mode of the electronic device ED. The dark screen touch mode is the touch mode of the electronic device ED when the display panel stops displaying the picture. Therefore, the charge pump circuit 120 provides the operating voltage VSP according to the duty cycles DTC1 and DTC2. In this example, the load state ST1 is the touch sensing state of the electronic device ED. In the load state ST1, the operating circuit 110 provides a pump-up clock signal PCK1 with a duty cycle DTC1. The duty cycle DTC1 is, for example, 50% (the present invention is not limited to this). Therefore, the charge pump circuit 120 provides an operating voltage VSP based on the duty cycle DTC1 in the load state ST1. The load state ST2 is an idle state of the electronic device ED. The operating circuit 110 provides a pump-up clock signal PCK2 having a duty cycle DTC2. The duty cycle DTC2 is less than the duty cycle DTC1. The duty cycle DTC2 is, for example, 12% (the present invention is not limited thereto). Therefore, the charge pump circuit 120 provides an operating voltage VSP based on the duty cycle DTC2 in the load state ST2. The operating voltage VSP is used to drive the touch sensing circuit of the electronic device ED.

應注意的是,工作週期DTC1大於工作週期DTC2。電荷泵電路120基於工作週期DTC2運行所產生的功率消耗會小於基 於工作週期DTC1運行所產生的功率消耗。因此,在暗屏觸控模式中,電荷泵電路120的功率消耗能夠被降低。 It should be noted that the duty cycle DTC1 is greater than the duty cycle DTC2. The power consumption generated by the charge pump circuit 120 operating based on the duty cycle DTC2 is less than the power consumption generated by the operation based on the duty cycle DTC1. Therefore, in the dark screen touch mode, the power consumption of the charge pump circuit 120 can be reduced.

此外,在本實施例中,負載狀態ST1的時間長度短於負載狀態ST2的時間長度。舉例來說,在電子裝置ED運行於暗屏觸控模式的時間區間DT,負載狀態ST1、ST2的輪替週期約為15赫茲(Hz)(本發明並不以此為限)。負載狀態ST1的運行時間長度是2毫秒(本發明並不以此為限)。負載狀態ST2的運行時間長度是62毫秒(本發明並不以此為限)。負載狀態ST2的運行時間長度被適度地延長能夠降低電荷泵電路120的功率消耗。 In addition, in this embodiment, the duration of the load state ST1 is shorter than the duration of the load state ST2. For example, in the time period DT when the electronic device ED operates in the dark screen touch mode, the alternation cycle of the load states ST1 and ST2 is about 15 Hz (the present invention is not limited thereto). The operation duration of the load state ST1 is 2 milliseconds (the present invention is not limited thereto). The operation duration of the load state ST2 is 62 milliseconds (the present invention is not limited thereto). The operation duration of the load state ST2 is appropriately extended to reduce the power consumption of the charge pump circuit 120.

另舉例來說,電子裝置ED是顯示裝置。操作電路110可以在電子裝置ED的常時顯示(Always-on Display,AOD)模式中輪替地提供泵升時脈訊號PCK1、PCK2。常時顯示模式是電子裝置ED在顯示面板停止掃描顯示畫面時的顯示模式。因此,電荷泵電路120依據工作週期DTC1、DTC2來提供操作電壓VSP。在此例中,負載狀態ST1是電子裝置ED的掃描狀態或資料更新狀態。在負載狀態ST1中,操作電路110提供具有工作週期DTC1的泵升時脈訊號PCK1。工作週期DTC1例如是50%(本發明並不以此為限)。因此,電荷泵電路120會在負載狀態ST1中基於工作週期DTC1提供操作電壓VSP。負載狀態ST2是電子裝置ED的閒置狀態。操作電路110提供具有工作週期DTC2的泵升時脈訊號PCK2。工作週期DTC2小於工作週期DTC1。工作週期DTC2例如是12%(本發明並不以此為限)。因此,電荷泵電路120會在 負載狀態ST2中基於工作週期DTC2提供操作電壓VSP。操作電壓VSP用以驅動電子裝置ED的顯示面板。 For another example, the electronic device ED is a display device. The operating circuit 110 can alternately provide pump-up clock signals PCK1 and PCK2 in the always-on display (AOD) mode of the electronic device ED. The always-on display mode is the display mode of the electronic device ED when the display panel stops scanning the display screen. Therefore, the charge pump circuit 120 provides the operating voltage VSP according to the duty cycles DTC1 and DTC2. In this example, the load state ST1 is the scanning state or data update state of the electronic device ED. In the load state ST1, the operating circuit 110 provides a pump-up clock signal PCK1 with a duty cycle DTC1. The duty cycle DTC1 is, for example, 50% (the present invention is not limited to this). Therefore, the charge pump circuit 120 provides the operating voltage VSP based on the duty cycle DTC1 in the load state ST1. The load state ST2 is the idle state of the electronic device ED. The operating circuit 110 provides the pump-up clock signal PCK2 with the duty cycle DTC2. The duty cycle DTC2 is less than the duty cycle DTC1. The duty cycle DTC2 is, for example, 12% (the present invention is not limited thereto). Therefore, the charge pump circuit 120 provides the operating voltage VSP based on the duty cycle DTC2 in the load state ST2. The operating voltage VSP is used to drive the display panel of the electronic device ED.

應注意的是,工作週期DTC1大於工作週期DTC2。電荷泵電路120基於工作週期DTC2運行所產生的功率消耗會小於基於工作週期DTC1運行所產生的功率消耗。因此,在常時顯示模式中,電荷泵電路120的功率消耗能夠被降低。 It should be noted that the duty cycle DTC1 is greater than the duty cycle DTC2. The power consumption generated by the charge pump circuit 120 operating based on the duty cycle DTC2 is less than the power consumption generated by the operation based on the duty cycle DTC1. Therefore, in the permanent display mode, the power consumption of the charge pump circuit 120 can be reduced.

此外,在本實施例中,負載狀態ST1的時間長度短於負載狀態ST2的時間長度。舉例來說,在電子裝置ED運行於暗屏觸控模式的時間區間DT,負載狀態ST1、ST2的輪替週期約為15赫茲(Hz)(本發明並不以此為限)。負載狀態ST1的運行時間長度是16毫秒(本發明並不以此為限)。負載狀態ST2的運行時間長度是48毫秒(本發明並不以此為限)。 In addition, in this embodiment, the duration of the load state ST1 is shorter than the duration of the load state ST2. For example, in the time period DT when the electronic device ED operates in the dark screen touch mode, the rotation cycle of the load states ST1 and ST2 is about 15 Hz (the present invention is not limited thereto). The operation duration of the load state ST1 is 16 milliseconds (the present invention is not limited thereto). The operation duration of the load state ST2 is 48 milliseconds (the present invention is not limited thereto).

請參考圖3,圖3是依據本發明第二實施例所繪示的操作電壓供應電路的示意圖。在本實施例中,操作電壓供應電路200包括操作電路210以及電荷泵電路220。操作電路210在負載狀態ST1下提供泵升時脈訊號PCK1以及充電時脈訊號CCK1。操作電路210在負載狀態ST2下提供泵升時脈訊號PCK2以及充電時脈訊號CCK2。負載狀態ST1的功率消耗不同於ST2的功率消耗。泵升時脈訊號PCK1的工作週期不同於泵升時脈訊號PCK2的工作週期。此外,負載狀態ST1、ST2在時間區間DT被輪替切換。電荷泵電路220耦接於操作電路210。電荷泵電路220接收操作電路210所提供的泵升時脈訊號,並基於所接收到的泵升時脈訊號以及 充電時脈訊號提供操作電壓VSP。 Please refer to Figure 3, which is a schematic diagram of an operating voltage supply circuit according to the second embodiment of the present invention. In this embodiment, the operating voltage supply circuit 200 includes an operating circuit 210 and a charge pump circuit 220. The operating circuit 210 provides a pump-up clock signal PCK1 and a charging clock signal CCK1 under the load state ST1. The operating circuit 210 provides a pump-up clock signal PCK2 and a charging clock signal CCK2 under the load state ST2. The power consumption of the load state ST1 is different from the power consumption of ST2. The working cycle of the pump-up clock signal PCK1 is different from the working cycle of the pump-up clock signal PCK2. In addition, the load states ST1 and ST2 are switched alternately in the time interval DT. The charge pump circuit 220 is coupled to the operating circuit 210. The charge pump circuit 220 receives the pump-up clock signal provided by the operating circuit 210, and provides an operating voltage VSP based on the received pump-up clock signal and the charging clock signal.

接下來舉例說明電荷泵電路220的實施細節。 Next, an example is given to illustrate the implementation details of the charge pump circuit 220.

圖4A~4C分別是依據本發明一實施例所繪示的電荷泵電路的示意圖。首先,請參考圖4A,在本實施例中,電荷泵電路220-1包括電容器CC以及開關SW1~SW4。開關SW1的第一端接收充電電壓VCI。開關SW1的第二端耦接於電容器CC的第一端。開關SW1的控制端在負載狀態ST1下接收充電時脈訊號CCK1,並在所述負載狀態ST2下接收充電時脈訊號CCK2。開關SW2的第一端接收參考低電壓(例如是接地GND)。開關SW2的第二端耦接於電容器CC的第二端。開關SW2的控制端在負載狀態ST1下接收充電時脈訊號CCK1,並在負載狀態ST2下接收充電時脈訊號CCK2。開關SW3的第一端耦接於電容器CC的第一端。開關SW3的第二端用以輸出操作電壓VSP。開關SW3的控制端在負載狀態ST1下接收泵升時脈訊號PCK1,並在負載狀態ST2下接收泵升時脈訊號PCK2。開關SW4的第一端耦接於電容器CC的第二端。開關SW4的第二端接收調節電壓VR。開關SW4的控制端在負載狀態ST1下接收泵升時脈訊號PCK1,並在負載狀態ST2下接收泵升時脈訊號PCK2。 4A~4C are schematic diagrams of a charge pump circuit according to an embodiment of the present invention. First, please refer to FIG. 4A. In this embodiment, the charge pump circuit 220-1 includes a capacitor CC and switches SW1~SW4. The first end of the switch SW1 receives the charging voltage VCI. The second end of the switch SW1 is coupled to the first end of the capacitor CC. The control end of the switch SW1 receives the charging clock signal CCK1 under the load state ST1, and receives the charging clock signal CCK2 under the load state ST2. The first end of the switch SW2 receives a reference low voltage (for example, ground GND). The second end of the switch SW2 is coupled to the second end of the capacitor CC. The control end of the switch SW2 receives the charging clock signal CCK1 under the load state ST1, and receives the charging clock signal CCK2 under the load state ST2. The first end of the switch SW3 is coupled to the first end of the capacitor CC. The second end of the switch SW3 is used to output the operating voltage VSP. The control end of the switch SW3 receives the pump-up clock signal PCK1 under the load state ST1, and receives the pump-up clock signal PCK2 under the load state ST2. The first end of the switch SW4 is coupled to the second end of the capacitor CC. The second end of the switch SW4 receives the regulating voltage VR. The control end of the switch SW4 receives the pump-up clock signal PCK1 under the load state ST1, and receives the pump-up clock signal PCK2 under the load state ST2.

在負載狀態ST1的充電階段,開關SW1、SW2會反應於充電時脈訊號CCK1被導通。開關SW3、SW4會反應於泵升時脈訊號PCK1被斷開。因此,電容器CC的第一端與電容器CC的第二端之間會具有一充電電壓差值。在負載狀態ST1的泵升階段, 開關SW1、SW2會反應於充電時脈訊號CCK1被斷開。開關SW3、SW4會反應於泵升時脈訊號PCK1被導通。因此,操作電壓VSP的電壓值會大致等於調節電壓VR的電壓值以及充電電壓差值的加總。 In the charging stage of the load state ST1, switches SW1 and SW2 will react to the charging clock signal CCK1 being turned on. Switches SW3 and SW4 will react to the pump-up clock signal PCK1 being turned off. Therefore, there will be a charging voltage difference between the first end of capacitor CC and the second end of capacitor CC. In the pump-up stage of the load state ST1, Switches SW1 and SW2 will react to the charging clock signal CCK1 being turned off. Switches SW3 and SW4 will react to the pump-up clock signal PCK1 being turned on. Therefore, the voltage value of the operating voltage VSP will be roughly equal to the sum of the voltage value of the regulating voltage VR and the charging voltage difference.

舉例來說,充電電壓VCI的電壓值等於3.3伏特。調節電壓VR的電壓值等於2.7伏特。因此,在負載狀態ST1的充電階段,充電電壓差值大致等於3.3伏特。在負載狀態ST1的泵升階段,操作電壓VSP的電壓值會大致等於6伏特。另舉例來說,充電電壓VCI的電壓值等於6伏特。調節電壓VR的電壓值等於1伏特。因此,在負載狀態ST1的充電階段,充電電壓差值大致等於6伏特。在負載狀態ST1的泵升階段,操作電壓VSP的電壓值會大致等於7伏特。操作電壓VSP可作為產生畫素掃描的閘極高電壓(VGH)及/或用於觸控感測的電源。 For example, the voltage value of the charging voltage VCI is equal to 3.3 volts. The voltage value of the regulating voltage VR is equal to 2.7 volts. Therefore, in the charging stage of the load state ST1, the charging voltage difference is approximately equal to 3.3 volts. In the pump-up stage of the load state ST1, the voltage value of the operating voltage VSP will be approximately equal to 6 volts. For another example, the voltage value of the charging voltage VCI is equal to 6 volts. The voltage value of the regulating voltage VR is equal to 1 volt. Therefore, in the charging stage of the load state ST1, the charging voltage difference is approximately equal to 6 volts. In the pump-up stage of the load state ST1, the voltage value of the operating voltage VSP will be approximately equal to 7 volts. The operating voltage VSP can be used as a gate high voltage (VGH) for pixel scanning and/or as a power supply for touch sensing.

電荷泵電路220-1在負載狀態ST2的充電階段的操作大致與在負載狀態ST1的充電階段的操作相似。電荷泵電路220-1在負載狀態ST2的泵升階段的操作大致與在負載狀態ST1的泵升階段的操作相似。電荷泵電路220-1在負載狀態ST1、ST2的操作的差異主要是泵升時脈訊號PCK1的工作週期與泵升時脈訊號PCK2的工作週期並不相同。 The operation of the charge pump circuit 220-1 in the charging phase of the load state ST2 is roughly similar to the operation in the charging phase of the load state ST1. The operation of the charge pump circuit 220-1 in the pumping phase of the load state ST2 is roughly similar to the operation in the pumping phase of the load state ST1. The difference between the operation of the charge pump circuit 220-1 in the load states ST1 and ST2 is mainly that the working cycle of the pumping clock signal PCK1 is different from the working cycle of the pumping clock signal PCK2.

請參考圖4B,在本實施例中,電荷泵電路220-2包括電容器CC、開關SW1~SW4以及電壓調節電路221。電容器CC以及開關SW1~SW4的配置與操作已經在圖4A的實施例中清楚說 明,故不在此重述。在本實施例中,電壓調節電路221耦接於開關SW4的第二端。電壓調節電路221依據參考電壓VRI來提供調節電壓VR。電壓調節電路221可被操作以利用參考電壓VRI來決定調節電壓VR的電壓值。 Please refer to FIG. 4B. In this embodiment, the charge pump circuit 220-2 includes a capacitor CC, switches SW1~SW4 and a voltage regulating circuit 221. The configuration and operation of the capacitor CC and the switches SW1~SW4 have been clearly described in the embodiment of FIG. 4A, so they are not repeated here. In this embodiment, the voltage regulating circuit 221 is coupled to the second end of the switch SW4. The voltage regulating circuit 221 provides a regulating voltage VR according to a reference voltage VRI. The voltage regulating circuit 221 can be operated to use the reference voltage VRI to determine the voltage value of the regulating voltage VR.

請參考圖4C,在本實施例中,電荷泵電路220-3包括電容器CC、開關SW1~SW4以及電壓調節電路221。開關SW1的第一端接收充電電壓VCI。開關SW1的第二端耦接於電容器CC的第一端。開關SW1的控制端在負載狀態ST1下接收充電時脈訊號CCK1,並在所述負載狀態ST2下接收充電時脈訊號CCK2。開關SW2的第一端接收參考低電壓(例如是接地)。開關SW2的第二端耦接於電容器CC的第二端。開關SW2的控制端在負載狀態ST1下接收充電時脈訊號CCK1,並在負載狀態ST2下接收充電時脈訊號CCK2。開關SW3的第一端耦接於電容器CC的第一端。開關SW3的第二端接收調節電壓VR。開關SW3的控制端在負載狀態ST1下接收泵升時脈訊號PCK1,並在負載狀態ST2下接收泵升時脈訊號PCK2。開關SW4的第一端耦接於電容器CC的第二端。開關SW4的第一端用以輸出操作電壓VSN。開關SW4的控制端在負載狀態ST1下接收泵升時脈訊號PCK1,並在負載狀態ST2下接收泵升時脈訊號PCK2。在本實施例中,電壓調節電路221耦接於開關SW3的第二端。電壓調節電路221依據參考電壓VRI來提供調節電壓VR。在負載狀態ST1的充電階段,開關SW1、SW2會反應於充電時脈訊號CCK1被導通。開關SW3、SW4會反 應於泵升時脈訊號PCK1被斷開。因此,電容器CC的第一端與電容器CC的第二端之間會具有充電電壓差值。在負載狀態ST1的泵升階段,開關SW1、SW2會反應於充電時脈訊號CCK1被斷開。開關SW3、SW4會反應於泵升時脈訊號PCK1被導通。 Please refer to Figure 4C. In this embodiment, the charge pump circuit 220-3 includes a capacitor CC, switches SW1~SW4 and a voltage regulating circuit 221. The first end of the switch SW1 receives the charging voltage VCI. The second end of the switch SW1 is coupled to the first end of the capacitor CC. The control end of the switch SW1 receives the charging clock signal CCK1 under the load state ST1, and receives the charging clock signal CCK2 under the load state ST2. The first end of the switch SW2 receives a reference low voltage (for example, ground). The second end of the switch SW2 is coupled to the second end of the capacitor CC. The control end of the switch SW2 receives the charging clock signal CCK1 under the load state ST1, and receives the charging clock signal CCK2 under the load state ST2. The first end of the switch SW3 is coupled to the first end of the capacitor CC. The second end of the switch SW3 receives the regulated voltage VR. The control end of the switch SW3 receives the pump-up clock signal PCK1 under the load state ST1, and receives the pump-up clock signal PCK2 under the load state ST2. The first end of the switch SW4 is coupled to the second end of the capacitor CC. The first end of the switch SW4 is used to output the operating voltage VSN. The control end of the switch SW4 receives the pump-up clock signal PCK1 under the load state ST1, and receives the pump-up clock signal PCK2 under the load state ST2. In this embodiment, the voltage regulating circuit 221 is coupled to the second end of the switch SW3. The voltage regulating circuit 221 provides the regulated voltage VR based on the reference voltage VRI. In the charging stage of the load state ST1, switches SW1 and SW2 will react to the charging clock signal CCK1 being turned on. Switches SW3 and SW4 will react to the pump-up clock signal PCK1 being turned off. Therefore, there will be a charging voltage difference between the first end of capacitor CC and the second end of capacitor CC. In the pump-up stage of the load state ST1, switches SW1 and SW2 will react to the charging clock signal CCK1 being turned off. Switches SW3 and SW4 will react to the pump-up clock signal PCK1 being turned on.

舉例來說,充電電壓VCI的電壓值等於3.3伏特。調節電壓VR的電壓值等於0伏特。因此,在負載狀態ST1的充電階段,充電電壓差值大致等於3.3伏特。在負載狀態ST1的泵升階段,操作電壓VSN的電壓值會大致等於-3.3伏特。另舉例來說,充電電壓VCI的電壓值等於3.3伏特。調節電壓VR的電壓值等於-3.7伏特。因此,在負載狀態ST1的充電階段,充電電壓差值大致等於3.3伏特。在負載狀態ST1的泵升階段,操作電壓VSP的電壓值會大致等於-7伏特。操作電壓VSP可作為用於畫素掃描的閘極低電壓(VGL)及/或用於畫素的參考低電壓。 For example, the voltage value of the charging voltage VCI is equal to 3.3 volts. The voltage value of the regulating voltage VR is equal to 0 volts. Therefore, in the charging stage of the load state ST1, the charging voltage difference is approximately equal to 3.3 volts. In the pump-up stage of the load state ST1, the voltage value of the operating voltage VSN will be approximately equal to -3.3 volts. For another example, the voltage value of the charging voltage VCI is equal to 3.3 volts. The voltage value of the regulating voltage VR is equal to -3.7 volts. Therefore, in the charging stage of the load state ST1, the charging voltage difference is approximately equal to 3.3 volts. In the pump-up phase of the load state ST1, the voltage value of the operating voltage VSP is approximately equal to -7 volts. The operating voltage VSP can be used as a gate low voltage (VGL) for pixel scanning and/or a reference low voltage for the pixel.

在一些實施例中,圖3所示的電荷泵電路220可以是由電荷泵電路220-1、220-2、220-3的其中一者來實現。在一些實施例中,圖3所示的電荷泵電路220可以是由電荷泵電路220-2、220-3的結合來實現。 In some embodiments, the charge pump circuit 220 shown in FIG. 3 may be implemented by one of the charge pump circuits 220-1, 220-2, and 220-3. In some embodiments, the charge pump circuit 220 shown in FIG. 3 may be implemented by a combination of the charge pump circuits 220-2 and 220-3.

請同時參考圖3以及圖5,圖5是依據圖3所繪示的狀態圖。在本實施例中,負載狀態ST1、ST2在單一時間區間DT中被輪替切換。電荷泵電路220例如在負載狀態ST1至少會依序進行多個階段STG1~STG4。在本實施例中,階段STG1是充電階段。階段STG2是泵升階段。階段STG3是充電階段。階段STG4是泵 升階段。在階段STG1、STG3(充電階段)中,電荷泵電路220基於充電時脈訊號CCK1來運行。在階段STG2、STG4(泵升階段)中,電荷泵電路220基於泵升時脈訊號PCK1來運行。在本實施例中,充電階段STG1、STG3以及泵升階段STG2、STG4具有相同的工作週期DTC1。因此,階段STG1~STG4的時間長度大致相同。工作週期DTC1例如是50%。 Please refer to FIG. 3 and FIG. 5 at the same time. FIG. 5 is a state diagram according to FIG. 3. In this embodiment, the load states ST1 and ST2 are switched alternately in a single time interval DT. For example, the charge pump circuit 220 will at least sequentially perform multiple stages STG1 to STG4 in the load state ST1. In this embodiment, stage STG1 is a charging stage. Stage STG2 is a pump-up stage. Stage STG3 is a charging stage. Stage STG4 is a pump-up stage. In stages STG1 and STG3 (charging stages), the charge pump circuit 220 operates based on the charging clock signal CCK1. In stages STG2 and STG4 (pump-up stages), the charge pump circuit 220 operates based on the pump-up clock signal PCK1. In this embodiment, the charging stages STG1 and STG3 and the pump-up stages STG2 and STG4 have the same duty cycle DTC1. Therefore, the duration of stages STG1 to STG4 is roughly the same. The duty cycle DTC1 is, for example, 50%.

在本實施例中,電荷泵電路220例如在負載狀態ST2至少會依序進行多個階段STG5~STG9。階段STG5是充電階段。階段STG6是泵升階段。階段STG7是附加階段。階段STG8是充電階段。階段STG9是泵升階段。在階段STG5、STG8中,電荷泵電路220基於充電時脈訊號CCK2來運行。在階段STG6、STG9中,電荷泵電路220基於泵升時脈訊號PCK2來運行。在本實施例中,階段STG5、STG8具有工作週期DTC1。階段STG6、STG9具有工作週期DTC2。舉例來說,工作週期DTC1、DTC2例如是50%。電荷泵電路220在階段STG7的操作大致上等於單一階段STG5的操作或重複至少兩次階段STG5。因此,電荷泵電路220進行泵升操作之間的時間間隔被拉長。電荷泵電路220的功率消耗能夠被降低。 In the present embodiment, the charge pump circuit 220, for example, in the load state ST2, will at least sequentially perform multiple stages STG5~STG9. Stage STG5 is the charging stage. Stage STG6 is the pump-up stage. Stage STG7 is the additional stage. Stage STG8 is the charging stage. Stage STG9 is the pump-up stage. In stages STG5 and STG8, the charge pump circuit 220 operates based on the charging clock signal CCK2. In stages STG6 and STG9, the charge pump circuit 220 operates based on the pump-up clock signal PCK2. In the present embodiment, stages STG5 and STG8 have a working cycle DTC1. Stages STG6 and STG9 have a duty cycle DTC2. For example, duty cycles DTC1 and DTC2 are 50%. The operation of the charge pump circuit 220 in stage STG7 is substantially equal to the operation of a single stage STG5 or repeats stage STG5 at least twice. Therefore, the time interval between the pumping operations of the charge pump circuit 220 is lengthened. The power consumption of the charge pump circuit 220 can be reduced.

在本實施例中,階段STG7可以被忽略。工作週期DTC2被設計小於工作週期DTC1。因此,電荷泵電路220的功率消耗能夠被降低。 In this embodiment, stage STG7 can be ignored. The duty cycle DTC2 is designed to be smaller than the duty cycle DTC1. Therefore, the power consumption of the charge pump circuit 220 can be reduced.

請參考圖6,圖6是依據本發明一實施例所繪示的電荷泵 電路的示意圖。在本實施例中,電荷泵電路220-4包括電容器CCA以及開關SW5~SW11。開關SW5的第一端接收操作電壓VSP。開關SW5的第二端耦接於電容器CCA的第一端。開關SW5的控制端在負載狀態ST1下接收充電時脈訊號CCK1,並在所述負載狀態ST2下接收充電時脈訊號CCK2。開關SW6的第一端接收操作電壓VSN。開關SW6的第二端耦接於電容器CC的第二端。開關SW6的控制端在負載狀態ST1下接收充電時脈訊號CCK1,並在負載狀態ST2下接收充電時脈訊號CCK2。 Please refer to FIG. 6, which is a schematic diagram of a charge pump circuit according to an embodiment of the present invention. In this embodiment, the charge pump circuit 220-4 includes a capacitor CCA and switches SW5~SW11. The first end of the switch SW5 receives the operating voltage VSP. The second end of the switch SW5 is coupled to the first end of the capacitor CCA. The control end of the switch SW5 receives the charging clock signal CCK1 under the load state ST1, and receives the charging clock signal CCK2 under the load state ST2. The first end of the switch SW6 receives the operating voltage VSN. The second end of the switch SW6 is coupled to the second end of the capacitor CC. The control end of the switch SW6 receives the charging clock signal CCK1 under the load state ST1, and receives the charging clock signal CCK2 under the load state ST2.

開關SW7的第一端耦接於電容器CCA的第一端。開關SW7的第二端用以輸出閘極高電壓VGH。開關SW7的控制端在不同的負載狀態ST1、ST2下接收具有不同工作週期的閘極電壓泵升時脈訊號PCKH。開關SW8的第一端耦接於電容器CCA的第二端。開關SW8的第二端接收調節電壓VRP。開關SW8的控制端在不同的負載狀態ST1、ST2下接收具有不同工作週期的閘極電壓泵升時脈訊號PCKH。開關SW9的第一端耦接於電容器CCA的第一端。開關SW9的第二端接收調節電壓VRN。開關SW9的控制端在不同的負載狀態ST1、ST2下接收具有不同工作週期的閘極電壓泵升時脈訊號PCKL。開關SW10的第一端耦接於電容器CC的第二端。開關SW10的第二端用以輸出閘極低電壓VGL。開關SW10的控制端在不同的負載狀態ST1、ST2下接收具有不同工作週期的閘極電壓泵升時脈訊號PCKL。 The first end of the switch SW7 is coupled to the first end of the capacitor CCA. The second end of the switch SW7 is used to output the gate high voltage VGH. The control end of the switch SW7 receives the gate voltage pump rise clock signal PCKH with different working cycles under different load states ST1 and ST2. The first end of the switch SW8 is coupled to the second end of the capacitor CCA. The second end of the switch SW8 receives the regulation voltage VRP. The control end of the switch SW8 receives the gate voltage pump rise clock signal PCKH with different working cycles under different load states ST1 and ST2. The first end of the switch SW9 is coupled to the first end of the capacitor CCA. The second end of the switch SW9 receives the regulation voltage VRN. The control end of the switch SW9 receives the gate voltage pump rising clock signal PCKL with different working cycles under different load states ST1 and ST2. The first end of the switch SW10 is coupled to the second end of the capacitor CC. The second end of the switch SW10 is used to output the gate low voltage VGL. The control end of the switch SW10 receives the gate voltage pump rising clock signal PCKL with different working cycles under different load states ST1 and ST2.

在本實施例中,在負載狀態ST1、ST2的充電階段,開關 SW5、SW6會被導通。開關SW7~SW10被斷開。因此,電容器CCA的第一端與電容器CCA的第二端之間會具有充電電壓差值。在負載狀態ST1、ST2的閘極高電壓VGH的泵升階段,開關SW5、SW6、SW9、SW10被斷開。開關SW7、SW8被導通。因此,閘極高電壓VGH的電壓值可基於調節電壓VRP被泵升。在負載狀態ST1、ST2的閘極低電壓VGL的泵升階段,開關SW5~SW8被斷開。開關SW9、SW10被導通。因此,閘極低電壓VGL的電壓值可基於調節電壓VRN被泵升。基於上述,電荷泵電路220-4可用於提供閘極低電壓VGL以及閘極高電壓VGH。 In this embodiment, in the charging stage of the load state ST1, ST2, switches SW5, SW6 are turned on. Switches SW7~SW10 are turned off. Therefore, there is a charging voltage difference between the first end of capacitor CCA and the second end of capacitor CCA. In the pump-up stage of the gate high voltage VGH in the load state ST1, ST2, switches SW5, SW6, SW9, SW10 are turned off. Switches SW7, SW8 are turned on. Therefore, the voltage value of the gate high voltage VGH can be pumped up based on the regulation voltage VRP. In the pump-up stage of the gate low voltage VGL in the load state ST1, ST2, switches SW5~SW8 are turned off. Switches SW9, SW10 are turned on. Therefore, the voltage value of the gate low voltage VGL can be pumped up based on the regulation voltage VRN. Based on the above, the charge pump circuit 220-4 can be used to provide the gate low voltage VGL and the gate high voltage VGH.

在本實施例中,電荷泵電路220-4還包括電壓調節電路222-1、222-2。電壓調節電路222-1耦接至開關SW8的第二端。電壓調節電路222-1提供調節電壓VRP。電壓調節電路222-2耦接至開關SW9的第二端。電壓調節電路222-2提供調節電壓VRN。 In this embodiment, the charge pump circuit 220-4 also includes voltage regulating circuits 222-1 and 222-2. The voltage regulating circuit 222-1 is coupled to the second end of the switch SW8. The voltage regulating circuit 222-1 provides a regulating voltage VRP. The voltage regulating circuit 222-2 is coupled to the second end of the switch SW9. The voltage regulating circuit 222-2 provides a regulating voltage VRN.

在本實施例中,電荷泵電路220-4還包括開關SW11。開關SW11的第一端耦接於電容器CCA的第二端。開關SW11的第二端接收重置電壓值VRST(如,0伏特)。當開關SW11被導通時,位於電容器CCA的第二端的電壓值會被重置。 In this embodiment, the charge pump circuit 220-4 further includes a switch SW11. The first end of the switch SW11 is coupled to the second end of the capacitor CCA. The second end of the switch SW11 receives a reset voltage value VRST (e.g., 0 volts). When the switch SW11 is turned on, the voltage value at the second end of the capacitor CCA is reset.

在一些實施例中,圖3所示的電荷泵電路220可以是由電荷泵電路220-2、220-3、220-4的結合來實現。 In some embodiments, the charge pump circuit 220 shown in FIG. 3 may be implemented by combining charge pump circuits 220-2, 220-3, and 220-4.

請同時參考圖6以及圖7,圖7是依據圖6所繪示的狀態圖。在本實施例中,電荷泵電路220-4會基於負載狀態ST1、ST2的輪替切換而運行。在負載狀態ST1下,電荷泵電路220-4例如 會依序進行多個階段STG1~STG4。階段STG1是充電階段。階段STG2是閘極高電壓VGH的泵升階段。階段STG3是充電階段。階段STG4是閘極低電壓VGL的泵升階段。在階段STG2中,電荷泵電路220-4基於閘極電壓泵升時脈訊號PCKH來運行。在階段STG4中,電荷泵電路220-4基於閘極電壓泵升時脈訊號PCKL來運行。階段STG2的閘極電壓泵升時脈訊號PCKH具有工作週期DTC1。階段STG4的閘極電壓泵升時脈訊號PCKL具有工作週期DTC1。舉例來說,工作週期DTC1是25%。 Please refer to FIG. 6 and FIG. 7 at the same time. FIG. 7 is a state diagram according to FIG. 6. In this embodiment, the charge pump circuit 220-4 operates based on the alternating switching of the load states ST1 and ST2. In the load state ST1, the charge pump circuit 220-4, for example, performs multiple stages STG1 to STG4 in sequence. Stage STG1 is a charging stage. Stage STG2 is a pump-up stage of the gate high voltage VGH. Stage STG3 is a charging stage. Stage STG4 is a pump-up stage of the gate low voltage VGL. In stage STG2, the charge pump circuit 220-4 operates based on the gate voltage pump-up clock signal PCKH. In stage STG4, the charge pump circuit 220-4 operates based on the gate voltage pump rising clock signal PCKL. The gate voltage pump rising clock signal PCKH of stage STG2 has a duty cycle DTC1. The gate voltage pump rising clock signal PCKL of stage STG4 has a duty cycle DTC1. For example, the duty cycle DTC1 is 25%.

在負載狀態ST2下,電荷泵電路220-4例如會依序進行多個階段STG5~STG8。階段STG5是充電階段。階段STG6是閘極高電壓VGH的泵升階段。階段STG7是充電階段STG7。階段STG8是閘極低電壓VGL的泵升階段。在階段STG6中,電荷泵電路220-4基於閘極電壓泵升時脈訊號PCKH來運行。在階段STG8中,電荷泵電路220-4基於閘極電壓泵升時脈訊號PCKL來運行。階段STG6的閘極電壓泵升時脈訊號PCKH具有工作週期DTC2。階段STG8的閘極電壓泵升時脈訊號PCKL具有工作週期DTC2。舉例來說,工作週期DTC1是12.5%。 Under the load state ST2, the charge pump circuit 220-4, for example, sequentially performs multiple stages STG5~STG8. Stage STG5 is a charging stage. Stage STG6 is a pump-up stage of the gate high voltage VGH. Stage STG7 is a charging stage STG7. Stage STG8 is a pump-up stage of the gate low voltage VGL. In stage STG6, the charge pump circuit 220-4 operates based on the gate voltage pump-up clock signal PCKH. In stage STG8, the charge pump circuit 220-4 operates based on the gate voltage pump-up clock signal PCKL. The gate voltage pump rising clock signal PCKH of stage STG6 has a duty cycle DTC2. The gate voltage pump rising clock signal PCKL of stage STG8 has a duty cycle DTC2. For example, the duty cycle DTC1 is 12.5%.

應注意的是,工作週期DTC2小於工作週期DTC1。因此,電荷泵電路220-4在負載狀態ST2下會具有較低的功率消耗。 It should be noted that the duty cycle DTC2 is smaller than the duty cycle DTC1. Therefore, the charge pump circuit 220-4 has lower power consumption under the load state ST2.

電荷泵電路220-4也可以基於負載狀態ST1、ST2’的輪替切換而運行。在負載狀態ST2’下,電荷泵電路220-4會依序進行多個階段STG5’~STG7’。階段STG5’是充電階段。階段STG6’是 閘極高電壓VGH的泵升階段。階段STG7’是閘極低電壓VGL的泵升階段。在階段STG6’中,電荷泵電路220-4基於閘極電壓泵升時脈訊號PCKH來運行。在階段STG7’中,電荷泵電路220-4基於閘極電壓泵升時脈訊號PCKL來運行。階段STG6’的閘極電壓泵升時脈訊號PCKH具有工作週期DTC2。階段STG7’的閘極電壓泵升時脈訊號PCKL具有工作週期DTC2。舉例來說,工作週期DTC1是12.5%。此外,階段STG5’的時間長度大致上等於階段STG1、STG3的時間長度的總和。 The charge pump circuit 220-4 can also operate based on the alternating switching of the load states ST1 and ST2'. In the load state ST2', the charge pump circuit 220-4 will sequentially perform multiple stages STG5'~STG7'. Stage STG5' is the charging stage. Stage STG6' is the pump-up stage of the gate high voltage VGH. Stage STG7' is the pump-up stage of the gate low voltage VGL. In stage STG6', the charge pump circuit 220-4 operates based on the gate voltage pump-up clock signal PCKH. In stage STG7', the charge pump circuit 220-4 operates based on the gate voltage pump boost clock signal PCKL. The gate voltage pump boost clock signal PCKH of stage STG6' has a duty cycle DTC2. The gate voltage pump boost clock signal PCKL of stage STG7' has a duty cycle DTC2. For example, the duty cycle DTC1 is 12.5%. In addition, the duration of stage STG5' is roughly equal to the sum of the durations of stages STG1 and STG3.

請同時參考圖1以及圖8,圖8是依據本發明一實施例所繪示的操作電路的示意圖。在本實施例中,操作電路210包括選擇電路211以及時脈訊號產生電路212。選擇電路211儲存對應於負載狀態ST1、ST2的不同狀態資料SV1、SV2。選擇電路211以輪替方式來將狀態資料SV1、SV2的其中之一作為選中狀態資料,並輸出選中狀態資料。時脈訊號產生電路212耦接於選擇電路211以及電荷泵電路120。時脈訊號產生電路212反應於選中狀態資料來提供對應於選中狀態資料的對應泵升時脈訊號。對應泵升時脈訊號的工作週期對應於選中狀態資料。舉例來說,當選中狀態資料是狀態資料SV1時,時脈訊號產生電路212會提供泵升時脈訊號PCK1。當選中狀態資料是狀態資料SV2時,時脈訊號產生電路212會提供泵升時脈訊號PCK2。泵升時脈訊號PCK1的工作週期不同於泵升時脈訊號PCK2的工作週期。 Please refer to FIG. 1 and FIG. 8 simultaneously. FIG. 8 is a schematic diagram of an operating circuit according to an embodiment of the present invention. In this embodiment, the operating circuit 210 includes a selection circuit 211 and a clock signal generating circuit 212. The selection circuit 211 stores different state data SV1 and SV2 corresponding to the load states ST1 and ST2. The selection circuit 211 uses one of the state data SV1 and SV2 as the selected state data in a rotating manner and outputs the selected state data. The clock signal generating circuit 212 is coupled to the selection circuit 211 and the charge pump circuit 120. The clock signal generating circuit 212 responds to the selected state data to provide a corresponding pump-up clock signal corresponding to the selected state data. The duty cycle of the corresponding pumped-up clock signal corresponds to the selected state data. For example, when the selected state data is state data SV1, the clock signal generating circuit 212 provides the pumped-up clock signal PCK1. When the selected state data is state data SV2, the clock signal generating circuit 212 provides the pumped-up clock signal PCK2. The duty cycle of the pumped-up clock signal PCK1 is different from the duty cycle of the pumped-up clock signal PCK2.

在本實施例中,狀態資料SV1包括關聯於泵升時脈訊號 PCK1的產生參數。關聯於泵升時脈訊號PCK1的產生參數例如是泵升時脈訊號PCK1的頻率、波形、維持時間長度以及工作週期的至少其中之一。狀態資料SV2包括關聯於泵升時脈訊號PCK2的產生參數。關聯於泵升時脈訊號PCK2的產生參數例如是泵升時脈訊號PCK2的頻率、波形、維持時間長度以及工作週期的至少其中之一。 In this embodiment, the state data SV1 includes generation parameters related to the pump-up clock signal PCK1. The generation parameters related to the pump-up clock signal PCK1 are, for example, at least one of the frequency, waveform, duration, and duty cycle of the pump-up clock signal PCK1. The state data SV2 includes generation parameters related to the pump-up clock signal PCK2. The generation parameters related to the pump-up clock signal PCK2 are, for example, at least one of the frequency, waveform, duration, and duty cycle of the pump-up clock signal PCK2.

舉例來說,狀態資料SV1對應於負載狀態ST1。狀態資料SV2對應於負載狀態ST2。負載狀態ST1、ST2在單一時間區間DT中被輪替切換。因此,選擇電路211例如會優先輸出狀態資料SV1。時脈訊號產生電路212則反應於狀態資料SV1提供泵升時脈訊號PCK1。接下來,選擇電路211輸出狀態資料SV2。時脈訊號產生電路212則反應於狀態資料SV2提供泵升時脈訊號PCK2。 For example, state data SV1 corresponds to load state ST1. State data SV2 corresponds to load state ST2. Load states ST1 and ST2 are switched alternately in a single time interval DT. Therefore, the selection circuit 211, for example, will output state data SV1 first. The clock signal generating circuit 212 responds to state data SV1 to provide a pumped clock signal PCK1. Next, the selection circuit 211 outputs state data SV2. The clock signal generating circuit 212 responds to state data SV2 to provide a pumped clock signal PCK2.

在一些實施例中,操作電路210可在電子裝置ED的暗屏觸控模式中輪替地提供泵升時脈訊號PCK1、PCK2。在一些實施例中,操作電路210可以在電子裝置ED的常時顯示模式中輪替地提供泵升時脈訊號PCK1、PCK2。 In some embodiments, the operating circuit 210 can alternately provide the pump-up clock signals PCK1 and PCK2 in the dark screen touch mode of the electronic device ED. In some embodiments, the operating circuit 210 can alternately provide the pump-up clock signals PCK1 and PCK2 in the constant display mode of the electronic device ED.

請參考圖9,圖9是依據本發明另一實施例所繪示的操作電路的示意圖。在本實施例中,操作電路310包括選擇電路311以及時脈訊號產生電路312。選擇電路311包括暫存器REG1、REG2以及多工器電路MUXC。暫存器REG1儲存狀態資料SV1。暫存器REG2儲存狀態資料SV2。多工器電路MUXC耦接於暫存器 REG1、REG2。多工器電路MUXC接收狀態資料SV1、SV2以及選擇訊號SS。多工器電路MUXC反應於選擇訊號SS以輪替方式來將狀態資料SV1、SV2的其中之一作為選中狀態資料。選擇電路311將選中狀態資料提供至時脈訊號產生電路312。因此,時脈訊號產生電路312反應於選中狀態資料來提供對應於選中狀態資料的對應泵升時脈訊號。 Please refer to FIG. 9, which is a schematic diagram of an operating circuit according to another embodiment of the present invention. In this embodiment, the operating circuit 310 includes a selection circuit 311 and a clock signal generating circuit 312. The selection circuit 311 includes registers REG1, REG2 and a multiplexer circuit MUXC. The register REG1 stores state data SV1. The register REG2 stores state data SV2. The multiplexer circuit MUXC is coupled to the registers REG1 and REG2. The multiplexer circuit MUXC receives the state data SV1, SV2 and the selection signal SS. The multiplexer circuit MUXC responds to the selection signal SS to use one of the state data SV1 and SV2 as the selected state data in a rotating manner. The selection circuit 311 provides the selected state data to the clock signal generating circuit 312. Therefore, the clock signal generating circuit 312 responds to the selected state data to provide a corresponding pumped clock signal corresponding to the selected state data.

在本實施例中,多工器電路MUXC包括多工器MUX。多工器MUX的第一輸入端耦接於暫存器REG1以接收狀態資料SV1。多工器MUX的第二輸入端耦接於暫存器REG2以接收狀態資料SV2。多工器MUX的選擇端接收選擇訊號SS。多工器MUX的輸出端耦接於時脈訊號產生電路312。多工器MUX的輸出端用以輸出選中狀態資料。 In this embodiment, the multiplexer circuit MUXC includes a multiplexer MUX. The first input end of the multiplexer MUX is coupled to the register REG1 to receive the state data SV1. The second input end of the multiplexer MUX is coupled to the register REG2 to receive the state data SV2. The selection end of the multiplexer MUX receives the selection signal SS. The output end of the multiplexer MUX is coupled to the clock signal generating circuit 312. The output end of the multiplexer MUX is used to output the selected state data.

請參考圖10,圖10是依據本發明再一實施例所繪示的操作電路的示意圖。在本實施例中,操作電路410包括選擇電路411以及時脈訊號產生電路412。選擇電路411包括暫存器REG1、REG2、REG3以及多工器電路MUXC。暫存器REG1儲存狀態資料SV1。暫存器REG2儲存狀態資料SV2。暫存器REG3儲存狀態資料SV3。多工器電路MUXC耦接於暫存器REG1、REG2、REG3。多工器電路MUXC接收狀態資料SV1、SV2、SV3以及選擇訊號SS1、SS2。多工器電路MUXC反應於選擇訊號SS1、SS2以輪替方式來將狀態資料SV1、SV2、SV3的其中之一作為選中狀態資料。選擇電路411將選中狀態資料提供至時脈訊號產生電路 412。因此,時脈訊號產生電路412反應於選中狀態資料來提供對應於選中狀態資料的對應泵升時脈訊號。舉例來說,當選中狀態資料是狀態資料SV1時,時脈訊號產生電路412會提供泵升時脈訊號PCK1。當選中狀態資料是狀態資料SV2時,時脈訊號產生電路412會提供泵升時脈訊號PCK2。當選中狀態資料是狀態資料SV3時,時脈訊號產生電路412會提供泵升時脈訊號PCK3。泵升時脈訊號PCK1、PCK2、PCK3的工作週期不完全相同。 Please refer to FIG. 10, which is a schematic diagram of an operating circuit according to another embodiment of the present invention. In this embodiment, the operating circuit 410 includes a selection circuit 411 and a clock signal generating circuit 412. The selection circuit 411 includes registers REG1, REG2, REG3 and a multiplexer circuit MUXC. Register REG1 stores state data SV1. Register REG2 stores state data SV2. Register REG3 stores state data SV3. The multiplexer circuit MUXC is coupled to registers REG1, REG2, REG3. The multiplexer circuit MUXC receives state data SV1, SV2, SV3 and selection signals SS1, SS2. The multiplexer circuit MUXC responds to the selection signals SS1 and SS2 to use one of the state data SV1, SV2, and SV3 as the selected state data in a rotating manner. The selection circuit 411 provides the selected state data to the clock signal generation circuit 412. Therefore, the clock signal generation circuit 412 responds to the selected state data to provide a corresponding pumped clock signal corresponding to the selected state data. For example, when the selected state data is the state data SV1, the clock signal generation circuit 412 provides the pumped clock signal PCK1. When the selected state data is the state data SV2, the clock signal generation circuit 412 provides the pumped clock signal PCK2. When the selected state data is state data SV3, the clock signal generating circuit 412 will provide the pumped clock signal PCK3. The working cycles of the pumped clock signals PCK1, PCK2, and PCK3 are not exactly the same.

在本實施例中,多工器電路MUXC包括多工器MUX1、MUX2。多工器MUX1的第一輸入端耦接於暫存器REG1以接收狀態資料SV1。多工器MUX1的第二輸入端耦接於暫存器REG2以接收狀態資料SV2。多工器MUX1的選擇端接收選擇訊號SS1。多工器MUX2的第一輸入端耦接於多工器MUX1的輸出端。多工器MUX2的第二輸入端耦接於暫存器REG3以接收狀態資料SV3。多工器MUX1的選擇端接收選擇訊號SS2。多工器MUX2的輸出端耦接於時脈訊號產生電路412。多工器MUX2的輸出端用以輸出選中狀態資料。 In this embodiment, the multiplexer circuit MUXC includes multiplexers MUX1 and MUX2. The first input end of the multiplexer MUX1 is coupled to the register REG1 to receive the state data SV1. The second input end of the multiplexer MUX1 is coupled to the register REG2 to receive the state data SV2. The selection end of the multiplexer MUX1 receives the selection signal SS1. The first input end of the multiplexer MUX2 is coupled to the output end of the multiplexer MUX1. The second input end of the multiplexer MUX2 is coupled to the register REG3 to receive the state data SV3. The selection end of the multiplexer MUX1 receives the selection signal SS2. The output end of the multiplexer MUX2 is coupled to the clock signal generating circuit 412. The output end of the multiplexer MUX2 is used to output the selected state data.

請同時參考圖1以及圖11。圖11是依據本發明一實施例所繪示的操作流程圖。在本實施例中,電子裝置ED在步驟S101中進入特定模式。特定模式可以是暗屏觸控模式以及常時顯示模式的其中之一。在步驟S102中,在特定模式中,操作電壓供應電路100會將確定多個負載狀態的輪替方式。進一步來說,基於特定模式,操作電壓供應電路100選擇出至少兩個負載狀態並排定 負載狀態的輪替方式。在步驟S103中,操作電壓供應電路100會判斷當前的負載狀態。以本實施例為例,操作電路110選擇出負載狀態ST1、ST2,並排定負載狀態ST1為優先的負載狀態(本發明並不以此為限)。因此,操作電路110會在步驟S104中提供具有第一工作週期的泵升時脈訊號PCK1。步驟S105中,操作電壓供應電路100基於負載狀態ST1來運行。進一步來說,電荷泵電路120會基於泵升時脈訊號PCK1的第一工作週期來提供操作電壓VSP。步驟S106中,操作電壓供應電路100會判斷負載狀態ST1是否結束。舉例來說,負載狀態ST1具有運行時間長度。當負載狀態ST1的運行時間長度還沒有到達預設時間長度時,操作電壓供應電路100會判斷出負載狀態ST1還沒有結束。因此,操作電路110會回到步驟S104的操作。在另一方面,當負載狀態ST1的運行時間長度到達預設時間長度時,操作電壓供應電路100會判斷出負載狀態ST1結束。因此,操作電路110會回到步驟S102的操作。 Please refer to FIG. 1 and FIG. 11 at the same time. FIG. 11 is an operation flow chart according to an embodiment of the present invention. In this embodiment, the electronic device ED enters a specific mode in step S101. The specific mode can be one of a dark screen touch mode and a constant display mode. In step S102, in the specific mode, the operating voltage supply circuit 100 will determine the rotation mode of multiple load states. Further, based on the specific mode, the operating voltage supply circuit 100 selects at least two load states and arranges the rotation mode of the load states. In step S103, the operating voltage supply circuit 100 will determine the current load state. Taking the present embodiment as an example, the operating circuit 110 selects the load states ST1 and ST2, and arranges the load state ST1 as the priority load state (the present invention is not limited to this). Therefore, the operating circuit 110 provides a pump-up clock signal PCK1 having a first working cycle in step S104. In step S105, the operating voltage supply circuit 100 operates based on the load state ST1. Further, the charge pump circuit 120 provides the operating voltage VSP based on the first working cycle of the pump-up clock signal PCK1. In step S106, the operating voltage supply circuit 100 determines whether the load state ST1 ends. For example, the load state ST1 has an operating time length. When the running time length of the load state ST1 has not reached the preset time length, the operating voltage supply circuit 100 will determine that the load state ST1 has not ended. Therefore, the operating circuit 110 will return to the operation of step S104. On the other hand, when the running time length of the load state ST1 reaches the preset time length, the operating voltage supply circuit 100 will determine that the load state ST1 has ended. Therefore, the operating circuit 110 will return to the operation of step S102.

當負載狀態ST1結束後,操作電路110會在步驟S103中判斷當前的負載狀態是負載狀態ST2。因此,操作電路110會在步驟S107中提供具有第二工作週期的泵升時脈訊號PCK2。步驟S108中,操作電壓供應電路100基於負載狀態ST2來運行。進一步來說,電荷泵電路120會基於泵升時脈訊號PCK2的第二工作週期來提供操作電壓VSP。步驟S109中,操作電壓供應電路100會判斷負載狀態ST2是否結束。舉例來說,負載狀態ST2具有運 行時間長度。當負載狀態ST2的運行時間長度還沒有到達預設時間長度時,操作電壓供應電路100會判斷出負載狀態ST2還沒有結束。因此,操作電路110會回到步驟S107的操作。在另一方面,當負載狀態ST2的運行時間長度到達預設時間長度時,操作電壓供應電路100會判斷出負載狀態ST2結束。因此,操作電路110會回到步驟S102的操作。當負載狀態ST2結束後,操作電路110會在步驟S103中判斷當前的負載狀態是負載狀態ST1。 When the load state ST1 ends, the operating circuit 110 determines in step S103 that the current load state is the load state ST2. Therefore, the operating circuit 110 provides a pump-up clock signal PCK2 having a second working cycle in step S107. In step S108, the operating voltage supply circuit 100 operates based on the load state ST2. Further, the charge pump circuit 120 provides the operating voltage VSP based on the second working cycle of the pump-up clock signal PCK2. In step S109, the operating voltage supply circuit 100 determines whether the load state ST2 ends. For example, the load state ST2 has an operating time length. When the running time length of the load state ST2 has not reached the preset time length, the operating voltage supply circuit 100 will determine that the load state ST2 has not ended. Therefore, the operating circuit 110 will return to the operation of step S107. On the other hand, when the running time length of the load state ST2 reaches the preset time length, the operating voltage supply circuit 100 will determine that the load state ST2 has ended. Therefore, the operating circuit 110 will return to the operation of step S102. When the load state ST2 ends, the operating circuit 110 will determine in step S103 that the current load state is the load state ST1.

請同時參考圖1以及圖12。圖12是依據本發明另一實施例所繪示的操作流程圖。在本實施例中,電子裝置ED在步驟S201中進入一特定模式。特定模式可以是暗屏觸控模式以及常時顯示模式的至少其中之一。在步驟S202中,在特定模式中,操作電壓供應電路100會將確定多個負載狀態的輪替方式。進一步來說,基於特定模式,操作電壓供應電路100選擇出多個負載狀態並排定負載狀態的輪替方式。在步驟S203中,操作電壓供應電路100會判斷當前的負載狀態。以本實施例為例,操作電路110選擇出負載狀態ST1、ST2、ST3,並排定負載狀態ST1為優先的負載狀態(本發明並不以此為限)。因此,操作電路110會在步驟S204中提供具有第一工作週期的泵升時脈訊號PCK1。步驟S205中,操作電壓供應電路100基於負載狀態ST1來運行。電荷泵電路120會基於泵升時脈訊號PCK1的第一工作週期來提供操作電壓VSP。步驟S206中,操作電壓供應電路100會判斷負載狀態ST1是否結束。當操作電壓供應電路100判斷出負載狀態ST1還沒有 結束時,操作電路110會回到步驟S204的操作。在另一方面,當操作電壓供應電路100判斷出負載狀態ST1結束時,操作電路110則會回到步驟S202的操作。步驟S206的判斷方式已經在步驟S106的實施內容中清楚說明,故不在此重述。 Please refer to Figure 1 and Figure 12 at the same time. Figure 12 is an operation flow chart drawn according to another embodiment of the present invention. In this embodiment, the electronic device ED enters a specific mode in step S201. The specific mode can be at least one of a dark screen touch mode and a constant display mode. In step S202, in the specific mode, the operating voltage supply circuit 100 will determine the rotation method of multiple load states. Further, based on the specific mode, the operating voltage supply circuit 100 selects multiple load states and arranges the rotation method of the load state. In step S203, the operating voltage supply circuit 100 will determine the current load state. Taking the present embodiment as an example, the operating circuit 110 selects the load states ST1, ST2, and ST3, and arranges the load state ST1 as the priority load state (the present invention is not limited to this). Therefore, the operating circuit 110 provides a pump-up clock signal PCK1 having a first working cycle in step S204. In step S205, the operating voltage supply circuit 100 operates based on the load state ST1. The charge pump circuit 120 provides the operating voltage VSP based on the first working cycle of the pump-up clock signal PCK1. In step S206, the operating voltage supply circuit 100 determines whether the load state ST1 ends. When the operating voltage supply circuit 100 determines that the load state ST1 has not ended, the operating circuit 110 returns to the operation of step S204. On the other hand, when the operating voltage supply circuit 100 determines that the load state ST1 has ended, the operating circuit 110 returns to the operation of step S202. The determination method of step S206 has been clearly explained in the implementation content of step S106, so it will not be repeated here.

當負載狀態ST1結束後,操作電路110會在步驟S203中判斷當前的負載狀態是負載狀態ST2。因此,操作電路110會在步驟S207中提供具有第二工作週期的泵升時脈訊號PCK2。步驟S208中,操作電壓供應電路100基於負載狀態ST2來運行。電荷泵電路120會基於泵升時脈訊號PCK2的第二工作週期來提供操作電壓VSP。步驟S209中,操作電壓供應電路100會判斷負載狀態ST2是否結束。當操作電壓供應電路100判斷出負載狀態ST2還沒有結束時,操作電路110會回到步驟S207的操作。在另一方面,當操作電壓供應電路100判斷出負載狀態ST2結束時,操作電路110會回到步驟S202的操作。 When the load state ST1 ends, the operating circuit 110 determines in step S203 that the current load state is the load state ST2. Therefore, the operating circuit 110 provides a pump-up clock signal PCK2 having a second working cycle in step S207. In step S208, the operating voltage supply circuit 100 operates based on the load state ST2. The charge pump circuit 120 provides the operating voltage VSP based on the second working cycle of the pump-up clock signal PCK2. In step S209, the operating voltage supply circuit 100 determines whether the load state ST2 ends. When the operating voltage supply circuit 100 determines that the load state ST2 has not ended, the operating circuit 110 returns to the operation of step S207. On the other hand, when the operating voltage supply circuit 100 determines that the load state ST2 has ended, the operating circuit 110 returns to the operation of step S202.

當負載狀態ST2結束後,操作電路110會在步驟S203中判斷當前的負載狀態是負載狀態ST3。因此,操作電路110會在步驟S210中提供具有第三工作週期的泵升時脈訊號PCK3。步驟S211中,操作電壓供應電路100基於負載狀態ST3來運行。電荷泵電路120會基於泵升時脈訊號PCK3的第三工作週期來提供操作電壓VSP。步驟S212中,操作電壓供應電路100會判斷負載狀態ST3是否結束。當操作電壓供應電路100判斷出負載狀態ST3還沒有結束時,操作電路110會回到步驟S210的操作。在另一方 面,當操作電壓供應電路100判斷出負載狀態ST3結束時,操作電路110會回到步驟S202的操作。 When the load state ST2 ends, the operating circuit 110 determines in step S203 that the current load state is the load state ST3. Therefore, the operating circuit 110 provides a pump-up clock signal PCK3 having a third working cycle in step S210. In step S211, the operating voltage supply circuit 100 operates based on the load state ST3. The charge pump circuit 120 provides the operating voltage VSP based on the third working cycle of the pump-up clock signal PCK3. In step S212, the operating voltage supply circuit 100 determines whether the load state ST3 ends. When the operating voltage supply circuit 100 determines that the load state ST3 has not ended, the operating circuit 110 returns to the operation of step S210. On the other hand, when the operating voltage supply circuit 100 determines that the load state ST3 has ended, the operating circuit 110 returns to the operation of step S202.

請同時參考圖1以及圖13,圖13是依據本發明另一實施例所繪示的負載狀態與泵升時脈訊號的工作週期的示意圖以及狀態圖。在本實施例中,特定模式可以是暗屏觸控模式以及常時顯示模式的結合模式。在本實施例中,常時顯示模式包括顯示掃描狀態以及顯示閒置狀態。暗屏觸控模式包括觸控閒置狀態以及觸控感測狀態。由於暗屏觸控模式的狀態週期(如,0.032秒)不同於常時顯示模式的狀態週期(如,0.064秒),因此結合模式會包括3種負載狀態ST1、ST2、ST3。在本實施例中,當顯示掃描狀態以及觸控閒置狀態發生時,操作電壓供應電路100以負載狀態ST1來運行。當顯示掃描狀態以及顯示閒置狀態發生時,操作電壓供應電路100以負載狀態ST2來運行。此外,當觸控閒置狀態以及顯示閒置狀態發生時,操作電壓供應電路100以負載狀態ST3來運行。 Please refer to Figure 1 and Figure 13 at the same time. Figure 13 is a schematic diagram and a state diagram of the load state and the working cycle of the pump-up clock signal drawn according to another embodiment of the present invention. In this embodiment, the specific mode can be a combination of a dark screen touch mode and a constant display mode. In this embodiment, the constant display mode includes a display scanning state and a display idle state. The dark screen touch mode includes a touch idle state and a touch sensing state. Since the state cycle of the dark screen touch mode (e.g., 0.032 seconds) is different from the state cycle of the constant display mode (e.g., 0.064 seconds), the combined mode will include three load states ST1, ST2, and ST3. In this embodiment, when the display scanning state and the touch idle state occur, the operating voltage supply circuit 100 operates in the load state ST1. When the display scanning state and the display idle state occur, the operating voltage supply circuit 100 operates in the load state ST2. In addition, when the touch idle state and the display idle state occur, the operating voltage supply circuit 100 operates in the load state ST3.

如圖13所示的狀態時序是依序以負載狀態ST1、負載狀態ST2、負載狀態ST3、負載狀態ST1、負載狀態ST3、負載狀態ST2...來進行。基於暗屏觸控模式以及常時顯示模式的狀態時序的改變,負載狀態ST1~ST3的順序也會對應地改變。本發明的負載狀態ST1~ST3的順序並不以本實施例為限。 As shown in FIG. 13, the state sequence is carried out in the order of load state ST1, load state ST2, load state ST3, load state ST1, load state ST3, load state ST2... Based on the change of the state sequence of the dark screen touch mode and the constant display mode, the order of load states ST1~ST3 will also change accordingly. The order of load states ST1~ST3 of the present invention is not limited to this embodiment.

在本實施例中,操作電路110在負載狀態ST1下提供泵升時脈訊號PCK1。泵升時脈訊號PCK1具有工作週期DTC1。操 作電路110在負載狀態ST2下提供泵升時脈訊號PCK2。泵升時脈訊號PCK2具有工作週期DTC2。操作電路110在負載狀態ST3下提供泵升時脈訊號PCK3。泵升時脈訊號PCK3具有工作週期DTC3。舉例來說,工作週期DTC1為25%。工作週期DTC2為50%。工作週期DTC3為12.5%。因此,電荷泵電路120在負載狀態ST1、ST3的功率消耗可以間歇性的下降。另舉例來說,工作週期DTC1為50%。工作週期DTC2為50%。工作週期DTC3為12.5%。因此,電荷泵電路120在負載狀態ST3的功率消耗可以間歇性的下降。在本實施例中,工作週期DTC1、DTC2、DTC3不完全相同。工作週期DTC1、DTC2、DTC3可彼此不同。工作週期DTC1、DTC2、DTC3當中的任意二者可以是相同的。 In this embodiment, the operating circuit 110 provides a pump-up clock signal PCK1 in the load state ST1. The pump-up clock signal PCK1 has a duty cycle DTC1. The operating circuit 110 provides a pump-up clock signal PCK2 in the load state ST2. The pump-up clock signal PCK2 has a duty cycle DTC2. The operating circuit 110 provides a pump-up clock signal PCK3 in the load state ST3. The pump-up clock signal PCK3 has a duty cycle DTC3. For example, the duty cycle DTC1 is 25%. The duty cycle DTC2 is 50%. The duty cycle DTC3 is 12.5%. Therefore, the power consumption of the charge pump circuit 120 in the load states ST1 and ST3 can be intermittently reduced. For another example, the duty cycle DTC1 is 50%. The duty cycle DTC2 is 50%. The duty cycle DTC3 is 12.5%. Therefore, the power consumption of the charge pump circuit 120 in the load state ST3 can be intermittently reduced. In this embodiment, the duty cycles DTC1, DTC2, and DTC3 are not exactly the same. The duty cycles DTC1, DTC2, and DTC3 can be different from each other. Any two of the duty cycles DTC1, DTC2, and DTC3 can be the same.

本實施例可適用於圖12所示操作流程圖。 This embodiment can be applied to the operation flow chart shown in Figure 12.

綜上所述,操作電壓供應電路的操作電路在不同的多個負載狀態下所提供的泵升時脈訊號的工作週期並不完全相同。所述多個負載狀態在單一時間區間中被輪替切換。所述多個負載狀態的多個功率消耗彼此不同。如此一來,單一時間區間中,操作電壓供應電路的功率消耗可以間歇性的下降。 In summary, the operating cycle of the pump-up clock signal provided by the operating circuit of the operating voltage supply circuit under different multiple load states is not exactly the same. The multiple load states are switched alternately in a single time interval. The multiple power consumptions of the multiple load states are different from each other. In this way, the power consumption of the operating voltage supply circuit can be intermittently reduced in a single time interval.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。 Although the present invention has been disclosed as above by the embodiments, it is not intended to limit the present invention. Anyone with ordinary knowledge in the relevant technical field can make some changes and modifications without departing from the spirit and scope of the present invention. Therefore, the protection scope of the present invention shall be subject to the scope defined by the attached patent application.

100:操作電壓供應電路 100: Operating voltage supply circuit

110:操作電路 110: Operation circuit

120:電荷泵電路 120: Charge pump circuit

DT:時間區間 DT: Time Zone

ED:電子裝置 ED: Electronic devices

PCK1、PCK2:泵升時脈訊號 PCK1, PCK2: pump up pulse signal

ST1、ST2:負載狀態 ST1, ST2: Load status

VSP:操作電壓 VSP: operating voltage

Claims (12)

一種操作電壓供應電路,包括:操作電路,經配置在不同的多個負載狀態下提供多個泵升時脈訊號;以及電荷泵電路,耦接於所述操作電路,經配置以接收所述多個泵升時脈訊號,並基於所接收到的泵升時脈訊號的工作週期來提供操作電壓,其中所述多個負載狀態在不同負載狀態的時間區間中被輪替切換,其中在特定模式中所述多個負載狀態下所提供的所述多個泵升時脈訊號的多個工作週期不完全相同,其中所述多個負載狀態包括第一負載狀態以及第二負載狀態,並且所述操作電路在所述第一負載狀態下提供具有第一工作週期的第一泵升時脈訊號,並在所述第二負載狀態下提供具有第二工作週期的第二泵升時脈訊號,其中所述第一負載狀態的功率消耗大於所述第二負載狀態的功率消耗,並且所述第一工作週期大於所述第二工作週期。 An operating voltage supply circuit includes: an operating circuit configured to provide a plurality of pump-up clock signals under different multiple load states; and a charge pump circuit coupled to the operating circuit, configured to receive the multiple pump-up clock signals and provide an operating voltage based on a duty cycle of the received pump-up clock signals, wherein the multiple load states are switched alternately in time intervals of different load states, wherein the multiple pump-up clock signals provided under the multiple load states in a specific mode are switched alternately in time intervals of different load states. The multiple duty cycles of the signal are not completely the same, wherein the multiple load states include a first load state and a second load state, and the operating circuit provides a first pump-up clock signal with a first duty cycle in the first load state, and provides a second pump-up clock signal with a second duty cycle in the second load state, wherein the power consumption of the first load state is greater than the power consumption of the second load state, and the first duty cycle is greater than the second duty cycle. 如請求項1所述的操作電壓供應電路,其中:所述多個負載狀態還包括第三負載狀態,並且所述操作電路在所述第三負載狀態下提供具有第三工作週期的第三泵升時脈訊號。 An operating voltage supply circuit as described in claim 1, wherein: the multiple load states also include a third load state, and the operating circuit provides a third pump-up clock signal with a third working cycle under the third load state. 如請求項1所述的操作電壓供應電路,其中所述第一工作週期大致上等於50%。 An operating voltage supply circuit as described in claim 1, wherein the first operating cycle is substantially equal to 50%. 如請求項1所述的操作電壓供應電路,其中所述第一負載狀態的時間長度短於所述第二負載狀態的時間長度。 An operating voltage supply circuit as described in claim 1, wherein the duration of the first load state is shorter than the duration of the second load state. 如請求項1所述的操作電壓供應電路,其中所述操作電路在所述第一負載狀態下提供第一充電時脈訊號,並在所述第二負載狀態下提供第二充電時脈訊號。 An operating voltage supply circuit as described in claim 1, wherein the operating circuit provides a first charging clock signal under the first load state and provides a second charging clock signal under the second load state. 如請求項5所述的操作電壓供應電路,其中所述電荷泵電路包括:電容器;第一開關,所述第一開關的第一端接收充電電壓,所述第一開關的第二端耦接於所述電容器的第一端,所述第一開關的控制端在所述第一負載狀態下接收所述第一充電時脈訊號並在所述第二負載狀態下接收所述第二充電時脈訊號;第二開關,所述第二開關的第一端接收參考低電壓,所述第二開關的第二端耦接於所述電容器的第二端,所述第二開關的控制端在所述第一負載狀態下接收所述第一充電時脈訊號並在所述第二負載狀態下接收所述第二充電時脈訊號;第三開關,所述第三開關的第一端耦接於所述電容器的第一端,所述第三開關的第二端用以輸出所述操作電壓,所述第三開關的控制端在所述第一負載狀態下接收所述第一泵升時脈訊號並在所述第二負載狀態下接收所述第二泵升時脈訊號;以及 第四開關,所述第四開關的第一端耦接於所述電容器的第二端,所述第四開關的第二端接收第一調節電壓,所述第四開關的控制端在所述第一負載狀態下接收所述第一泵升時脈訊號並在所述第二負載狀態下接收所述第二泵升時脈訊號。 An operating voltage supply circuit as described in claim 5, wherein the charge pump circuit comprises: a capacitor; a first switch, wherein a first end of the first switch receives a charging voltage, a second end of the first switch is coupled to the first end of the capacitor, a control end of the first switch receives the first charging clock signal under the first load state and receives the second charging clock signal under the second load state; a second switch, wherein a first end of the second switch receives a reference low voltage, a second end of the second switch is coupled to the second end of the capacitor, a control end of the second switch receives the first charging clock signal under the first load state and receives the second charging clock signal under the second load state. a third switch, wherein the first end of the third switch is coupled to the first end of the capacitor, the second end of the third switch is used to output the operating voltage, the control end of the third switch receives the first pump-up clock signal under the first load state and receives the second pump-up clock signal under the second load state; and a fourth switch, wherein the first end of the fourth switch is coupled to the second end of the capacitor, the second end of the fourth switch receives the first regulating voltage, the control end of the fourth switch receives the first pump-up clock signal under the first load state and receives the second pump-up clock signal under the second load state. 如請求項6所述的操作電壓供應電路,其中所述電荷泵電路還包括:電壓調節電路,耦接於所述第四開關的第二端,經配置以依據參考電壓來提供所述第一調節電壓。 An operating voltage supply circuit as described in claim 6, wherein the charge pump circuit further comprises: a voltage regulating circuit coupled to the second end of the fourth switch, configured to provide the first regulating voltage based on a reference voltage. 如請求項5所述的操作電壓供應電路,其中所述操作電路包括:電容器;第一開關,所述第一開關的第一端接收充電電壓,所述第一開關的第二端耦接於所述電容器的第一端,所述第一開關的控制端在所述第一負載狀態下接收所述第一充電時脈訊號並在所述第二負載狀態下接收所述第二充電時脈訊號;第二開關,所述第二開關的第一端接收參考低電壓,所述第二開關的第二端耦接於所述電容器的第二端,所述第二開關的控制端在所述第一負載狀態下接收所述第一充電時脈訊號並在所述第二負載狀態下接收所述第二充電時脈訊號;第三開關,所述第三開關的第一端耦接於所述電容器的第一端,所述第三開關的第二端接收第一調節電壓,所述第三開關的控制端在所述第一負載狀態下接收所述第一泵升時脈訊號並在所 述第二負載狀態下接收所述第二泵升時脈訊號;以及第四開關,所述第四開關的第一端耦接於所述電容器的第二端,所述第四開關的第二端用以輸出所述操作電壓,所述第四開關的控制端在所述第一負載狀態下接收所述第一泵升時脈訊號並在所述第二負載狀態下接收所述第二泵升時脈訊號。 An operating voltage supply circuit as described in claim 5, wherein the operating circuit comprises: a capacitor; a first switch, wherein a first end of the first switch receives a charging voltage, a second end of the first switch is coupled to the first end of the capacitor, a control end of the first switch receives the first charging clock signal in the first load state and receives the second charging clock signal in the second load state; a second switch, wherein a first end of the second switch receives a reference low voltage, a second end of the second switch is coupled to the second end of the capacitor, a control end of the second switch receives the first charging clock signal in the first load state and receives the second charging clock signal in the second load state receiving the second charging clock signal; a third switch, wherein the first end of the third switch is coupled to the first end of the capacitor, the second end of the third switch receives the first regulating voltage, the control end of the third switch receives the first pump-up clock signal under the first load state and receives the second pump-up clock signal under the second load state; and a fourth switch, wherein the first end of the fourth switch is coupled to the second end of the capacitor, the second end of the fourth switch is used to output the operating voltage, the control end of the fourth switch receives the first pump-up clock signal under the first load state and receives the second pump-up clock signal under the second load state. 如請求項1所述的操作電壓供應電路,其中所述操作電路包括:選擇電路,經配置以儲存對應於所述多個負載狀態的不同的多個狀態資料,以輪替方式來將所述多個狀態資料的其中之一作為選中狀態資料,並輸出所述選中狀態資料;以及時脈訊號產生電路,耦接於所述選擇電路以及所述電荷泵電路,經配置以反應於所述選中狀態資料來提供對應於所述選中狀態資料的對應泵升時脈訊號,其中所述對應泵升時脈訊號的工作週期對應於所述選中狀態資料。 An operating voltage supply circuit as described in claim 1, wherein the operating circuit comprises: a selection circuit configured to store a plurality of different state data corresponding to the plurality of load states, to use one of the plurality of state data as selected state data in a rotating manner, and to output the selected state data; and a clock signal generating circuit coupled to the selection circuit and the charge pump circuit, configured to respond to the selected state data to provide a corresponding pump-up clock signal corresponding to the selected state data, wherein the duty cycle of the corresponding pump-up clock signal corresponds to the selected state data. 如請求項9所述的操作電壓供應電路,其中所述選擇電路包括:多個暫存器,分別經配置以儲存所述多個狀態資料的其中之一;以及多工器電路,耦接於所述多個暫存器以及所述時脈訊號產生電路,經配置以接收所述多個狀態資料以及選擇訊號,反應於所述選擇訊號以輪替方式來將所述多個狀態資料的其中之一作為選 中狀態資料。 An operating voltage supply circuit as described in claim 9, wherein the selection circuit comprises: a plurality of registers, each configured to store one of the plurality of state data; and a multiplexer circuit, coupled to the plurality of registers and the clock signal generating circuit, configured to receive the plurality of state data and a selection signal, and in response to the selection signal, to select one of the plurality of state data as the selected state data in an alternating manner. 如請求項1所述的操作電壓供應電路,其中所述特定模式是一待機模式。 An operating voltage supply circuit as described in claim 1, wherein the specific mode is a standby mode. 如請求項11所述的操作電壓供應電路,其中所述待機模式包括暗屏觸控模式以及常時顯示模式的至少其中之一。 An operating voltage supply circuit as described in claim 11, wherein the standby mode includes at least one of a dark screen touch mode and a permanent display mode.
TW111131109A 2022-08-18 Operating voltage supply circuit TWI842063B (en)

Publications (2)

Publication Number Publication Date
TW202409998A TW202409998A (en) 2024-03-01
TWI842063B true TWI842063B (en) 2024-05-11

Family

ID=

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111697822A (en) 2019-03-14 2020-09-22 意法设计与应用股份有限公司 Charge pump with load driven clock frequency management

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111697822A (en) 2019-03-14 2020-09-22 意法设计与应用股份有限公司 Charge pump with load driven clock frequency management

Similar Documents

Publication Publication Date Title
JP4632113B2 (en) Driving voltage generating circuit and method for liquid crystal display device
US6271816B1 (en) Power saving circuit and method for driving an active matrix display
JP2822911B2 (en) Drive circuit
US6323851B1 (en) Circuit and method for driving display device
KR20070043863A (en) Apparatus comprising a charge pump and lcd driver comprising such an apparatus
JP2003219633A (en) Booster circuit
JP2007244078A (en) Switching power supply, drive circuit therefor, and electronic equipment using them
JP2009261236A (en) Autonomous control of two or more supply-voltage generators for display drivers
WO2006043479A1 (en) Switching power supply and electronic apparatus employing the same
JP2000166220A (en) Power unit, and display and electronic apparatus using the unit
KR20060113534A (en) Electronic device including charge pump circuit
JP2002032131A (en) Power control device, display device, portable equipment, and method for controlling power supply
US7230471B2 (en) Charge pump circuit of LCD driver including driver having variable current driving capability
TWI842063B (en) Operating voltage supply circuit
JP2005039936A (en) Power unit
KR20040073338A (en) Power supply unit for driving display apparatus and display apparatus
JP2002175035A (en) Timing generating circuit for display device, active matrix type display device, and portable terminal
TW202409998A (en) Operating voltage supply circuit
JP2003088103A (en) Charge pump system power circuit
US6229530B1 (en) Liquid crystal driving circuit
JP2000330085A (en) Charge pump circuit, semiconductor device, liquid crystal display device, and electronic equipment including them
JP4298206B2 (en) Voltage generation circuit, display device driving circuit, voltage multiplier, display device, electronic device provided in the display device, and method for starting voltage generation circuit
JP3384484B2 (en) Power supply circuit, display device including power supply circuit, and electronic apparatus including display device
JP3180898B2 (en) Boost circuit
CN108877625B (en) Gate drive circuit, drive method thereof and display device