TWI838763B - 遮蔽閘金氧半場效電晶體 - Google Patents

遮蔽閘金氧半場效電晶體 Download PDF

Info

Publication number
TWI838763B
TWI838763B TW111121230A TW111121230A TWI838763B TW I838763 B TWI838763 B TW I838763B TW 111121230 A TW111121230 A TW 111121230A TW 111121230 A TW111121230 A TW 111121230A TW I838763 B TWI838763 B TW I838763B
Authority
TW
Taiwan
Prior art keywords
layer
epitaxial layer
gate
epitaxial
resistance
Prior art date
Application number
TW111121230A
Other languages
English (en)
Other versions
TW202349708A (zh
Inventor
蕭純穎
何昌瑾
蔣永康
Original Assignee
力晶積成電子製造股份有限公司
Filing date
Publication date
Application filed by 力晶積成電子製造股份有限公司 filed Critical 力晶積成電子製造股份有限公司
Priority to TW111121230A priority Critical patent/TWI838763B/zh
Publication of TW202349708A publication Critical patent/TW202349708A/zh
Application granted granted Critical
Publication of TWI838763B publication Critical patent/TWI838763B/zh

Links

Images

Abstract

一種遮蔽閘金氧半場效電晶體,包括基板、多層磊晶結構、遮蔽閘極、控制閘極、遮蔽閘極與多層磊晶結構之間的絕緣層、控制閘極與多層磊晶結構之間的閘極氧化層以及遮蔽閘極與控制閘極之間的閘間氧化層。遮蔽閘極與控制閘極形成在多層磊晶結構的溝渠內。在所述多層磊晶結構中,第一磊晶層配置在多層磊晶結構的表面,第三磊晶層配置於溝渠底部至所述基板之間,且第二磊晶層配置於第一與第三磊晶層之間。第一磊晶層的阻值小於第三磊晶層的阻值,且第二磊晶層的阻值小於第一磊晶層的阻值。

Description

遮蔽閘金氧半場效電晶體
本發明是有關於一種功率半導體裝置,且特別是有關於一種遮蔽閘金氧半場效電晶體。
遮蔽閘金氧半場效電晶體是一種溝渠式閘極金氧半導體結構的改良型結構。相較於傳統的金氧半導體結構,遮蔽閘金氧半場效電晶體可有效降低閘極至汲極的電容(Cgd),進而改善切換損耗。
隨著半導體產品的日新月益,對於遮蔽閘金氧半場效電晶體的應用電壓已大幅增進至150V以上。然而,為了符合高電壓需求,遮蔽閘金氧半場效電晶體需要使用較厚的磊晶層,反而導致導通電阻(Rdson)變大,而增加切換損耗。
本發明提供一種遮蔽閘金氧半場效電晶體,能同時降低導通電阻並改善崩潰電壓(BVDSS)。
本發明的遮蔽閘金氧半場效電晶體,包括基板、多層磊 晶結構、遮蔽閘極、控制閘極、絕緣層、閘極氧化層以及閘間氧化層。多層磊晶結構形成於所述基板的表面上,且所述多層磊晶結構具有數個溝渠。遮蔽閘極配置於所述溝渠內,控制閘極則配置於遮蔽閘極上的溝渠內。所述絕緣層配置於遮蔽閘極與多層磊晶結構之間,所述閘極氧化層配置於控制閘極與多層磊晶結構之間,所述閘間氧化層則是配置於遮蔽閘極與控制閘極之間。所述多層磊晶結構包括連續的第一磊晶層、第二磊晶層以及第三磊晶層,其中所述第一磊晶層配置在多層磊晶結構的表面,所述第三磊晶層配置於溝渠底部至基板之間,所述第二磊晶層配置於第一磊晶層與第三磊晶層之間,且第一磊晶層的阻值小於第三磊晶層的阻值,第二磊晶層的阻值小於第一磊晶層的阻值。
在本發明的一實施例中,上述第二磊晶層的阻值與上述第一磊晶層的阻值的差異越大,上述遮蔽閘金氧半場效電晶體的崩潰電壓越大。
在本發明的一實施例中,上述第三磊晶層的阻值越小,上述遮蔽閘金氧半場效電晶體的導通電阻越小。
在本發明的一實施例中,上述第三磊晶層的厚度越小,上述遮蔽閘金氧半場效電晶體的導通電阻越小。
在本發明的一實施例中,上述第一磊晶層圍繞控制閘極的周圍。
在本發明的一實施例中,上述第二磊晶層圍繞遮蔽閘極的周圍。
在本發明的一實施例中,上述第一磊晶層與上述第二磊晶層之間的界面在閘間氧化層到每個溝渠的深度一半的範圍內。
在本發明的一實施例中,上述第一磊晶層的厚度與上述第二磊晶層的厚度之比在1:4~1:1之間。
在本發明的一實施例中,上述遮蔽閘金氧半場效電晶體還可包括源極區,形成於第一磊晶層內,其中源極區與第一磊晶層具有相同的導電類型。
在本發明的一實施例中,上述遮蔽閘金氧半場效電晶體還可包括汲極層,設置於基板的背面,所述背面相對於基板的所述表面。
基於上述,根據本發明的遮蔽閘金氧半場效電晶體,利用三層阻值不同的磊晶層來同時改善崩潰電壓(BVDSS)與降低導通電阻(Rdson),其中利用低阻值的第二磊晶層增強電場,以提升BVDSS,並且搭配厚度較薄以及/或是阻值比傳統磊晶層低的第三磊晶層來降低Rdson。
為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。
100:基板
100a、102a:表面
100b:背面
102:多層磊晶結構
104:溝渠
106:絕緣層
108:閘極氧化層
110:閘間氧化層
112:源極區
114:汲極層
116:介電層
118:接觸窗
CG:控制閘極
EPI1:第一磊晶層
EPI2:第二磊晶層
EPI3:第三磊晶層
SG:遮蔽閘極
t1、t2:厚度
圖1是依照本發明的一實施例的一種遮蔽閘金氧半場效電晶體的剖面示意圖。
圖2是依照本發明的另一實施例的一種遮蔽閘金氧半場效電晶體的剖面示意圖。
下文列舉實施例並配合所附圖式來進行詳細地說明,但所提供的實施例並非用以限制本發明所涵蓋的範圍。為了方便理解,在下述說明中相同的構件將以相同的符號標示來說明。此外,圖式僅以說明為目的,並未依照原尺寸作圖。事實上,為論述清晰起見,可任意增大或減小各種特徵的尺寸。
關於文中所使用「包含」、「包括」、「具有」等等用語,均為開放性的用語,也就是指「包括但不限於」。
圖1是依照本發明的一實施例的一種遮蔽閘金氧半場效電晶體的剖面示意圖。
請參照圖1,本實施例的遮蔽閘金氧半場效電晶體包括基板100、多層磊晶結構102、遮蔽閘極SG、控制閘極CG、絕緣層106、閘極氧化層108以及閘間氧化層110。基板100與多層磊晶結構102可為矽或其他半導體材料。多層磊晶結構102形成於基板100表面100a上,且所述多層磊晶結構102具有數個溝渠104,每個溝渠104是從多層磊晶結構102的表面102a往基板100延伸,且從上視圖來看,溝渠104之間彼此平行,但本發明並不於此;在另一實施例中,溝渠104之間不是平行的。至於遮蔽閘極SG是配置於溝渠104內,控制閘極CG則配置於遮蔽閘極SG上 的溝渠104內。遮蔽閘極SG與控制閘極CG的材料例如但不限於多晶矽。所述絕緣層106配置於遮蔽閘極SG與多層磊晶結構102之間,且絕緣層106的厚度足以降低閘極-汲極重疊電容,從而降低閘極電荷。所述閘極氧化層108配置於控制閘極CG與多層磊晶結構102之間,所述閘間氧化層110則是配置於遮蔽閘極SG與控制閘極CG之間,其中閘間氧化層110的位置亦於絕緣層106與閘極氧化層108之間,但本發明並不限於此;在另一實施例中,由於製造順序的關係,閘間氧化層110可形成在遮蔽閘極SG與控制閘極CG之間,而絕緣層106與閘極氧化層108會直接接觸。
請繼續參照圖1,多層磊晶結構102包含連續的第一磊晶層EPI1、第二磊晶層EPI2與第三磊晶層EPI3,其中第一磊晶層EPI1配置在多層磊晶結構102的表面102a,所述第三磊晶層EPI3配置於溝渠104底部至基板100之間,所述第二磊晶層EPI2則配置於第一磊晶層EPI1與第三磊晶層EPI3之間,且第一磊晶層EPI1的阻值小於第三磊晶層EPI3的阻值,第二磊晶層EPI2的阻值小於第一磊晶層EPI1的阻值。也就是說,多層磊晶結構102中具有三個磊晶層,且這三個磊晶層的阻值從多層磊晶結構102的表面102a往基板100的變化是中阻值、低阻值到高阻值。
相較於傳統整個高阻值的磊晶層,本實施例的三個阻值不同的磊晶層的設計,能利用低阻值的第二磊晶層EPI2增強該處的電場,以改善崩潰電壓(BVDSS),並且搭配厚度較薄以及/或是阻值相對於傳統高阻值略低的第三磊晶層EPI3,來降低導通電 阻(Rdson)。因此,第二磊晶層EPI2的阻值與第一磊晶層EPI1的阻值的差異越大,遮蔽閘金氧半場效電晶體的崩潰電壓會越大。一方面,第三磊晶層EPI3的阻值越小,遮蔽閘金氧半場效電晶體的導通電阻越小;另一方面,第三磊晶層EPI3的厚度越小,遮蔽閘金氧半場效電晶體的導通電阻也越小。
在圖1中,第一磊晶層EPI1圍繞控制閘極CG的周圍,第二磊晶層EPI2圍繞遮蔽閘極SG的周圍,因此第一磊晶層EPI1與第二磊晶層EPI2的界面接近閘間氧化層110的位置。然而,本發明並不限於此;在另一實施例的圖2中,第一磊晶層EPI1與第二磊晶層EPI2的界面接近溝渠104的深度的一半。也就是說,第一磊晶層EPI1與第二磊晶層EPI2的界面可在閘間氧化層110到每個溝渠104的深度一半的範圍內。若是以磊晶層厚度的角度來看,第一磊晶層EPI1的厚度t1與第二磊晶層EPI2的厚度t2之比可在1:4~1:1之間。
前述結構特徵主要是因為在單一高阻值磊晶層的遮蔽閘金氧半場效電晶體的模擬實驗中,發明人等發現在遮蔽閘極SG的周圍的磊晶層有電場低的問題,導致BVDSS降低而需要使用更厚的磊晶層,但是如此一來會使Rdson變大,因此本發明通過多層磊晶層的方式,將遮蔽閘極SG的周圍的第二磊晶層EPI2阻值降低,使該處電場增強,再利用減少第三磊晶層EPI3的厚度以及/或是稍微降低第三磊晶層EPI3的阻值的方式來降低Rdson。由於第三磊晶層EPI3佔整體多層磊晶結構102有40%以上,所以一旦 縮減第三磊晶層EPI3的厚度或者降低第三磊晶層EPI3的阻值,都能明顯降低Rdson。
舉例來說,以高壓150V的遮蔽閘金氧半場效電晶體進行模擬,其中除了磊晶層外的各個構件都相同的情況下,模擬結果顯示在下表1。
Figure 111121230-A0305-02-0010-2
從表1可得到,採用三層磊晶層且第二磊晶層EPI2的阻值設定為最低的情況下,能提升遮蔽閘金氧半場效電晶體的BVDSS。
另外,經模擬發現,若是將第二磊晶層EPI2的厚度設為0.2μm並以阻值為變數(其餘條件均與模擬實驗相同),則第二磊晶層EPI2的阻值在0.20ohm~0.25ohm之間的BVDSS都有190V以上。因此,根據本發明的概念,可依據不同的高壓應用來調整 第二磊晶層的阻值以及/或是厚度,以改善遮蔽閘金氧半場效電晶體的BVDSS。
然後,同樣以高壓150V的遮蔽閘金氧半場效電晶體進行模擬,其中模擬實驗4採用模擬實驗2的條件並將第三磊晶層EPI3的阻值降至0.90ohm,模擬結果顯示在下表2。
Figure 111121230-A0305-02-0011-3
從表1可得到,模擬實驗4的片電阻(Rsp)相較於比較利大約降低24%左右,所以本發明的第三磊晶層EPI3的厚度變小能進一步降低導通電阻Rdson,且不影響BVDSS。
在圖1~2中,遮蔽閘金氧半場效電晶體還可包括源極區112,形成於第一磊晶層EPI1內,其中源極區112與第一磊晶層EPI1具有相同的導電類型。舉例來說,源極區112與第一磊晶層EPI1同樣為N型,且源極區112的摻雜濃度大於第一磊晶層EPI1的摻雜濃度。在另一實施例中,源極區112與第一磊晶層EPI1為 P型。第一磊晶層EPI1、第二磊晶層EPI2與第三磊晶層EPI3通常是相同的導電類型。此外,遮蔽閘金氧半場效電晶體還可包括汲極層114,設置於基板100的背面100b,其中所述背面100b相對於基板100的表面100a。而為了電路的連結,在多層磊晶結構102上方還有介電層116與形成於其中並穿過源極區112連至第一磊晶層EPI1的接觸窗118,且為了改善電性連接,在接觸窗118底部還可設置一個與第一磊晶層EPI1不同導電類型的重摻雜區(未繪示)。
至於圖1和圖2的遮蔽閘金氧半場效電晶體可利用以下步驟製作,但本發明並不限於此,本發明的遮蔽閘金氧半場效電晶體也可採用其他方式製作。
步驟1. 在基板100的表面100a依序磊晶成長第一磊晶層EPI1、第二磊晶層EPI2與第三磊晶層EPI3,得到多層磊晶結構102。
步驟2. 利用微影蝕刻製程,從多層磊晶結構102的表面102a往基板100方向進行蝕刻,以形成多個溝渠104。雖然圖1~2中的溝渠104是位在第三磊晶層EPI3上方,但本發明並不限於此;在另一實施例中,溝渠104可形成在部分第三磊晶層EPI3內,使溝渠104底部略低於第三磊晶層EPI3與第二磊晶層EPI2之間的界面。
步驟3. 在溝渠104內面形成絕緣層106,例如使用熱氧化法或化學氣相沉積(CVD)形成氧化矽層作為絕緣層106。
步驟4. 在溝渠104內形成遮蔽閘極SG,例如先沉積多晶矽填滿溝渠104,再利用化學機械平坦化與回蝕刻等方法,去除多餘的多晶矽,並保留溝渠104內的遮蔽閘極SG,然後可以利用遮蔽閘極SG作為罩幕,蝕刻去除遮蔽閘極SG以上的絕緣層106。
步驟5. 在遮蔽閘極SG上形成閘間氧化層110,例如使用CVD形成氧化矽層作為閘間氧化層110。
步驟6. 在閘間氧化層110上方的溝渠104內面形成閘極氧化層108,例如使用熱氧化法或化學氣相沉積(CVD)形成氧化矽層作為閘極氧化層108。
步驟7. 在遮蔽閘極SG上的溝渠104內形成控制閘極CG。
步驟8. 在第一磊晶層EPI1表面摻雜形成源極區112,再形成接觸窗118。
步驟9. 在基板100的背面100b形成汲極層114,其中汲極層114例如金屬層。
綜上所述,本發明將原本一整層的磊晶曾改為三層阻值不同的磊晶層,因此能在降低遮蔽閘金氧半場效電晶體的導通電阻的同時,維持高崩潰電壓,甚至提高BVDSS。
雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。
100: 基板 100a、102a: 表面 100b: 背面 102: 多層磊晶結構 104: 溝渠 106: 絕緣層 108: 閘極氧化層 110: 閘間氧化層 112: 源極區 114: 汲極層 116: 介電層 118: 接觸窗 CG: 控制閘極 EPI1: 第一磊晶層 EPI2: 第二磊晶層 EPI3: 第三磊晶層 SG: 遮蔽閘極 t1、t2: 厚度

Claims (9)

  1. 一種遮蔽閘金氧半場效電晶體,包括:基板;多層磊晶結構,形成於所述基板的表面上,且所述多層磊晶結構具有多數個溝渠;遮蔽閘極,配置於所述多數個溝渠內;控制閘極,配置於所述遮蔽閘極上的所述多數個溝渠內;絕緣層,配置於所述遮蔽閘極與所述多層磊晶結構之間;閘極氧化層,配置於所述控制閘極與所述多層磊晶結構之間;以及閘間氧化層,配置於所述遮蔽閘極與所述控制閘極之間,其中所述多層磊晶結構包括連續的第一磊晶層、第二磊晶層以及第三磊晶層,其中所述第一磊晶層配置在所述多層磊晶結構的表面,所述第三磊晶層配置於所述溝渠底部至所述基板之間,所述第二磊晶層配置於所述第一磊晶層與所述第三磊晶層之間,所述第一磊晶層的阻值小於所述第三磊晶層的阻值,所述第二磊晶層的阻值小於所述第一磊晶層的阻值,且所述第二磊晶層的所述阻值與所述第一磊晶層的所述阻值的差異越大,所述遮蔽閘金氧半場效電晶體的崩潰電壓越大。
  2. 如申請專利範圍第1項所述的遮蔽閘金氧半場效電晶體,其中所述第三磊晶層的所述阻值越小,所述遮蔽閘金氧半場效電晶體的導通電阻越小。
  3. 如申請專利範圍第1項所述的遮蔽閘金氧半場效電晶體,其中所述第三磊晶層的厚度越小,所述遮蔽閘金氧半場效電晶體的導通電阻越小。
  4. 如申請專利範圍第1項所述的遮蔽閘金氧半場效電晶體,其中所述第一磊晶層圍繞所述控制閘極的周圍。
  5. 如申請專利範圍第1項所述的遮蔽閘金氧半場效電晶體,其中所述第二磊晶層圍繞所述遮蔽閘極的周圍。
  6. 如申請專利範圍第1項所述的遮蔽閘金氧半場效電晶體,其中所述第一磊晶層與所述第二磊晶層之間的界面在所述閘間氧化層到每個所述溝渠的深度一半的範圍內。
  7. 如申請專利範圍第1項所述的遮蔽閘金氧半場效電晶體,其中所述第一磊晶層的厚度與所述第二磊晶層的厚度之比在1:4~1:1之間。
  8. 如申請專利範圍第1項所述的遮蔽閘金氧半場效電晶體,更包括源極區,形成於所述第一磊晶層內,其中所述源極區與所述第一磊晶層具有相同的導電類型。
  9. 如申請專利範圍第1項所述的遮蔽閘金氧半場效電晶體,更包括汲極層,設置於所述基板的背面,所述背面相對於所述基板的所述表面。
TW111121230A 2022-06-08 遮蔽閘金氧半場效電晶體 TWI838763B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW111121230A TWI838763B (zh) 2022-06-08 遮蔽閘金氧半場效電晶體

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW111121230A TWI838763B (zh) 2022-06-08 遮蔽閘金氧半場效電晶體

Publications (2)

Publication Number Publication Date
TW202349708A TW202349708A (zh) 2023-12-16
TWI838763B true TWI838763B (zh) 2024-04-11

Family

ID=

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114203823A (zh) 2021-12-08 2022-03-18 西安建筑科技大学 一种金属氧化物半导体型场效应管及其制作方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114203823A (zh) 2021-12-08 2022-03-18 西安建筑科技大学 一种金属氧化物半导体型场效应管及其制作方法

Similar Documents

Publication Publication Date Title
TWI407564B (zh) 具有溝槽底部多晶矽結構之功率半導體及其製造方法
US9112023B2 (en) Multi-gate VDMOS transistor and method for forming the same
US9000516B2 (en) Super-junction device and method of forming the same
US11264269B1 (en) Method of manufacturing trench type semiconductor device
TWI696288B (zh) 遮蔽閘金氧半場效電晶體及其製造方法
US8669149B2 (en) Semiconductor structure and fabrication method thereof
US20090166731A1 (en) Vertical-type field-effect transistor and manufacturing method thereof
TW202027269A (zh) 溝渠式功率電晶體及其製作方法
TW201822295A (zh) 屏蔽閘極溝槽式半導體裝置及其製造方法
CN110299413A (zh) 一种ldmos器件及其制造方法
CN104659091A (zh) Ldmos器件及制造方法
CN111128706B (zh) 沟槽内厚度渐变的场氧的制造方法和sgt器件的制造方法
TWI838763B (zh) 遮蔽閘金氧半場效電晶體
CN108376647B (zh) 屏蔽栅场效应晶体管及其制造方法
CN103633139B (zh) 高压金属氧化物半导体晶体管元件
TW202021132A (zh) 橫向擴散金氧半導體裝置
US11444167B2 (en) Method of manufacturing trench type semiconductor device
TW202349708A (zh) 遮蔽閘金氧半場效電晶體
CN114927575A (zh) 一种屏蔽栅器件结构及其制作方法
TWI524524B (zh) 功率半導體元件之製法及結構
CN112864248A (zh) Sgtmosfet器件及制造方法
US8072027B2 (en) 3D channel architecture for semiconductor devices
CN110739347A (zh) 沟槽栅半导体器件及其制造方法
CN104638005A (zh) 横向双扩散金氧半导体装置及其制造方法
TWI770782B (zh) 屏蔽閘極溝槽式金氧半場效電晶體