TWI838718B - Trench power semiconductor device and manufactureing method thereof - Google Patents

Trench power semiconductor device and manufactureing method thereof Download PDF

Info

Publication number
TWI838718B
TWI838718B TW111111353A TW111111353A TWI838718B TW I838718 B TWI838718 B TW I838718B TW 111111353 A TW111111353 A TW 111111353A TW 111111353 A TW111111353 A TW 111111353A TW I838718 B TWI838718 B TW I838718B
Authority
TW
Taiwan
Prior art keywords
trench
gate
oxide
layer
shielding
Prior art date
Application number
TW111111353A
Other languages
Chinese (zh)
Other versions
TW202339267A (en
Inventor
許忠龍
陳曠舉
劉漢英
Original Assignee
新唐科技股份有限公司
Filing date
Publication date
Application filed by 新唐科技股份有限公司 filed Critical 新唐科技股份有限公司
Priority to TW111111353A priority Critical patent/TWI838718B/en
Priority to CN202210485429.9A priority patent/CN116845102A/en
Publication of TW202339267A publication Critical patent/TW202339267A/en
Application granted granted Critical
Publication of TWI838718B publication Critical patent/TWI838718B/en

Links

Images

Abstract

A trench power semiconductor device and a manufacturing method thereof are provided. The trench power semiconductor device includes a semiconductor substrate, a shield gate, an oxidation layer, a gate layer and a gate oxide layer. The shield gate is disposed in a first trench of the semiconductor substrate and includes a first shield portion and a second shield portion disposed on the first shield portion. A width of the second shield portion is larger than a width of the first shield portion. The oxidation layer is disposed between the shield gate and the semiconductor substrate, and includes a first oxidation portion surrounding the first shield portion and a second oxidation portion surrounding the second shield portion. A thickness of the first oxidation portion is larger than a thickness of the second oxidation portion. The gate layer is disposed in the first trench and located on the shield gate. The gate oxide layer includes a first gate oxide portion disposed between the gate layer and the second shield portion, and a second gate oxide portion disposed between the gate layer and the semiconductor substrate. A thickness of the second gate oxide portion is smaller than the thickness of the second oxidation portion.

Description

溝槽式功率半導體裝置及其製造方法Trench type power semiconductor device and manufacturing method thereof

本發明是有關於一種半導體裝置及其製造方法,且特別是有關於一種溝槽式功率半導體裝置及其製造方法。 The present invention relates to a semiconductor device and a manufacturing method thereof, and in particular to a trench power semiconductor device and a manufacturing method thereof.

溝槽式功率半導體裝置例如溝槽式分離閘極功率金氧半場效電晶體(split-gate MOSFET)具有高崩潰電壓及低導通電阻的特性,適合作為中、低壓高功率元件。 Trench power semiconductor devices such as trench split-gate power metal oxide semiconductor field effect transistors (split-gate MOSFETs) have the characteristics of high breakdown voltage and low on-resistance, and are suitable as medium and low voltage high power components.

然而,現行的溝槽式分離閘極功率金氧場效電晶體的製程,由於溝槽深度深,所以在沉積遮蔽閘的過程中,容易於遮蔽閘內形成縫隙(seam),並使回蝕刻後的遮蔽閘表面產生尖銳的凹處,導致後續形成於遮蔽閘上的閘極也有相應的尖角,容易產生尖端放電的問題,進而影響溝槽式功率半導體裝置的性能。 However, the current process of manufacturing trench-type separated-gate power MOSFETs is deep in the trench, so during the process of depositing the shielding gate, a seam is easily formed in the shielding gate, and a sharp recess is generated on the surface of the shielding gate after etching back, resulting in the gate formed on the shielding gate also having corresponding sharp corners, which is easy to cause the problem of tip discharge, thereby affecting the performance of the trench power semiconductor device.

本發明提供一種溝槽式功率半導體裝置,可改善閘極處的尖端放電的問題,提升溝槽式功率半導體裝置的可靠度。 The present invention provides a trench power semiconductor device that can improve the problem of tip discharge at the gate and enhance the reliability of the trench power semiconductor device.

本發明另提供一種溝槽式功率半導體裝置的製造方法,可防止遮蔽閘內形成縫隙或者避免縫隙接近遮蔽閘表面,以避免遮蔽閘的表面產生尖銳的凹處,進而改善尖端放電的問題,提升溝槽式功率半導體裝置的可靠度。 The present invention also provides a method for manufacturing a trench power semiconductor device, which can prevent the formation of gaps in the shielding gate or prevent the gaps from approaching the shielding gate surface, so as to avoid the generation of sharp recesses on the shielding gate surface, thereby improving the problem of tip discharge and improving the reliability of the trench power semiconductor device.

本發明的溝槽式功率半導體裝置包括半導體基底、遮蔽閘、氧化層、閘極層以及閘氧化層。半導體基底具有第一溝槽,遮蔽閘設置於第一溝槽中。遮蔽閘包括第一遮蔽部分及第二遮蔽部分,第二遮蔽部分位於第一遮蔽部分上,且第二遮蔽部分的寬度大於第一遮蔽部分的寬度。氧化層設置於遮蔽閘與半導體基底之間。氧化層包括第一氧化部分及第二氧化部分,第一氧化部分環繞第一遮蔽部分,第二氧化部分環繞第二遮蔽部分,且第一氧化部分的厚度大於第二氧化部分的厚度。閘極層設置於第一溝槽中,並位於遮蔽閘上。閘氧化層包括第一閘氧化部分及第二閘氧化部分。第一閘氧化部分設置於閘極層與遮蔽閘的第二遮蔽部分之間,第二閘氧化部分設置於閘極層與半導體基底之間。第二閘氧化部分的厚度小於第二氧化部分的厚度。 The trench power semiconductor device of the present invention includes a semiconductor substrate, a shielding gate, an oxide layer, a gate layer and a gate oxide layer. The semiconductor substrate has a first trench, and the shielding gate is arranged in the first trench. The shielding gate includes a first shielding portion and a second shielding portion, the second shielding portion is located on the first shielding portion, and the width of the second shielding portion is greater than the width of the first shielding portion. The oxide layer is arranged between the shielding gate and the semiconductor substrate. The oxide layer includes a first oxide portion and a second oxide portion, the first oxide portion surrounds the first shielding portion, the second oxide portion surrounds the second shielding portion, and the thickness of the first oxide portion is greater than the thickness of the second oxide portion. The gate layer is arranged in the first trench and is located on the shielding gate. The gate oxide layer includes a first gate oxide portion and a second gate oxide portion. The first gate oxide portion is disposed between the gate layer and the second shielding portion that shields the gate, and the second gate oxide portion is disposed between the gate layer and the semiconductor substrate. The thickness of the second gate oxide portion is less than the thickness of the second oxide portion.

在本發明的一實施例中,上述的第一氧化部分的厚度與第二氧化部分的厚度之比在7/6以上。 In one embodiment of the present invention, the ratio of the thickness of the first oxidized portion to the thickness of the second oxidized portion is greater than 7/6.

在本發明的一實施例中,上述的第一閘氧化部分的厚度大於第二閘氧化部分的厚度。 In one embodiment of the present invention, the thickness of the first gate oxide portion is greater than the thickness of the second gate oxide portion.

在本發明的一實施例中,上述的第一氧化部分的高度為3±0.6μm,第二氧化部分的高度為1.5±0.3μm,第二閘氧化部分的 高度為1.5±0.3μm。 In one embodiment of the present invention, the height of the first oxidation portion is 3±0.6μm, the height of the second oxidation portion is 1.5±0.3μm, and the height of the second gate oxidation portion is 1.5±0.3μm.

在本發明的一實施例中,上述的半導體基底包括單元區與終端區,第一溝槽設置在單元區,且半導體基底在終端區還包括第二溝槽。 In one embodiment of the present invention, the semiconductor substrate includes a cell region and a terminal region, the first trench is disposed in the cell region, and the semiconductor substrate further includes a second trench in the terminal region.

在本發明的一實施例中,上述的溝槽式功率半導體裝置還包括至少一保護環及終端氧化層。至少一保護環設置於第二溝槽中。保護環可包括第一保護環部分及第二保護環部分,第二保護環部分位於第一保護環部分上,且第二保護環部分的寬度大於第一保護環部分的寬度。終端氧化層位於保護環與半導體基底之間,終端氧化層包括第一終端氧化部分及第二終端氧化部分,第一終端氧化部分環繞第一保護環部分,第二終端氧化部分環繞第二保護環部分,且第二終端氧化部分的厚度小於第一終端氧化部分的厚度。 In one embodiment of the present invention, the trench power semiconductor device further includes at least one guard ring and a terminal oxide layer. At least one guard ring is disposed in the second trench. The guard ring may include a first guard ring portion and a second guard ring portion, the second guard ring portion is located on the first guard ring portion, and the width of the second guard ring portion is greater than the width of the first guard ring portion. The terminal oxide layer is located between the guard ring and the semiconductor substrate, the terminal oxide layer includes a first terminal oxide portion and a second terminal oxide portion, the first terminal oxide portion surrounds the first guard ring portion, the second terminal oxide portion surrounds the second guard ring portion, and the thickness of the second terminal oxide portion is less than the thickness of the first terminal oxide portion.

本發明的溝槽式功率半導體裝置的製造方法包括以下步驟。提供半導體基底,於半導體基底中形成第一溝槽。然後,於第一溝槽的底部及部分側壁形成第一氧化部分,於第一溝槽未被第一氧化部分覆蓋的側壁上形成第二氧化部分,其中第一氧化部分的厚度大於第二氧化部分的厚度。之後,形成遮蔽閘於第一溝槽中,並暴露出部分第二氧化部分,然後移除露出的第二氧化部分,以暴露出第一溝槽的部分側壁。形成閘氧化層於遮蔽閘的表面及暴露出的第一溝槽的側壁上,其中閘氧化層的厚度小於第二氧化部分的厚度。之後,形成閘極層於第一溝槽內的閘氧化層上。 The manufacturing method of the trench power semiconductor device of the present invention includes the following steps. A semiconductor substrate is provided, and a first trench is formed in the semiconductor substrate. Then, a first oxidized portion is formed at the bottom and part of the sidewall of the first trench, and a second oxidized portion is formed on the sidewall of the first trench not covered by the first oxidized portion, wherein the thickness of the first oxidized portion is greater than the thickness of the second oxidized portion. Then, a shielding gate is formed in the first trench, and a part of the second oxidized portion is exposed, and then the exposed second oxidized portion is removed to expose part of the sidewall of the first trench. A gate oxide layer is formed on the surface of the shielding gate and the exposed sidewall of the first trench, wherein the thickness of the gate oxide layer is less than the thickness of the second oxidized portion. Then, a gate electrode layer is formed on the gate oxide layer in the first trench.

在本發明的另一實施例中,上述的半導體基底包括單元區及終端區,第一溝槽形成於單元區,且形成第一溝槽的步驟包括同時於半導體基底的終端區中形成第二溝槽。 In another embodiment of the present invention, the semiconductor substrate includes a cell region and a terminal region, the first trench is formed in the cell region, and the step of forming the first trench includes simultaneously forming a second trench in the terminal region of the semiconductor substrate.

在本發明的另一實施例中,上述形成第一氧化部分的步驟包括同時於第二溝槽的底部及部分側壁形成第一終端氧化部分。 In another embodiment of the present invention, the step of forming the first oxidation portion includes simultaneously forming the first terminal oxidation portion at the bottom and part of the sidewall of the second trench.

在本發明的另一實施例中,上述形成第二氧化部分的步驟包括同時於第二溝槽未被第一終端氧化部分覆蓋的側壁上形成第二終端氧化部分。 In another embodiment of the present invention, the step of forming the second oxide portion includes simultaneously forming the second terminal oxide portion on the sidewall of the second trench not covered by the first terminal oxide portion.

在本發明的另一實施例中,上述形成遮蔽閘的步驟包括沉積多晶矽材料層於第一溝槽及第二溝槽中,其中第二溝槽內的多晶矽材料層作為保護環。然後,形成圖案化光阻層於第二溝槽上,以覆蓋第二溝槽內的保護環,並以圖案化光阻層為罩幕,蝕刻單元區的多晶矽材料層,以於單元區形成遮蔽閘。 In another embodiment of the present invention, the step of forming the shielding gate includes depositing a polysilicon material layer in the first trench and the second trench, wherein the polysilicon material layer in the second trench serves as a protective ring. Then, a patterned photoresist layer is formed on the second trench to cover the protective ring in the second trench, and the polysilicon material layer in the cell area is etched using the patterned photoresist layer as a mask to form a shielding gate in the cell area.

在本發明的另一實施例中,上述於半導體基底中形成第一溝槽的步驟包括:於半導體基底的表面形成圖案化硬罩幕層,使用圖案化硬罩幕層作為罩幕,蝕刻露出的半導體基底,以形成淺溝槽。然後形成薄氧化層於淺溝槽的側壁及底面,於淺溝槽的側壁的薄氧化層上形成氮化矽間隙壁。使用氮化矽間隙壁作為罩幕,蝕刻去除淺溝槽的底面上的薄氧化層,然後使用圖案化硬罩幕層與氮化矽間隙壁作為罩幕,蝕刻淺溝槽的底面露出的半導體基底,以形成第一溝槽。 In another embodiment of the present invention, the step of forming the first trench in the semiconductor substrate includes: forming a patterned hard mask layer on the surface of the semiconductor substrate, using the patterned hard mask layer as a mask, etching the exposed semiconductor substrate to form a shallow trench. Then forming a thin oxide layer on the sidewall and bottom of the shallow trench, forming a silicon nitride spacer on the thin oxide layer on the sidewall of the shallow trench. Using the silicon nitride spacer as a mask, etching away the thin oxide layer on the bottom of the shallow trench, and then using the patterned hard mask layer and the silicon nitride spacer as masks, etching the semiconductor substrate exposed at the bottom of the shallow trench to form the first trench.

在本發明的另一實施例中,上述形成第一氧化部分的步驟包括進行第一氧化反應,以於氮化矽間隙壁以外的第一溝槽的側壁及底部形成第一氧化部分。 In another embodiment of the present invention, the step of forming the first oxidized portion includes performing a first oxidation reaction to form the first oxidized portion on the sidewalls and bottom of the first trench outside the silicon nitride spacer.

在本發明的另一實施例中,上述形成第二氧化部分的步驟包括移除薄氧化層、圖案化硬罩幕層與氮化矽間隙壁,以暴露出第一溝槽的部分側壁,再進行第二氧化反應,以形成第二氧化部分。 In another embodiment of the present invention, the step of forming the second oxidized portion includes removing the thin oxide layer, the patterned hard mask layer and the silicon nitride spacer to expose part of the sidewall of the first trench, and then performing a second oxidation reaction to form the second oxidized portion.

基於上述,本發明的溝槽式功率半導體裝置的溝槽側壁所形成的氧化層具有上薄下厚的特徵,所以形成於其中的遮蔽閘具有上寬下窄的結構,因此能防止在沉積形成遮蔽閘時產生縫隙。即使在遮蔽閘內有縫隙形成,也會因為上述氧化層的結構特徵,而只會在遮蔽閘的下部有縫隙,並不會在遮蔽閘的表面產生尖銳的凹處,因此可改善閘極尖端放電的問題,提升溝槽式功率半導體裝置的崩潰電壓,並使可靠度提升。 Based on the above, the oxide layer formed on the trench sidewall of the trench power semiconductor device of the present invention has the characteristics of being thin at the top and thick at the bottom, so the shielding gate formed therein has a structure of being wide at the top and narrow at the bottom, thereby preventing the generation of gaps when the shielding gate is formed by deposition. Even if a gap is formed in the shielding gate, due to the structural characteristics of the oxide layer, there will only be a gap at the bottom of the shielding gate, and no sharp recess will be generated on the surface of the shielding gate, thereby improving the problem of discharge at the gate tip, increasing the breakdown voltage of the trench power semiconductor device, and improving reliability.

為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。 In order to make the above features and advantages of the present invention more clearly understood, the following is a detailed description of the embodiments with the accompanying drawings.

10、20:溝槽式功率半導體裝置 10, 20: Trench power semiconductor device

100、200:半導體基底 100, 200: semiconductor substrate

100s、200s:表面 100s, 200s: surface

110、262:遮蔽閘 110, 262: shielding gate

110’、264:保護環 110’, 264: Protective ring

112:第一遮蔽部分 112: First shielding part

112’:第一保護環部分 112’: First protection ring section

114:第二遮蔽部分 114: Second shielding part

114’:第二保護環部分 114’: Second protection ring section

120:氧化層 120: Oxide layer

120’:終端氧化層 120’: terminal oxide layer

122、242:第一氧化部分 122, 242: First oxidation part

122’、244:第一終端氧化部分 122', 244: first terminal oxidation part

124、252:第二氧化部分 124, 252: Second oxidation part

124’、254:第二終端氧化部分 124', 254: second terminal oxidation part

130、280:閘極層 130, 280: Gate layer

140、270:閘氧化層 140, 270: Gate oxide layer

142、272:第一閘氧化部分 142, 272: First gate oxidation part

144、274:第二閘氧化部分 144, 274: Second gate oxidation part

210:圖案化硬罩幕層 210: Patterned hard cover layer

220:薄氧化層 220: Thin oxide layer

230:氮化矽材料層 230: Silicon nitride material layer

230a:氮化矽間隙壁 230a: Silicon nitride spacer

h1、h2、h3、h1’、h2’:高度 h1, h2, h3, h1’, h2’: height

PR:圖案化光阻層 PR: Patterned photoresist layer

R1:單元區 R1: Unit area

R2:終端區 R2: Terminal area

S:縫隙 S: Gap

t1、t2、t3、t4、t5、t6、t7、t8、t1’、t2’、t3’、t4’:厚度 t1, t2, t3, t4, t5, t6, t7, t8, t1’, t2’, t3’, t4’: thickness

T、T’:淺溝槽 T, T’: shallow groove

T1:第一溝槽 T1: First groove

T2:第二溝槽 T2: Second groove

w1、w2、w1’、w2’:寬度 w1, w2, w1’, w2’: width

圖1是本發明一實施例的一種溝槽式功率半導體裝置的剖面示意圖。 Figure 1 is a schematic cross-sectional view of a trench power semiconductor device according to an embodiment of the present invention.

圖2A至圖2H是依照本發明另一實施例的一種溝槽式功率半 導體裝置的製造流程的剖面示意圖。 Figures 2A to 2H are cross-sectional schematic diagrams of a manufacturing process of a trench power semiconductor device according to another embodiment of the present invention.

下文列舉實施例並配合所附圖式來進行詳細地說明,但所提供的實施例並非用以限制本發明所涵蓋的範圍。此外,圖式僅以說明為目的,並未依照原尺寸作圖。為了方便理解,下述說明中相同的元件將以相同的符號標示來說明。 The following examples are listed and described in detail with the attached drawings, but the examples provided are not intended to limit the scope of the present invention. In addition, the drawings are for illustrative purposes only and are not drawn in original size. For ease of understanding, the same components in the following description will be indicated by the same symbols.

此外,關於文中所使用「包含」、「包括」、「具有」等等用語,均為開放性的用語,也就是指「包括但不限於」。 In addition, the terms "include", "including", "have", etc. used in this article are all open terms, which means "including but not limited to".

應當理解,儘管術語「第一」、「第二」、「第三」等在本文中可以用於描述各種元件、部件、區域、層及/或部分,但是這些元件、部件、區域、及/或部分不應受這些術語的限制。這些術語僅用於將一個元件、部件、區域、層或部分與另一個元件、部件、區域、層或部分區分開。因此,下面討論的「第一元件」、「部件」、「區域」、「層」、或「部分」可以被稱為第二元件、部件、區域、層或部分而不脫離本文的教導。 It should be understood that although the terms "first", "second", "third", etc. may be used herein to describe various elements, components, regions, layers and/or parts, these elements, components, regions, and/or parts should not be limited by these terms. These terms are only used to distinguish one element, component, region, layer or part from another element, component, region, layer or part. Therefore, the "first element", "component", "region", "layer", or "part" discussed below can be referred to as a second element, component, region, layer or part without departing from the teachings of this article.

另外,文中所提到的方向性用語,例如「上」、「下」等,僅是用以參考圖式的方向,並非用來限制本發明。 In addition, the directional terms mentioned in the text, such as "upper", "lower", etc., are only used to refer to the directions of the drawings and are not used to limit the present invention.

圖1是本發明一實施例的一種溝槽式功率半導體裝置的剖面示意圖。 Figure 1 is a schematic cross-sectional view of a trench power semiconductor device according to an embodiment of the present invention.

請參照圖1,溝槽式功率半導體裝置10包括半導體基底100、遮蔽閘110、氧化層120、閘極層130以及閘氧化層140。半 導體基底100具有第一溝槽T1。遮蔽閘110設置於第一溝槽T1中,遮蔽閘110包括第一遮蔽部分112及第二遮蔽部分114。第二遮蔽部分114位於第一遮蔽部分112上,且第二遮蔽部分114的寬度w2大於第一遮蔽部分112的寬度w1。氧化層120設置於遮蔽閘110與半導體基底100之間,氧化層120包括第一氧化部分122及第二氧化部分124。第一氧化部分122環繞第一遮蔽部分112,第二氧化部分124環繞第二遮蔽部分114,且第一氧化部分122的厚度t1大於第二氧化部分124的厚度t2。在第一實施例中,遮蔽閘110的內部可能還有縫隙S,形成於第一遮蔽部分112中與第二遮蔽部分114的下部。然而,縫隙S的存在並不影響閘極層130與遮蔽閘110之間的界面輪廓;也就是說,遮蔽閘110表面不會產生尖銳的凹處。在較佳的實施例中,遮蔽閘110的內部不會有縫隙S,或者縫隙S只形成在第一遮蔽部分112中。 1 , the trench power semiconductor device 10 includes a semiconductor substrate 100, a shielding gate 110, an oxide layer 120, a gate layer 130, and a gate oxide layer 140. The semiconductor substrate 100 has a first trench T1. The shielding gate 110 is disposed in the first trench T1, and the shielding gate 110 includes a first shielding portion 112 and a second shielding portion 114. The second shielding portion 114 is located on the first shielding portion 112, and the width w2 of the second shielding portion 114 is greater than the width w1 of the first shielding portion 112. The oxide layer 120 is disposed between the shielding gate 110 and the semiconductor substrate 100, and the oxide layer 120 includes a first oxide portion 122 and a second oxide portion 124. The first oxidized portion 122 surrounds the first shielding portion 112, the second oxidized portion 124 surrounds the second shielding portion 114, and the thickness t1 of the first oxidized portion 122 is greater than the thickness t2 of the second oxidized portion 124. In the first embodiment, there may be a gap S inside the shielding gate 110, which is formed in the first shielding portion 112 and the lower part of the second shielding portion 114. However, the existence of the gap S does not affect the interface profile between the gate layer 130 and the shielding gate 110; that is, no sharp recess will be generated on the surface of the shielding gate 110. In a preferred embodiment, there is no gap S inside the shielding gate 110, or the gap S is only formed in the first shielding portion 112.

在一實施例中,第一氧化部分122的厚度t1與第二氧化部分124的厚度t2之比可在7/6以上,例如7/6~4/3之間。若是第一氧化部分122的厚度t1與第二氧化部分124的厚度t2之比在7/6以上,可確保縫隙的上緣維持在第一氧化部分122與第二氧化部分124交界處附近;若是第一氧化部分122的厚度t1與第二氧化部分124的厚度t2之比在4/3以下,可避免第一氧化部分122的高度h1範圍內的第一溝槽T1寬度太寬,反而限制了第一溝槽T1間距的微縮範圍。 In one embodiment, the ratio of the thickness t1 of the first oxidized portion 122 to the thickness t2 of the second oxidized portion 124 may be greater than 7/6, for example, between 7/6 and 4/3. If the ratio of the thickness t1 of the first oxidized portion 122 to the thickness t2 of the second oxidized portion 124 is greater than 7/6, it can ensure that the upper edge of the gap is maintained near the junction of the first oxidized portion 122 and the second oxidized portion 124; if the ratio of the thickness t1 of the first oxidized portion 122 to the thickness t2 of the second oxidized portion 124 is less than 4/3, it can avoid that the width of the first trench T1 within the height h1 of the first oxidized portion 122 is too wide, which in turn limits the micro-reduction range of the first trench T1 spacing.

請繼續參照圖1,閘極層130設置於第一溝槽T1中,並 位於遮蔽閘110上。閘氧化層140包括第一閘氧化部分142及第二閘氧化部分144。第一閘氧化部分142設置於閘極層130與遮蔽閘110的第二遮蔽部分114之間,第二閘氧化部分144設置於閘極層130與半導體基底100之間,其中第二閘氧化部分144可以自第一溝槽T1的側壁延伸至半導體基底100的表面100s,但本發明並不限於此;在另一實施例中,第二閘氧化部分144可只形成於第一溝槽T1的側壁。在第一實施例中,第二閘氧化部分144的厚度t4小於第二氧化部分124的厚度t2,以使遮蔽閘110與半導體基底100之間具有足夠低的汲極-源極間電容。第二氧化部分124的厚度t2與第二閘氧化部分144的厚度t4之比可依實際需求調整,本發明並不加以限制。閘氧化層140可利用爐管氧化法形成,且因為半導體基底100的材料通常是矽、遮蔽閘110的材料通常是多晶矽,所以由於兩者氧化速率不同,導致第一閘氧化部分142的厚度t3與第二閘氧化部分144的厚度t4不同,第一閘氧化部分142的厚度t3通常大於第二閘氧化部分144的厚度t4。然而,半導體基底100的材料以及遮蔽閘110的材料並不限於上述內容,也可改用半導體領域中已知的其它材料。 Please continue to refer to FIG. 1 . The gate layer 130 is disposed in the first trench T1 and is located on the shielding gate 110. The gate oxide layer 140 includes a first gate oxide portion 142 and a second gate oxide portion 144. The first gate oxide portion 142 is disposed between the gate layer 130 and the second shielding portion 114 of the shielding gate 110, and the second gate oxide portion 144 is disposed between the gate layer 130 and the semiconductor substrate 100, wherein the second gate oxide portion 144 may extend from the sidewall of the first trench T1 to the surface 100s of the semiconductor substrate 100, but the present invention is not limited thereto; in another embodiment, the second gate oxide portion 144 may be formed only on the sidewall of the first trench T1. In the first embodiment, the thickness t4 of the second gate oxide portion 144 is less than the thickness t2 of the second oxide portion 124, so that the shielding gate 110 and the semiconductor substrate 100 have a sufficiently low drain-source capacitance. The ratio of the thickness t2 of the second oxide portion 124 to the thickness t4 of the second gate oxide portion 144 can be adjusted according to actual needs, and the present invention is not limited thereto. The gate oxide layer 140 can be formed by a furnace oxidation method, and because the material of the semiconductor substrate 100 is usually silicon and the material of the shielding gate 110 is usually polysilicon, the oxidation rates of the two are different, resulting in the thickness t3 of the first gate oxide portion 142 being different from the thickness t4 of the second gate oxide portion 144, and the thickness t3 of the first gate oxide portion 142 is usually greater than the thickness t4 of the second gate oxide portion 144. However, the material of the semiconductor substrate 100 and the material of the shielding gate 110 are not limited to the above, and other materials known in the semiconductor field may also be used.

在一實施例中,第一閘氧化部分142的厚度t3與第二閘氧化部分144的厚度t4之比可在3/1~4/1之間。若是第一閘氧化部分142的厚度t3與第二閘氧化部分144的厚度t4之比在3/1以上,可確保遮蔽閘110與閘極層130之間有足夠的耐壓;若是第一閘氧化部分142的厚度t3與第二閘氧化部分144的厚度t4之比 在4/1以下,可確保閘極層130有足夠的厚度承受後續的乾蝕刻製程。 In one embodiment, the ratio of the thickness t3 of the first gate oxide portion 142 to the thickness t4 of the second gate oxide portion 144 may be between 3/1 and 4/1. If the ratio of the thickness t3 of the first gate oxide portion 142 to the thickness t4 of the second gate oxide portion 144 is greater than 3/1, it can be ensured that there is sufficient withstand voltage between the shielding gate 110 and the gate layer 130; if the ratio of the thickness t3 of the first gate oxide portion 142 to the thickness t4 of the second gate oxide portion 144 is less than 4/1, it can be ensured that the gate layer 130 has sufficient thickness to withstand the subsequent dry etching process.

在一實施例中,第一氧化部分122的高度h1可在2.4μm以上、第二氧化部分124的高度h2可在1.2μm以上、第二閘氧化部分144的高度h3可在1.2μm以上。例如:第一氧化部分122的高度h1可為3±0.6μm、第二氧化部分124的高度h2可為1.5±0.3μm、第二閘氧化部分144的高度h3可以為1.5±0.3μm。如此一來,可進一步避免縫隙S往第二遮蔽部分114的表面延伸,有利於第二遮蔽部分114的表面的平坦程度。在較佳的實施例中,第一氧化部分122的高度h1、第二氧化部分124的高度h2與第二閘氧化部分144的高度h3的比為2:1:1。 In one embodiment, the height h1 of the first oxidized portion 122 may be above 2.4 μm, the height h2 of the second oxidized portion 124 may be above 1.2 μm, and the height h3 of the second gate oxidized portion 144 may be above 1.2 μm. For example, the height h1 of the first oxidized portion 122 may be 3±0.6 μm, the height h2 of the second oxidized portion 124 may be 1.5±0.3 μm, and the height h3 of the second gate oxidized portion 144 may be 1.5±0.3 μm. In this way, the gap S can be further prevented from extending to the surface of the second shielding portion 114, which is beneficial to the flatness of the surface of the second shielding portion 114. In a preferred embodiment, the ratio of the height h1 of the first oxidized portion 122, the height h2 of the second oxidized portion 124, and the height h3 of the second gate oxidized portion 144 is 2:1:1.

在圖1中,第一溝槽T1是設置於半導體基底100的單元區R1中,而半導體基底100還可包括終端區R2,且單元區R1及終端區R2之間可存在其它元件結構。終端區R2可以是環繞單元區R1的,本發明不限於圖1的佈局。半導體基底100在終端區R2還包括第二溝槽T2。 In FIG. 1 , the first trench T1 is disposed in the unit region R1 of the semiconductor substrate 100, and the semiconductor substrate 100 may further include a terminal region R2, and other component structures may exist between the unit region R1 and the terminal region R2. The terminal region R2 may surround the unit region R1, and the present invention is not limited to the layout of FIG. 1 . The semiconductor substrate 100 also includes a second trench T2 in the terminal region R2.

在第一實施例中,溝槽式功率半導體裝置10還包括至少一保護環110’及終端氧化層120’。保護環110’設置於第二溝槽T2中,其包括第一保護環部分112’及第二保護環部分114’。第二保護環部分114’位於第一保護環部分112’上,且第二保護環部分114’的寬度w2’大於第一保護環部分112’的寬度w1’。終端氧化層120’位於保護環110’與半導體基底100之間,其包括第一終端氧化部 分122’及第二終端氧化部分124’。第一終端氧化部分122’環繞第一保護環部分112’,第二終端氧化部分124’環繞第二保護環部分114’,且第二終端氧化部分124’的厚度t2’小於第一終端氧化部分122’的厚度t1’。由於保護環110’設置於終端區R2中且環繞單元區R1,可提高溝槽式功率半導體裝置10的耐壓能力,避免單元區R1內的元件因高壓受損。需注意的是,圖1雖然僅顯示一個保護環110’,但是保護環110’的數目通常與溝槽式功率半導體裝置10的電壓範圍相關,所以保護環110’的數目一般是多個。 In the first embodiment, the trench power semiconductor device 10 further includes at least one guard ring 110' and a terminal oxide layer 120'. The guard ring 110' is disposed in the second trench T2, and includes a first guard ring portion 112' and a second guard ring portion 114'. The second guard ring portion 114' is located on the first guard ring portion 112', and the width w2' of the second guard ring portion 114' is greater than the width w1' of the first guard ring portion 112'. The terminal oxide layer 120' is located between the guard ring 110' and the semiconductor substrate 100, and includes a first terminal oxide portion 122' and a second terminal oxide portion 124'. The first terminal oxidation portion 122' surrounds the first protection ring portion 112', the second terminal oxidation portion 124' surrounds the second protection ring portion 114', and the thickness t2' of the second terminal oxidation portion 124' is less than the thickness t1' of the first terminal oxidation portion 122'. Since the protection ring 110' is disposed in the terminal region R2 and surrounds the cell region R1, the withstand voltage capability of the trench power semiconductor device 10 can be improved to prevent the components in the cell region R1 from being damaged by high voltage. It should be noted that although FIG. 1 shows only one guard ring 110', the number of guard rings 110' is usually related to the voltage range of the trench power semiconductor device 10, so the number of guard rings 110' is generally multiple.

在一實施例中,第一終端氧化部分122’的高度h1’與第一氧化部分122的高度h1可以相同。第二終端氧化部分124’的高度基本上為第二氧化部分124的高度h2與第二閘氧化部分144的高度h3的總和。 In one embodiment, the height h1' of the first terminal oxidation portion 122' may be the same as the height h1 of the first oxidation portion 122. The height of the second terminal oxidation portion 124' is substantially the sum of the height h2 of the second oxidation portion 124 and the height h3 of the second gate oxidation portion 144.

在一實施例中,第二終端氧化部分124’可以自第二溝槽T2的側壁延伸至半導體基底100的表面100s,但本發明不以此為限。 In one embodiment, the second terminal oxidation portion 124' may extend from the sidewall of the second trench T2 to the surface 100s of the semiconductor substrate 100, but the present invention is not limited thereto.

在一實施例中,半導體基底100的材料例如包括矽。應理解,半導體基底100可依據本領域的現有技術摻雜摻質,以於其中形成具有不同導電特性的摻雜區(未繪示),作為溝槽式功率半導體裝置10的源極、體區等,但本發明不以此為限。 In one embodiment, the material of the semiconductor substrate 100 includes silicon, for example. It should be understood that the semiconductor substrate 100 can be doped according to the prior art in the field to form doped regions (not shown) with different conductive properties therein, as the source, body region, etc. of the trench power semiconductor device 10, but the present invention is not limited thereto.

在一實施例中,遮蔽閘110、閘極層130與保護環110’的材料例如都是多晶矽,但本發明不以此為限。 In one embodiment, the materials of the shielding gate 110, the gate layer 130 and the protection ring 110' are all polysilicon, for example, but the present invention is not limited thereto.

在一實施例中,氧化層120與終端氧化層120’的材料例 如為氧化矽,但本發明不以此為限。 In one embodiment, the material of the oxide layer 120 and the terminal oxide layer 120' is, for example, silicon oxide, but the present invention is not limited thereto.

在一實施例中,溝槽式功率半導體裝置10的崩潰電壓可大於或等於30V。 In one embodiment, the breakdown voltage of the trench power semiconductor device 10 may be greater than or equal to 30V.

在本實施例中,由於溝槽式功率半導體裝置10的第一氧化部分122的厚度t1大於第二氧化部分124的厚度t2,所以使沉積於第一溝槽T1中的第二遮蔽部分114的寬度w2大於第一遮蔽部分112的寬度w1,因此避免遮蔽閘110頂部有縫隙S形成;也就是說,遮蔽閘110表面不會產生尖銳的凹處,因此可解決閘極尖端放電的問題,提升溝槽式功率半導體裝置10的崩潰電壓,並使可靠度提升。 In this embodiment, since the thickness t1 of the first oxidized portion 122 of the trench power semiconductor device 10 is greater than the thickness t2 of the second oxidized portion 124, the width w2 of the second shielding portion 114 deposited in the first trench T1 is greater than the width w1 of the first shielding portion 112, thereby avoiding the formation of a gap S at the top of the shielding gate 110; that is, no sharp recess will be generated on the surface of the shielding gate 110, thereby solving the problem of gate tip discharge, increasing the breakdown voltage of the trench power semiconductor device 10, and improving reliability.

圖2A至2H是依照本發明另一實施例的一種溝槽式功率半導體裝置的製造流程的剖面示意圖。 Figures 2A to 2H are cross-sectional schematic diagrams of a manufacturing process of a trench power semiconductor device according to another embodiment of the present invention.

請參照圖2A,提供半導體基底200。半導體基底200的材料例如為矽。半導體基底200可以包括單元區R1及終端區R2,終端區R2可以環繞單元區R1,以提高溝槽式功率半導體裝置的耐壓能力,避免單元區R1內的元件因高壓受損。 Referring to FIG. 2A , a semiconductor substrate 200 is provided. The material of the semiconductor substrate 200 is, for example, silicon. The semiconductor substrate 200 may include a cell region R1 and a terminal region R2. The terminal region R2 may surround the cell region R1 to improve the voltage resistance of the trench power semiconductor device and prevent the components in the cell region R1 from being damaged by high voltage.

請繼續參照圖2A,於半導體基底200的表面200s形成圖案化硬罩幕層210。圖案化硬罩幕層210的材料例如為氮化矽,但本發明不以此為限。如果圖案化硬罩幕層210的材料是氮化矽,其步驟可先在半導體基底200的表面200s形成一層氧化矽層(未繪示),再沉積形成一層氮化矽層,然後可在氮化矽層上利用微影製程形成圖案化光阻層,再以前述圖案化光阻層作為罩幕蝕刻氮 化矽層,得到上述圖案化硬罩幕層210。然後,使用圖案化硬罩幕層210作為罩幕,蝕刻露出的半導體基底200,以於單元區R1形成淺溝槽T並可同時於終端區R2形成淺溝槽T’。如果表面200s有氧化矽層,同樣是使用圖案化硬罩幕層210作為罩幕,先蝕刻氧化層再蝕刻半導體基底200。 Please continue to refer to FIG. 2A , a patterned hard mask layer 210 is formed on the surface 200s of the semiconductor substrate 200. The material of the patterned hard mask layer 210 is, for example, silicon nitride, but the present invention is not limited thereto. If the material of the patterned hard mask layer 210 is silicon nitride, the steps may be to first form a silicon oxide layer (not shown) on the surface 200s of the semiconductor substrate 200, then deposit a silicon nitride layer, and then form a patterned photoresist layer on the silicon nitride layer by a lithography process, and then use the aforementioned patterned photoresist layer as a mask to etch the silicon nitride layer to obtain the aforementioned patterned hard mask layer 210. Then, the patterned hard mask layer 210 is used as a mask to etch the exposed semiconductor substrate 200 to form a shallow trench T in the cell area R1 and a shallow trench T' in the terminal area R2 at the same time. If there is a silicon oxide layer on the surface 200s, the patterned hard mask layer 210 is also used as a mask to etch the oxide layer first and then the semiconductor substrate 200.

接著,請參照圖2B,形成薄氧化層220於淺溝槽T、T’的側壁及底面。形成薄氧化層220的方法例如是熱氧化法。然後,為了於淺溝槽T、T’的側壁的薄氧化層220上形成氮化矽間隙壁,可先共形地形成氮化矽材料層230於圖案化硬罩幕層210的表面及淺溝槽T、T’的側壁與底面上。 Next, please refer to FIG. 2B to form a thin oxide layer 220 on the sidewalls and bottom surface of the shallow trenches T and T’. The method of forming the thin oxide layer 220 is, for example, thermal oxidation. Then, in order to form a silicon nitride spacer on the thin oxide layer 220 on the sidewalls of the shallow trenches T and T’, a silicon nitride material layer 230 can be conformally formed on the surface of the patterned hard mask layer 210 and the sidewalls and bottom surface of the shallow trenches T and T’.

之後,請參照圖2C,回蝕刻圖2B的氮化矽材料層230,即可形成氮化矽間隙壁230a。接著,使用氮化矽間隙壁230a作為罩幕,蝕刻去除淺溝槽T、T’的底面上的薄氧化層220,將淺溝槽T、T’的底面暴露出來。然後,使用圖案化硬罩幕層210與氮化矽間隙壁230a作為罩幕,蝕刻淺溝槽T、T’的底面所露出的半導體基底200,以於單元區R1形成第一溝槽T1並於終端區R2形成第二溝槽T2。也就是說,第一溝槽T1與第二溝槽T2可以在相同的製程步驟下形成,無需增加額外的光罩製程。 Afterwards, referring to FIG. 2C , the silicon nitride material layer 230 of FIG. 2B is etched back to form a silicon nitride spacer 230a. Next, the silicon nitride spacer 230a is used as a mask to etch away the thin oxide layer 220 on the bottom surface of the shallow trenches T, T’, exposing the bottom surface of the shallow trenches T, T’. Then, the patterned hard mask layer 210 and the silicon nitride spacer 230a are used as masks to etch the semiconductor substrate 200 exposed by the bottom surface of the shallow trenches T, T’, so as to form a first trench T1 in the cell region R1 and a second trench T2 in the terminal region R2. That is to say, the first trench T1 and the second trench T2 can be formed in the same process step without adding an additional mask process.

隨後,請參照圖2D,於第一溝槽T1的底部及部分側壁形成第一氧化部分242。舉例來說,可進行第一氧化反應,如爐管氧化法,氧化第一溝槽T1露出的半導體基底200,以於氮化矽間隙壁230a以外的第一溝槽T1的側壁及底部形成第一氧化部分 242。在本實施例中,在進行第一氧化反應的過程中,可同時氧化第二溝槽T2露出的半導體基底200,以於氮化矽間隙壁230a以外的第二溝槽T2的側壁及底部形成第一終端氧化部分244。 Subsequently, referring to FIG. 2D , a first oxidized portion 242 is formed at the bottom and part of the sidewall of the first trench T1. For example, a first oxidation reaction, such as a furnace oxidation method, may be performed to oxidize the semiconductor substrate 200 exposed by the first trench T1 to form the first oxidized portion 242 at the sidewall and bottom of the first trench T1 outside the silicon nitride spacer 230a. In this embodiment, during the first oxidation reaction, the semiconductor substrate 200 exposed by the second trench T2 may be oxidized at the same time to form the first terminal oxidized portion 244 at the sidewall and bottom of the second trench T2 outside the silicon nitride spacer 230a.

請參照圖2D至圖2E,為了在第一溝槽T1未被第一氧化部分242覆蓋的側壁上形成第二氧化部分,舉例來說,可利用溼式蝕刻先將薄氧化層220、圖案化硬罩幕層210與氮化矽間隙壁230a移除,以暴露出第一溝槽T1的部分側壁與第二溝槽T2的部分側壁。之後,進行第二氧化反應,如爐管氧化法,以於第一溝槽T1的側壁上形成第二氧化部分252,且半導體基底200的表面200s也會有第二氧化部分252形成。第一氧化部分242的厚度t5大於第二氧化部分252的厚度t6。由於第一氧化部分242與第二氧化部分252是透過二次氧化反應形成的,且第一氧化部分242的厚度t5大於第二氧化部分252的厚度t6,使得第一溝槽T1內具上寬下窄的空間。在本實施例中,在進行第二氧化反應的過程中,可同時氧化第二溝槽T2露出的半導體基底200,以於第二溝槽T2的側壁上形成第二終端氧化部分254,其中第一終端氧化部分244的厚度t3’也會大於第二終端氧化部分254的厚度t4’。 2D to 2E, in order to form the second oxidized portion on the sidewall of the first trench T1 not covered by the first oxidized portion 242, for example, the thin oxide layer 220, the patterned hard mask layer 210 and the silicon nitride spacer 230a can be removed by wet etching to expose a portion of the sidewall of the first trench T1 and a portion of the sidewall of the second trench T2. Thereafter, a second oxidation reaction is performed, such as a furnace oxidation method, to form the second oxidized portion 252 on the sidewall of the first trench T1, and the surface 200s of the semiconductor substrate 200 also has the second oxidized portion 252 formed. The thickness t5 of the first oxidized portion 242 is greater than the thickness t6 of the second oxidized portion 252. Since the first oxidized portion 242 and the second oxidized portion 252 are formed by a secondary oxidation reaction, and the thickness t5 of the first oxidized portion 242 is greater than the thickness t6 of the second oxidized portion 252, the first trench T1 has a space that is wide at the top and narrow at the bottom. In this embodiment, during the second oxidation reaction, the semiconductor substrate 200 exposed by the second trench T2 can be oxidized at the same time to form a second terminal oxidized portion 254 on the sidewall of the second trench T2, wherein the thickness t3' of the first terminal oxidized portion 244 is also greater than the thickness t4' of the second terminal oxidized portion 254.

然後,請參照圖2F,為了形成遮蔽閘262於第一溝槽T1中,例如可透過化學氣相沉積法,沉積第一多晶矽材料層(未繪示)填滿第一溝槽T1及第二溝槽T2,再進行化學機械平坦化(CMP),移除第一溝槽T1及第二溝槽T2以外的第一多晶矽材料層,使第二溝槽T2內的第一多晶矽材料層作為保護環264。然後, 形成圖案化光阻層PR於第二溝槽T2上,以覆蓋第二溝槽T2內的保護環264。之後,以圖案化光阻層PR為罩幕,蝕刻單元區R1的第一多晶矽材料層,以於單元區R1形成遮蔽閘262,並暴露出第一溝槽T1側壁的部分第二氧化部分252。 Then, referring to FIG. 2F , in order to form a shielding gate 262 in the first trench T1, for example, a first polysilicon material layer (not shown) may be deposited by chemical vapor deposition to fill the first trench T1 and the second trench T2, and then chemical mechanical planarization (CMP) may be performed to remove the first polysilicon material layer outside the first trench T1 and the second trench T2, so that the first polysilicon material layer in the second trench T2 serves as a protective ring 264. Then, a patterned photoresist layer PR is formed on the second trench T2 to cover the protective ring 264 in the second trench T2. Afterwards, the first polysilicon material layer of the cell region R1 is etched using the patterned photoresist layer PR as a mask to form a shielding gate 262 in the cell region R1 and expose part of the second oxidized portion 252 on the sidewall of the first trench T1.

在圖2F中,在沉積第一多晶矽材料層於第一溝槽T1及第二溝槽T2中的過程中,可能形成縫隙S。由於第一溝槽T1內具上寬下窄的空間,使得縫隙S頂多出現在保護環264及遮蔽閘262的相對較窄處;也就是說,保護環264及遮蔽閘262的下部可能具有縫隙S,保護環264及遮蔽閘262的上部基本上沒有縫隙S。如此一來,可避免遮蔽閘262的表面具有尖銳凹處,進而改善尖端放電的問題,提升溝槽式功率半導體裝置的可靠度。 In FIG. 2F , a gap S may be formed during the process of depositing the first polysilicon material layer in the first trench T1 and the second trench T2. Since the first trench T1 has a space that is wide at the top and narrow at the bottom, the gap S mostly appears at the relatively narrow part of the protection ring 264 and the shielding gate 262; that is, the lower part of the protection ring 264 and the shielding gate 262 may have a gap S, and the upper part of the protection ring 264 and the shielding gate 262 basically has no gap S. In this way, the surface of the shielding gate 262 can be prevented from having sharp concave parts, thereby improving the problem of tip discharge and enhancing the reliability of the trench power semiconductor device.

然後,請參照圖2G,移除露出的第二氧化部分252,以暴露出第一溝槽T1的部分側壁。舉例來說,可以用圖案化光阻層PR為罩幕,蝕刻露出的第二氧化部分252,但本發明不以此為限。圖案化光阻層PR可以是與蝕刻單元區R1的第一多晶矽材料層不同的光阻層。 Then, referring to FIG. 2G , the exposed second oxidized portion 252 is removed to expose a portion of the sidewall of the first trench T1. For example, the patterned photoresist layer PR can be used as a mask to etch the exposed second oxidized portion 252, but the present invention is not limited thereto. The patterned photoresist layer PR can be a photoresist layer different from the first polysilicon material layer for etching the cell region R1.

之後,請參照圖2H,形成閘氧化層270於遮蔽閘262的表面及暴露出的第一溝槽T1的側壁上。形成閘氧化層270的方法例如熱氧化法,其中半導體基底100的材料通常是矽、遮蔽閘262的材料是多晶矽,所以遮蔽閘262的表面的氧化速率大於半導體基底200的氧化速率,因此形成於遮蔽閘262的表面的閘氧化層270(即第一閘氧化部分272)的厚度t7大於形成於第一溝槽T1 的側壁的閘氧化層270(即第二閘氧化部分274)的厚度t8。在一實施例中,遮蔽閘262的表面的氧化速率與半導體基底200的氧化速率的比為2:1。 Afterwards, referring to FIG. 2H , a gate oxide layer 270 is formed on the surface of the shielding gate 262 and the exposed sidewall of the first trench T1. The method for forming the gate oxide layer 270 is, for example, a thermal oxidation method, wherein the material of the semiconductor substrate 100 is usually silicon and the material of the shielding gate 262 is polysilicon, so the oxidation rate of the surface of the shielding gate 262 is greater than the oxidation rate of the semiconductor substrate 200, and therefore the thickness t7 of the gate oxide layer 270 (i.e., the first gate oxide portion 272) formed on the surface of the shielding gate 262 is greater than the thickness t8 of the gate oxide layer 270 (i.e., the second gate oxide portion 274) formed on the sidewall of the first trench T1. In one embodiment, the ratio of the oxidation rate of the surface of the shielding gate 262 to the oxidation rate of the semiconductor substrate 200 is 2:1.

請繼續參照圖2H,形成閘極層280於第一溝槽T1內的閘氧化層270上。舉例來說,可透過化學氣相沉積法,沉積第二多晶矽材料層(未繪示)填滿第一溝槽T1,再進行化學機械平坦化,移除第一溝槽T1以外的第二多晶矽材料層,以於第一閘氧化部分272上形成閘極層280。然後,移除圖案化光阻層PR。 Please continue to refer to FIG. 2H to form a gate layer 280 on the gate oxide layer 270 in the first trench T1. For example, a second polysilicon material layer (not shown) can be deposited by chemical vapor deposition to fill the first trench T1, and then chemical mechanical planarization is performed to remove the second polysilicon material layer outside the first trench T1 to form a gate layer 280 on the first gate oxide portion 272. Then, the patterned photoresist layer PR is removed.

經過上述製程後即可大致上完成本實施例溝槽式功率半導體裝置20的製作。 After the above process, the manufacturing of the trench power semiconductor device 20 of this embodiment can be basically completed.

透過上述溝槽式功率半導體裝置20的製造方法,第一氧化部分242的厚度大於第二氧化部分252的厚度,可使遮蔽閘262具有上寬下窄的形狀,因此可避免縫隙S形成於遮蔽閘262的表面,造成遮蔽閘262的表面具有尖銳凹處,進而改善尖端放電的問題,提升溝槽式功率半導體裝置20的崩潰電壓及可靠度。 Through the manufacturing method of the trench power semiconductor device 20, the thickness of the first oxidized portion 242 is greater than the thickness of the second oxidized portion 252, so that the shielding gate 262 has a shape that is wide at the top and narrow at the bottom, thereby preventing the gap S from being formed on the surface of the shielding gate 262, resulting in the surface of the shielding gate 262 having a sharp concave portion, thereby improving the problem of tip discharge and improving the breakdown voltage and reliability of the trench power semiconductor device 20.

綜上所述,本發明溝槽式功率半導體裝置的遮蔽閘包括第一遮蔽部分及第二遮蔽部分,第二遮蔽部分位於第一遮蔽部分上,且第二遮蔽部分的寬度大於第一遮蔽部分的寬度,因此可改善尖端放電的問題,提升溝槽式功率半導體裝置的崩潰電壓,並使可靠度提升。此外,本發明的溝槽式功率半導體裝置的製造方法透過二次氧化反應,以於第一溝槽的側壁形成第一氧化部分及第二氧化部分,且第一氧化部分的厚度大於第二氧化部分的厚 度,因此可避免遮蔽閘的表面產生尖銳的凹處,進而改善尖端放電的問題,提升溝槽式功率半導體裝置的崩潰電壓及可靠度。 In summary, the shielding gate of the trench power semiconductor device of the present invention includes a first shielding portion and a second shielding portion, the second shielding portion is located on the first shielding portion, and the width of the second shielding portion is greater than the width of the first shielding portion, so that the problem of tip discharge can be improved, the breakdown voltage of the trench power semiconductor device can be increased, and the reliability can be improved. In addition, the manufacturing method of the trench power semiconductor device of the present invention forms a first oxidation portion and a second oxidation portion on the side wall of the first trench through a secondary oxidation reaction, and the thickness of the first oxidation portion is greater than the thickness of the second oxidation portion. Therefore, the surface of the shielding gate can be prevented from generating a sharp concave area, thereby improving the problem of tip discharge and improving the breakdown voltage and reliability of the trench power semiconductor device.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。 Although the present invention has been disclosed as above by the embodiments, it is not intended to limit the present invention. Anyone with ordinary knowledge in the relevant technical field can make some changes and modifications without departing from the spirit and scope of the present invention. Therefore, the protection scope of the present invention shall be subject to the scope defined by the attached patent application.

10:溝槽式功率半導體裝置 10: Trench power semiconductor device

100:半導體基底 100:Semiconductor substrate

100s:表面 100s: Surface

110:遮蔽閘 110: Shield gate

110’:保護環 110’: Protective ring

112:第一遮蔽部分 112: First shielding part

112’:第一保護環部分 112’: First protection ring section

114:第二遮蔽部分 114: Second shielding part

114’:第二保護環部分 114’: Second protection ring section

120:氧化層 120: Oxide layer

120’:終端氧化層 120’: terminal oxide layer

122:第一氧化部分 122: First oxidation part

122’:第一終端氧化部分 122’: first terminal oxidation part

124:第二氧化部分 124: Second oxidation part

124’:第二終端氧化部分 124': Second terminal oxidation part

130:閘極層 130: Gate layer

140:閘氧化層 140: Gate oxide layer

142:第一閘氧化部分 142: First gate oxidation part

144:第二閘氧化部分 144: Second gate oxidation part

h1、h2、h3、h1’、h2’:高度 h1, h2, h3, h1’, h2’: height

R1:單元區 R1: Unit area

R2:終端區 R2: Terminal area

S:縫隙 S: Gap

t1、t2、t3、t4、t1’、t2’:厚度 t1, t2, t3, t4, t1’, t2’: thickness

T1:第一溝槽 T1: First groove

T2:第二溝槽 T2: Second groove

w1、w2、w1’、w2’:寬度 w1, w2, w1’, w2’: width

Claims (12)

一種溝槽式功率半導體裝置,包括:半導體基底,具有第一溝槽;遮蔽閘,設置於所述第一溝槽中,其中所述遮蔽閘包括第一遮蔽部分及第二遮蔽部分,所述第二遮蔽部分位於所述第一遮蔽部分上,且所述第二遮蔽部分的寬度大於所述第一遮蔽部分的寬度;氧化層,設置於所述遮蔽閘與所述半導體基底之間,其中所述氧化層包括第一氧化部分及第二氧化部分,所述第一氧化部分環繞所述第一遮蔽部分,所述第二氧化部分環繞所述第二遮蔽部分,且所述第一氧化部分的厚度大於所述第二氧化部分的厚度,其中所述第一氧化部分的所述厚度與所述第二氧化部分的所述厚度之比在7/6至4/3之間;閘極層,設置於所述第一溝槽中,並位於所述遮蔽閘上;以及閘氧化層,包括:第一閘氧化部分,設置於所述閘極層與所述遮蔽閘的所述第二遮蔽部分之間;以及第二閘氧化部分,設置於所述閘極層與所述半導體基底之間,其中所述第二閘氧化部分的厚度小於所述第二氧化部分的所述厚度,其中所述第一氧化部分的高度為3±0.6μm,所述第二氧化部 分的高度為1.5±0.3μm,所述第二閘氧化部分的高度為1.5±0.3μm。 A trench power semiconductor device comprises: a semiconductor substrate having a first trench; a shielding gate arranged in the first trench, wherein the shielding gate comprises a first shielding portion and a second shielding portion, the second shielding portion is located on the first shielding portion, and the width of the second shielding portion is greater than the width of the first shielding portion; an oxide layer arranged between the shielding gate and the semiconductor substrate, wherein the oxide layer comprises a first oxide portion and a second oxide portion, the first oxide portion surrounds the first shielding portion, the second oxide portion surrounds the second shielding portion, and the thickness of the first oxide portion is greater than the thickness of the second oxide portion, wherein the first oxide layer is The ratio of the thickness of the first oxide portion to the thickness of the second oxide portion is between 7/6 and 4/3; a gate layer is arranged in the first trench and is located on the shielding gate; and a gate oxide layer includes: a first gate oxide portion is arranged between the gate layer and the second shielding portion of the shielding gate; and a second gate oxide portion is arranged between the gate layer and the semiconductor substrate, wherein the thickness of the second gate oxide portion is less than the thickness of the second oxide portion, wherein the height of the first oxide portion is 3±0.6μm, the height of the second oxide portion is 1.5±0.3μm, and the height of the second gate oxide portion is 1.5±0.3μm. 如請求項1所述的溝槽式功率半導體裝置,其中所述第一閘氧化部分的厚度大於所述第二閘氧化部分的厚度。 A trench power semiconductor device as described in claim 1, wherein the thickness of the first gate oxide portion is greater than the thickness of the second gate oxide portion. 如請求項1所述的溝槽式功率半導體裝置,其中所述半導體基底包括單元區與終端區,所述第一溝槽設置在所述單元區,且所述半導體基底在所述終端區更包括第二溝槽。 A trench-type power semiconductor device as described in claim 1, wherein the semiconductor substrate includes a cell region and a terminal region, the first trench is disposed in the cell region, and the semiconductor substrate further includes a second trench in the terminal region. 如請求項3所述的溝槽式功率半導體裝置,更包括:至少一保護環,設置於所述第二溝槽中,其中所述保護環包括第一保護環部分及第二保護環部分,所述第二保護環部分位於所述第一保護環部分上,且所述第二保護環部分的寬度大於所述第一保護環部分的寬度;以及終端氧化層,位於所述保護環與所述半導體基底之間,其中所述終端氧化層包括第一終端氧化部分及第二終端氧化部分,所述第一終端氧化部分環繞所述第一保護環部分,所述第二終端氧化部分環繞所述第二保護環部分,且所述第二終端氧化部分的厚度小於所述第一終端氧化部分的厚度。 The trench power semiconductor device as described in claim 3 further comprises: at least one guard ring disposed in the second trench, wherein the guard ring comprises a first guard ring portion and a second guard ring portion, the second guard ring portion is located on the first guard ring portion, and the width of the second guard ring portion is greater than the width of the first guard ring portion; and a terminal oxide layer disposed between the guard ring and the semiconductor substrate, wherein the terminal oxide layer comprises a first terminal oxide portion and a second terminal oxide portion, the first terminal oxide portion surrounds the first guard ring portion, the second terminal oxide portion surrounds the second guard ring portion, and the thickness of the second terminal oxide portion is less than the thickness of the first terminal oxide portion. 一種溝槽式功率半導體裝置的製造方法,包括:提供半導體基底;於所述半導體基底中形成第一溝槽;於所述第一溝槽的底部及部分側壁形成第一氧化部分;於所述第一溝槽未被所述第一氧化部分覆蓋的所述側壁上形 成第二氧化部分,其中所述第一氧化部分的厚度大於所述第二氧化部分的厚度;形成遮蔽閘於所述第一溝槽中,並暴露出部分所述第二氧化部分;移除露出的所述第二氧化部分,以暴露出所述第一溝槽的部分所述側壁;形成閘氧化層於所述遮蔽閘的表面及暴露出的所述第一溝槽的所述側壁上,其中所述閘氧化層的厚度小於所述第二氧化部分的所述厚度;以及形成閘極層於所述第一溝槽內的所述閘氧化層上。 A method for manufacturing a trench power semiconductor device, comprising: providing a semiconductor substrate; forming a first trench in the semiconductor substrate; forming a first oxide portion at the bottom and part of the sidewall of the first trench; forming a second oxide portion on the sidewall of the first trench not covered by the first oxide portion, wherein the thickness of the first oxide portion is greater than the thickness of the second oxide portion; forming a shielding gate in the first trench and exposing part of the second oxide portion; removing the exposed second oxide portion to expose part of the sidewall of the first trench; forming a gate oxide layer on the surface of the shielding gate and the exposed sidewall of the first trench, wherein the thickness of the gate oxide layer is less than the thickness of the second oxide portion; and forming a gate layer on the gate oxide layer in the first trench. 如請求項5所述的溝槽式功率半導體裝置的製造方法,其中所述半導體基底包括單元區及終端區,所述第一溝槽形成於所述單元區,且形成所述第一溝槽的步驟包括:同時於所述半導體基底的所述終端區中形成第二溝槽。 The manufacturing method of the trench power semiconductor device as described in claim 5, wherein the semiconductor substrate includes a cell region and a terminal region, the first trench is formed in the cell region, and the step of forming the first trench includes: simultaneously forming a second trench in the terminal region of the semiconductor substrate. 如請求項6所述的溝槽式功率半導體裝置的製造方法,其中形成所述第一氧化部分的步驟包括:同時於所述第二溝槽的底部及部分側壁形成第一終端氧化部分。 The manufacturing method of the trench power semiconductor device as described in claim 6, wherein the step of forming the first oxidation portion includes: simultaneously forming a first terminal oxidation portion at the bottom and part of the sidewall of the second trench. 如請求項7所述的溝槽式功率半導體裝置的製造方法,其中形成所述第二氧化部分的步驟包括:同時於所述第二溝槽未被所述第一終端氧化部分覆蓋的所述側壁上形成第二終端氧化部分。 The manufacturing method of the trench power semiconductor device as described in claim 7, wherein the step of forming the second oxidation portion includes: simultaneously forming a second terminal oxidation portion on the sidewall of the second trench not covered by the first terminal oxidation portion. 如請求項8所述的溝槽式功率半導體裝置的製造方法,其中形成所述遮蔽閘的步驟包括:沉積多晶矽材料層於所述第一溝槽及所述第二溝槽中,其中所述第二溝槽內的所述多晶矽材料層作為保護環;形成圖案化光阻層於所述第二溝槽上,以覆蓋所述第二溝槽內的所述保護環;以及以所述圖案化光阻層為罩幕,蝕刻所述單元區的所述多晶矽材料層,以於所述單元區形成所述遮蔽閘。 The manufacturing method of the trench power semiconductor device as described in claim 8, wherein the step of forming the shielding gate includes: depositing a polysilicon material layer in the first trench and the second trench, wherein the polysilicon material layer in the second trench serves as a protective ring; forming a patterned photoresist layer on the second trench to cover the protective ring in the second trench; and etching the polysilicon material layer in the cell area using the patterned photoresist layer as a mask to form the shielding gate in the cell area. 如請求項5所述的溝槽式功率半導體裝置的製造方法,其中於所述半導體基底中形成所述第一溝槽的步驟包括:於所述半導體基底的表面形成圖案化硬罩幕層;使用所述圖案化硬罩幕層作為罩幕,蝕刻露出的所述半導體基底,以形成淺溝槽;形成薄氧化層於所述淺溝槽的側壁及底面;於所述淺溝槽的所述側壁的所述薄氧化層上形成氮化矽間隙壁;使用所述氮化矽間隙壁作為罩幕,蝕刻去除所述淺溝槽的所述底面上的所述薄氧化層;以及使用所述圖案化硬罩幕層與所述氮化矽間隙壁作為罩幕,蝕刻所述淺溝槽的所述底面露出的所述半導體基底,以形成所述第一溝槽。 The manufacturing method of the trench power semiconductor device as described in claim 5, wherein the step of forming the first trench in the semiconductor substrate comprises: forming a patterned hard mask layer on the surface of the semiconductor substrate; using the patterned hard mask layer as a mask to etch the exposed semiconductor substrate to form a shallow trench; forming a thin oxide layer on the sidewall and bottom of the shallow trench; A silicon nitride spacer is formed on the thin oxide layer of the sidewall of the shallow trench; the silicon nitride spacer is used as a mask to etch away the thin oxide layer on the bottom surface of the shallow trench; and the patterned hard mask layer and the silicon nitride spacer are used as a mask to etch the semiconductor substrate exposed on the bottom surface of the shallow trench to form the first trench. 如請求項10所述的溝槽式功率半導體裝置的製造方法,其中形成所述第一氧化部分的步驟包括:進行第一氧化反應,以於所述氮化矽間隙壁以外的所述第一溝槽的所述側壁及所述底部形成所述第一氧化部分。 The manufacturing method of the trench power semiconductor device as described in claim 10, wherein the step of forming the first oxidized portion includes: performing a first oxidation reaction to form the first oxidized portion on the sidewall and the bottom of the first trench outside the silicon nitride spacer. 如請求項11所述的溝槽式功率半導體裝置的製造方法,其中形成所述第二氧化部分的步驟包括:移除所述薄氧化層、所述圖案化硬罩幕層與所述氮化矽間隙壁,以暴露出所述第一溝槽的部分所述側壁;以及進行第二氧化反應,以形成所述第二氧化部分。 The manufacturing method of the trench power semiconductor device as described in claim 11, wherein the step of forming the second oxidized portion includes: removing the thin oxide layer, the patterned hard mask layer and the silicon nitride spacer to expose a portion of the sidewall of the first trench; and performing a second oxidation reaction to form the second oxidized portion.
TW111111353A 2022-03-25 2022-03-25 Trench power semiconductor device and manufactureing method thereof TWI838718B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW111111353A TWI838718B (en) 2022-03-25 Trench power semiconductor device and manufactureing method thereof
CN202210485429.9A CN116845102A (en) 2022-03-25 2022-05-06 Trench power semiconductor device and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW111111353A TWI838718B (en) 2022-03-25 Trench power semiconductor device and manufactureing method thereof

Publications (2)

Publication Number Publication Date
TW202339267A TW202339267A (en) 2023-10-01
TWI838718B true TWI838718B (en) 2024-04-11

Family

ID=

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210020778A1 (en) 2019-07-16 2021-01-21 Powerchip Semiconductor Manufacturing Corporation Shield gate mosfet and method for fabricating the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210020778A1 (en) 2019-07-16 2021-01-21 Powerchip Semiconductor Manufacturing Corporation Shield gate mosfet and method for fabricating the same

Similar Documents

Publication Publication Date Title
US6828626B2 (en) Semiconductor device with vertical transistors
TWI426568B (en) Semiconductor power device and manufacturing method thereof
KR100700332B1 (en) Method for fabricating the same of semiconductor device with recess gate of flask shape
TWI686903B (en) Gate structure of split-gate mosfet and manufacturing method thereof
JP2009099863A (en) Semiconductor device, and manufacturing method of semiconductor device
CN111725293A (en) Semiconductor structure and forming method thereof
TW201442253A (en) Semiconductor device and its terminal area structure
US20050202637A1 (en) Recessed termination for trench schottky device without junction curvature
TWI838718B (en) Trench power semiconductor device and manufactureing method thereof
WO2023206986A1 (en) Silicon carbide semiconductor device and manufacturing method therefor
JP7313082B2 (en) Semiconductor power device manufacturing method
CN114678425A (en) Silicon carbide semiconductor device and manufacturing method thereof
US7507630B2 (en) Method of fabricating a semiconductor device
TW202339267A (en) Trench power semiconductor device and manufactureing method thereof
TWI767143B (en) Structure of high voltage transistor and method for fabricating the same
US20070238251A1 (en) Method of forming sub-100nm narrow trenches in semiconductor substrates
CN108109917B (en) Isolation structure of field effect transistor and manufacturing method thereof
CN110034010B (en) Semiconductor structure and forming method thereof
KR100772709B1 (en) Method for fabricating the same of semiconductor device with isolation
KR20080042565A (en) Method for forming semiconductor device
TW202029501A (en) Multi-trench mosfet and fabricating method thereof
TW201901890A (en) Semiconductor structure and manufacturing method thereof and terminal area structure of semiconductor device
TWI597766B (en) Trench power semiconductor device and manufacturing method thereof
TWM464821U (en) Semiconductor device and its terminal area structure
CN217468441U (en) Silicon carbide semiconductor device