TWI837931B - Semiconductor device and fabrication method thereof - Google Patents

Semiconductor device and fabrication method thereof Download PDF

Info

Publication number
TWI837931B
TWI837931B TW111142488A TW111142488A TWI837931B TW I837931 B TWI837931 B TW I837931B TW 111142488 A TW111142488 A TW 111142488A TW 111142488 A TW111142488 A TW 111142488A TW I837931 B TWI837931 B TW I837931B
Authority
TW
Taiwan
Prior art keywords
compound semiconductor
layer
cap layer
region
semiconductor device
Prior art date
Application number
TW111142488A
Other languages
Chinese (zh)
Other versions
TW202420559A (en
Inventor
林鑫成
黃嘉慶
Original Assignee
世界先進積體電路股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 世界先進積體電路股份有限公司 filed Critical 世界先進積體電路股份有限公司
Priority to TW111142488A priority Critical patent/TWI837931B/en
Application granted granted Critical
Publication of TWI837931B publication Critical patent/TWI837931B/en
Publication of TW202420559A publication Critical patent/TW202420559A/en

Links

Images

Landscapes

  • Junction Field-Effect Transistors (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

A semiconductor device includes a substrate having an active element region and a passive element region. A compound semiconductor channel layer, a compound semiconductor barrier layer and a first compound semiconductor cap layer are disposed on the substrate in sequence and located in the active element region A gate electrode is disposed on the first compound semiconductor cap layer. A source electrode and a drain electrode are disposed on the compound semiconductor barrier layer and located on two sides of the gate electrode, respectively, to construct a high electron mobility transistor. A second compound semiconductor cap layer is disposed on the substrate and located in the passive element region to construct a resistor.

Description

半導體裝置及其製造方法 Semiconductor device and method for manufacturing the same

本揭露係關於半導體裝置,特別是關於整合電阻器和高電子遷移率電晶體的半導體裝置及其製造方法。 The present disclosure relates to semiconductor devices, in particular to semiconductor devices integrating resistors and high electron mobility transistors and methods for manufacturing the same.

在交流/直流(AC/DC)電源轉換的電路中,通常會使用電阻器來當成分壓器使用。目前大多數的半導體元件都是以矽作為基礎材料與通道,而一般使用矽的半導體元件通常採用多晶矽製作電阻器,並且將多晶矽電阻器放置在場氧化物(field oxide,FOX)上。這種多晶矽電阻器能承受的電壓會受限於場氧化物的厚度,並且當電阻器兩端的電壓加大時,會導致多晶矽空乏(poly depletion)現象變得更加嚴重,造成電阻值在電壓變化時為非線性。 In AC/DC power conversion circuits, resistors are usually used as voltage dividers. Currently, most semiconductor components use silicon as the base material and channel, and semiconductor components that generally use silicon usually use polysilicon to make resistors, and place the polysilicon resistors on field oxide (FOX). The voltage that this polysilicon resistor can withstand is limited by the thickness of the field oxide, and when the voltage at both ends of the resistor increases, the polysilicon depletion phenomenon will become more serious, causing the resistance value to be nonlinear when the voltage changes.

隨著高電壓高功率元件的發展,使用氮化鎵(GaN)的半導體元件,例如高電子遷移率電晶體(high electron mobility transistor,HEMT)因為具有低的導通電阻以及耐高壓、高頻和高電流等優點,已逐漸取代使用矽的半導體元件。然而,在交流/直流(AC/DC)電源轉換的電路和其他數位邏輯(digital logic)電路中,如何將電阻器與高電子遷移率電晶體整合仍有許多問題需要克服。 With the development of high-voltage and high-power devices, semiconductor devices using gallium nitride (GaN), such as high electron mobility transistors (HEMT), have gradually replaced semiconductor devices using silicon due to their low on-resistance and high voltage, high frequency and high current resistance. However, in AC/DC power conversion circuits and other digital logic circuits, there are still many problems to be overcome in integrating resistors with high electron mobility transistors.

有鑑於此,本揭露提出一種整合電阻器和高電子遷移率電晶體的半導體裝置及其製造方法,其利用形成高電子遷移率電晶體的蓋層之化合物半導體材料層,不需額外新增製程和光罩,即可在被動元件區形成電阻器,以完成整合電阻器和高電子遷移率電晶體的半導體裝置。 In view of this, the present disclosure proposes a semiconductor device integrating a resistor and a high electron mobility transistor and a manufacturing method thereof, which utilizes a compound semiconductor material layer forming a capping layer of a high electron mobility transistor, and can form a resistor in a passive element region without additional processes and masks, thereby completing a semiconductor device integrating a resistor and a high electron mobility transistor.

根據本揭露的一實施例,提供一種半導體裝置,包括基底、化合物半導體通道層、化合物半導體阻障層、第一化合物半導體蓋層、閘極電極、源極電極、汲極電極、以及第二化合物半導體蓋層。基底具有主動元件區和被動元件區,化合物半導體通道層、化合物半導體阻障層及第一化合物半導體蓋層依序設置於基底之上,且位於主動元件區,閘極電極設置於第一化合物半導體蓋層上,源極電極和汲極電極設置於化合物半導體阻障層上,且分別位於閘極電極的兩側,以構成高電子遷移率電晶體,以及第二化合物半導體蓋層設置於基底之上,且位於被動元件區,以構成電阻器。 According to an embodiment of the present disclosure, a semiconductor device is provided, including a substrate, a compound semiconductor channel layer, a compound semiconductor barrier layer, a first compound semiconductor capping layer, a gate electrode, a source electrode, a drain electrode, and a second compound semiconductor capping layer. The substrate has an active element region and a passive element region, a compound semiconductor channel layer, a compound semiconductor barrier layer and a first compound semiconductor cap layer are sequentially arranged on the substrate and located in the active element region, a gate electrode is arranged on the first compound semiconductor cap layer, a source electrode and a drain electrode are arranged on the compound semiconductor barrier layer and are respectively located on both sides of the gate electrode to form a high electron mobility transistor, and a second compound semiconductor cap layer is arranged on the substrate and located in the passive element region to form a resistor.

根據本揭露的一實施例,提供一種半導體裝置的製造方法,包括以下步驟:提供基底,具有主動元件區和被動元件區;在基底之上,於主動元件區和被動元件區內依序形成化合物半導體通道層、化合物半導體阻障層、及化合物半導體蓋層;在被動元件區的化合物半導體通道層內形成隔離區;圖案化該化合物半導體蓋層,以於主動元件區內形成第一化合物半導體蓋層,並於被動元件區內形成第二化合物半導體蓋層,其中第二化合物半導體蓋層構成電阻器;在第一化合物半導體蓋層上形成閘極電極;以及在化合物半導體阻障層上形成源極電極和汲極電極,分別位於閘極電極的兩側,以構成高電子遷移率電晶體。 According to an embodiment of the present disclosure, a method for manufacturing a semiconductor device is provided, comprising the following steps: providing a substrate having an active device region and a passive device region; sequentially forming a compound semiconductor channel layer, a compound semiconductor barrier layer, and a compound semiconductor cap layer in the active device region and the passive device region on the substrate; forming an isolation region in the compound semiconductor channel layer in the passive device region; patterning the compound semiconductor Semiconductor capping layer, to form a first compound semiconductor capping layer in the active element region, and to form a second compound semiconductor capping layer in the passive element region, wherein the second compound semiconductor capping layer constitutes a resistor; a gate electrode is formed on the first compound semiconductor capping layer; and a source electrode and a drain electrode are formed on the compound semiconductor barrier layer, respectively located on both sides of the gate electrode, to constitute a high electron mobility transistor.

為了讓本揭露之特徵明顯易懂,下文特舉出實施例,並配合所附圖式,作詳細說明如下。 In order to make the features of this disclosure clear and easy to understand, the following is a detailed description of the embodiments with the help of the attached drawings.

100:半導體裝置 100:Semiconductor devices

100A:主動元件區 100A: Active component area

100B:被動元件區 100B: Passive component area

101:基底 101: Base

102:晶種層 102: Seed layer

103:緩衝層 103: Buffer layer

104:高電阻層 104: High resistance layer

105:磊晶疊層 105: Epitaxial stacking

106:化合物半導體通道層 106: Compound semiconductor channel layer

107:淺溝槽隔離區 107: Shallow trench isolation area

108:化合物半導體阻障層 108: Compound semiconductor barrier layer

109:隔離區 109: Isolation area

110-1:第一化合物半導體蓋層 110-1: The first compound semiconductor capping layer

110-2:第二化合物半導體蓋層 110-2: Second compound semiconductor capping layer

110-2A1、110-2A2:長條形 110-2A1, 110-2A2: Long strip

110-2B:連續彎曲形 110-2B: Continuous curved shape

110-2C:螺旋形 110-2C: spiral

112:閘極電極 112: Gate electrode

113:圖案化導電層 113: Patterned conductive layer

113-1:圖案化導電層的第一部份 113-1: The first part of the patterned conductive layer

113-2:圖案化導電層的第二部份 113-2: The second part of the patterned conductive layer

114:源極電極 114: Source electrode

116:汲極電極 116: Drain electrode

118:截斷區 118: Cut-off area

120:接點 120: Contact

120-1:第一接點 120-1: First contact

120-2:第二接點 120-2: Second contact

130:導線層 130: Conductor layer

132:源極接點 132: Source contact

133:汲極接點 133: Drain contact

134:層間介電層 134: Interlayer dielectric layer

140:凹陷 140: Depression

HEMT:高電子遷移率電晶體 HEMT: High Electron Mobility Transistor

R:電阻器 R: Resistor

2DEG:二維電子氣區域 2DEG: Two-dimensional electron gas region

L1、L2:長度 L1, L2: length

W1、W2:寬度 W1, W2: Width

為了使下文更容易被理解,在閱讀本揭露時可同時參考圖式及其詳細文字說明。透過本文中之具體實施例並參考相對應的圖式,俾以詳細解說本揭露之具體實施例,並用以闡述本揭露之具體實施例之作用原理。此外,為了清楚起見,圖式中的各特徵可能未按照實際的比例繪製,因此某些圖式中的部分特徵的尺寸可能被刻意放大或縮小。 In order to make the following easier to understand, the drawings and their detailed text descriptions can be referred to simultaneously when reading this disclosure. Through the specific embodiments in this article and reference to the corresponding drawings, the specific embodiments of this disclosure are explained in detail, and the working principles of the specific embodiments of this disclosure are explained. In addition, for the sake of clarity, the features in the drawings may not be drawn according to the actual scale, so the size of some features in some drawings may be deliberately enlarged or reduced.

第1圖是根據本揭露一實施例所繪示半導體裝置的俯視示意圖。 Figure 1 is a schematic top view of a semiconductor device according to an embodiment of the present disclosure.

第2圖是根據本揭露一實施例所繪示沿著第1圖的剖面切線A-A’之半導體裝置的剖面示意圖。 FIG. 2 is a schematic cross-sectional view of a semiconductor device along the cross-sectional line A-A’ of FIG. 1 according to an embodiment of the present disclosure.

第3圖是根據本揭露一實施例所繪示沿著第1圖的剖面切線B-B’之半導體裝置的電阻器的剖面示意圖。 FIG. 3 is a schematic cross-sectional view of a resistor of a semiconductor device along the cross-sectional cut line B-B' of FIG. 1 according to an embodiment of the present disclosure.

第4圖是根據本揭露一實施例所繪示沿著第1圖的剖面切線C-C’之半導體裝置的剖面示意圖。 FIG. 4 is a schematic cross-sectional view of a semiconductor device along the cross-sectional cut line C-C' of FIG. 1 according to an embodiment of the present disclosure.

第5圖是根據本揭露另一實施例所繪示沿著第1圖的剖面切線C-C’之半導體裝置的剖面示意圖。 FIG. 5 is a schematic cross-sectional view of a semiconductor device along the cross-sectional cut line C-C' of FIG. 1 according to another embodiment of the present disclosure.

第6圖是根據本揭露又另一實施例所繪示沿著第1圖的剖面切線C-C’之半導體裝置的剖面示意圖。 FIG. 6 is a schematic cross-sectional view of a semiconductor device along the cross-sectional cut line C-C' of FIG. 1 according to yet another embodiment of the present disclosure.

第7圖是根據本揭露再另一實施例所繪示沿著第1圖的剖面切線C-C’之半導體裝置的剖面示意圖。 FIG. 7 is a schematic cross-sectional view of a semiconductor device along the cross-sectional cut line C-C' of FIG. 1 according to another embodiment of the present disclosure.

半導體裝置 Semiconductor devices

第8圖是根據本揭露一實施例所繪示半導體裝置的電阻器的俯視示意圖。 FIG. 8 is a schematic top view of a resistor of a semiconductor device according to an embodiment of the present disclosure.

第9圖是根據本揭露另一些實施例所繪示半導體裝置的電阻器的俯視示意圖。 FIG. 9 is a schematic top view of a resistor of a semiconductor device according to other embodiments of the present disclosure.

第10圖是根據本揭露一些實施例之半導體裝置的電阻器之電流對應電壓的曲線圖。 FIG. 10 is a graph showing the current versus voltage of a resistor in a semiconductor device according to some embodiments of the present disclosure.

本揭露提供了數個不同的實施例,可用於實現本揭露的不同特徵。為簡化說明起見,本揭露也同時描述了特定構件與佈置的範例。提供這些實施例的目的僅在於示意,而非予以任何限制。舉例而言,下文中針對「第一特徵形成在第二特徵上或上方」的敘述,其可以是指「第一特徵與第二特徵直接接觸」,也可以是指「第一特徵與第二特徵間另存在有其他特徵」,致使第一特徵與第二特徵並不直接接觸。此外,本揭露中的各種實施例可能使用重複的參考符號和/或文字註記。使用這些重複的參考符號與註記是為了使敘述更簡潔和明確,而非用以指示不同的實施例及/或配置之間的關聯性。 The present disclosure provides several different embodiments that can be used to implement different features of the present disclosure. For the purpose of simplifying the description, the present disclosure also describes examples of specific components and arrangements. The purpose of providing these embodiments is only for illustration and not for limitation. For example, the description below of "a first feature is formed on or above a second feature" may refer to "the first feature is in direct contact with the second feature" or "there are other features between the first feature and the second feature", so that the first feature and the second feature are not in direct contact. In addition, various embodiments in the present disclosure may use repeated reference symbols and/or text annotations. These repeated reference symbols and annotations are used to make the description more concise and clear, rather than to indicate the relationship between different embodiments and/or configurations.

另外,針對本揭露中所提及的空間相關的敘述詞彙,例如:「在...之下」,「低」,「下」,「上方」,「之上」,「上」,「頂」,「底」和類似詞彙時,為便於敘述,其用法均在於描述圖式中一個元件或特徵與另一個(或多個)元件或特徵的相對關係。除了圖式中所顯示的擺向外,這些空間相關詞彙也用來描述半導體裝置在使用中以及操作時的可能擺向。隨著半導體裝置的擺向的不同(旋轉90度或其它方位),用以描述其擺向的空間相關敘述亦應透過類似的方式予以解釋。 In addition, for the spatially related descriptive terms mentioned in this disclosure, such as "under", "low", "down", "above", "above", "up", "top", "bottom" and similar terms, for the convenience of description, their usage is to describe the relative relationship between one element or feature and another (or multiple) elements or features in the drawings. In addition to the orientation shown in the drawings, these spatially related terms are also used to describe the possible orientations of semiconductor devices during use and operation. With the different orientations of the semiconductor device (rotated 90 degrees or other orientations), the spatially related descriptions used to describe its orientation should also be interpreted in a similar manner.

雖然本揭露使用第一、第二、第三等等用詞,以敘述種種元件、部件、區域、層、及/或區塊(section),但應了解此等元件、部件、區域、層、及/或區塊不應被此等用詞所限制。此等用詞僅是用以區分某一元件、部件、區域、層、及/或區塊與另一個元件、部件、區域、層、及/或區塊,其本身並不意含及代表該元件有任何之前的序數,也不代表某一元件與另一元件的排列順序、或 是製造方法上的順序。因此,在不背離本揭露之具體實施例之範疇下,下列所討論之第一元件、部件、區域、層、或區塊亦可以第二元件、部件、區域、層、或區塊之詞稱之。 Although the present disclosure uses the terms first, second, third, etc. to describe various elements, components, regions, layers, and/or sections, it should be understood that these elements, components, regions, layers, and/or sections should not be limited by these terms. These terms are only used to distinguish a certain element, component, region, layer, and/or section from another element, component, region, layer, and/or section, and they do not imply or represent any previous sequence of the element, nor do they represent the arrangement order of a certain element and another element, or the order of the manufacturing method. Therefore, without departing from the scope of the specific embodiments of the present disclosure, the first element, component, region, layer, or section discussed below can also be referred to as the second element, component, region, layer, or section.

本揭露中所提及的「約」或「實質上」之用語通常表示在一給定值或範圍的20%之內,較佳是10%之內,且更佳是5%之內,或3%之內,或2%之內,或1%之內,或0.5%之內。應注意的是,說明書中所提供的數量為大約的數量,亦即在沒有特定說明「約」或「實質上」的情況下,仍可隱含「約」或「實質上」之含義。 The terms "about" or "substantially" mentioned in this disclosure generally mean within 20% of a given value or range, preferably within 10%, and more preferably within 5%, or within 3%, or within 2%, or within 1%, or within 0.5%. It should be noted that the quantities provided in the specification are approximate quantities, that is, in the absence of specific description of "about" or "substantially", the meaning of "about" or "substantially" can still be implied.

本揭露中所提及的「耦接」、「耦合」、「電連接」一詞包含任何直接及間接的電氣連接手段。舉例而言,若文中描述第一部件耦接於第二部件,則代表第一部件可直接電氣連接於第二部件,或透過其他裝置或連接手段間接地電氣連接至該第二部件。 The terms "coupling", "coupling", and "electrical connection" mentioned in this disclosure include any direct and indirect electrical connection means. For example, if the text describes that a first component is coupled to a second component, it means that the first component can be directly electrically connected to the second component, or indirectly electrically connected to the second component through other devices or connection means.

在本揭露中,「化合物半導體(compound semiconductor)」係指包含至少一第三族(group III)元素與至少一第五族(group V)元素的化合物半導體。其中,第三族元素可以是硼(B)、鋁(Al)、鎵(Ga)或銦(In),而第五族元素可以是氮(N)、磷(P)、砷(As)或銻(Sb)。進一步而言,「化合物半導體」可以是二元化合物半導體、三元化合物半導體或四元化合物半導體,包括:氮化鎵(GaN)、磷化銦(InP)、砷化鋁(AlAs)、砷化鎵(GaAs)、氮化鋁鎵(AlGaN)、氮化銦鋁鎵(InAlGaN)、氮化銦鎵(InGaN)、氮化鋁(AlN)、磷化鎵銦(GaInP)、砷化鋁鎵(AlGaAs)、砷化鋁銦(InAlAs)、砷化鎵銦(InGaAs)、其類似物或上述化合物的組合,但不限於此。此外,端視需求,化合物半導體內亦可包括摻質,而為具有特定導電型的化合物半導體,例如n型或p型化合物半導體。在下文中,化合物半導體又可稱為III-V族半導體。 In the present disclosure, "compound semiconductor" refers to a compound semiconductor containing at least one group III element and at least one group V element. The group III element may be boron (B), aluminum (Al), gallium (Ga) or indium (In), and the group V element may be nitrogen (N), phosphorus (P), arsenic (As) or antimony (Sb). Furthermore, the "compound semiconductor" may be a binary compound semiconductor, a ternary compound semiconductor or a quaternary compound semiconductor, including: gallium nitride (GaN), indium phosphide (InP), aluminum arsenide (AlAs), gallium arsenide (GaAs), aluminum gallium nitride (AlGaN), indium aluminum gallium nitride (InAlGaN), indium gallium nitride (InGaN), aluminum nitride (AlN), gallium indium phosphide (GaInP), aluminum gallium arsenide (AlGaAs), aluminum indium arsenide (InAlAs), gallium indium arsenide (InGaAs), their analogs or combinations of the above compounds, but not limited thereto. In addition, depending on the needs, the compound semiconductor may also include dopants to be a compound semiconductor with a specific conductivity type, such as an n-type or p-type compound semiconductor. In the following text, compound semiconductors may also be referred to as III-V semiconductors.

雖然下文係藉由具體實施例以描述本揭露的發明,然而本揭露的發 明原理亦可應用至其他的實施例。此外,為了不致使本發明之精神晦澀難懂,特定的細節會被予以省略,該些被省略的細節係屬於所屬技術領域中具有通常知識者的知識範圍。 Although the invention disclosed herein is described below by means of specific embodiments, the inventive principle disclosed herein can also be applied to other embodiments. In addition, in order not to obscure the spirit of the invention, certain details will be omitted, and these omitted details belong to the knowledge scope of those with ordinary knowledge in the relevant technical field.

本揭露係關於整合電阻器和高電子遷移率電晶體的半導體裝置及其製造方法,此半導體裝置利用形成高電子遷移率電晶體的蓋層之化合物半導體材料層,例如氮化鎵(GaN)層的高電阻特性,在被動元件區形成電阻器,並且可以藉由形成高電子遷移率電晶體的化合物半導體蓋層之磊晶成長和圖案化製程,不需要額外新增製程步驟和光罩,即可在主動元件區形成高電子遷移率電晶體的化合物半導體蓋層,同時在被動元件區形成由化合物半導體蓋層構成的電阻器。 The present disclosure relates to a semiconductor device integrating a resistor and a high electron mobility transistor and a manufacturing method thereof. The semiconductor device utilizes the high resistance characteristics of a compound semiconductor material layer, such as a gallium nitride (GaN) layer, which forms a cap layer of a high electron mobility transistor to form a resistor in a passive device region. The compound semiconductor cap layer of a high electron mobility transistor can be formed in an active device region by epitaxial growth and patterning processes without the need for additional process steps and masks, and a resistor composed of the compound semiconductor cap layer can be formed in a passive device region.

此外,本揭露之實施例的電阻器可以藉由調整在被動元件區的化合物半導體蓋層之長寬比或繞線形狀,以獲得不同電阻值的電阻器,並且可以將電阻器與高電子遷移率電晶體及/或其他元件,例如稽納二極體(Zener diode)並聯及/或串聯,以形成半導體裝置。相較於習知使用多晶矽電阻器的半導體裝置,本揭露之半導體裝置的電阻器的製作可以與高電子遷移率電晶體的製程相容,達到節省製程步驟和製造成本的好處。同時,由於本揭露之位於被動元件區的電阻器是利用化合物半導體蓋層的材料形成,其電阻值穩定且容易控制,不會受到高電子遷移率電晶體的通道層中的二維電子氣(two-dimensional electron gas,2DEG)的濃度影響,適合應用在高電壓高功率的交流/直流(AC/DC)電源轉換電路和其他數位邏輯(digital logic)電路中。 In addition, the resistor of the embodiment disclosed in the present invention can obtain resistors with different resistance values by adjusting the aspect ratio or winding shape of the compound semiconductor cap layer in the passive device region, and the resistor can be connected in parallel and/or in series with a high electron mobility transistor and/or other components, such as a Zener diode, to form a semiconductor device. Compared with the semiconductor device using a conventional polysilicon resistor, the manufacture of the resistor of the semiconductor device disclosed in the present invention can be compatible with the process of the high electron mobility transistor, thereby saving process steps and manufacturing costs. At the same time, since the resistor located in the passive device region of the present disclosure is formed by using the material of the compound semiconductor cap layer, its resistance value is stable and easy to control, and will not be affected by the concentration of the two-dimensional electron gas (2DEG) in the channel layer of the high electron mobility transistor, and is suitable for application in high voltage and high power AC/DC power conversion circuits and other digital logic circuits.

第1圖是根據本揭露一實施例所繪示整合電阻器R和高電子遷移率電晶體HEMT的半導體裝置100的俯視示意圖,半導體裝置100的基底101可包含主動元件區100A和被動元件區100B,其中高電子遷移率電晶體HEMT位於主動元件區100A,電阻器R位於被動元件區100B。半導體裝置100的高電子遷移率電晶體 HEMT包含化合物半導體通道層(之後可簡稱為通道層)106和化合物半導體阻障層(之後可簡稱為阻障層)108設置於基底101之上,第一化合物半導體蓋層(之後可簡稱為第一蓋層)110-1和閘極電極112設置於阻障層108上,源極電極114和汲極電極116也設置於阻障層108上,且分別位於閘極電極112的兩側。如第1圖所示,第一蓋層110-1、閘極電極112、源極電極114和汲極電極116的長軸皆沿著第一方向(例如X方向)延伸,並且沿著第二方向(例如Y方向)排列。在一實施例中,高電子遷移率電晶體HEMT的布局方式為兩個閘極電極112分別位於源極電極114的上下兩側,汲極電極116為共用汲極,且汲極電極116和閘極電極112之間的距離大於源極電極114和閘極電極112之間的距離。此外,在源極電極114上設置源極接點132,在汲極電極116上設置汲極接點133。 FIG. 1 is a schematic top view of a semiconductor device 100 integrating a resistor R and a high electron mobility transistor HEMT according to an embodiment of the present disclosure. A substrate 101 of the semiconductor device 100 may include an active component region 100A and a passive component region 100B, wherein the high electron mobility transistor HEMT is located in the active component region 100A, and the resistor R is located in the passive component region 100B. High electron mobility transistor of semiconductor device 100 The HEMT includes a compound semiconductor channel layer (hereinafter referred to as the channel layer) 106 and a compound semiconductor barrier layer (hereinafter referred to as the barrier layer) 108 disposed on a substrate 101, a first compound semiconductor cap layer (hereinafter referred to as the first cap layer) 110-1 and a gate electrode 112 disposed on the barrier layer 108, and a source electrode 114 and a drain electrode 116 are also disposed on the barrier layer 108 and are located on both sides of the gate electrode 112, respectively. As shown in FIG. 1 , the long axes of the first cap layer 110-1, the gate electrode 112, the source electrode 114, and the drain electrode 116 all extend along a first direction (e.g., X direction) and are arranged along a second direction (e.g., Y direction). In one embodiment, the layout of the high electron mobility transistor HEMT is that two gate electrodes 112 are respectively located at the upper and lower sides of the source electrode 114, the drain electrode 116 is a common drain, and the distance between the drain electrode 116 and the gate electrode 112 is greater than the distance between the source electrode 114 and the gate electrode 112. In addition, a source contact 132 is provided on the source electrode 114, and a drain contact 133 is provided on the drain electrode 116.

根據本揭露之實施例,第二化合物半導體蓋層(之後可簡稱為第二蓋層)110-2設置於基底101之上,且位於被動元件區100B,以構成電阻器R。第二蓋層110-2的長軸沿著第二方向(例如Y方向)延伸,亦即第二蓋層110-2的延伸方向與第一蓋層110-1的延伸方向不同。在一些實施例中,半導體裝置100的化合物半導體通道層106和化合物半導體阻障層108可以從主動元件區100A連續延伸至被動元件區100B內,並且半導體裝置100還包含隔離區109設置於被動元件區100B的化合物半導體通道層106中,第二蓋層110-2則設置在被動元件區100B的化合物半導體阻障層108上。此外,半導體裝置100還包含圖案化導電層113設置在第二蓋層110-2正上方,圖案化導電層113與閘極電極112可以由相同的導電材料層圖案化而形成。半導體裝置100還包含多個接點,例如第一接點120-1和第二接點120-2,分別設置在圖案化導電層的第一部份113-1和第二部份113-2正上方,在一些實施例中,第一接點120-1電連接至第二蓋層110-2,並經由導線層130和源極接點132電連接至源極電極114,第二接點120-2也電連接至第二蓋層110-2,並經由另一導線層130和汲極接點133電連接至汲極電極116,使得電阻器R與高電子遷移率電晶 體HEMT並聯。在其他實施例中,半導體裝置100還包含其他接點設置在圖案化導電層的其他部份正上方,並透過其他導線層,使得電阻器R與其他元件電性連接,例如與其他高電子遷移率電晶體和/或稽納二極體串聯和/或並聯。 According to the embodiment of the present disclosure, the second compound semiconductor capping layer (hereinafter referred to as the second capping layer) 110-2 is disposed on the substrate 101 and located in the passive device region 100B to form a resistor R. The long axis of the second capping layer 110-2 extends along the second direction (e.g., the Y direction), that is, the extension direction of the second capping layer 110-2 is different from the extension direction of the first capping layer 110-1. In some embodiments, the compound semiconductor channel layer 106 and the compound semiconductor barrier layer 108 of the semiconductor device 100 may extend continuously from the active device region 100A to the passive device region 100B, and the semiconductor device 100 further includes an isolation region 109 disposed in the compound semiconductor channel layer 106 of the passive device region 100B, and a second cap layer 110-2 is disposed on the compound semiconductor barrier layer 108 of the passive device region 100B. In addition, the semiconductor device 100 further includes a patterned conductive layer 113 disposed directly above the second cap layer 110-2, and the patterned conductive layer 113 and the gate electrode 112 may be formed by patterning the same conductive material layer. The semiconductor device 100 further includes a plurality of contacts, such as a first contact 120-1 and a second contact 120-2, which are respectively disposed directly above the first portion 113-1 and the second portion 113-2 of the patterned conductive layer. In some embodiments, the first contact 120-1 is electrically connected to the second cap layer 110-2, and is electrically connected to the source electrode 114 via the wiring layer 130 and the source contact 132. The second contact 120-2 is also electrically connected to the second cap layer 110-2, and is electrically connected to the drain electrode 116 via another wiring layer 130 and the drain contact 133, so that the resistor R is connected in parallel with the high electron mobility transistor HEMT. In other embodiments, the semiconductor device 100 further includes other contacts disposed directly above other portions of the patterned conductive layer, and through other conductive layers, the resistor R is electrically connected to other components, such as other high electron mobility transistors and/or Zener diodes in series and/or in parallel.

第2圖是根據本揭露一實施例所繪示沿著第1圖的剖面切線A-A’之半導體裝置100的剖面示意圖,在一些實施例中,半導體裝置100可包含磊晶疊層105設置在基底101上,且磊晶疊層105連續地形成在主動元件區100A和被動元件區100B。基底101的材料可包含陶瓷、碳化矽(SiC)、氮化鋁(AlN)、藍寶石(sapphire)或矽。此外,基底101可以是絕緣層上覆半導體(semiconductor on insulator,SOI)基底,或者基底101可由核心基材被複合材料層包裹所構成的複合基底(又稱為QST基板)提供,其中核心基材包含陶瓷、碳化矽、氮化鋁、藍寶石或矽,複合材料層包含絕緣材料層和半導體材料層,其中絕緣材料層可以是單層或多層的氧化矽、氮化矽或氮氧化矽,半導體材料層可以是矽或多晶矽,並且位於核心基材背面的複合材料層會經過減薄製程而被移除,例如經由研磨或蝕刻製程,使得核心基材的背面被暴露出。在一些實施例中,磊晶疊層105可包含由下至上依序堆疊的晶種層(nucleation layer)102、緩衝層(buffer layer)103和高電阻層(high resistance layer)(或稱為電隔離層)104。在一些實施例中,晶種層102例如是氮化鋁(AlN)層,緩衝層103可以是超晶格(superlattice,SL)結構,例如包含複數層交替堆疊的氮化鋁鎵(AlGaN)層和氮化鋁(AlN)層,高電阻層104例如是摻雜碳的氮化鎵(c-GaN)層,但不限於此。 FIG. 2 is a schematic cross-sectional view of a semiconductor device 100 along the cross-sectional cut line A-A' of FIG. 1 according to an embodiment of the present disclosure. In some embodiments, the semiconductor device 100 may include an epitaxial stack 105 disposed on a substrate 101, and the epitaxial stack 105 is continuously formed in an active device region 100A and a passive device region 100B. The material of the substrate 101 may include ceramic, silicon carbide (SiC), aluminum nitride (AlN), sapphire or silicon. In addition, the substrate 101 can be a semiconductor on insulator (SOI) substrate covered with an insulating layer, or the substrate 101 can be provided by a composite substrate (also known as a QST substrate) in which a core substrate is wrapped by a composite material layer, wherein the core substrate includes ceramic, silicon carbide, aluminum nitride, sapphire or silicon, and the composite material layer includes an insulating material layer and a semiconductor material layer, wherein the insulating material layer can be a single layer or multiple layers of silicon oxide, silicon nitride or silicon oxynitride, and the semiconductor material layer can be silicon or polycrystalline silicon, and the composite material layer located on the back side of the core substrate will be removed through a thinning process, such as through a grinding or etching process, so that the back side of the core substrate is exposed. In some embodiments, the epitaxial stack 105 may include a nucleation layer 102, a buffer layer 103, and a high resistance layer (or electrical isolation layer) 104 stacked in sequence from bottom to top. In some embodiments, the nucleation layer 102 is, for example, an aluminum nitride (AlN) layer, the buffer layer 103 may be a superlattice (SL) structure, for example, including a plurality of layers of alternately stacked aluminum gallium nitride (AlGaN) layers and aluminum nitride (AlN) layers, and the high resistance layer 104 is, for example, a carbon-doped gallium nitride (c-GaN) layer, but is not limited thereto.

此外,如第2圖所示,半導體裝置100的高電子遷移率電晶體HEMT包含通道層106設置在高電阻層104上,阻障層108堆疊在通道層106上,第一蓋層110-1設置於阻障層108上,閘極電極112則設置於第一蓋層110-1上,源極電極114和汲極電極116設置於阻障層108上,且分別位於閘極電極112的兩側。由於通道層106和阻障層108間具有不連續的能隙,藉由將通道層106和阻障層108互相堆疊 設置,電子會因壓電效應而被聚集於通道層106和阻障層108之間的異質接面,因而產生高電子遷移率的薄層,亦即二維電子氣區域2DEG於通道層106中。此外,如第2圖所示,針對增強型(enhancement-mode,E-mode)(或稱為常關型(normally off))高電子遷移率電晶體而言,當不施加正電壓至閘極電極112時,被第一蓋層110-1所覆蓋的區域不會形成二維電子氣,可視為是2DEG截斷區域,此時源極電極114和汲極電極116之間不會導通。 In addition, as shown in FIG. 2 , the high electron mobility transistor HEMT of the semiconductor device 100 includes a channel layer 106 disposed on the high resistance layer 104, a barrier layer 108 stacked on the channel layer 106, a first cap layer 110-1 disposed on the barrier layer 108, a gate electrode 112 disposed on the first cap layer 110-1, a source electrode 114 and a drain electrode 116 disposed on the barrier layer 108, and located on both sides of the gate electrode 112, respectively. Since there is a discontinuous energy gap between the channel layer 106 and the barrier layer 108, by stacking the channel layer 106 and the barrier layer 108 on each other, electrons are gathered at the heterojunction between the channel layer 106 and the barrier layer 108 due to the piezoelectric effect, thereby generating a thin layer with high electron mobility, that is, a two-dimensional electron gas region 2DEG in the channel layer 106. In addition, as shown in FIG. 2, for an enhancement-mode (E-mode) (or normally off) high electron mobility transistor, when no positive voltage is applied to the gate electrode 112, the region covered by the first cap layer 110-1 will not form a two-dimensional electron gas and can be regarded as a 2DEG cutoff region. At this time, there will be no conduction between the source electrode 114 and the drain electrode 116.

在一些實施例中,通道層106例如是未摻雜的氮化鎵(u-GaN)層,阻障層108是能隙大於通道層106的化合物半導體層,例如氮化鋁鎵(AlGaN)層,第一蓋層110-1例如是p型氮化鎵(p-GaN)層,但不限於此。高電子遷移率電晶體結構HEMT的上述各化合物半導體層的組成及結構配置可依據各種半導體裝置的需求而定。此外,閘極電極112、源極電極114和汲極電極116的材料可包含金屬、合金、金屬氮化物或半導體材料(例如多晶矽)。在一些實施例中,金屬可包含金(Au)、鎳(Ni)、鉑(Pt)、鈀(Pd)、銥(Ir)、鈦(Ti)、鉻(Cr)、鎢(W)、鋁(Al)、銅(Cu)、鉬(Mo)等其它合適的導電材料、或前述之組合。此外,閘極電極112可以和第一蓋層110-1產生蕭特基接觸(Schottky contact),而源極電極114和汲極電極116可以和下方的阻障層108和通道層106產生歐姆接觸(ohmic contact)。另外,如第2圖所示,源極電極114和汲極電極116可以各自經由源極接點132和汲極接點133電性連接至不同的導線層130,源極接點132和汲極接點133形成在層間介電層134中,導線層130則形成在層間介電層134上,源極接點132、汲極接點133和導線層130由導電材料形成,例如鎢(W)、銅(Cu)、鋁(Al)等其它合適的導電材料。 In some embodiments, the channel layer 106 is, for example, an undoped gallium nitride (u-GaN) layer, the barrier layer 108 is a compound semiconductor layer having a larger energy gap than the channel layer 106, such as an aluminum gallium nitride (AlGaN) layer, and the first cap layer 110-1 is, for example, a p-type gallium nitride (p-GaN) layer, but is not limited thereto. The composition and structural configuration of the above-mentioned compound semiconductor layers of the high electron mobility transistor structure HEMT can be determined according to the requirements of various semiconductor devices. In addition, the materials of the gate electrode 112, the source electrode 114, and the drain electrode 116 can include metals, alloys, metal nitrides, or semiconductor materials (such as polysilicon). In some embodiments, the metal may include gold (Au), nickel (Ni), platinum (Pt), palladium (Pd), iridium (Ir), titanium (Ti), chromium (Cr), tungsten (W), aluminum (Al), copper (Cu), molybdenum (Mo), or other suitable conductive materials, or a combination thereof. In addition, the gate electrode 112 may form a Schottky contact with the first cap layer 110-1, and the source electrode 114 and the drain electrode 116 may form an ohmic contact with the barrier layer 108 and the channel layer 106 therebelow. In addition, as shown in FIG. 2, the source electrode 114 and the drain electrode 116 can be electrically connected to different wire layers 130 via source contacts 132 and drain contacts 133, respectively. The source contacts 132 and drain contacts 133 are formed in the interlayer dielectric layer 134, and the wire layer 130 is formed on the interlayer dielectric layer 134. The source contacts 132, the drain contacts 133 and the wire layer 130 are formed of conductive materials, such as tungsten (W), copper (Cu), aluminum (Al) and other suitable conductive materials.

如第2圖所示,於一實施例中,通道層106和阻障層108可從主動元件區100A連續延伸至被動元件區100B內,並且隔離區109設置在被動元件區100B的通道層106內,使得被動元件區100B不會產生二維電子氣(2DEG)。構成電阻器R 的第二蓋層110-2設置於阻障層108上,圖案化導電層113的第一部份113-1設置在第二蓋層110-2上,第一接點120-1設置在圖案化導電層的第一部份113-1正上方。於一實施例中,導線層130從被動元件區100B連續延伸至主動元件區100A,第二蓋層110-2經由圖案化導電層的第一部份113-1、第一接點120-1、導線層130和源極接點132電連接至源極電極114。於另一實施例中,第一接點120-1上的導線層130和源極接點132上的導線層130可以是彼此分離的導線層130,並經由導線層130上方的另一導線層將分離的導線層130互相電連接在一起,以完成第二蓋層110-2和源極電極114之間的電性連接。此外,於一實施例中,在第二蓋層110-2上的圖案化導電層113和主動元件區100A的閘極電極112可以由相同的導電材料層圖案化而形成,圖案化導電層113和第二蓋層110-2之間可產生蕭特基接觸。於另一實施例中,經由圖案化導電層113的材料選擇,圖案化導電層113和第二蓋層110-2之間可產生歐姆接觸。於一些實施例中,可以對圖案化導電層113施加偏壓,以調整被動元件區100B的電阻器R的電性。其中,蕭特基接觸在小偏壓下的電阻值會比大偏壓下的電阻值高,但小偏壓的偏壓範圍很小,例如0V至25V,因此電阻器R的電性調整在下方沒有2DEG的前提下,主要還是透過改變第二蓋層110-2的布局形式或改變第二蓋層110-2的摻雜濃度或摻質種類來達成。 As shown in FIG. 2, in one embodiment, the channel layer 106 and the barrier layer 108 may extend continuously from the active device region 100A to the passive device region 100B, and the isolation region 109 is disposed in the channel layer 106 of the passive device region 100B, so that the passive device region 100B does not generate a two-dimensional electron gas (2DEG). The second cap layer 110-2 constituting the resistor R is disposed on the barrier layer 108, the first portion 113-1 of the patterned conductive layer 113 is disposed on the second cap layer 110-2, and the first contact 120-1 is disposed directly above the first portion 113-1 of the patterned conductive layer. In one embodiment, the conductive layer 130 continuously extends from the passive device region 100B to the active device region 100A, and the second cap layer 110-2 is electrically connected to the source electrode 114 via the first portion 113-1 of the patterned conductive layer, the first contact 120-1, the conductive layer 130, and the source contact 132. In another embodiment, the conductive layer 130 on the first contact 120-1 and the conductive layer 130 on the source contact 132 may be separate conductive layers 130, and the separate conductive layers 130 are electrically connected to each other via another conductive layer above the conductive layer 130 to complete the electrical connection between the second cap layer 110-2 and the source electrode 114. In addition, in one embodiment, the patterned conductive layer 113 on the second cap layer 110-2 and the gate electrode 112 of the active device region 100A can be formed by patterning the same conductive material layer, and a Schottky contact can be generated between the patterned conductive layer 113 and the second cap layer 110-2. In another embodiment, an ohmic contact can be generated between the patterned conductive layer 113 and the second cap layer 110-2 by selecting the material of the patterned conductive layer 113. In some embodiments, a bias can be applied to the patterned conductive layer 113 to adjust the electrical properties of the resistor R of the passive device region 100B. Among them, the resistance value of the Schottky contact under a small bias voltage is higher than the resistance value under a large bias voltage, but the bias range of the small bias voltage is very small, such as 0V to 25V. Therefore, the electrical adjustment of the resistor R is mainly achieved by changing the layout of the second cap layer 110-2 or changing the doping concentration or doping type of the second cap layer 110-2 under the premise that there is no 2DEG below.

根據本揭露的一些實施例,可以經由磊晶成長製程,在基底101上形成磊晶疊層105,並且在磊晶疊層105上,於主動元件區100A和被動元件區100B,依序沉積化合物半導體通道層106、化合物半導體阻障層108及化合物半導體蓋層,於一實施例中,在沉積化合物半導體阻障層108及化合物半導體蓋層之前,於被動元件區100B的化合物半導體通道層106內形成隔離區109。然後,經由同一道圖案化製程(例如光微影和蝕刻製程),將位於主動元件區100A和被動元件區100B的化合物半導體蓋層同時圖案化,以形成主動元件區100A的第一蓋層110-1和被動元件區100B的第二蓋層110-2。在本揭露的一些實施例中,第一蓋層110-1 和第二蓋層110-2的材料組成可以相同,例如皆由p型氮化鎵(p-GaN)形成,且第一蓋層110-1和第二蓋層110-2的p型摻質的摻雜濃度相同,因此第一蓋層110-1和第二蓋層110-2可以經由同一道磊晶成長製程和同一道圖案化製程同時形成,並且在磊晶成長製程期間可於主動元件區100A和被動元件區100B加入摻雜濃度相同的p型摻質。 According to some embodiments of the present disclosure, an epitaxial stack 105 can be formed on a substrate 101 through an epitaxial growth process, and a compound semiconductor channel layer 106, a compound semiconductor barrier layer 108 and a compound semiconductor capping layer are sequentially deposited on the epitaxial stack 105 in the active device region 100A and the passive device region 100B. In one embodiment, before the compound semiconductor barrier layer 108 and the compound semiconductor capping layer are deposited, an isolation region 109 is formed in the compound semiconductor channel layer 106 of the passive device region 100B. Then, the compound semiconductor capping layers located in the active device region 100A and the passive device region 100B are patterned simultaneously through the same patterning process (such as photolithography and etching process) to form a first capping layer 110-1 in the active device region 100A and a second capping layer 110-2 in the passive device region 100B. In some embodiments of the present disclosure, the material composition of the first cap layer 110-1 and the second cap layer 110-2 may be the same, for example, both are formed of p-type gallium nitride (p-GaN), and the p-type doping concentration of the first cap layer 110-1 and the second cap layer 110-2 is the same, so the first cap layer 110-1 and the second cap layer 110-2 can be formed simultaneously through the same epitaxial growth process and the same patterning process, and during the epitaxial growth process, p-type doping with the same doping concentration can be added to the active device region 100A and the passive device region 100B.

另外,在其他實施例中,第一蓋層110-1和第二蓋層110-2的材料組成可以不同,例如第一蓋層110-1可由p型氮化鎵(p-GaN)形成,而第二蓋層110-2則可以由氮化鎵、n型氮化鎵或p型氮化鎵形成,其中第二蓋層110-2的p型摻質的摻雜濃度可以與第一蓋層110-1的p型摻質的摻雜濃度不同。在這些實施例中,第一蓋層110-1和第二蓋層110-2可以由相同的磊晶成長製程沉積,並且在磊晶成長製程期間可於主動元件區100A和被動元件區100B分別加入不同摻雜濃度的p型摻質,或者加入不同摻質,例如p型和n型摻質,然後經由同一道圖案化製程形成第一蓋層110-1和第二蓋層110-2。 In addition, in other embodiments, the material compositions of the first cap layer 110-1 and the second cap layer 110-2 may be different. For example, the first cap layer 110-1 may be formed of p-type gallium nitride (p-GaN), and the second cap layer 110-2 may be formed of gallium nitride, n-type gallium nitride or p-type gallium nitride, wherein the doping concentration of the p-type dopant in the second cap layer 110-2 may be different from the doping concentration of the p-type dopant in the first cap layer 110-1. In these embodiments, the first capping layer 110-1 and the second capping layer 110-2 can be deposited by the same epitaxial growth process, and during the epitaxial growth process, p-type doping with different doping concentrations can be added to the active device region 100A and the passive device region 100B, or different dopings, such as p-type and n-type doping, can be added, and then the first capping layer 110-1 and the second capping layer 110-2 can be formed by the same patterning process.

第3圖是根據本揭露一實施例所繪示沿著第1圖的剖面切線B-B’之半導體裝置100的電阻器R的剖面示意圖,在電阻器R的第二蓋層110-2上沿著Y軸依序設置閘極電極112、圖案化導電層的第一部份113-1、另一閘極電極112、圖案化導電層的第二部份113-2,並且在圖案化導電層的第一部份113-1正上方設置第一接點120-1,在圖案化導電層的第二部份113-2正上方設置第二接點120-2,第一接點120-1和第二接點120-2穿過層間介電層134而分別電連接至彼此分離的導線層130。在此實施例中,作為電阻器R的第二蓋層110-2可以經由這些接點和多個導線層電性耦接至其他元件,例如交流/直流(AC/DC)電源轉換的電路和其他數位邏輯(digital logic)電路中的高電子遷移率電晶體HEMT、稽納二極體及/或其他元件。此外,由於被動元件區100B不會形成二維電子氣,可視為是2DEG截斷區域,所以來自導線層130的電流可經由第二接點120-2進入第二蓋層110-2,在第二 蓋層110-2中傳輸並產生所需的壓降,之後再經由第一接點120-1進入導線層130。 FIG. 3 is a schematic cross-sectional view of a resistor R of a semiconductor device 100 along the cross-sectional cut line B-B' of FIG. 1 according to an embodiment of the present disclosure. A gate electrode 112, a first portion 113-1 of a patterned conductive layer, another gate electrode 112, a second portion 113-1 of a patterned conductive layer are sequentially arranged on a second cap layer 110-2 of the resistor R along the Y axis. The first portion 113-2 of the patterned conductive layer is provided with a first contact 120-1 directly above the first portion 113-1 of the patterned conductive layer, and the second contact 120-2 is provided directly above the second portion 113-2 of the patterned conductive layer. The first contact 120-1 and the second contact 120-2 are respectively electrically connected to the wire layers 130 separated from each other through the interlayer dielectric layer 134. In this embodiment, the second cap layer 110-2 as a resistor R can be electrically coupled to other components, such as high electron mobility transistors HEMTs, Zener diodes, and/or other components in AC/DC power conversion circuits and other digital logic circuits through these contacts and multiple wire layers. In addition, since the passive device region 100B does not form a two-dimensional electron gas and can be regarded as a 2DEG cutoff region, the current from the wiring layer 130 can enter the second cap layer 110-2 through the second contact 120-2, transmit in the second cap layer 110-2 and generate the required voltage drop, and then enter the wiring layer 130 through the first contact 120-1.

第4圖是根據本揭露一實施例所繪示沿著第1圖的剖面切線C-C’之半導體裝置100的剖面示意圖,剖面切線C-C’係經過被動元件區100B的第二蓋層110-2,以及經過主動元件區100A的通道層106和阻障層108,但未經過主動元件區100A的源極、閘極和汲極,以便於說明被動元件區100B和主動元件區100A在通道層106和阻障層108的結構差異。如第4圖所示,於一實施例中,在被動元件區100B的通道層106內設置隔離區109,使得被動元件區100B不會產生二維電子氣2DEG。在一實施例中,可以在形成阻障層108之前,經由離子佈植製程,在通道層106內植入惰性離子,例如氮、氧或前述之組合,以破壞通道層106的晶格結構而產生高電阻區,藉此形成隔離區109(又可稱為惰性離子佈植區),其中隔離區109的底面可高於通道層106的底面,或者與通道層106的底面齊平,隔離區109的底面高度由離子佈植製程的能量決定。在此實施例中,被動元件區100B的第二蓋層110-2設置在阻障層108上。 FIG. 4 is a schematic cross-sectional view of the semiconductor device 100 along the cross-sectional cut line C-C' of FIG. 1 according to an embodiment of the present disclosure. The cross-sectional cut line C-C' passes through the second cap layer 110-2 of the passive device region 100B, and passes through the channel layer 106 and the barrier layer 108 of the active device region 100A, but does not pass through the source, gate and drain of the active device region 100A, so as to explain the structural difference between the passive device region 100B and the active device region 100A in the channel layer 106 and the barrier layer 108. As shown in FIG. 4, in one embodiment, an isolation region 109 is provided in the channel layer 106 of the passive device region 100B, so that the passive device region 100B does not generate a two-dimensional electron gas 2DEG. In one embodiment, before forming the barrier layer 108, inert ions, such as nitrogen, oxygen or a combination thereof, may be implanted into the channel layer 106 through an ion implantation process to destroy the lattice structure of the channel layer 106 and generate a high resistance region, thereby forming an isolation region 109 (also referred to as an inert ion implantation region), wherein the bottom surface of the isolation region 109 may be higher than the bottom surface of the channel layer 106, or flush with the bottom surface of the channel layer 106, and the bottom surface height of the isolation region 109 is determined by the energy of the ion implantation process. In this embodiment, the second capping layer 110-2 of the passive device region 100B is disposed on the barrier layer 108.

第5圖是根據本揭露另一實施例所繪示沿著第1圖的剖面切線C-C’之半導體裝置100的剖面示意圖,在此實施例中,經由蝕刻製程移除被動元件區100B的阻障層108和全部的通道層106,以形成凹陷140,藉由凹陷140讓被動元件區100B不會產生二維電子氣2DEG。如第5圖所示,於一實施例中,凹陷140的底面可以與通道層106的底面齊平,凹陷140的深度由蝕刻製程的參數決定。在此實施例中,被動元件區100B的第二蓋層110-2設置在凹陷140內,並位於凹陷140的底面上,亦即作為電阻器R的第二蓋層110-2可直接形成在磊晶疊層105上,第二蓋層110-2的底面接觸磊晶疊層105的頂面。 FIG. 5 is a schematic cross-sectional view of the semiconductor device 100 along the cross-sectional cut line C-C' of FIG. 1 according to another embodiment of the present disclosure. In this embodiment, the barrier layer 108 and the entire channel layer 106 of the passive device region 100B are removed by an etching process to form a recess 140. The recess 140 prevents the passive device region 100B from generating a two-dimensional electron gas 2DEG. As shown in FIG. 5, in one embodiment, the bottom surface of the recess 140 can be flush with the bottom surface of the channel layer 106, and the depth of the recess 140 is determined by the parameters of the etching process. In this embodiment, the second capping layer 110-2 of the passive element region 100B is disposed in the recess 140 and is located on the bottom surface of the recess 140, that is, the second capping layer 110-2 as the resistor R can be directly formed on the epitaxial stack 105, and the bottom surface of the second capping layer 110-2 contacts the top surface of the epitaxial stack 105.

第6圖是根據本揭露又另一實施例所繪示沿著第1圖的剖面切線C-C’之半導體裝置100的剖面示意圖,在此實施例中,經由蝕刻製程移除被動元件區100B的阻障層108和部份的通道層106,以形成凹陷140,藉由凹陷140讓被 動元件區100B不會產生二維電子氣2DEG。如第6圖所示,於一實施例中,凹陷140的底面可以高於通道層106的底面,凹陷140的深度由蝕刻製程的參數決定。在此實施例中,被動元件區100B的第二蓋層110-2設置在凹陷140內,並位於凹陷140的底面上。 FIG. 6 is a schematic cross-sectional view of the semiconductor device 100 along the cross-sectional cut line C-C' of FIG. 1 according to another embodiment of the present disclosure. In this embodiment, the barrier layer 108 and part of the channel layer 106 of the passive device region 100B are removed by an etching process to form a recess 140. The recess 140 prevents the passive device region 100B from generating a two-dimensional electron gas 2DEG. As shown in FIG. 6, in one embodiment, the bottom surface of the recess 140 can be higher than the bottom surface of the channel layer 106, and the depth of the recess 140 is determined by the parameters of the etching process. In this embodiment, the second cap layer 110-2 of the passive device region 100B is disposed in the recess 140 and is located on the bottom surface of the recess 140.

第7圖是根據本揭露再另一實施例所繪示沿著第1圖的剖面切線C-C’之半導體裝置100的剖面示意圖,在此實施例中,於被動元件區100B的阻障層108和通道層106內設置淺溝槽隔離區(shallow trench isolation,STI)107,使得被動元件區100B不會產生二維電子氣2DEG。在此實施例中,經由蝕刻製程在被動元件區100B的阻障層108和通道層106中形成溝槽,溝槽的底面可高於通道層106的底面,或者與通道層106的底面齊平,溝槽的底面高度由形成溝槽的蝕刻製程決定。然後,在溝槽內填充介電材料,例如氧化矽、氮化矽、氮氧化矽或其他合適的介電材料,以形成淺溝槽隔離區107。在此實施例中,被動元件區100B之作為電阻器R的第二蓋層110-2可形成在淺溝槽隔離區107上,例如第二蓋層110-2的底面可接觸淺溝槽隔離區107的頂面,使得半導體裝置100的電阻器R的電阻值提高。 FIG. 7 is a schematic cross-sectional view of the semiconductor device 100 along the cross-sectional cut line C-C' of FIG. 1 according to yet another embodiment of the present disclosure. In this embodiment, a shallow trench isolation (STI) 107 is provided in the barrier layer 108 and the channel layer 106 of the passive device region 100B so that the passive device region 100B does not generate a two-dimensional electron gas 2DEG. In this embodiment, a trench is formed in the barrier layer 108 and the channel layer 106 of the passive device region 100B by an etching process. The bottom surface of the trench can be higher than the bottom surface of the channel layer 106, or flush with the bottom surface of the channel layer 106. The height of the bottom surface of the trench is determined by the etching process for forming the trench. Then, a dielectric material, such as silicon oxide, silicon nitride, silicon oxynitride or other suitable dielectric materials, is filled in the trench to form a shallow trench isolation region 107. In this embodiment, the second capping layer 110-2 of the passive element region 100B serving as a resistor R can be formed on the shallow trench isolation region 107, for example, the bottom surface of the second capping layer 110-2 can contact the top surface of the shallow trench isolation region 107, so that the resistance value of the resistor R of the semiconductor device 100 is increased.

在本揭露的一些實施例中,位於第二蓋層110-2正下方的隔離區109(又可稱為離子佈植區)或淺溝槽隔離區107具有相較於通道層106更高的電阻值,使得隔離區109或淺溝槽隔離區107有助於提高電阻器R的電阻值。 In some embodiments of the present disclosure, the isolation region 109 (also referred to as an ion implantation region) or the shallow trench isolation region 107 located directly below the second cap layer 110-2 has a higher resistance value than the channel layer 106, so that the isolation region 109 or the shallow trench isolation region 107 helps to increase the resistance value of the resistor R.

第8圖是根據本揭露一實施例所繪示的電阻器R的俯視示意圖,在此實施例中,半導體裝置100的電阻器R的俯視形狀可以是多個長條形110-2A1和110-2A2,長條形的電阻器R可以藉由調整長寬比來得到不同的電阻值,例如長條形110-2A1的長度L1大致上等於長條形110-2A2的長度L2,但長條形110-2A1的寬度W1小於長條形110-2A2的寬度W2,使得長條形110-2A1的長寬比L1/W1大於 長條形110-2A2的長寬比L2/W2,並且使得長條形110-2A1的電阻器之電阻值大於長條形110-2A2的電阻器之電阻值。此外,參閱第1圖和第8圖,在一些實施例中,除了第二蓋層110-2,還可以在被動元件區100B的基底101之上,形成第三化合物半導體蓋層(之後可簡稱為第三蓋層),以構成另一電阻器,其中第二蓋層110-2的俯視形狀例如為第8圖中所示的長條形110-2A1,第三蓋層的俯視形狀例如為第8圖中所示的長條形110-2A2,使得第三蓋層和第二蓋層110-2具有不同的電阻值。 FIG. 8 is a schematic top view of a resistor R according to an embodiment of the present disclosure. In this embodiment, the top view shape of the resistor R of the semiconductor device 100 can be a plurality of strips 110-2A1 and 110-2A2. The strip-shaped resistor R can obtain different resistance values by adjusting the aspect ratio. For example, the length L1 of the strip 110-2A1 is substantially equal to the length L2 of the strip 110-2A2. 0-2A2 has a length L2, but the width W1 of the strip 110-2A1 is smaller than the width W2 of the strip 110-2A2, so that the aspect ratio L1/W1 of the strip 110-2A1 is greater than the aspect ratio L2/W2 of the strip 110-2A2, and the resistance value of the resistor of the strip 110-2A1 is greater than the resistance value of the resistor of the strip 110-2A2. In addition, referring to FIG. 1 and FIG. 8, in some embodiments, in addition to the second capping layer 110-2, a third compound semiconductor capping layer (hereinafter referred to as the third capping layer) may be formed on the substrate 101 of the passive element region 100B to form another resistor, wherein the top view shape of the second capping layer 110-2 is, for example, a strip 110-2A1 as shown in FIG. 8, and the top view shape of the third capping layer is, for example, a strip 110-2A2 as shown in FIG. 8, so that the third capping layer and the second capping layer 110-2 have different resistance values.

在一些實施例中,位於被動元件區100B的第三蓋層和第二蓋層110-2以及位於主動元件區100A的第一蓋層110-1的材料組成可以相同,並且可以經由同一道磊晶成長製程和同一道圖案化製程來同時形成這些蓋層。此外,如第8圖所示,在長條形110-2A2的第三蓋層和長條形110-2A1的第二蓋層110-2的正上方可以各自形成多個接點120,並經由導線層130和接點120將長條形110-2A2的第三蓋層電連接至長條形110-2A1的第二蓋層110-2,使得位於被動元件區100B的多個電阻器串聯或並聯,以達到半導體裝置100的電阻器R所需要的電阻值。 In some embodiments, the third capping layer and the second capping layer 110-2 in the passive device region 100B and the first capping layer 110-1 in the active device region 100A may have the same material composition, and these capping layers may be formed simultaneously through the same epitaxial growth process and the same patterning process. In addition, as shown in FIG. 8 , multiple contacts 120 can be formed directly above the third cover layer of the strip 110-2A2 and the second cover layer 110-2 of the strip 110-2A1, and the third cover layer of the strip 110-2A2 is electrically connected to the second cover layer 110-2 of the strip 110-2A1 via the wire layer 130 and the contacts 120, so that multiple resistors located in the passive element region 100B are connected in series or in parallel to achieve the required resistance value of the resistor R of the semiconductor device 100.

第9圖是根據本揭露一些實施例所繪示的電阻器R的俯視示意圖,如第9圖所示,半導體裝置100的電阻器R的俯視形狀可以是連續彎曲形110-2B或螺旋形110-2C,這些形狀的電阻器可以取代第1圖中長條形的電阻器R,並且可藉由連續彎曲形110-2B或螺旋形110-2C的繞線方式和長度來調整電阻器R的電阻值,以得到不同電阻值的電阻器,例如繞線長度越長,可以得到更高電阻值的電阻器,而繞線彎折越多,則可以在更小的面積內得到高電阻值的電阻器。在一些實施例中,連續彎曲形110-2B或螺旋形110-2C的電阻器的材料組成與第1圖中的第一蓋層110-1的材料組成相同,並且可經由同一道磊晶成長製程和同一道圖案化製程同時形成。此外,電阻器R的多個接點可形成在連續彎曲形110-2B或螺旋形110-2C的電阻器正上方,並且經由多個接點和多個導線層,讓連續彎曲形110-2B或螺旋形110-2C的電阻器可以電性連接至其他元件,例如高電子遷移率電 晶體HEMT、稽納二極體及/或其他元件。 FIG. 9 is a schematic top view of a resistor R according to some embodiments of the present disclosure. As shown in FIG. 9 , the top view shape of the resistor R of the semiconductor device 100 may be a continuous bend shape 110-2B or a spiral shape 110-2C. Resistors of these shapes may replace the long strip-shaped resistor R in FIG. 1 , and the resistance value of the resistor R may be adjusted by the winding method and length of the continuous bend shape 110-2B or the spiral shape 110-2C to obtain resistors with different resistance values. For example, the longer the winding length, the higher the resistance value of the resistor can be obtained, and the more bends the winding has, the higher the resistance value of the resistor can be obtained in a smaller area. In some embodiments, the material composition of the resistor of the continuous bend shape 110-2B or the spiral shape 110-2C is the same as the material composition of the first cap layer 110-1 in FIG. 1, and can be formed simultaneously through the same epitaxial growth process and the same patterning process. In addition, multiple contacts of the resistor R can be formed directly above the resistor of the continuous bend shape 110-2B or the spiral shape 110-2C, and through multiple contacts and multiple wire layers, the resistor of the continuous bend shape 110-2B or the spiral shape 110-2C can be electrically connected to other components, such as high electron mobility transistors HEMT, Zener diodes and/or other components.

第10圖是根據本揭露一些實施例之半導體裝置100的電阻器R的電流Id對應電壓Vd的曲線圖,其中電流Id的單位為安培(A),電壓Vd的單位為伏特(V),實施例1-1、1-2和1-3的電阻器R的俯視形狀皆為長條形,並且其長度皆約為23.25微米(μm),寬度皆約為6微米(μm)。這三個實施例1-1、1-2和1-3的電阻器R係在同一晶圓上同時製造,並具有相同的尺寸,如第10圖所示,實施例1-1、1-2和1-3的電阻器之電流Id對應電壓Vd的特性曲線都呈現線性,並且這三個實施例1-1、1-2和1-3的電阻值都大致相同,在高電壓(例如大於75V)時,這三個實施例1-1、1-2和1-3的電阻值則更為接近,這表示根據本揭露之實施例所製作的半導體裝置100的電阻器R的電阻值穩定,且電阻器的電阻值在電壓變化時為線性。 FIG. 10 is a graph of the current Id versus the voltage Vd of the resistor R of the semiconductor device 100 according to some embodiments of the present disclosure, wherein the unit of the current Id is ampere (A), and the unit of the voltage Vd is volt (V). The top view shape of the resistor R of embodiments 1-1, 1-2, and 1-3 is a long strip, and its length is approximately 23.25 micrometers (μm), and its width is approximately 6 micrometers (μm). The resistors R of the three embodiments 1-1, 1-2 and 1-3 are manufactured on the same wafer at the same time and have the same size. As shown in FIG. 10, the characteristic curves of the current Id corresponding to the voltage Vd of the resistors of the embodiments 1-1, 1-2 and 1-3 are all linear, and the resistance values of the three embodiments 1-1, 1-2 and 1-3 are substantially the same. At high voltages (e.g., greater than 75V), the resistance values of the three embodiments 1-1, 1-2 and 1-3 are even closer, which indicates that the resistance value of the resistor R of the semiconductor device 100 manufactured according to the embodiments of the present disclosure is stable, and the resistance value of the resistor is linear when the voltage changes.

根據本揭露之實施例,可以利用形成高電子遷移率電晶體的蓋層之化合物半導體材料的高電阻特性,在被動元件區形成電阻器,不需要額外新增製程和光罩,即可完成整合電阻器和高電子遷移率電晶體的半導體裝置。相較於習知使用多晶矽電阻器的半導體裝置,本揭露之半導體裝置的電阻器的製作可以與高電子遷移率電晶體的製程相容,達到節省製程步驟和製造成本的好處。 According to the embodiments disclosed herein, the high resistance characteristics of the compound semiconductor material forming the capping layer of the high electron mobility transistor can be utilized to form a resistor in the passive element region, and a semiconductor device integrating a resistor and a high electron mobility transistor can be completed without the need for additional processes and masks. Compared to the known semiconductor devices using polysilicon resistors, the manufacture of the resistor of the semiconductor device disclosed herein can be compatible with the process of the high electron mobility transistor, thereby achieving the benefits of saving process steps and manufacturing costs.

此外,根據本揭露之實施例,可以藉由調整在被動元件區的化合物半導體蓋層之長寬比或繞線形狀,即可獲得不同電阻值的電阻器,而且本揭露之實施例所製作的電阻器的電阻值可以由化合物半導體蓋層的材料之高電阻特性控制,相較於習知多晶矽電阻器而言較不會受到高電子遷移率電晶體的通道層中的二維電子氣(2DEG)的強度影響,其電阻值穩定且容易控制,且電阻值在電壓變化時為線性表現,有利於高電壓高功率元件的應用。另外,本揭露之半導體裝置的電阻器可以與高電子遷移率電晶體、稽納二極體和/或其他元件串聯和/或並聯,適合應用在高電壓高功率的交流/直流(AC/DC)電源轉換電路和其他數位邏輯(digital logic)電路中。 In addition, according to the embodiments disclosed herein, resistors with different resistance values can be obtained by adjusting the aspect ratio or the winding shape of the compound semiconductor cap layer in the passive device region, and the resistance value of the resistor manufactured by the embodiments disclosed herein can be controlled by the high resistance characteristics of the material of the compound semiconductor cap layer. Compared with the conventional polycrystalline silicon resistor, it is less affected by the intensity of the two-dimensional electron gas (2DEG) in the channel layer of the high electron mobility transistor. Its resistance value is stable and easy to control, and the resistance value is linear when the voltage changes, which is beneficial to the application of high voltage and high power components. In addition, the resistor of the semiconductor device disclosed herein can be connected in series and/or in parallel with a high electron mobility transistor, a Zener diode and/or other components, and is suitable for application in high voltage and high power AC/DC power conversion circuits and other digital logic circuits.

以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。 The above is only the preferred embodiment of the present invention. All equivalent changes and modifications made according to the scope of the patent application of the present invention shall fall within the scope of the present invention.

100:半導體裝置 100:Semiconductor devices

100A:主動元件區 100A: Active component area

100B:被動元件區 100B: Passive component area

101:基底 101: Base

106:化合物半導體通道層 106: Compound semiconductor channel layer

108:化合物半導體阻障層 108: Compound semiconductor barrier layer

109:隔離區 109: Isolation area

110-1:第一化合物半導體蓋層 110-1: The first compound semiconductor capping layer

110-2:第二化合物半導體蓋層 110-2: Second compound semiconductor capping layer

112:閘極電極 112: Gate electrode

113:圖案化導電層 113: Patterned conductive layer

113-1:圖案化導電層的第一部份 113-1: The first part of the patterned conductive layer

113-2:圖案化導電層的第二部份 113-2: The second part of the patterned conductive layer

114:源極電極 114: Source electrode

116:汲極電極 116: Drain electrode

120-1:第一接點 120-1: First contact

120-2:第二接點 120-2: Second contact

130:導線層 130: Conductor layer

132:源極接點 132: Source contact

133:汲極接點 133: Drain contact

HEMT:高電子遷移率電晶體 HEMT: High Electron Mobility Transistor

R:電阻器 R: Resistor

Claims (20)

一種半導體裝置,包括:一基底,具有一主動元件區和一被動元件區;一化合物半導體通道層、一化合物半導體阻障層、及一第一化合物半導體蓋層,依序設置於該基底之上,且位於該主動元件區;一閘極電極,設置於該第一化合物半導體蓋層上;一源極電極和一汲極電極,設置於該化合物半導體阻障層上,分別位於該閘極電極的兩側,以構成一高電子遷移率電晶體;以及一第二化合物半導體蓋層,設置於該基底之上,且位於該被動元件區,以構成一電阻器。 A semiconductor device includes: a substrate having an active device region and a passive device region; a compound semiconductor channel layer, a compound semiconductor barrier layer, and a first compound semiconductor cap layer, which are sequentially arranged on the substrate and located in the active device region; a gate electrode, which is arranged on the first compound semiconductor cap layer; a source electrode and a drain electrode, which are arranged on the compound semiconductor barrier layer and are respectively located on both sides of the gate electrode to form a high electron mobility transistor; and a second compound semiconductor cap layer, which is arranged on the substrate and located in the passive device region to form a resistor. 如請求項1所述之半導體裝置,其中該第一化合物半導體蓋層沿著一第一方向延伸,該第二化合物半導體蓋層沿著一第二方向延伸,且該第一方向和該第二方向不同。 A semiconductor device as described in claim 1, wherein the first compound semiconductor capping layer extends along a first direction, the second compound semiconductor capping layer extends along a second direction, and the first direction and the second direction are different. 如請求項1所述之半導體裝置,其中該第一化合物半導體蓋層的組成包括p型氮化鎵(GaN),該第二化合物半導體蓋層的組成包括氮化鎵、p型氮化鎵或n型氮化鎵。 A semiconductor device as described in claim 1, wherein the composition of the first compound semiconductor cap layer includes p-type gallium nitride (GaN), and the composition of the second compound semiconductor cap layer includes gallium nitride, p-type gallium nitride or n-type gallium nitride. 如請求項1所述之半導體裝置,其中該第一化合物半導體蓋層和該第二化合物半導體蓋層包括摻雜濃度不同的p型氮化鎵(GaN)。 A semiconductor device as described in claim 1, wherein the first compound semiconductor cap layer and the second compound semiconductor cap layer include p-type gallium nitride (GaN) with different doping concentrations. 如請求項1所述之半導體裝置,還包括: 一圖案化導電層,設置於該第二化合物半導體蓋層正上方;一第一接點,設置於該圖案化導電層的一第一部份正上方,且電連接至該第二化合物半導體蓋層和該源極電極;以及一第二接點,設置於該圖案化導電層的一第二部份正上方,且電連接至該第二化合物半導體蓋層和該汲極電極。 The semiconductor device as described in claim 1 further comprises: a patterned conductive layer disposed directly above the second compound semiconductor cap layer; a first contact disposed directly above a first portion of the patterned conductive layer and electrically connected to the second compound semiconductor cap layer and the source electrode; and a second contact disposed directly above a second portion of the patterned conductive layer and electrically connected to the second compound semiconductor cap layer and the drain electrode. 如請求項1所述之半導體裝置,其中該第二化合物半導體蓋層的俯視形狀包括長條形、連續彎曲形或螺旋形。 A semiconductor device as described in claim 1, wherein the top view shape of the second compound semiconductor cap layer includes a strip, a continuous bend or a spiral. 如請求項1所述之半導體裝置,其中該化合物半導體通道層和該化合物半導體阻障層從該主動元件區連續延伸至該被動元件區內,且該半導體裝置還包括一隔離區設置於該化合物半導體通道層中,位於該第二化合物半導體蓋層正下方,且該隔離區的底面高於該化合物半導體通道層的底面,或者與該化合物半導體通道層的底面齊平。 A semiconductor device as described in claim 1, wherein the compound semiconductor channel layer and the compound semiconductor barrier layer extend continuously from the active device region to the passive device region, and the semiconductor device further comprises an isolation region disposed in the compound semiconductor channel layer, directly below the second compound semiconductor cap layer, and the bottom surface of the isolation region is higher than the bottom surface of the compound semiconductor channel layer, or is flush with the bottom surface of the compound semiconductor channel layer. 如請求項7所述之半導體裝置,其中該隔離區包括一惰性離子佈植區或一淺溝槽隔離區。 A semiconductor device as described in claim 7, wherein the isolation region includes an inert ion implantation region or a shallow trench isolation region. 如請求項1所述之半導體裝置,其中該化合物半導體通道層和該化合物半導體阻障層在該被動元件區具有一凹陷,且該第二化合物半導體蓋層設置於該凹陷內。 A semiconductor device as described in claim 1, wherein the compound semiconductor channel layer and the compound semiconductor barrier layer have a recess in the passive device region, and the second compound semiconductor cap layer is disposed in the recess. 如請求項9所述之半導體裝置,其中該凹陷的底面高於該化合物半導體通道層的底面,或者與該化合物半導體通道層的底面齊平。 A semiconductor device as described in claim 9, wherein the bottom surface of the recess is higher than the bottom surface of the compound semiconductor channel layer, or is flush with the bottom surface of the compound semiconductor channel layer. 如請求項1所述之半導體裝置,還包括一磊晶疊層設置在該基底與該化合物半導體通道層之間,且位於該主動元件區和該被動元件區。 The semiconductor device as described in claim 1 further includes an epitaxial stack disposed between the substrate and the compound semiconductor channel layer and located in the active device region and the passive device region. 如請求項11所述之半導體裝置,其中該第二化合物半導體蓋層的底面接觸該磊晶疊層的頂面。 A semiconductor device as described in claim 11, wherein the bottom surface of the second compound semiconductor cap layer contacts the top surface of the epitaxial stack. 如請求項1所述之半導體裝置,還包括一第三化合物半導體蓋層設置於該基底之上,位於該被動元件區,其中該第二化合物半導體蓋層和該第三化合物半導體蓋層具有不同的電阻值,且該第三化合物半導體蓋層電連接至該第二化合物半導體蓋層。 The semiconductor device as described in claim 1 further includes a third compound semiconductor cap layer disposed on the substrate and located in the passive device region, wherein the second compound semiconductor cap layer and the third compound semiconductor cap layer have different resistance values, and the third compound semiconductor cap layer is electrically connected to the second compound semiconductor cap layer. 如請求項13所述之半導體裝置,其中該第一化合物半導體蓋層、該第二化合物半導體蓋層和該第三化合物半導體蓋層的組成皆相同。 A semiconductor device as described in claim 13, wherein the first compound semiconductor cap layer, the second compound semiconductor cap layer, and the third compound semiconductor cap layer have the same composition. 一種半導體裝置的製造方法,包括:提供一基底,具有一主動元件區和一被動元件區;在該基底之上,於該主動元件區和該被動元件區內依序形成一化合物半導體通道層、一化合物半導體阻障層、及一化合物半導體蓋層;在該被動元件區的該化合物半導體通道層內形成一隔離區;圖案化該化合物半導體蓋層,以於該主動元件區內形成一第一化合物半導體蓋層,並於該被動元件區內形成一第二化合物半導體蓋層,其中該第二化合物半導體蓋層構成一電阻器;在該第一化合物半導體蓋層上形成一閘極電極;以及 在該化合物半導體阻障層上形成一源極電極和一汲極電極,分別位於該閘極電極的兩側,以構成一高電子遷移率電晶體。 A method for manufacturing a semiconductor device includes: providing a substrate having an active device region and a passive device region; sequentially forming a compound semiconductor channel layer, a compound semiconductor barrier layer, and a compound semiconductor cap layer in the active device region and the passive device region on the substrate; forming an isolation region in the compound semiconductor channel layer in the passive device region; patterning the compound semiconductor cap layer to form an isolation region in the active device region; A first compound semiconductor capping layer is formed in the active element region, and a second compound semiconductor capping layer is formed in the passive element region, wherein the second compound semiconductor capping layer constitutes a resistor; a gate electrode is formed on the first compound semiconductor capping layer; and a source electrode and a drain electrode are formed on the compound semiconductor barrier layer, respectively located on both sides of the gate electrode, to constitute a high electron mobility transistor. 如請求項15所述之半導體裝置的製造方法,還包括:在該第二化合物半導體蓋層正上方形成一圖案化導電層;以及在該圖案化導電層的一第一部份和一第二部份正上方分別形成一第一接點和一第二接點,且該第一接點電連接至該第二化合物半導體蓋層和該源極電極,該第二接點電連接至該第二化合物半導體蓋層和該汲極電極,其中該圖案化導電層和該閘極電極由一相同的導電材料層圖案化而形成。 The method for manufacturing a semiconductor device as described in claim 15 further includes: forming a patterned conductive layer directly above the second compound semiconductor cap layer; and forming a first contact and a second contact respectively directly above a first portion and a second portion of the patterned conductive layer, and the first contact is electrically connected to the second compound semiconductor cap layer and the source electrode, and the second contact is electrically connected to the second compound semiconductor cap layer and the drain electrode, wherein the patterned conductive layer and the gate electrode are formed by patterning the same conductive material layer. 如請求項15所述之半導體裝置的製造方法,其中形成該隔離區包括在該被動元件區的該化合物半導體通道層內植入惰性離子,以形成一惰性離子佈植區,位於該第二化合物半導體蓋層正下方。 A method for manufacturing a semiconductor device as described in claim 15, wherein forming the isolation region includes implanting inert ions in the compound semiconductor channel layer of the passive device region to form an inert ion implantation region located directly below the second compound semiconductor cap layer. 如請求項15所述之半導體裝置的製造方法,其中形成該隔離區包括蝕刻移除在該被動元件區的該化合物半導體通道層和該化合物半導體阻障層,以形成一凹陷,且該第二化合物半導體蓋層形成於該凹陷內。 The method for manufacturing a semiconductor device as described in claim 15, wherein forming the isolation region includes etching and removing the compound semiconductor channel layer and the compound semiconductor barrier layer in the passive device region to form a recess, and the second compound semiconductor cap layer is formed in the recess. 如請求項15所述之半導體裝置的製造方法,其中形成該隔離區包括在該被動元件區的該化合物半導體通道層和該化合物半導體阻障層中形成一淺溝槽隔離區,位於該第二化合物半導體蓋層正下方。 A method for manufacturing a semiconductor device as described in claim 15, wherein forming the isolation region includes forming a shallow trench isolation region in the compound semiconductor channel layer and the compound semiconductor barrier layer in the passive device region, located directly below the second compound semiconductor cap layer. 如請求項15所述之半導體裝置的製造方法,其中圖案化該化合物半導體蓋層還包括在該被動元件區形成一第三化合物半導體蓋層,該第二化合 物半導體蓋層和該第三化合物半導體蓋層具有不同的電阻值,且該第三化合物半導體蓋層電連接至該第二化合物半導體蓋層。 A method for manufacturing a semiconductor device as described in claim 15, wherein patterning the compound semiconductor capping layer further includes forming a third compound semiconductor capping layer in the passive element region, the second compound semiconductor capping layer and the third compound semiconductor capping layer have different resistance values, and the third compound semiconductor capping layer is electrically connected to the second compound semiconductor capping layer.
TW111142488A 2022-11-08 2022-11-08 Semiconductor device and fabrication method thereof TWI837931B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW111142488A TWI837931B (en) 2022-11-08 2022-11-08 Semiconductor device and fabrication method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW111142488A TWI837931B (en) 2022-11-08 2022-11-08 Semiconductor device and fabrication method thereof

Publications (2)

Publication Number Publication Date
TWI837931B true TWI837931B (en) 2024-04-01
TW202420559A TW202420559A (en) 2024-05-16

Family

ID=91618883

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111142488A TWI837931B (en) 2022-11-08 2022-11-08 Semiconductor device and fabrication method thereof

Country Status (1)

Country Link
TW (1) TWI837931B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5022549B2 (en) * 2000-01-28 2012-09-12 アイメック Method for moving and stacking semiconductor devices
TWI588902B (en) * 2013-07-24 2017-06-21 格羅方德半導體公司 Method of forming a semiconductor structure including silicided and non-silicided circuit elements
TW202211380A (en) * 2020-06-01 2022-03-16 美商克立公司 Methods for pillar connection on frontside and passive device integration on backside of die
KR20220139977A (en) * 2020-02-21 2022-10-17 울프스피드 인코포레이티드 A device carrier configured for interconnection, a package implementing the device carrier having interconnection, and a method of manufacturing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5022549B2 (en) * 2000-01-28 2012-09-12 アイメック Method for moving and stacking semiconductor devices
TWI588902B (en) * 2013-07-24 2017-06-21 格羅方德半導體公司 Method of forming a semiconductor structure including silicided and non-silicided circuit elements
KR20220139977A (en) * 2020-02-21 2022-10-17 울프스피드 인코포레이티드 A device carrier configured for interconnection, a package implementing the device carrier having interconnection, and a method of manufacturing the same
TW202211380A (en) * 2020-06-01 2022-03-16 美商克立公司 Methods for pillar connection on frontside and passive device integration on backside of die

Also Published As

Publication number Publication date
TW202420559A (en) 2024-05-16

Similar Documents

Publication Publication Date Title
US8390091B2 (en) Semiconductor structure, an integrated circuit including a semiconductor structure and a method for manufacturing a semiconductor structure
CN104201210B (en) Diode and the component including the diode
CN112490286B (en) Semiconductor device and method for manufacturing the same
CN112490285B (en) Semiconductor device and method for manufacturing the same
CN114823888A (en) High electron mobility transistor and manufacturing method thereof
TWI837931B (en) Semiconductor device and fabrication method thereof
TWI768985B (en) Semiconductor structure and high electron mobility transistor
TWI740554B (en) High electron mobility transistor
US20240243121A1 (en) Semiconductor device and fabrication method thereof
CN113871476A (en) High electron mobility transistor and high voltage semiconductor device
CN118016706A (en) Semiconductor device and method for manufacturing the same
CN113451403A (en) High electron mobility transistor and manufacturing method thereof
TWI790655B (en) Semiconductor structure and high electron mobility transistor
TWI834365B (en) Semiconductor device
TWI849920B (en) High electron mobility transistor and fabrication method thereof
WO2023197088A1 (en) Semiconductor element and manufacturing method therefor
TWI794599B (en) High electron mobility transistor and fabrication method thereof
TWI813500B (en) High electron mobility transistor structure and fabrication method thereof
TWI849600B (en) High electron mobility transistor and fabrication method thereof
TWI794650B (en) High-voltage semiconductor structure
US20240243194A1 (en) High electron mobility transistor structure and fabrication method thereof
TWI820979B (en) Semiconductor device
US11967642B2 (en) Semiconductor structure, high electron mobility transistor and fabrication method thereof
TWI795022B (en) High electron mobility transistor
TWI755277B (en) High electron mobility transistor and fabrication method thereof