TWI837911B - Circuit substrate having microfluidic channel and manufacturing method thereof - Google Patents

Circuit substrate having microfluidic channel and manufacturing method thereof Download PDF

Info

Publication number
TWI837911B
TWI837911B TW111141259A TW111141259A TWI837911B TW I837911 B TWI837911 B TW I837911B TW 111141259 A TW111141259 A TW 111141259A TW 111141259 A TW111141259 A TW 111141259A TW I837911 B TWI837911 B TW I837911B
Authority
TW
Taiwan
Prior art keywords
microfluidic channel
embedded electronic
layer
electronic component
dielectric layer
Prior art date
Application number
TW111141259A
Other languages
Chinese (zh)
Other versions
TW202417368A (en
Inventor
李建成
拉爵 古
Original Assignee
先豐通訊股份有限公司
Filing date
Publication date
Application filed by 先豐通訊股份有限公司 filed Critical 先豐通訊股份有限公司
Application granted granted Critical
Publication of TWI837911B publication Critical patent/TWI837911B/en
Publication of TW202417368A publication Critical patent/TW202417368A/en

Links

Images

Abstract

A circuit substrate includes a circuit structure and a microfluidic channel layer. The circuit structure includes an embedded electronic device. The microfluidic channel layer is below the circuit structure and includes a microfluidic channel, a metal layer, and a cooling fluid. The microfluidic channel is below the embedded electronic device. The cooling fluid is disposed between the embedded electronic device and the microfluidic channel. The microfluidic channel is filled with the cooling fluid, in which the cooling fluid is used for cooling the embedded electronic device.

Description

具有微流體通道的電路基板及其製造方法Circuit substrate with microfluidic channel and manufacturing method thereof

本發明是關於一種具有微流體通道的電路基板以及一種具有微流體通道的電路基板的製造方法,且特別是關於一種通有冷卻流體的微流體通道。The present invention relates to a circuit substrate with a microfluidic channel and a method for manufacturing the circuit substrate with a microfluidic channel, and in particular to a microfluidic channel through which a cooling fluid passes.

隨著化石燃料的日漸短缺,現今汽車工業所研發出的電動車和油電混合動力車(hybrid electric vehicle;HEV)具有發展潛能,從而成為傳統內燃機汽車的替代品。電動車或油電混合動力車內的嵌入式功率模組可決定電動車的性能、可靠性和生產成本。然而,嵌入式功率模組的功率開關和功率傳導的增加會產生大量的熱能,導致嵌入式功率模組內的電路基板的局部區域因累積大量的熱能而形成熱點(hot spot),從而降低電動車的整體性能。因此,目前的技術仍很難滿足嵌入式功率模組的散熱需求。As fossil fuels become increasingly scarce, the electric vehicles and hybrid electric vehicles (HEVs) developed by the current automotive industry have the potential to become alternatives to traditional internal combustion engine vehicles. The embedded power modules in electric vehicles or hybrid electric vehicles can determine the performance, reliability and production cost of electric vehicles. However, the increase in power switches and power conduction in embedded power modules will generate a large amount of heat energy, resulting in the formation of hot spots in local areas of the circuit substrate in the embedded power module due to the accumulation of a large amount of heat energy, thereby reducing the overall performance of the electric vehicle. Therefore, current technology still finds it difficult to meet the heat dissipation requirements of embedded power modules.

本發明的一些實施例提供一種具有微流體通道的電路基板及其製造方法,以防止熱點的形成來實現有效的熱管理。本案的微流體通道整合於電路基板中,所以不需要額外的大量空間來設置散熱元件等裝置。因此,與現有技術相比,本發明的電路基板體積較小、性能穩定、增加使用壽命、並降低生產成本。Some embodiments of the present invention provide a circuit substrate with a microfluidic channel and a manufacturing method thereof to prevent the formation of hot spots to achieve effective thermal management. The microfluidic channel of the present invention is integrated into the circuit substrate, so no additional large space is required to set up heat dissipation components and other devices. Therefore, compared with the prior art, the circuit substrate of the present invention is smaller in size, has stable performance, increases service life, and reduces production costs.

本發明至少一實施例所提供的一種具有微流體通道的電路基板包含電路結構及通道層。電路結構包含第一內嵌電子元件。通道層位於電路結構下方,且包含微流體通道、金屬層以及冷卻流體。微流體通道位於第一內嵌電子元件下方。金屬層設置於第一內嵌電子元件與微流體通道之間。冷卻流體填充於微流體通道中,其中冷卻流體用於冷卻第一內嵌電子元件。At least one embodiment of the present invention provides a circuit substrate with a microfluidic channel, comprising a circuit structure and a channel layer. The circuit structure comprises a first embedded electronic component. The channel layer is located below the circuit structure and comprises a microfluidic channel, a metal layer, and a cooling fluid. The microfluidic channel is located below the first embedded electronic component. The metal layer is disposed between the first embedded electronic component and the microfluidic channel. The cooling fluid is filled in the microfluidic channel, wherein the cooling fluid is used to cool the first embedded electronic component.

在本發明至少一實施例中,微流體通道於第一內嵌電子元件下方具有至少一個轉折處。In at least one embodiment of the present invention, the microfluidic channel has at least one turning point below the first embedded electronic component.

在本發明至少一實施例中,具有微流體通道的電路基板更包含位於電路結構中的第二內嵌電子元件。第二內嵌電子元件與第一內嵌電子元件分離,微流體通道位於第二內嵌電子元件下方,且於第二內嵌電子元件下方具有至少一個轉折處。In at least one embodiment of the present invention, the circuit substrate with the microfluidic channel further includes a second embedded electronic component in the circuit structure. The second embedded electronic component is separated from the first embedded electronic component, and the microfluidic channel is located below the second embedded electronic component and has at least one turning point below the second embedded electronic component.

在本發明至少一實施例中,轉折處具有一直線邊緣或一弧形邊緣。In at least one embodiment of the present invention, the turning point has a straight edge or an arc edge.

本發明至少一實施例所提供的一種具有微流體通道的電路基板的製造方法包含以下步驟。提供第一介電層。形成第一金屬層於第一介電層的頂表面上。形成內嵌電子元件於第一金屬層上。在形成內嵌電子元件於第一金屬層上之後,圖案化第一介電層以形成凹槽,其中凹槽暴露出第一金屬層的底表面和第一介電層的多個側壁。形成覆蓋多個側壁的第二金屬層。形成第二介電層以覆蓋第一介電層的底表面,並使凹槽形成微流體通道。A method for manufacturing a circuit substrate with a microfluidic channel provided by at least one embodiment of the present invention comprises the following steps. A first dielectric layer is provided. A first metal layer is formed on the top surface of the first dielectric layer. An embedded electronic component is formed on the first metal layer. After the embedded electronic component is formed on the first metal layer, the first dielectric layer is patterned to form a groove, wherein the groove exposes the bottom surface of the first metal layer and multiple side walls of the first dielectric layer. A second metal layer is formed to cover the multiple side walls. A second dielectric layer is formed to cover the bottom surface of the first dielectric layer, and the groove forms a microfluidic channel.

在本發明至少一實施例中,在形成第一金屬層於第一介電層的頂表面上之後,形成第三介電層以圍繞內嵌電子元件並覆蓋第一金屬層的頂表面。In at least one embodiment of the present invention, after forming a first metal layer on a top surface of a first dielectric layer, a third dielectric layer is formed to surround the embedded electronic device and cover the top surface of the first metal layer.

在本發明至少一實施例中,在圖案化第一介電層以形成凹槽之前,形成線路層於內嵌電子元件上。In at least one embodiment of the present invention, before patterning the first dielectric layer to form the grooves, a circuit layer is formed on the embedded electronic device.

在本發明至少一實施例中,第二金屬層是利用無電電鍍以及有電電鍍而形成。In at least one embodiment of the present invention, the second metal layer is formed by electroless plating and electric plating.

在本發明至少一實施例中,在形成第二介電層的步驟包含透過高分子層或黏合層來覆蓋第一介電層的底表面。In at least one embodiment of the present invention, the step of forming the second dielectric layer includes covering the bottom surface of the first dielectric layer with a polymer layer or an adhesive layer.

在本發明至少一實施例中,在形成微流體通道之後,填充冷卻流體於微流體通道中。In at least one embodiment of the present invention, after the microfluidic channel is formed, a cooling fluid is filled into the microfluidic channel.

在以下的內文中,為了清楚呈現本案的技術特徵,圖式中的元件(例如內嵌電子元件、微流體通道和各線路層等)的尺寸(例如長度、寬度、厚度與深度)會以不等比例的方式放大,而且有的元件數量會減少。因此,下文實施例的說明與解釋不受限於圖式中的元件數量以及元件所呈現的尺寸與形狀,而應涵蓋如實際製程及/或公差所導致的尺寸、形狀以及兩者的偏差。例如,圖式所示的平坦表面可以具有粗糙及/或非線性的特徵,而圖式所示的銳角可以是圓的。所以,本案圖式所呈示的元件主要是用於示意,並非旨在精準地描繪出元件的實際形狀,也非用於限制本案的申請專利範圍。In the following text, in order to clearly present the technical features of the present invention, the dimensions (e.g., length, width, thickness, and depth) of the components in the drawings (e.g., embedded electronic components, microfluidic channels, and various circuit layers, etc.) will be enlarged in unequal proportions, and the number of some components will be reduced. Therefore, the description and explanation of the embodiments below are not limited to the number of components in the drawings and the dimensions and shapes presented by the components, but should cover the dimensions, shapes, and deviations therefrom caused by actual processes and/or tolerances. For example, the flat surface shown in the drawings may have rough and/or nonlinear features, and the sharp corners shown in the drawings may be rounded. Therefore, the components presented in the drawings of the present invention are mainly used for illustration, and are not intended to accurately depict the actual shape of the components, nor are they intended to limit the scope of the patent application of the present invention.

其次,本案內容中所出現的「約」、「近似」或「實質上」等這類用字不僅涵蓋明確記載的數值與數值範圍,而且也涵蓋發明所屬技術領域中具有通常知識者所能理解的可允許偏差範圍,其中此偏差範圍可由測量時所產生的誤差來決定,而此誤差例如是起因於測量系統或製程條件兩者的限制。此外,「約」可表示在上述數值的一個或多個標準偏差內,例如±30%、±20%、±10%或±5%內。本案文中所出現的「約」、「近似」或「實質上」等這類用字可依光學性質、蝕刻性質、機械性質或其他性質來選擇可以接受的偏差範圍或標準偏差,並非單以一個標準偏差來套用以上光學性質、蝕刻性質、機械性質以及其他性質等所有性質。Secondly, the words "approximately", "approximately" or "substantially" used in the present case not only cover the numerical values and numerical ranges clearly recorded, but also cover the permissible deviation range that can be understood by a person of ordinary skill in the art to which the invention belongs, wherein the deviation range can be determined by the error generated during measurement, and the error is caused by, for example, the limitation of the measurement system or the process conditions. In addition, "approximately" can mean within one or more standard deviations of the above numerical values, such as ±30%, ±20%, ±10% or ±5%. The words "approximately", "approximately" or "substantially" used in this text may select an acceptable range of deviation or standard deviation according to the optical, etching, mechanical or other properties, and do not apply a single standard deviation to all the above optical, etching, mechanical and other properties.

將理解的是,儘管這裡可以使用「第一」、「第二」等術語來描述各種元件,但是這些元件不應受到這些術語的限制。這些術語僅用於將一個元件與另一個元件區分開來。例如,在不脫離實施方式的範疇的情況下,第一元件可以被稱為第二元件,並且類似地,第二元件可以被稱為第一元件。It will be understood that although the terms "first," "second," etc. may be used herein to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another. For example, a first element may be referred to as a second element, and similarly, a second element may be referred to as a first element without departing from the scope of the embodiments.

請參考圖1,其為圖1為本發明至少一實施例的電路基板100的上視圖。電路基板100包含多個微流體通道連接器110、微流體通道120和多個內嵌電子元件,例如第一內嵌電子元件(下稱內嵌電子元件130a)以及第二內嵌電子元件(下稱內嵌電子元件130b)。內嵌電子元件130a位於微流體通道120上方。微流體通道120中填充有冷卻流體,其中冷卻流體能在微流體通道120內流動,並能冷卻內嵌電子元件130a所產生的熱能。此外,圖1未標示冷卻流體,但圖1有用直線箭頭表示冷卻流體在微流體通道120中的流動方向。Please refer to FIG. 1 , which is a top view of a circuit substrate 100 of at least one embodiment of the present invention. The circuit substrate 100 includes a plurality of microfluidic channel connectors 110, a microfluidic channel 120, and a plurality of embedded electronic components, such as a first embedded electronic component (hereinafter referred to as embedded electronic component 130a) and a second embedded electronic component (hereinafter referred to as embedded electronic component 130b). The embedded electronic component 130a is located above the microfluidic channel 120. The microfluidic channel 120 is filled with a cooling fluid, wherein the cooling fluid can flow in the microfluidic channel 120 and can cool the heat energy generated by the embedded electronic component 130a. In addition, FIG. 1 does not indicate the cooling fluid, but FIG. 1 uses a straight arrow to indicate the flow direction of the cooling fluid in the microfluidic channel 120.

冷卻流體本質上為介電且反應性較低的材料。換句話說,冷卻流體為低化學活性的絕緣體,以抑制漏電或短路。在一些實施方式中,冷卻流體可以是例如礦物油、合成油、XSPC EC6、EK-EKOOLANT、超純水或去離子水等。The cooling fluid is essentially a dielectric and less reactive material. In other words, the cooling fluid is an insulator with low chemical activity to suppress leakage or short circuit. In some embodiments, the cooling fluid can be, for example, mineral oil, synthetic oil, XSPC EC6, EK-EKOOLANT, ultrapure water or deionized water.

微流體通道連接器110包含輸入微流體通道連接器110a和輸出微流體通道連接器110b。輸入微流體通道連接器110a配置以將冷卻流體注入至微流體通道120中,而輸出微流體通道連接器110b配置以將冷卻流體從微流體通道120中離開。The microfluidic channel connector 110 includes an input microfluidic channel connector 110a and an output microfluidic channel connector 110b. The input microfluidic channel connector 110a is configured to inject cooling fluid into the microfluidic channel 120, while the output microfluidic channel connector 110b is configured to remove cooling fluid from the microfluidic channel 120.

仍參考圖1,輸入微流體通道連接器110a可連接兩個支流的微流體通道120,每個微流體通道120還具有多個支流(未標示),每個支流通過彎折的通道後連接至輸出微流體通道連接器110b。微流體通道120配置用以導引冷卻流體。需說明的是,圖1中所繪示的微流體通道連接器110、微流體通道120和內嵌電子元件130a之數量和配置並非用以限制本發明內容,其他數量或配置都應包含在本發明的實施範疇中。例如,其他實施例中的電路基板100所包括的微流體通道連接器110、微流體通道120和內嵌電子元件130a三者個別的數量可以僅為一個。Still referring to FIG. 1 , the input microfluidic channel connector 110a can connect the microfluidic channels 120 of two branches, and each microfluidic channel 120 also has multiple branches (not shown), and each branch is connected to the output microfluidic channel connector 110b after passing through the bent channel. The microfluidic channel 120 is configured to guide the cooling fluid. It should be noted that the number and configuration of the microfluidic channel connector 110, microfluidic channel 120 and embedded electronic component 130a shown in FIG. 1 are not intended to limit the content of the present invention, and other numbers or configurations should be included in the scope of implementation of the present invention. For example, the number of the microfluidic channel connector 110, microfluidic channel 120 and embedded electronic component 130a included in the circuit substrate 100 in other embodiments may be only one.

圖2為圖1中包含內嵌電子元件130a和微流體通道120的區域R的局部放大上視圖。以下圖式中的直線箭頭表示冷卻流體在微流體通道120中的流動方向,微流體通道120包含輸入段120 in、轉折段120 t1、120 t2以及輸出段120 out,其分別代表微流體通道120於冷卻流體流入處、第一轉折處、第二轉折處、流出處的位置之標示。曲線箭頭表示內嵌電子元件130a的熱能的分散方向。需說明的是,內嵌電子元件130a和130b可例如是表面黏著元件(surface mount device;SMD)、嵌入式功率模組(embedded power module)、或是其他會發出熱源的元件。 FIG. 2 is a partial enlarged top view of the region R of FIG. 1 including the embedded electronic component 130a and the microfluidic channel 120. The straight arrows in the following figure indicate the flow direction of the cooling fluid in the microfluidic channel 120. The microfluidic channel 120 includes an input section 120in , a turning section 120t1 , 120t2 , and an output section 120out , which respectively represent the positions of the microfluidic channel 120 at the cooling fluid inflow, the first turning section, the second turning section, and the outflow section. The curved arrow indicates the direction of the heat energy dissipation of the embedded electronic component 130a. It should be noted that the embedded electronic components 130a and 130b may be, for example, surface mount devices (SMD), embedded power modules, or other components that emit heat sources.

如圖2所示,內嵌電子元件130a的熱源從四面八方發出,微流體通道120中的冷卻流體從右側輸入,在內嵌電子元件130a下方的微流體通道120的兩個轉折處中進行熱交換之後,冷卻流體再從左側離開。在本實施例中,轉折處的微流體通道120的轉折段120t1、120t2可具有直線邊緣。轉折處的設置能減緩冷卻流體的速率,增加冷卻流體與內嵌電子元件130a的熱交換時間,從而提升冷卻效率。以下圖3A和圖3B將詳細說明熱能和冷卻流體的流動關係。 As shown in FIG. 2 , the heat source of the embedded electronic component 130a is emitted from all directions, and the cooling fluid in the microfluidic channel 120 is input from the right side. After heat exchange is performed in the two turning points of the microfluidic channel 120 below the embedded electronic component 130a, the cooling fluid leaves from the left side. In this embodiment, the turning sections 120 t1 and 120 t2 of the microfluidic channel 120 at the turning point may have straight line edges. The setting of the turning point can slow down the cooling fluid rate and increase the heat exchange time between the cooling fluid and the embedded electronic component 130a, thereby improving the cooling efficiency. The following FIG. 3A and FIG. 3B will explain in detail the flow relationship between heat energy and cooling fluid.

圖3A為沿著圖2中的線A-A’而繪示的剖視圖。圖3B為沿著圖2中的線B-B’而繪示的剖視圖。圖3A和圖3B中的電路基板100皆繪示出通道層310和位於通道層310上方的電路結構320。微流體通道120位於通道層310中,內嵌電子元件130a位於電路結構320中。為了清楚起見,通道層310和電路結構320沒有繪示或標示於圖1、圖2和圖4中。請進一步參考圖3A以及圖11C,電路結構320包含內嵌電子元件610以及位於內嵌電子元件610上方的多層線路層(例如線路層710)。特別一提的是,這些線路層通過多個導電盲孔(未標示)電性連接 至內嵌電子元件610。 FIG3A is a cross-sectional view taken along line A-A' in FIG2 . FIG3B is a cross-sectional view taken along line B-B' in FIG2 . The circuit substrate 100 in FIG3A and FIG3B both show a channel layer 310 and a circuit structure 320 located above the channel layer 310. The microfluidic channel 120 is located in the channel layer 310, and the embedded electronic component 130a is located in the circuit structure 320. For the sake of clarity, the channel layer 310 and the circuit structure 320 are not shown or labeled in FIG1 , FIG2 , and FIG4 . Please further refer to FIG3A and FIG11C , the circuit structure 320 includes an embedded electronic component 610 and a plurality of wiring layers (e.g., wiring layer 710) located above the embedded electronic component 610. It is worth mentioning that these circuit layers are electrically connected to the embedded electronic components 610 through multiple conductive blind vias (not shown).

如圖3A和圖3B所示,微流體通道的輸入段120in、轉折段120t1、120t2及輸出段120out皆位於內嵌電子元件130a的下方。詳細來說,內嵌電子元件130a於通道層310上的投影重疊於輸入段120in、轉折段120t1、120t2及輸出段120out於通道層310上的投影。更詳細來說,轉折段120t1、120t2於通道層310上的投影在內嵌電子元件130a於通道層310上的投影之內。 As shown in FIG3A and FIG3B , the input section 120 in , the turning sections 120 t1 , 120 t2 and the output section 120 out of the microfluidic channel are all located below the embedded electronic component 130 a. Specifically, the projection of the embedded electronic component 130 a on the channel layer 310 overlaps the projection of the input section 120 in , the turning sections 120 t1 , 120 t2 and the output section 120 out on the channel layer 310. More specifically, the projection of the turning sections 120 t1 , 120 t2 on the channel layer 310 is within the projection of the embedded electronic component 130 a on the channel layer 310.

請參考圖3A和圖3B,由於在微流體通道120中流動的冷卻流體具有比內嵌電子元件130a較低的溫度,因此,流經微流體通道120的輸入段120in、轉折段120t1、120t2與輸出段120out的冷卻流體可以將內嵌電子元件130a的熱能以熱傳導與熱對流的方式將其帶走,使得內嵌電子元件130a的溫度得以降溫,可以防止內嵌電子元件130a產生熱點,進而避免性能降低。 Please refer to FIG. 3A and FIG. 3B . Since the cooling fluid flowing in the microfluidic channel 120 has a lower temperature than the embedded electronic component 130a, the cooling fluid flowing through the input section 120in , the turning sections 120t1 , 120t2 and the output section 120out of the microfluidic channel 120 can remove the heat energy of the embedded electronic component 130a by means of heat conduction and heat convection, so that the temperature of the embedded electronic component 130a can be cooled down, and the generation of hot spots in the embedded electronic component 130a can be prevented, thereby avoiding performance degradation.

請再次參考圖1,圖1中的多個內嵌電子元件(例如內嵌電子元件130a與內嵌電子元件130b)彼此分離,且每個內嵌電子元件下方的微流體通道120至少有一個轉折(例如圖2中的轉折段120t1、120t2)。微流體通道120通過此些內嵌電子元件下方,以使冷卻流體能將這些內嵌電子元件的熱能帶走,從而防止內嵌電子元件因過熱而性能降低。 Please refer to FIG. 1 again. The multiple embedded electronic components (e.g., embedded electronic component 130a and embedded electronic component 130b) in FIG. 1 are separated from each other, and the microfluidic channel 120 under each embedded electronic component has at least one turn (e.g., turn segments 120 t1 and 120 t2 in FIG. 2 ). The microfluidic channel 120 passes under these embedded electronic components so that the cooling fluid can take away the heat energy of these embedded electronic components, thereby preventing the embedded electronic components from being degraded due to overheating.

圖4為本發明替代實施例的微流體通道120A的局部放大上視圖。微流體通道120A包含有輸入段120in、 轉折段120t1、120t2、120t3、120t4以及輸出段120out。在本實施例中,轉折段120t1、120t2、120t3、120t4具有弧形邊緣。微流體通道120A可應用於尺寸更大的內嵌電子元件130a和130b。 FIG4 is a partial enlarged top view of a microfluidic channel 120A of an alternative embodiment of the present invention. The microfluidic channel 120A includes an input section 120in , turning sections 120t1 , 120t2 , 120t3 , 120t4 , and an output section 120out . In this embodiment, the turning sections 120t1 , 120t2 , 120t3 , 120t4 have arc edges. The microfluidic channel 120A can be applied to larger embedded electronic components 130a and 130b.

應了解的是,上述的轉折處之形狀和數量可根據實際需求而設置,而冷卻流體的流速也可根據實際需求而調整以達到冷卻內嵌電子元件130a和130b的效果。微流體通道120、120A的尺寸、面積和轉折處的數量可根據內嵌電子元件130a和130b的尺寸和需要消散的熱能而調整。 It should be understood that the shape and number of the above-mentioned turning points can be set according to actual needs, and the flow rate of the cooling fluid can also be adjusted according to actual needs to achieve the effect of cooling the embedded electronic components 130a and 130b. The size, area and number of turning points of the microfluidic channels 120, 120A can be adjusted according to the size of the embedded electronic components 130a and 130b and the heat energy that needs to be dissipated.

圖5至圖11C為本發明一些實施例的電路基板1100A、1100B、1100C的製造方法的示意圖。請參考圖5,提供第一介電層(下稱介電層510)。介電層510的相對表面設置有金屬層520、530。圖5中的第一金屬層(下稱金屬層520)經曝光、顯影與蝕刻而具有圖案化的結構,並暴露出介電層510的頂表面510t。金屬層520經圖案化(例如曝光、顯影與蝕刻)後,形成導電層540於金屬層520上方。導電層540可例如是銀金屬層或是導電膠層。金屬層520、530可例如為銅金屬層。金屬層520可利用無電電鍍以及有電電鍍而形成。 5 to 11C are schematic diagrams of a method for manufacturing circuit substrates 1100A, 1100B, and 1100C of some embodiments of the present invention. Referring to FIG5 , a first dielectric layer (hereinafter referred to as dielectric layer 510) is provided. Metal layers 520 and 530 are disposed on opposite surfaces of the dielectric layer 510. The first metal layer (hereinafter referred to as metal layer 520) in FIG5 has a patterned structure after exposure, development, and etching, and the top surface 510t of the dielectric layer 510 is exposed. After the metal layer 520 is patterned (e.g., exposed, developed, and etched), a conductive layer 540 is formed above the metal layer 520. The conductive layer 540 may be, for example, a silver metal layer or a conductive glue layer. Metal layers 520 and 530 may be, for example, copper metal layers. Metal layer 520 may be formed by electroless plating and electrolytic plating.

請參考圖6,利用內嵌電子元件的堆疊製程,形成內嵌電子元件610於導電層540上方,並提供第三介電層(下稱介電層620),使得介電層620圍繞內嵌電子元件610並覆蓋金屬層520的頂表面520t以及介電層510的 頂表面510t。 Please refer to FIG. 6 , the embedded electronic element 610 is formed on the conductive layer 540 by using the stacking process of the embedded electronic element, and a third dielectric layer (hereinafter referred to as the dielectric layer 620) is provided, so that the dielectric layer 620 surrounds the embedded electronic element 610 and covers the top surface 520t of the metal layer 520 and the top surface 510t of the dielectric layer 510.

請參考圖7,利用堆疊製程,在內嵌電子元件610上方形成多個彼此交錯堆疊的線路層710與介電層711,其中相鄰兩層線路層710之間可利用導電盲孔(conductive blind via)而彼此電性連接。線路層710可電性連接至內嵌電子元件610或是其他電子元件(未繪示出)。須說明的是,這些線路層710與介電層711、內嵌電子元件610、介電層620及導電層540可形成電路結構(例如電路結構320)。 Please refer to FIG. 7 . A plurality of circuit layers 710 and dielectric layers 711 are stacked one on top of the embedded electronic element 610 by stacking process, wherein two adjacent circuit layers 710 can be electrically connected to each other by conductive blind vias. The circuit layer 710 can be electrically connected to the embedded electronic element 610 or other electronic elements (not shown). It should be noted that these circuit layers 710 and dielectric layers 711, the embedded electronic element 610, the dielectric layer 620 and the conductive layer 540 can form a circuit structure (e.g., circuit structure 320).

請參考圖8,圖案化介電層510以形成多個凹槽810,其中每個凹槽810暴露出金屬層520的底表面520b和介電層510的多個側壁510s。在本實施例中,凹槽810可透過蝕刻、外型切割(routing)或雷射燒蝕(laser ablation)而形成。此外,如圖8所示,介電層510的側壁510s與金屬層530的側壁530s實質上共平面。 Referring to FIG. 8 , the dielectric layer 510 is patterned to form a plurality of grooves 810 , wherein each groove 810 exposes the bottom surface 520 b of the metal layer 520 and a plurality of sidewalls 510 s of the dielectric layer 510 . In the present embodiment, the grooves 810 may be formed by etching, routing, or laser ablation. In addition, as shown in FIG. 8 , the sidewalls 510 s of the dielectric layer 510 are substantially coplanar with the sidewalls 530 s of the metal layer 530 .

請參考圖9,形成覆蓋介電層510的側壁510s的第二金屬層(下稱金屬層910)。詳細來說,金屬層910還覆蓋金屬層530的側壁530s。在本實施例中,金屬層910是利用無電電鍍(electroless plating)以及有電電鍍(electroplatting)而形成。 Referring to FIG. 9 , a second metal layer (hereinafter referred to as metal layer 910 ) is formed to cover the sidewall 510s of the dielectric layer 510 . Specifically, the metal layer 910 also covers the sidewall 530s of the metal layer 530 . In this embodiment, the metal layer 910 is formed by electroless plating and electroplating.

圖10A、圖10B和圖10C分別為圖9之後的三個實施例,其中將凹槽810遮蓋而形成的微流體通道1040。此外,微流體通道連接器110和微流體通道120為獨立的通道,具有一定的密封效果而沒有冷卻流體洩漏的問題。 FIG. 10A, FIG. 10B and FIG. 10C are three embodiments after FIG. 9, in which the microfluidic channel 1040 is formed by covering the groove 810. In addition, the microfluidic channel connector 110 and the microfluidic channel 120 are independent channels, which have a certain sealing effect without the problem of cooling fluid leakage.

圖10A、圖10B和圖10C的實施例差別在於第二介電層(下稱介電層1020)和金屬層1030的形成方式。請參考圖10A,透過高分子層1010將介電層1020和金屬層1030層疊(或貼合)於介電層510和凹槽810(標示於圖9)下方,使得原本具有開口的凹槽810形成微流體通道1040。詳細來說,高分子層1010包覆金屬層530並覆蓋介電層510的底表面510b,以使圖10A中的微流體通道1040的側壁與頂面為金屬材料層,而底面為介電材料層。 The difference between the embodiments of FIG. 10A, FIG. 10B and FIG. 10C lies in the formation method of the second dielectric layer (hereinafter referred to as dielectric layer 1020) and the metal layer 1030. Referring to FIG. 10A, the dielectric layer 1020 and the metal layer 1030 are stacked (or bonded) under the dielectric layer 510 and the groove 810 (marked in FIG. 9) through the polymer layer 1010, so that the groove 810 originally having an opening forms a microfluidic channel 1040. In detail, the polymer layer 1010 covers the metal layer 530 and covers the bottom surface 510b of the dielectric layer 510, so that the side wall and the top surface of the microfluidic channel 1040 in FIG. 10A are metal material layers, and the bottom surface is a dielectric material layer.

請參考圖10B,透過高分子層1010將金屬層1050、介電層1020和金屬層1030層疊於介電層510和凹槽810(標示於圖9)下方,使得原本具有開口的凹槽810形成微流體通道1040。詳細來說,部分的金屬層1050接觸金屬層530。微流體通道1040的所有表面(包括側壁與上下兩表面)都是金屬材料層。高分子層1010圍繞金屬層530、1050,並設置於介電層510的底表面510b和金屬層1050之間,其中高分子層1010覆蓋介電層510的底表面510b。 Referring to FIG. 10B , the metal layer 1050, the dielectric layer 1020, and the metal layer 1030 are stacked under the dielectric layer 510 and the groove 810 (shown in FIG. 9 ) through the polymer layer 1010, so that the groove 810 originally having an opening forms the microfluidic channel 1040. Specifically, part of the metal layer 1050 contacts the metal layer 530. All surfaces of the microfluidic channel 1040 (including the side walls and the upper and lower surfaces) are metal material layers. The polymer layer 1010 surrounds the metal layers 530 and 1050 and is disposed between the bottom surface 510b of the dielectric layer 510 and the metal layer 1050, wherein the polymer layer 1010 covers the bottom surface 510b of the dielectric layer 510.

請參考圖10C,透過高分子層1010和黏合層1060將金屬層1050、介電層1020和金屬層1030層疊(或貼合)於介電層510和凹槽810(標示於圖9)下方,使得原本具有開口的凹槽810形成微流體通道1040。詳細來說,黏合層1060設置於金屬層530和部分的金屬層1050之間。高分子層1010圍繞金屬層530、金屬層1050 和黏合層1060,並設置於介電層510的底表面510b和金屬層1050之間,其中高分子層1010覆蓋介電層510的底表面510b。在一實施例中,黏合層1060可例如為銀膠。此外,在上述圖10A、圖10B和圖10C的實施例中,高分子層1010可例如為低流動性膠片(low flow prepreg)或是無流動性膠片(no flow prepreg)。 Referring to FIG. 10C , the metal layer 1050, the dielectric layer 1020, and the metal layer 1030 are stacked (or bonded) below the dielectric layer 510 and the groove 810 (shown in FIG. 9 ) through the polymer layer 1010 and the adhesive layer 1060, so that the groove 810 originally having an opening forms the microfluidic channel 1040. Specifically, the adhesive layer 1060 is disposed between the metal layer 530 and a portion of the metal layer 1050. The polymer layer 1010 surrounds the metal layer 530, the metal layer 1050 and the adhesive layer 1060, and is disposed between the bottom surface 510b of the dielectric layer 510 and the metal layer 1050, wherein the polymer layer 1010 covers the bottom surface 510b of the dielectric layer 510. In one embodiment, the adhesive layer 1060 may be, for example, silver glue. In addition, in the embodiments of FIG. 10A, FIG. 10B and FIG. 10C above, the polymer layer 1010 may be, for example, a low flow prepreg or a no flow prepreg.

圖11A、圖11B和圖11C分別為圖10A、圖10B和圖10C之後的三個實施例。詳細來說,在圖10A、圖10B和圖10C中的結構中形成導電通孔1110,使得最上層的線路層710電性連接至最下層的金屬層1030。在形成圖11A、圖11B和圖11C中的電路基板1100A、1100B、1100C之後,填充冷卻流體於微流體通道1040中。 FIG. 11A, FIG. 11B, and FIG. 11C are three embodiments after FIG. 10A, FIG. 10B, and FIG. 10C, respectively. Specifically, a conductive via 1110 is formed in the structure in FIG. 10A, FIG. 10B, and FIG. 10C, so that the topmost circuit layer 710 is electrically connected to the bottommost metal layer 1030. After forming the circuit substrates 1100A, 1100B, and 1100C in FIG. 11A, FIG. 11B, and FIG. 11C, a cooling fluid is filled in the microfluidic channel 1040.

仍參考圖11A、圖11B和圖11C的電路基板1100A、1100B、1100C。須說明的是,本案包含有微流體通道1040的層稱為通道層(如同前述通道層310)。金屬層520設置於內嵌電子元件610與微流體通道1040之間。微流體通道1040中的冷卻流體可直接從熱源(即內嵌電子元件610)透過金屬層520而將熱能帶走,使得內嵌電子元件610的性能可以維持或提升。本案的冷卻流體能帶走熱能,並可減少電路基板1100A、1100B、1100C中累積的熱能,從而降低長時間運作而形成熱點的風險,同時提升電路基板的整體性能。 Still referring to the circuit substrates 1100A, 1100B, 1100C of FIG. 11A, FIG. 11B and FIG. 11C. It should be noted that the layer including the microfluidic channel 1040 in this case is called a channel layer (similar to the aforementioned channel layer 310). The metal layer 520 is disposed between the embedded electronic component 610 and the microfluidic channel 1040. The cooling fluid in the microfluidic channel 1040 can directly take away the heat energy from the heat source (i.e., the embedded electronic component 610) through the metal layer 520, so that the performance of the embedded electronic component 610 can be maintained or improved. The cooling fluid in this case can remove heat energy and reduce the heat energy accumulated in the circuit substrates 1100A, 1100B, and 1100C, thereby reducing the risk of hot spots forming due to long-term operation and improving the overall performance of the circuit substrate.

在本發明的一些實施例中,考慮到電路基板 1100A、1100B、1100C的微流體通道1040與線路層710兩側的平衡,微流體通道1040的材料(例如金屬層520、910、1050)可以相同於線路層710中的金屬材料。在其他實施例中,在電路基板1100A、1100B、1100C的微流體通道1040與線路層710兩側為平衡的情況下,微流體通道1040的材料可以不相同於線路層710中的金屬材料。當兩側平衡時,可避免電路基板1100A、1100B、1100C的翹曲。 In some embodiments of the present invention, considering the balance between the microfluidic channel 1040 and the circuit layer 710 on both sides of the circuit substrate 1100A, 1100B, 1100C, the material of the microfluidic channel 1040 (e.g., metal layers 520, 910, 1050) may be the same as the metal material in the circuit layer 710. In other embodiments, when the microfluidic channel 1040 and the circuit layer 710 on both sides of the circuit substrate 1100A, 1100B, 1100C are balanced, the material of the microfluidic channel 1040 may be different from the metal material in the circuit layer 710. When the two sides are balanced, the warping of the circuit substrate 1100A, 1100B, 1100C can be avoided.

本發明的電路基板具有整合在其中的微流體通道,所以相較於需要額外的空間來設置散熱元件之結構,本案的電路基板體積較小且具有避免熱點形成的冷卻通道。本案的冷卻流體可直接從熱源位置將熱能帶走,以維持或提升內嵌電子元件的效能,從而增加電路基板的壽命。此外,本案位於內嵌電子元件與微流體通道之間的金屬層可以保護冷卻流體不與其他傳遞電信號的線路層接觸。 The circuit substrate of the present invention has a microfluidic channel integrated therein, so compared to the structure that requires additional space to set up a heat dissipation element, the circuit substrate of this case is smaller in size and has a cooling channel that avoids the formation of hot spots. The cooling fluid of this case can directly take away the heat energy from the heat source to maintain or improve the performance of the embedded electronic components, thereby increasing the life of the circuit substrate. In addition, the metal layer between the embedded electronic components and the microfluidic channel of this case can protect the cooling fluid from contacting other circuit layers that transmit electrical signals.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,本發明所屬技術領域中具有通常知識者,在不脫離本發明精神和範圍內,當可作些許更動與潤飾,因此本發明保護範圍當視後附的申請專利範圍所界定者為準。 Although the present invention has been disclosed as above by way of embodiments, it is not intended to limit the present invention. Those with ordinary knowledge in the technical field to which the present invention belongs may make some changes and modifications without departing from the spirit and scope of the present invention. Therefore, the scope of protection of the present invention shall be subject to the scope of the patent application attached hereto.

100:電路基板 100: Circuit board

110:微流體通道連接器 110: Microfluidic channel connector

110a:輸入微流體通道連接器 110a: Input microfluidic channel connector

110b:輸出微流體通道連接器 110b: Output microfluidic channel connector

120:微流體通道 120: Microfluidic channel

120A:微流體通道 120A: Microfluidic channel

130a,130b:內嵌電子元件 130a, 130b: Embedded electronic components

120in:輸入段 120 in : Input segment

120t1,120t2,120t3,120t4:轉折段 120 t1 ,120 t2 ,120 t3 ,120 t4 : turning section

120out:輸出段 120 out : output section

510:介電層 510: Dielectric layer

510s:側壁 510s: Sidewall

510b:底表面 510b: bottom surface

510t:頂表面 510t: Top surface

520:金屬層 520:Metal layer

520b:底表面 520b: bottom surface

520t:頂表面 520t: Top surface

530:金屬層 530:Metal layer

530s:側壁 530s: Sidewall

540:導電層 540: Conductive layer

610:內嵌電子元件 610:Embedded electronic components

620:介電層 620: Dielectric layer

710:線路層 710: Circuit layer

711:介電層 711: Dielectric layer

810:凹槽 810: Groove

910:金屬層 910:Metal layer

1010:高分子層 1010:Polymer layer

1020:介電層 1020: Dielectric layer

1030:金屬層 1030: Metal layer

1040:微流體通道 1040: Microfluidic channel

1050:金屬層 1050:Metal layer

1060:黏合層 1060: Adhesive layer

1100A,1100B,1100C:電路基板 1100A, 1100B, 1100C: Circuit board

1110:導電通孔 1110: Conductive via

R:區域 R: Region

A-A’:線 A-A’: line

B-B’:線 B-B’: line

圖1為本發明至少一實施例的電路基板的上視圖。 圖2為圖1中包含內嵌電子元件和微流體通道的區域的局部放大上視圖。 圖3A為沿著圖2中的線A-A’而繪示的剖視圖。 圖3B為沿著圖2中的線B-B’而繪示的剖視圖。 圖4為本發明替代實施例的微流體通道的局部放大上視圖。 圖5至圖11C為本發明一些實施例的電路基板的製造方法的示意圖。 FIG. 1 is a top view of a circuit substrate of at least one embodiment of the present invention. FIG. 2 is a partially enlarged top view of a region of FIG. 1 containing embedded electronic components and microfluidic channels. FIG. 3A is a cross-sectional view along line A-A’ in FIG. 2. FIG. 3B is a cross-sectional view along line B-B’ in FIG. 2. FIG. 4 is a partially enlarged top view of a microfluidic channel of an alternative embodiment of the present invention. FIG. 5 to FIG. 11C are schematic diagrams of a method for manufacturing a circuit substrate of some embodiments of the present invention.

國內寄存資訊(請依寄存機構、日期、號碼順序註記) 無 國外寄存資訊(請依寄存國家、機構、日期、號碼順序註記) 無 Domestic storage information (please note in the order of storage institution, date, and number) None Foreign storage information (please note in the order of storage country, institution, date, and number) None

510:介電層 510: Dielectric layer

520:金屬層 520:Metal layer

610:內嵌電子元件 610:Embedded electronic components

710:線路層 710: Circuit layer

711:介電層 711: Dielectric layer

1030:金屬層 1030: Metal layer

1040:微流體通道 1040: Microfluidic channel

1100A:電路基板 1100A: Circuit board

1110:導電通孔 1110: Conductive via

Claims (10)

一種具有微流體通道的電路基板,包含:一電路結構,包含一第一內嵌電子元件以及多層線路層,且所述線路層位於所述第一內嵌電子元件上方,其中所述線路層通過多個導電盲孔電性連接至所述第一內嵌電子元件;及一通道層,位於所述電路結構下方,其中所述通道層包含:一微流體通道,位於所述第一內嵌電子元件下方;一金屬層,設置於所述第一內嵌電子元件與所述微流體通道之間;及一冷卻流體,填充於所述微流體通道中,其中所述冷卻流體用於冷卻所述第一內嵌電子元件。 A circuit substrate with a microfluidic channel comprises: a circuit structure comprising a first embedded electronic component and a plurality of wiring layers, wherein the wiring layer is located above the first embedded electronic component, wherein the wiring layer is electrically connected to the first embedded electronic component through a plurality of conductive blind vias; and a channel layer located below the circuit structure, wherein the channel layer comprises: a microfluidic channel located below the first embedded electronic component; a metal layer disposed between the first embedded electronic component and the microfluidic channel; and a cooling fluid filled in the microfluidic channel, wherein the cooling fluid is used to cool the first embedded electronic component. 如請求項1所述之電路基板,其中所述微流體通道於所述第一內嵌電子元件下方具有至少一個轉折處。 A circuit substrate as described in claim 1, wherein the microfluidic channel has at least one turning point below the first embedded electronic component. 如請求項1所述之電路基板,更包含:位於所述電路結構中的一第二內嵌電子元件,其中所述第二內嵌電子元件與所述第一內嵌電子元件分離,所述微流體通道位於所述第二內嵌電子元件下方,且於所述第二內嵌電子元件下方具有至少一個轉折處。 The circuit substrate as described in claim 1 further comprises: a second embedded electronic element located in the circuit structure, wherein the second embedded electronic element is separated from the first embedded electronic element, the microfluidic channel is located below the second embedded electronic element, and has at least one turning point below the second embedded electronic element. 如請求項3所述之電路基板,其中所述轉折處具有一直線邊緣或一弧形邊緣。 A circuit substrate as described in claim 3, wherein the turning point has a straight edge or an arc edge. 一種具有微流體通道的電路基板的製造方法,包含:提供一第一介電層;形成一第一金屬層於所述第一介電層的一頂表面上;形成一內嵌電子元件於所述第一金屬層上;在形成所述內嵌電子元件於所述第一金屬層上之後,圖案化所述第一介電層以形成一凹槽,其中所述凹槽暴露出所述第一金屬層的一底表面和所述第一介電層的多個側壁;形成覆蓋所述多個側壁的一第二金屬層;以及形成一第二介電層以覆蓋所述第一介電層的一底表面,並使所述凹槽形成一微流體通道。 A method for manufacturing a circuit substrate having a microfluidic channel comprises: providing a first dielectric layer; forming a first metal layer on a top surface of the first dielectric layer; forming an embedded electronic component on the first metal layer; after forming the embedded electronic component on the first metal layer, patterning the first dielectric layer to form a groove, wherein the groove exposes a bottom surface of the first metal layer and a plurality of side walls of the first dielectric layer; forming a second metal layer covering the plurality of side walls; and forming a second dielectric layer to cover a bottom surface of the first dielectric layer, and forming the groove into a microfluidic channel. 如請求項5所述之製造方法,其中在形成所述第一金屬層於所述第一介電層的所述頂表面上之後,形成一第三介電層以圍繞所述內嵌電子元件並覆蓋所述第一金屬層的一頂表面。 A manufacturing method as described in claim 5, wherein after forming the first metal layer on the top surface of the first dielectric layer, a third dielectric layer is formed to surround the embedded electronic component and cover a top surface of the first metal layer. 如請求項5所述之製造方法,其中在圖案化所述第一介電層以形成所述凹槽之前,形成一線路層於所述內嵌電子元件上。 A manufacturing method as described in claim 5, wherein before patterning the first dielectric layer to form the groove, a circuit layer is formed on the embedded electronic component. 如請求項5所述之製造方法,其中所述第二金屬層是利用一無電電鍍以及一有電電鍍而形成。 A manufacturing method as described in claim 5, wherein the second metal layer is formed by using an electroless plating process and an electric plating process. 如請求項5所述之製造方法,其中在形成所述第二介電層的步驟包含透過一高分子層或一黏合層來覆蓋所述第一介電層的所述底表面。 The manufacturing method as described in claim 5, wherein the step of forming the second dielectric layer includes covering the bottom surface of the first dielectric layer with a polymer layer or an adhesive layer. 如請求項5所述之製造方法,其中在形成微流體通道之後,填充一冷卻流體於所述微流體通道中。 A manufacturing method as described in claim 5, wherein after forming the microfluidic channel, a cooling fluid is filled into the microfluidic channel.
TW111141259A 2022-10-28 Circuit substrate having microfluidic channel and manufacturing method thereof TWI837911B (en)

Publications (2)

Publication Number Publication Date
TWI837911B true TWI837911B (en) 2024-04-01
TW202417368A TW202417368A (en) 2024-05-01

Family

ID=

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200137885A1 (en) 2018-10-30 2020-04-30 Amazon Technologies, Inc. Microfluidic channels and pumps for active cooling of circuit boards

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200137885A1 (en) 2018-10-30 2020-04-30 Amazon Technologies, Inc. Microfluidic channels and pumps for active cooling of circuit boards

Similar Documents

Publication Publication Date Title
US7190581B1 (en) Low thermal resistance power module assembly
JP5273101B2 (en) Semiconductor module and manufacturing method thereof
US8120914B2 (en) Semiconductor cooling apparatus
KR100752239B1 (en) Power module package structure
US20090141456A1 (en) Multilayer, thermally-stabilized substrate structures
US20140008782A1 (en) Semiconductor unit
TWI837911B (en) Circuit substrate having microfluidic channel and manufacturing method thereof
JP4210908B2 (en) Semiconductor module
JP4522271B2 (en) Electronic device and heat sink assembly used therefor
TWM592106U (en) Power module
CN113066776A (en) Power module
KR20170069365A (en) Direct cooling type power module and method for manufacturing the same
CN114975342A (en) Power module and vehicle-mounted power circuit
US20210195787A1 (en) Electrical equipment comprising a busbar cooled by two faces of a heatsink
JP4535004B2 (en) Double-sided cooling type semiconductor device
US10251256B2 (en) Heat dissipating structure
JP2017118050A (en) Semiconductor unit
CN110383473B (en) Power electronic circuit equipped with a bus bar forming a heat sink and integration method
JP5590713B2 (en) Wiring board and manufacturing method thereof
JP2019161081A (en) Electric power conversion device and manufacturing method of electric power conversion device
TWI836729B (en) Ceramic board structure and power module
WO2023228417A1 (en) Heat dissipation structure for semiconductor device
CN220273510U (en) Rectifier bridge water-cooling shell
JP4742964B2 (en) Mounting substrate and manufacturing method thereof
CN112352296A (en) Electronic device