TWI837538B - 增強材料結構的處理 - Google Patents

增強材料結構的處理 Download PDF

Info

Publication number
TWI837538B
TWI837538B TW110141112A TW110141112A TWI837538B TW I837538 B TWI837538 B TW I837538B TW 110141112 A TW110141112 A TW 110141112A TW 110141112 A TW110141112 A TW 110141112A TW I837538 B TWI837538 B TW I837538B
Authority
TW
Taiwan
Prior art keywords
dielectric layer
substrate
annealing
nitridation
plasma
Prior art date
Application number
TW110141112A
Other languages
English (en)
Other versions
TW202223992A (zh
Inventor
史蒂芬Ch 洪
玖漢尼斯 史文博格
麥爾肯 畢凡
Original Assignee
美商應用材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US17/092,039 external-priority patent/US20210057215A1/en
Application filed by 美商應用材料股份有限公司 filed Critical 美商應用材料股份有限公司
Publication of TW202223992A publication Critical patent/TW202223992A/zh
Application granted granted Critical
Publication of TWI837538B publication Critical patent/TWI837538B/zh

Links

Images

Abstract

一種形成半導體結構的方法包括以下步驟:預清潔基板的表面;在所述基板的預清潔後的表面上形成介面層;在所述介面層上沉積高κ介電層;執行電漿氮化製程以在所沉積的高κ介電層中插入氮原子;和執行氮化後退火製程以鈍化電漿氮化後的高κ介電層中的化學鍵。

Description

增強材料結構的處理
本文描述的多個實施方式一般涉及半導體元件製造,尤其是,涉及在半導體結構中形成高品質高κ介電材料層的系統和方法。
隨著金屬氧化物半導體場效應電晶體(MOSFET)已經為了實現高元件性能和低功耗而減小尺寸,傳統的二氧化矽(SiO 2)閘極介電質的厚度已經減小到它的物理極限(physical limit)。因此,為了實現進一步的縮小(scaling),用高κ介電材料替代二氧化矽閘極介電質已經是在所難免的。在各種高κ介電材料中,自45nm MOSFET技術節點開始,已經應用了氧化鉿(HfO 2),這是因為氧化鉿(HfO 2)有高介電常數和在矽基板上優越的熱穩定性。但是,對於32nm MOSFET技術節點及以後的技術節點的等效氧化物厚度(equivalent oxide thickness,EOT)的進一步縮小而言,簡單地減小高κ介電材料層的厚度是成問題的,因為流過高κ介電材料層的漏電流增加了。
因此,需要能夠用來形成薄的(例如EOT小於1nm)高κ介電材料層的系統和方法,這種材料層具有能夠受控以確保期望的結構特性和電氣特性的化學結構。
本揭示內容的多個實施方式提供一種形成半導體結構的方法。該方法包括以下步驟:預清潔基板的表面;在所述基板的預清潔後的表面上形成介面層(interfacial layer);在所述介面層上沉積高κ介電層;執行電漿氮化(plasma nitridation)製程以在所沉積的高κ介電層中插入氮原子;和執行氮化後退火(post-nitridation anneal)製程以鈍化電漿氮化後的高κ介電層中的化學鍵。
本揭示內容的多個實施方式還提供一種形成半導體結構的方法。該方法包括以下步驟:預清潔基板的表面;在所述基板上沉積高κ介電層;和執行電漿氮化製程以在所沉積的高κ介電層中插入氮原子。
本揭示內容的多個實施方式進一步提供一種處理系統。處理系統包括第一處理腔室、第二處理腔室、第三處理腔室、第四處理腔室、第五處理腔室和系統控制器。該系統控制器被構造成:在所述第一處理腔室中預清潔基板的表面;在所述第二處理腔室中,在所述基板的預清潔後的表面上形成介面層;在所述第三處理腔室中,在所述介面層上沉積高κ介電層;在所述第四處理腔室中,將所沉積的高κ介電層暴露給氮電漿;和在所述第五處理腔室中,對電漿氮化後的高κ介電層進行退火。在所述第一處理腔室、所述第二處理腔室、所述第三處理腔室、所述第四處理腔室和所述第五處理腔室之間傳送所述基板而不破壞所述處理系統中的真空環境。
隨著閘極結構縮到更小的尺寸,一直在尋求新的材料結構來提供改進。相較於利用諸如氧化矽之類材料的傳統閘極結構,高κ介電材料的使用增大了閘極結構的介電常數。然而,類似於氧化矽,隨著閘極結構的厚度減小,漏電流增加。例如,閘極洩漏(gate leakage)隨著有效氧化物厚度減小而增加。因此,閘極洩漏與有效氧化物厚度之間的反比關係可能形成對所生產的元件和電晶體性能的限制。
相較於類似厚度的氧化矽,高κ介電材料可以提供更大的溝道遷移率(channel mobility)。隨著本行業繼續尋求在不增加閘極洩漏的情況下更低的有效氧化物厚度,由於形態學特徵(morphological characteristics)的緣故,對已知的高κ材料的介電常數(也稱為「κ值」)最大化的努力將要達到極限。傳統的技術已經在努力克服高κ材料的固有特性(這可能設定κ值的上限),以及隨後的元件改造以嘗試結合新的膜。
本文描述的多個實施方式提供用於改善高κ介電材料的特性的系統和方法。通過生產呈現特定形態或者晶粒結構的高κ介電材料,可以實現更高的介電常數和隨之改進的元件性能。為了控制示例性元件中的晶粒形成,可以進行處理(treatment)以提供能夠引起特定晶粒生長的活化基板表面(activated substrate surface),以及在形成後對膜進行穩定化,這可以造成更高的介電常數。
圖1是根據本揭示內容的一些示例的多腔室處理系統100的示例的示意性俯視圖。該處理系統100一般包括:工廠介面102;裝載鎖定腔室104、106;具有相應的傳送機械手112、114的傳送腔室108、110;保持腔室116、118;和處理腔室120、122、124、126、128、130。如本文所詳述的那樣,可以在各種腔室中處理在處理系統100中的晶圓和在各種腔室之間傳送這些晶圓而不將這些晶圓暴露給處理系統100外部的周圍環境(例如,諸如可能存在於晶圓廠(fab)中的大氣環境)。例如,可以在低壓(例如,小於或等於約300托)或真空環境中在各種腔室中處理這些晶圓和在各種腔室之間傳送這些晶圓,而不破壞處理系統100中對晶圓執行的各種製程之間的低壓或真空環境。因此,處理系統100可以為晶圓的一些處理提供整合的解決方案。
可以根據本文提供的教導適當修改的處理系統的示例包括可以從位於美國加利福尼亞州聖塔克拉拉的應用材料公司商業獲得的Endura®、 Producer®或者Centura®整合處理系統或者其他適當的處理系統。預期其他處理系統(包括來自其他製造商的那些處理系統)可適於受益於本文所述的多個態樣。
在圖1的圖示示例中,工廠介面102包括塢站(docking station)140和工廠介面機械手142以説明傳送晶圓。塢站140被構造成接納一個或者多個前開式標準艙(FOUP)144。在一些示例中,每個工廠介面機械手142一般包括葉片148,葉片148設置在相應工廠介面機械手142的一端上,被構造成將晶圓從工廠介面102傳送至裝載鎖定腔室104、106。
裝載鎖定腔室104、106具有耦接到工廠介面102的相應埠150、152和耦接到傳送腔室108的相應埠154、156。傳送腔室108還有耦接到保持腔室116、118的相應埠158、160和耦接到處理腔室120、122的相應埠162、164。類似地,傳送腔室110具有耦接到保持腔室116、118的相應埠166、168和耦接到處理腔室124、126、128、130的相應埠170、172、174、176。埠154、156、158、160、162、164、166、168、170、172、174、176可以是例如帶有狹縫閥的狹縫閥開口,用於借助傳送機械手112、114使晶圓從中通過並用於在相應的腔室之間提供密封以防止氣體在各腔室之間通過。通常,任何埠開放以用於傳送晶圓從中通過。否則,埠被關閉。
裝載鎖定腔室104、106、傳送腔室108、110、保持腔室116、118和處理腔室120、122、124、126、128、130可以流體耦接到氣體和壓力控制系統(未具體圖示出)。氣體和壓力控制系統可以包括一個或多個氣泵(例如,渦輪泵、低溫泵(cryo-pump)、低真空泵(roughing pump))、氣源、各種閥和流體耦接到各種腔室的導管。在操作中,工廠介面機械手142通過埠150或152將晶圓從FOUP 144傳送到裝載鎖定腔室104或106。然後氣體和壓力控制系統泵空(pump down)裝載鎖定腔室104或106。氣體和壓力控制系統進一步將傳送腔室108、110和保持腔室116、118保持在內部低壓或真空環境(該環境可包括惰性氣體)。因此,裝載鎖定腔室104或106的泵空便於在例如工廠介面102的大氣環境與傳送腔室108的低壓或真空環境之間傳遞晶圓。
帶著已經被泵空的裝載鎖定腔室104或106中的晶圓,傳送機械手112通過埠154或156將晶圓從裝載鎖定腔室104或106傳送到傳送腔室108中。傳送機械手112然後能夠將晶圓傳送到處理腔室120、122和保持腔室116、118中的任何腔室和/或在這些腔室中的任何腔室之間傳送晶圓,通過相應埠162、164將晶圓傳送到用於處理的處理腔室120、122,通過相應埠158、160將晶圓傳送到用於保持以等待進一步傳送的保持腔室116、118。類似地,傳送機械手114能夠通過埠166或168接取保持腔室116或118中的晶圓,並且能夠將晶圓傳送到處理腔室124、126、128、130和保持腔室116、118中的任何腔室和/或在這些腔室中的任何腔室之間傳送晶圓,通過相應埠170、172、174、176將晶圓傳送到用於處理的處理腔室124、126、128、130,通過相應埠166、168將晶圓傳送到用於保持以等待進一步傳送的保持腔室116、118。晶圓在各個腔室內和之間的傳送和保持能夠在由氣體和壓力控制系統提供的低壓或真空環境中進行。
處理腔室120、122、124、126、128、130可以是用於處理晶圓的任何合適的腔室。在一些示例中,處理腔室122可以能夠執行清潔製程,處理腔室120可以能夠執行蝕刻製程,而處理腔室124、126、128、130可以能夠執行相應的磊晶生長製程。處理腔室122可以是能夠從美國加利福尼亞州的聖塔克拉拉的應用材料公司獲得的SiCoNi 預清潔腔室。處理腔室120可以是能夠從美國加利福尼亞州的聖塔克拉拉的應用材料公司獲得的Selectra 蝕刻腔室。
系統控制器190耦接到處理系統100,用於控制處理系統100或者處理系統100的部件。例如,系統控制器190可以使用對處理系統100的腔室104、106、108、116、118、110、120、122、124、126、128、130的直接控制來控制處理系統100的操作,或者通過控制與腔室104、106、108、116、118、110、120、122、124、126、128、130相關聯的控制器來控制處理系統100的操作。在操作中,系統控制器190能夠實現資料收集和來自相應腔室的回饋以協調處理系統100的運行。
系統控制器190一般包括中央處理單元(CPU)192、記憶體194和支援電路196。CPU 192可以是能夠在工業設置中使用的任何形式的通用處理器之一。記憶體194或非暫時性電腦可讀媒體能夠由CPU 192存取並且可以是諸如隨機存取記憶體(RAM)、唯讀記憶體(ROM)、軟碟、硬碟或任何其他形式的本地或遠端數位存儲裝置之類的一個或多個記憶體。支援電路196耦接到CPU 192並且可以包括快取記憶體、時鐘電路、輸入/輸出子系統、電源和類似裝置等。本文揭示的各種方法通常可以在CPU 192的控制下通過CPU 192執行存儲在記憶體194(或特定製程腔室的記憶體)中作為例如軟體常式的電腦指令代碼來實施。當電腦指令代碼由CPU 192執行時,CPU 192控制這些腔室以根據各種方法執行製程。
其他處理系統可以採用其他配置。例如,更多或更少的處理腔室可以耦接到傳送設備。在圖示的示例中,傳送設備包括傳送腔室108、110和保持腔室116、118。在其他示例中,更多或更少的傳送腔室(例如,一個傳送腔室)和/或更多或更少的保持腔室(例如,沒有保持腔室)可以作為處理系統中的傳送設備來實現。
圖2是根據本揭示內容的一個或多個實施方式的形成半導體結構300的方法200的製程流程圖。圖3A和圖3B是對應於方法200的各種狀態的半導體結構300的一部分的截面圖。應當理解,圖3A和圖3B僅示出了半導體結構300的局部示意圖,而半導體結構300可以包含任意數量的電晶體部分和具有如圖所示多個態樣的附加材料。還應該注意的是,雖然圖2中所示的方法步驟是按順序描述的,但包括一個或多個已被省略和/或添加的、和/或已按另一所需順序重新排列的一個或多個方法步驟的其他製程順序也落入本文提供的本揭示內容的多個實施方式的範圍內。
方法200始於方框210中的預清潔製程,以預清潔基板302的表面。該預清潔製程可以包括:通過幹蝕刻製程或者使用蝕刻溶液的濕蝕刻製程來蝕刻基板302的表面,蝕刻溶液諸如是包含NH 4OH(氫氧化銨(ammonium hydroxide))、H 2O 2(過氧化氫(hydrogen peroxide))和H 2O(水)的標準清潔1(Standard Clean 1, SC1)蝕刻溶液,幹蝕刻製程例如是SiConi 遠端電漿輔助幹蝕刻製程,其中基板302的表面被暴露於N 2、NF 3和NH 3電漿副產物。可以在諸如圖1中所示的處理腔室122或者120之類的預清潔腔室中執行該預清潔製程。
在方框220中,執行介面形成製程,以在基板302的預清潔後的表面上形成介面層304,如圖3A中所示。介面形成製程可以包括適當的熱氧化製程,諸如是利用一氧化二氮(N 2O)氣體的增強型原位蒸汽生成(enhanced in-situ steam generation, eISSG)製程。在方框220中形成的介面層304是一種薄的非晶氧化矽(SiO 2)層,具有介於約3Å與約10Å之間的厚度,例如約5Å,對應於氧化矽的一個或多個單層(monolayer)。在一些實施方式中,可以通過利用H 2和O 2氣體的原位蒸汽生成(ISSG)製程或者通過利用NH 3和O 2氣體的快速熱氧化(rapid thermal oxidation, RTO)製程來形成介面層304。介面層304可以作為待沉積在介面層304上的高κ介電材料層的成核層(nucleation layer),並提高基板302與高κ介電材料層之間介面的品質(例如,諸如介面態密度(interface state density)、累積電容(accumulation capacitance)、頻散(frequency dispersion)和漏電流之類)。可以在諸如圖1中所示的處理腔室120、122、124、126、128或者130之類的處理腔室中執行該介面形成製程。
在一些實施方式中,省去了方框220中的介面形成製程,在高κ介電材料層沉積在基板302上之前不形成介面層304。這種情況下,通過下面描述的方框250或者方框290中的熱氧化製程來形成介面層304,該製程經由沉積在基板302上的高κ介電材料層熱氧化基板302。具有介於約0.3nm與約 1nm之間的厚度,例如,約0.5nm的厚度,通過方框250或者方框290中的熱氧化製程形成的介面層304可以厚得足以確保可靠的元件特性(例如,諸如介面態密度、累積電容、頻散和漏電流之類)並且減少從高κ介電材料層向基板302的原子擴散(atomic diffusion)。
在方框230中,執行沉積製程,以在半導體結構300的暴露表面上(即,在方框220中形成介面層304的情況下在介面層304上,如圖3B所示,和在方框220中不形成介面層304的情況下在基板302上)沉積高κ介電層306。高κ介電層306可以由高κ介電材料形成,諸如二氧化鉿(HfO 2)、二氧化鋯(ZrO 2)、氧化鐿(ytterbium oxide,Y 2O 3)或者氧化鋁(Al 2O 3)之類的材料。該沉積製程可以包括原子層沉積(ALD)製程,其中將含金屬前驅物和含氧前驅物交替遞送至半導體結構300的暴露表面。在一些實施方式中,在遞送含氧前驅物之前,清除(purge)含金屬前驅物。金屬可以是諸如鉿(Hf)、鋯(Zr)或者鈦(Ti)之類的過渡金屬、諸如鑭(La)、鐿(Yb)或者釔(Y)之類的稀土金屬、諸如鍶(Sr)之類的鹼土金屬或者諸如鋁(Al)之類的其他金屬。對於氧化劑來說,可以使用可以與金屬反應的任何含氧前驅物。例如,含氧前驅物可以是或者包含水、雙原子氧(diatomic oxygen)、臭氧、含羥基的前驅物(hydroxyl-containing precursor)或者酒精、含氮和氧的前驅物、包含本地或者遠端增強的氧的電漿增強氧、或者可以與金屬結合以在基板302之上產生金屬的氧化物的層的含氧的任何其他材料。在一個示例中,含金屬前驅物是四氯化鉿(hafnium tetrachloride, HfC l4)並且氧化劑是水(H 2O),以形成二氧化鉿(HfO 2)層。可以在介於約200°C與約400°C之間的溫度(例如,約270°C)執行ALD製程。如由ALD製程所沉積的那樣,高κ介電層306可以是非晶的並且具有介於約10Å與約30Å之間的厚度。可以在諸如圖1中所示的處理腔室120、122、124、126、128或者130之類的處理腔室中執行該沉積製程。
在方框240中,執行可選的沉積後退火製程,以硬化和緻密化(densify)所沉積的高κ介電層306。可能發生所沉積的高κ介電層306的結晶化(crystallization)。該沉積後退火製程可以包括在一種快速熱處理(RTP)腔室中執行的惰性環境中(諸如在氮(N2)和氬(Ar)環境中)的熱退火製程,這種快速熱處理(RTP)腔室諸如是可以從位於美國加利福尼亞州聖塔克拉拉的應用材料公司獲得的RADOX 腔室。這種RTP腔室可以是圖1中所示的處理腔室120、122、124、126、128和130中的任意腔室。這種沉積後退火製程可以用熱的方法硬化和緻密化介面層304和高κ介電層306。
可以在介於約500°C與約800°C之間的溫度和介於約0.01Torr與10Torr之間的壓力執行沉積後退火製程達約1秒與約60秒之間的時間。
在方框250中,替代方框240中的沉積後退火製程,執行可選的再氧化製程,以熱氧化基板302。該再氧化製程可以包括在一種快速熱處理(RTP)腔室中執行的在氧(O 2)、一氧化二氮(N 2O)和H 2環境中的熱退火製程,這種快速熱處理(RTP)腔室諸如是可以從位於美國加利福尼亞州聖塔克拉拉的應用材料公司獲得的RADOX 腔室。這種RTP腔室可以是圖1中所示的處理腔室120、122、124、126、128和130中的任意腔室。方框250中的再氧化製程可以經由高κ介電層306熱氧化下面的層,因而在方框220中形成介面層304的情況下將介面層304增厚到介於約3Å與約10Å之間的厚度,而在方框220中不形成介面層304的情況下在與高κ介電層306的交界附近在基板302中形成介面層304。
可以在介於約400°C與約900°C之間的溫度和介於約0.01Torr與100Torr之間的壓力執行再氧化製程達約1秒與約30秒之間的時間。
在方框260中,執行電漿氮化製程,以將氮原子插入到高κ介電層306中的孔隙和缺陷中。該電漿氮化製程可以是在一種去耦電漿氮化(decoupled plasma nitridation, DPN)腔室中執行的DPN製程,這種DPN腔室諸如是可以從位於美國加利福尼亞州聖塔克拉拉的應用材料公司獲得的CENTURA® DPN腔室。這種DPN腔室可以是圖1中所示的處理腔室120、122、124、126、128和130中的任意腔室。該電漿氮化製程將高κ介電層306暴露於氮電漿,這可以在高κ介電層306的整個厚度上使氮自由基(radicals)或者氮原子能夠被結合到高κ介電層306內。在該電漿氮化製程期間,氮原子可以形成與氧(O)的亞穩態鍵(metastable bond)。可以在該電漿製程中使用的氣體包括含氮氣體,諸如氮氣(N 2)、氨氣(NH 3)或者這些氣體的混合物。在一個示例中,這種含氮氣體是混合有約3%至約8%的氮氣(N 2)的氨氣(NH 3)。作為氮結合到所沉積的高κ介電層306的孔隙和缺陷中的結果,該電漿氮化製程可以不改變高κ介電層306的厚度。
可以在介於約0°C與約500°C之間的溫度執行氮化製程達約10秒與約300秒之間的時間。
在方框270中,執行可選的熱氮化製程,以進一步將氮原子插入到電漿氮化後的高κ介電層306中的孔隙和缺陷中。該熱氮化製程可以包括在一種快速熱處理(RTP)腔室中執行的氨(NH 3)環境中的熱退火製程,這種快速熱處理(RTP)腔室諸如是可以從位於美國加利福尼亞州聖塔克拉拉的應用材料公司獲得的RADOX 腔室。這種RTP腔室可以是圖1中所示的處理腔室120、122、124、126、128和130中的任意腔室。
可以在介於約700°C與約900°C之間的溫度和介於約10Torr與740Torr之間的壓力執行熱氮化製程達約10秒與約300秒之間的時間。
在方框280中,執行氮化後退火製程,以鈍化電漿氮化後的高κ介電層306中剩餘的化學鍵。該氮化後退火製程可以包括在一種快速熱處理(RTP)腔室中執行的氮(N 2)和氬(Ar)環境中的尖峰熱退火(spike thermal anneal)製程,這種快速熱處理(RTP)腔室諸如是可以從位於美國加利福尼亞州聖塔克拉拉的應用材料公司獲得的RADOX 腔室。這種RTP腔室可以是圖1中所示的處理腔室120、122、124、126、128和130中的任意腔室。該氮化後退火製程可以鈍化在方框240中的電漿氮化製程中形成的亞穩態氮鍵,並且可能發生非晶高κ介電層306的結晶化。
可以在介於約700°C與約850°C之間的溫度和介於約10Torr與740Torr之間的壓力執行尖峰熱退火製程達約1秒與約30秒之間的時間。
在方框290中,替代方框280中的氮化後退火製程,執行氮化後退火和再氧化製程,以同時如方框280中那樣鈍化高κ介電層306中剩餘的化學鍵和如方框250中那樣熱氧化基板302。方框290中的氮化後退火和再氧化製程與方框250中的再氧化製程相同。因此,這裡省略方框290中的氮化後退火和再氧化製程的細節。
在本文描述的多個實施方式中,提供了形成高品質薄的高κ介電材料層的系統和方法。這樣的高κ介電材料層的特性可以得到很好的控制。例如,方框260和270中的氮化製程可以受到控制以提供介於約3原子%與約20原子%之間的高κ介電層306中的氮結合,從而實現與更高氮結合的情況相比更高的κ值,和與更低氮結合的情況相比更好的結構穩定性。方框240、270、280和290中的退火製程也可以受到控制以在高κ介電層306中提供具有大於約20Å的尺寸的晶粒(grain),從而減少流過高κ介電層306的漏電流。
儘管前述內容涉及本揭示內容的多個實施方式,但在不脫離本揭示內容的基本範圍的情況下可以設計本揭示內容的其他和進一步的實施方式,並且本揭示內容的範圍由隨附的申請專利範圍來確定。
100:多腔室處理系統 102:工廠介面 104:裝載鎖定腔室 106:裝載鎖定腔室 108:傳送腔室 110:傳送腔室 112:傳送機械手 114:傳送機械手 116:保持腔室 118:保持腔室 120:處理腔室 122:處理腔室 124:處理腔室 126:處理腔室 128:處理腔室 130:處理腔室 140:塢站 142:工廠介面機械手 144:FOUP 148:葉片 150:埠 152:埠 154:埠 156:埠 158:埠 160:埠 162:埠 164:埠 166:埠 168:埠 170:埠 172:埠 174:埠 176:埠 190:系統控制器 192:CPU 194:記憶體 196:支援電路 200:方法 210:方框 220:方框 230:方框 240:方框 250:方框 260:方框 270:方框 280:方框 290:方框 300:半導體結構 302:基板 304:介面層 306:高κ介電層
為了能夠詳細理解本揭示內容的上述特徵的方式,可以通過參考多個實施方式來對以上簡要概括的本揭示內容進行更具體的描述,在附圖中圖示出這些實施方式中的一些實施方式。但是,應注意的是,附圖僅圖示出本揭示內容的典型實施方式,因此不應視為對本揭示內容的範圍的限制,因為本揭示內容可以允許有其他等效的實施方式。
圖1是根據一個實施方式的示例多腔室處理系統的示意性俯視圖。
圖2是根據一個實施方式的形成半導體結構的方法的製程流程圖。
圖3A和圖3B是根據一個實施方式的半導體結構的示意圖。
為了便於理解,只要可能,就用相同的參考標記指代各圖共有的相同元件。考慮到的是,一個實施方式的元件和特徵可以有益地結合到其他實施方式中而無需進一步聲明。
國內寄存資訊(請依寄存機構、日期、號碼順序註記) 無 國外寄存資訊(請依寄存國家、機構、日期、號碼順序註記) 無
200:方法
210:方框
220:方框
230:方框
240:方框
250:方框
260:方框
270:方框
280:方框
290:方框

Claims (12)

  1. 一種形成一半導體結構的方法,該方法包括以下步驟:形成一半導體結構,包括:預清潔一基板的一表面;在該基板的預清潔後的表面上形成一介面層;在該介面層上沉積一高κ介電層;在沉積該高κ介電層之後,在一含氧環境中對該基板進行退火以將該介面層增厚到介於3Å與10Å之間的一厚度;執行一電漿氮化製程,以在所沉積的高κ介電層中插入氮原子;和執行一氮化後退火製程,以鈍化電漿氮化後的高κ介電層中的化學鍵,其中形成該半導體結構的步驟是在不破壞真空的情況下在一處理系統中執行的。
  2. 如請求項1所述的方法,其中該介面層包含氧化矽(SiO2),並且該介面層的該形成的步驟包括:利用一氧化二氮(N2O)氣體對該基板進行熱氧化。
  3. 如請求項1所述的方法,其中該高κ介電層包含氧化鉿(HfO2)。
  4. 如請求項1所述的方法,其中該電漿氮化製程包括:將該所沉積的高κ介電層暴露給使用了氮氣(N2)與氨氣(NH3)的一混合物的氮電漿。
  5. 如請求項1所述的方法,其中該氮化後退火製程包括:在介於700℃與850℃之間的溫度且在氮(N2)和氬(Ar)環境中,對該所沉積的高κ介電層進行尖峰退火(spike annealing)。
  6. 如請求項1所述的方法,進一步包括以下步驟:在該電漿氮化製程之前,執行一沉積後退火製程,以硬化和緻密化該所沉積的高κ介電層,其中該沉積後退火製程包括:在介於500℃與800℃之間的溫度且在氮(N2)和氬(Ar)環境中,對該所沉積的高κ介電層進行退火。
  7. 如請求項1所述的方法,進一步包括以下步驟:在該氮化後退火製程之前,執行一熱氮化製程,以在該電漿氮化後的高κ介電層中進一步插入氮原子,其中該熱氮化製程包括:在介於700℃與900℃之間的溫度且在氨(NH3)環境中,對該電漿氮化後的高κ介電層進行退火。
  8. 一種形成一半導體結構的方法,該方法包括以下步驟:形成一半導體結構,包括:預清潔一基板的一表面;在該基板的預清潔後的表面上沉積一高κ介電層;在沉積該高κ介電層之後,在一含氧環境中對該基 板進行退火以熱氧化該基板及形成一介面層,該介面層具有介於3Å與10Å之間的一厚度;和執行一電漿氮化製程,以在所沉積的高κ介電層中插入氮原子,其中形成該半導體結構的步驟是在不破壞真空的情況下在一處理系統中執行的。
  9. 如請求項8所述的方法,其中該高κ介電層包含氧化鉿(HfO2)。
  10. 如請求項8所述的方法,其中該電漿氮化製程包括:將該所沉積的高κ介電層暴露給使用了氮氣(N2)與氨氣(NH3)的一混合物的氮電漿。
  11. 如請求項8所述的方法,進一步包括以下步驟:在該電漿氮化製程之後,執行一氮化後退火製程,以鈍化電漿氮化後的高κ介電層中的化學鍵,其中對該基板進行的該退火是在介於400℃與900℃之間的溫度下執行;並且該氮化後退火製程包括:在介於700℃與850℃之間的溫度且在氮(N2)和氬(Ar)的環境中,對該電漿氮化後的高κ介電層進行尖峰退火。
  12. 如請求項8所述的方法,進一步包括以下步驟:在該電漿氮化製程之後,執行一再氧化製程,以鈍化電漿氮化後的高κ介電層中剩餘的化學鍵並且熱氧化該基板,其中該再氧化製程包括:在介於400℃與900 ℃之間的溫度且在氧(O2)、一氧化二氮(N2O)和H2的環境中,對該高κ介電層進行退火。
TW110141112A 2020-11-06 2021-11-04 增強材料結構的處理 TWI837538B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US17/092,039 2020-11-06
US17/092,039 US20210057215A1 (en) 2019-05-03 2020-11-06 Treatments to enhance material structures

Publications (2)

Publication Number Publication Date
TW202223992A TW202223992A (zh) 2022-06-16
TWI837538B true TWI837538B (zh) 2024-04-01

Family

ID=

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130288485A1 (en) 2012-04-30 2013-10-31 Applied Materials, Inc. Densification for flowable films

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130288485A1 (en) 2012-04-30 2013-10-31 Applied Materials, Inc. Densification for flowable films

Similar Documents

Publication Publication Date Title
US7910497B2 (en) Method of forming dielectric layers on a substrate and apparatus therefor
US20060153995A1 (en) Method for fabricating a dielectric stack
US20080014759A1 (en) Method for fabricating a gate dielectric layer utilized in a gate structure
US11955332B2 (en) Treatments to enhance material structures
WO2022187299A1 (en) Treatments to improve device performance
TWI837538B (zh) 增強材料結構的處理
US20220254900A1 (en) Mosfet gate engineerinng with dipole films
JP7313414B2 (ja) 材料構造を改良するための処理
US20210057215A1 (en) Treatments to enhance material structures
TW202416357A (zh) 增強材料結構的處理
US9275853B2 (en) Method of adjusting a transistor gate flat band voltage with addition of AL203 on nitrided silicon channel
US20210193468A1 (en) Treatments To Improve Device Performance
TWI830087B (zh) 增強材料結構的處理
TW202412185A (zh) 防止鋁擴散之阻障層
TW202247357A (zh) 用於環繞式閘極fet架構之臨界電壓調變
JP2024520404A (ja) アモルファスシリコンベース取り除きおよびシールeot
TW202301484A (zh) 基於非晶矽的清除及密封等效氧化物厚度
CN116918070A (zh) 具有偶极膜的mosfet栅极工程