TWI835578B - Optoelectronic tweezer device and fabrication method thereof - Google Patents

Optoelectronic tweezer device and fabrication method thereof Download PDF

Info

Publication number
TWI835578B
TWI835578B TW112108587A TW112108587A TWI835578B TW I835578 B TWI835578 B TW I835578B TW 112108587 A TW112108587 A TW 112108587A TW 112108587 A TW112108587 A TW 112108587A TW I835578 B TWI835578 B TW I835578B
Authority
TW
Taiwan
Prior art keywords
layer
electrode
doped region
insulating
optical tweezers
Prior art date
Application number
TW112108587A
Other languages
Chinese (zh)
Other versions
TW202437553A (en
Inventor
許世華
陳維翰
黃勝國
陳俊廷
陳敬文
Original Assignee
友達光電股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 友達光電股份有限公司 filed Critical 友達光電股份有限公司
Priority to TW112108587A priority Critical patent/TWI835578B/en
Priority to CN202311010373.2A priority patent/CN117130150A/en
Application granted granted Critical
Publication of TWI835578B publication Critical patent/TWI835578B/en
Publication of TW202437553A publication Critical patent/TW202437553A/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/32Micromanipulators structurally combined with microscopes
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Light Receiving Elements (AREA)

Abstract

An optoelectronic tweezer device includes a transparent substrate, a semiconductor layer, a first electrode, an insulating structure and a reflective layer. The semiconductor layer is located above the transparent substrate and includes a first doped region, a second doped region and a transition region. The transition region is located between the first doped region and the second doped region. The first electrode is located on and electrically connected to the first doped region. The insulating structure is located on the transition region. The insulating structure has a first opening overlapping the first electrode along the normal direction of the transparent substrate. The reflective layer is located on the insulating structure and has a second opening overlapping the first opening in the normal direction.

Description

光鑷裝置及其製造方法 Optical tweezers device and manufacturing method thereof

本發明是有關於一種光鑷裝置及其製造方法。 The invention relates to an optical tweezers device and a manufacturing method thereof.

光鑷(Optoelectronic Tweezer,OET)是一種操作微小顆粒(例如半導體顆粒、金屬顆粒、金屬奈米線、生物細胞或其他粒子)的工具。一般而言,光鑷的操作可以通過高度聚焦的雷射束來執行。奈米或微米級的介電質顆粒可以被雷射束產生的力操作。光鑷是以非機械接觸的方式來操作,且可通過選擇適當波長的雷射來減少光鑷對欲夾持之顆粒的損傷。因此,許多生物技術的研究都藉由光鑷來操作單細胞。 Optoelectronic Tweezer (OET) is a tool for manipulating tiny particles (such as semiconductor particles, metal particles, metal nanowires, biological cells or other particles). In general, the operation of optical tweezers can be performed with a highly focused laser beam. Nano- or micron-sized dielectric particles can be manipulated by the force generated by the laser beam. Optical tweezers operate in a non-mechanical contact manner, and can reduce damage to the particles to be clamped by the optical tweezers by selecting the appropriate wavelength of laser. Therefore, many biotechnology studies rely on optical tweezers to manipulate single cells.

本發明提供一種光鑷裝置,可以提升被光線照射後所產生的光電流。 The invention provides an optical tweezers device that can increase the photocurrent generated after being irradiated by light.

本發明提供一種光鑷裝置的製造方法,可以節省光鑷裝置的生產成本。 The invention provides a manufacturing method of an optical tweezers device, which can save the production cost of the optical tweezers device.

本發明的至少一實施例提供一種光鑷裝置,其包括透明基底、半導體層、第一電極、絕緣結構以及反射層。半導體層位於透明基底之上,且包括第一摻雜區、第二摻雜區以及過渡區。過渡區位於第一摻雜區與第二摻雜區之間。第一電極位於第一摻雜區上,且電性連接至第一摻雜區。絕緣結構位於該過渡區上。絕緣結構具有在透明基底的法線方向上重疊於第一電極的第一開口。反射層位於絕緣結構上,且具有在法線方向上重疊於第一開口的第二開口。 At least one embodiment of the present invention provides an optical tweezers device, which includes a transparent substrate, a semiconductor layer, a first electrode, an insulating structure and a reflective layer. The semiconductor layer is located on the transparent substrate and includes a first doped region, a second doped region and a transition region. The transition region is located between the first doped region and the second doped region. The first electrode is located on the first doping region and is electrically connected to the first doping region. The insulating structure is located on this transition zone. The insulation structure has a first opening overlapping the first electrode in a normal direction of the transparent substrate. The reflective layer is located on the insulating structure and has a second opening overlapping the first opening in a normal direction.

本發明的至少一實施例提供一種光鑷裝置的製造方法,包括以下步驟。形成半導體材料層於透明基底之上。對半導體材料層執行摻雜製程,以形成包括第一摻雜區、第二摻雜區以及過渡區的半導體層,其中過渡區位於第一摻雜區與第二摻雜區之間。形成絕緣結構於半導體層的過渡區上,其中絕緣結構具有第一開口。形成導電層於絕緣結構以及半導體層上,其中導電層包括位於於第一摻雜區上的第一電極以及位於絕緣結構上的反射層。絕緣結構的第一開口在透明基底的法線方向上重疊於第一電極,且反射層具有在法線方向上重疊於第一開口的第二開口。 At least one embodiment of the present invention provides a method for manufacturing an optical tweezers device, including the following steps. A semiconductor material layer is formed on the transparent substrate. A doping process is performed on the semiconductor material layer to form a semiconductor layer including a first doped region, a second doped region and a transition region, wherein the transition region is located between the first doped region and the second doped region. An insulating structure is formed on the transition region of the semiconductor layer, wherein the insulating structure has a first opening. A conductive layer is formed on the insulating structure and the semiconductor layer, wherein the conductive layer includes a first electrode located on the first doped region and a reflective layer located on the insulating structure. The first opening of the insulation structure overlaps the first electrode in the normal direction of the transparent substrate, and the reflective layer has a second opening that overlaps the first opening in the normal direction.

10,20,30,40,50:光鑷裝置 10,20,30,40,50: Optical tweezers device

100:透明基底 100:Transparent base

110,110A,110B,110C:半導體層 110,110A,110B,110C: semiconductor layer

110a:半導體材料層 110a: Semiconductor material layer

112,112a,112A,112B,112C:第一摻雜區 112,112a,112A,112B,112C: first doped region

114,114B,114C:過渡區 114,114B,114C: Transition area

116,116A,116B,116C:第二摻雜區 116,116A,116B,116C: second doped region

120,220:絕緣結構 120,220: Insulation structure

120a:絕緣材料層 120a: Insulating material layer

130:介電層 130: Dielectric layer

132:第一通孔 132: First through hole

200:緩衝溶液 200:Buffer solution

222a:第一絕緣材料層 222a: first insulating material layer

224a:第二絕緣材料層 224a: Second insulating material layer

222b:圖案化的第一絕緣材料層 222b: Patterned first insulating material layer

224b:圖案化的第二絕緣材料層 224b: Patterned second insulating material layer

300:顆粒/誘發極化顆粒 300: Particles/Induced Polarization Particles

400:對向電極 400: Counter electrode

D1:第一方向 D1: first direction

D2:第二方向 D2: second direction

E1:第一電極 E1: first electrode

E2:第二電極 E2: second electrode

E3:反射層 E3: Reflective layer

LF:流動方向 LF: flow direction

LS:光束 LS: beam

ND:法線方向 ND: normal direction

O1:第一開口 O1: First opening

O2:第二開口 O2: Second opening

PR1:第一罩幕圖案 PR1: First veil pattern

PR2:第二罩幕圖案 PR2: Second veil pattern

PR3:第三罩幕圖案 PR3: The third veil pattern

R1:第一區 R1: The first area

R2:第二區 R2:Second area

R3:第三區 R3: The third area

Ta,Tb:厚度 Ta, Tb: thickness

W1,W2,Wa,Wb:寬度 W1,W2,Wa,Wb: Width

圖1A是依照本發明的一實施例的一種光鑷裝置的剖面示意圖。 1A is a schematic cross-sectional view of an optical tweezers device according to an embodiment of the present invention.

圖1B是圖1A的光鑷裝置的上視示意圖。 Figure 1B is a schematic top view of the optical tweezers device of Figure 1A.

圖2是依照本發明的一實施例的一種光鑷裝置的剖面示意圖。 Figure 2 is a schematic cross-sectional view of an optical tweezers device according to an embodiment of the present invention.

圖3A至圖9A是依照本發明的一實施例的一種光鑷裝置的製造方法的剖面示意圖。 3A to 9A are schematic cross-sectional views of a manufacturing method of an optical tweezers device according to an embodiment of the present invention.

圖3B至圖9B是圖3A至圖9A的結構的上視示意圖。 Figures 3B to 9B are schematic top views of the structures of Figures 3A to 9A.

圖10是依照本發明的一實施例的一種光鑷裝置的剖面示意圖。 Figure 10 is a schematic cross-sectional view of an optical tweezers device according to an embodiment of the present invention.

圖11是依照本發明的一實施例的一種光鑷裝置的剖面示意圖。 Figure 11 is a schematic cross-sectional view of an optical tweezers device according to an embodiment of the present invention.

圖12是依照本發明的一實施例的一種光鑷裝置的剖面示意圖。 Figure 12 is a schematic cross-sectional view of an optical tweezers device according to an embodiment of the present invention.

圖13至圖17是依照本發明的一實施例的一種光鑷裝置的製造方法的剖面示意圖。 13 to 17 are schematic cross-sectional views of a method for manufacturing an optical tweezers device according to an embodiment of the present invention.

圖1A是依照本發明的一實施例的一種光鑷裝置10的剖面示意圖。圖1B是圖1A的光鑷裝置的上視示意圖,其中圖1A對應了圖1B的線a-a’的位置。圖1B繪示了第一電極E1、第二電極E2以及反射層E3,並省略繪示其他構件。 FIG. 1A is a schematic cross-sectional view of an optical tweezers device 10 according to an embodiment of the present invention. Figure 1B is a schematic top view of the optical tweezers device in Figure 1A, where Figure 1A corresponds to the position of line a-a' in Figure 1B. FIG. 1B shows the first electrode E1, the second electrode E2 and the reflective layer E3, and other components are omitted.

請參考圖1A與圖1B,光鑷裝置10包括透明基底100、半導體層110、第一電極E1、絕緣結構120以及反射層E3。在本實施例中,光鑷裝置10還包括第二電極E2、介電層130、緩衝溶液200、多個顆粒300以及對向電極400。在一些實施例中,光鑷 裝置10為自鎖式光鑷(Self Locking Optical Tweezer,SLOT)裝置。 Referring to FIGS. 1A and 1B , the optical tweezers device 10 includes a transparent substrate 100 , a semiconductor layer 110 , a first electrode E1 , an insulating structure 120 and a reflective layer E3 . In this embodiment, the optical tweezers device 10 further includes a second electrode E2, a dielectric layer 130, a buffer solution 200, a plurality of particles 300, and a counter electrode 400. In some embodiments, optical tweezers The device 10 is a self-locking optical tweezer (SLOT) device.

透明基底100之材質例如包括玻璃、石英、有機聚合物或是其他可適用的材料。相較於使用矽晶圓作為基底,選用透明基底100可以節省光鑷裝置10的生產成本。 The material of the transparent substrate 100 includes, for example, glass, quartz, organic polymer or other applicable materials. Compared with using a silicon wafer as the substrate, selecting the transparent substrate 100 can save the production cost of the optical tweezers device 10 .

半導體層110位於透明基底100之上。在一些實施例中,半導體層110之材質例如包括多晶矽、非晶矽、單晶矽或其他合適的材料。半導體層110包括第一摻雜區112、第二摻雜區116以及過渡區114,其中過渡區114位於第一摻雜區112與第二摻雜區116之間。 The semiconductor layer 110 is located on the transparent substrate 100 . In some embodiments, the material of the semiconductor layer 110 includes, for example, polycrystalline silicon, amorphous silicon, single crystal silicon or other suitable materials. The semiconductor layer 110 includes a first doped region 112, a second doped region 116, and a transition region 114, where the transition region 114 is located between the first doped region 112 and the second doped region 116.

多個第一摻雜區112彼此分離。在一些實施例中,第一摻雜區112陣列於透明基底100之上,舉例來說,第一摻雜區112於透明基底100上的垂直投影為圓形、橢圓形、三邊形、四邊形、五邊形、六邊形或其他幾何形狀,且多個第一摻雜區112沿著第一方向D1與第二方向D2陣列於透明基底100之上。圖1A繪示了光鑷裝置10中的兩個第一摻雜區112,但第一摻雜區112的數量可以依照實際需求而進行調整。在一些實施例中,第一摻雜區112的寬度W1為2微米至100微米。 The plurality of first doped regions 112 are separated from each other. In some embodiments, the first doped regions 112 are arrayed on the transparent substrate 100. For example, the vertical projection of the first doped regions 112 on the transparent substrate 100 is a circle, an ellipse, a triangle, or a quadrilateral. , pentagon, hexagon or other geometric shapes, and the plurality of first doped regions 112 are arrayed on the transparent substrate 100 along the first direction D1 and the second direction D2. FIG. 1A shows two first doped regions 112 in the optical tweezers device 10, but the number of the first doped regions 112 can be adjusted according to actual needs. In some embodiments, the width W1 of the first doped region 112 is 2 microns to 100 microns.

過渡區114彼此分離,且每個過渡區114環繞對應的一個第一摻雜區112。在一些實施例中,過渡區114與第一摻雜區112為同心圓的形狀,但本發明不以此為限。在其他實施例中,第一摻雜區112可以包括圓形以外的形狀,且過渡區114的形狀隨著第一摻雜區112的形狀而變化。在一些實施例中,過渡區114 的寬度W2為2微米至20微米。 The transition regions 114 are separated from each other, and each transition region 114 surrounds a corresponding first doping region 112 . In some embodiments, the transition region 114 and the first doping region 112 are in the shape of concentric circles, but the invention is not limited thereto. In other embodiments, the first doped region 112 may include a shape other than a circle, and the shape of the transition region 114 changes with the shape of the first doped region 112 . In some embodiments, transition region 114 The width W2 is 2 microns to 20 microns.

第二摻雜區116環繞多個過渡區114。在本實施例中,第二摻雜區116為連續的結構,且過渡區114與第一摻雜區112分佈於第二摻雜區116中。 The second doped region 116 surrounds the plurality of transition regions 114 . In this embodiment, the second doped region 116 is a continuous structure, and the transition region 114 and the first doped region 112 are distributed in the second doped region 116 .

在一些實施例中,第一摻雜區112與第二摻雜區116中的一者為P型半導體,第一摻雜區112與第二摻雜區116中的另一者為N型半導體,且過渡區114為本質半導體或輕摻雜的純度接近於本質的半導體。因此,半導體層110包括由第一摻雜區112、過渡區114與第二摻雜區116構成的多個PIN二極體。 In some embodiments, one of the first doped region 112 and the second doped region 116 is a P-type semiconductor, and the other one of the first doped region 112 and the second doped region 116 is an N-type semiconductor. , and the transition region 114 is an intrinsic semiconductor or a lightly doped semiconductor with a purity close to that of the intrinsic semiconductor. Therefore, the semiconductor layer 110 includes a plurality of PIN diodes composed of the first doped region 112 , the transition region 114 and the second doped region 116 .

多個絕緣結構120位於半導體層110的過渡區114上。每個絕緣結構120設置於對應的一個過渡區114上,且多個絕緣結構120彼此分離。在本實施例中,絕緣結構120為環形,但本發明不以此為限。絕緣結構120的形狀視過渡區114的形狀而定。在一些實施例中,絕緣結構120垂直投影至透明基底100的形狀約等於過渡區114垂直投影至透明基底100的形狀。 A plurality of insulating structures 120 are located on the transition region 114 of the semiconductor layer 110 . Each insulation structure 120 is disposed on a corresponding transition region 114 , and the plurality of insulation structures 120 are separated from each other. In this embodiment, the insulation structure 120 is annular, but the invention is not limited thereto. The shape of the insulating structure 120 depends on the shape of the transition region 114 . In some embodiments, the shape of the insulating structure 120 projected vertically onto the transparent substrate 100 is approximately equal to the shape of the transition region 114 projected vertically onto the transparent substrate 100 .

絕緣結構120具有在透明基底100的法線方向ND上重疊於半導體層110的第一摻雜區112的第一開口O1。在本實施例中,絕緣結構120環繞第一開口O1。換句話說,第一開口O1橫向地被絕緣結構120所封閉。在其他實施例中,絕緣結構120不完全環繞第一開口O1。第一開口O1的底部的寬度大於、等於或小於第一摻雜區112的寬度W1。當第一開口O1的底部的寬度大於第一摻雜區112的寬度W1而使部分過渡區114未被絕緣結構 120覆蓋時,會使半導體層110出現漏電的風險。當第一開口O1的底部的寬度小於第一摻雜區112的寬度W1而使部分第一摻雜區112被絕緣結構120覆蓋時,會減少對顆粒300的極化效果。因此,第一開口O1的底部的寬度較佳等於第一摻雜區112的寬度W1。 The insulation structure 120 has a first opening O1 overlapping the first doped region 112 of the semiconductor layer 110 in the normal direction ND of the transparent substrate 100 . In this embodiment, the insulation structure 120 surrounds the first opening O1. In other words, the first opening O1 is laterally closed by the insulation structure 120 . In other embodiments, the insulating structure 120 does not completely surround the first opening O1. The width of the bottom of the first opening O1 is greater than, equal to, or less than the width W1 of the first doped region 112 . When the width of the bottom of the first opening O1 is greater than the width W1 of the first doped region 112 so that part of the transition region 114 is not insulated. When covered with 120, the semiconductor layer 110 will have the risk of leakage. When the width of the bottom of the first opening O1 is smaller than the width W1 of the first doped region 112 so that part of the first doped region 112 is covered by the insulating structure 120 , the polarization effect on the particles 300 will be reduced. Therefore, the width of the bottom of the first opening O1 is preferably equal to the width W1 of the first doped region 112 .

在圖1A中,絕緣結構120以單層繪示,但本發明不以此為限。絕緣結構120可以為單層或多層結構。在一些實施例中,絕緣結構120的材料例如包括氧化矽、氮化矽、氮氧化矽或其他合適的材料或上述材料的組合。 In FIG. 1A , the insulating structure 120 is shown as a single layer, but the present invention is not limited thereto. The insulation structure 120 may be a single-layer or multi-layer structure. In some embodiments, the material of the insulating structure 120 includes, for example, silicon oxide, silicon nitride, silicon oxynitride, or other suitable materials or a combination of the above materials.

在一些實施例中,第一電極E1沿著第一方向D1與第二方向D2陣列於半導體層110上,但本發明不以此為限。在其他實施例中,第一電極E1以其他排列方式陣列於半導體層110上。第一電極E1位於第一摻雜區112上,且電性連接至第一摻雜區112。絕緣結構120環繞第一電極E1。在本實施例中,第一電極E1直接形成於第一摻雜區112上。在本實施例中,第一電極E1為島狀結構,且每個第一電極E1重疊於對應的一個第一摻雜區112。在一些實施例中,第一電極E1的側壁與第一摻雜區112的邊界實質上對齊,但本發明不以此為限。在其他實施例中,第一電極E1的側壁偏離第一摻雜區112的邊界。 In some embodiments, the first electrodes E1 are arrayed on the semiconductor layer 110 along the first direction D1 and the second direction D2, but the invention is not limited thereto. In other embodiments, the first electrodes E1 are arrayed on the semiconductor layer 110 in other arrangements. The first electrode E1 is located on the first doped region 112 and is electrically connected to the first doped region 112 . The insulating structure 120 surrounds the first electrode E1. In this embodiment, the first electrode E1 is directly formed on the first doped region 112 . In this embodiment, the first electrode E1 has an island-shaped structure, and each first electrode E1 overlaps a corresponding first doping region 112 . In some embodiments, the sidewall of the first electrode E1 is substantially aligned with the boundary of the first doped region 112, but the present invention is not limited thereto. In other embodiments, the sidewalls of the first electrode E1 are offset from the boundary of the first doped region 112 .

第二電極E2位於第二摻雜區116上,且電性連接至第二摻雜區116。在本實施例中,第二電極E2直接形成於第二摻雜區116上。第二電極E2環繞絕緣結構120。在本實施例中,第二電 極E2為連續結構,且第二電極E2環繞島狀的第一電極E1。在一些實施例中,第二電極E2的側壁與第二摻雜區116的邊界實質上對齊,但本發明不以此為限。在其他實施例中,第二電極E2的側壁偏離第二摻雜區116的邊界。 The second electrode E2 is located on the second doped region 116 and is electrically connected to the second doped region 116 . In this embodiment, the second electrode E2 is directly formed on the second doped region 116 . The second electrode E2 surrounds the insulating structure 120 . In this embodiment, the second electrical The pole E2 is a continuous structure, and the second electrode E2 surrounds the island-shaped first electrode E1. In some embodiments, the sidewall of the second electrode E2 is substantially aligned with the boundary of the second doped region 116, but the present invention is not limited thereto. In other embodiments, the sidewalls of the second electrode E2 are offset from the boundary of the second doped region 116 .

反射層E3位於絕緣結構120上,且分離於第一電極E1以及第二電極E2。在一些實施例中,反射層E3為環形,但本發明不以此為限。反射層E3的形狀視絕緣結構120的頂面的形狀而定。在一些實施例中,反射層E3垂直投影至透明基底100的形狀約等於絕緣結構120垂直投影至透明基底100的形狀。反射層E3具有在法線方向ND上重疊於第一開口O1的第二開口O2。在本實施例中,反射層E3環繞第二開口O2。換句話說,第二開口O2橫向地被反射層E3所封閉。在其他實施例中,反射層E3不完全環繞第二開口O2。在一些實施例中,反射層E3的側壁與絕緣結構120的側壁實質上對齊,但本發明不以此為限。在其他實施例中,反射層E3的側壁偏離絕緣結構120的側壁。 The reflective layer E3 is located on the insulation structure 120 and is separated from the first electrode E1 and the second electrode E2. In some embodiments, the reflective layer E3 is annular, but the invention is not limited thereto. The shape of the reflective layer E3 depends on the shape of the top surface of the insulation structure 120 . In some embodiments, the shape of the reflective layer E3 projected vertically onto the transparent substrate 100 is approximately equal to the shape of the insulating structure 120 projected vertically onto the transparent substrate 100 . The reflective layer E3 has a second opening O2 overlapping the first opening O1 in the normal direction ND. In this embodiment, the reflective layer E3 surrounds the second opening O2. In other words, the second opening O2 is laterally closed by the reflective layer E3. In other embodiments, the reflective layer E3 does not completely surround the second opening O2. In some embodiments, the sidewalls of the reflective layer E3 are substantially aligned with the sidewalls of the insulating structure 120, but the present invention is not limited thereto. In other embodiments, the sidewalls of the reflective layer E3 are offset from the sidewalls of the insulating structure 120 .

第一電極E1、第二電極E2以及反射層E3可以為單層或多層結構。第一電極E1、第二電極E2以及反射層E3的材料包括金屬或其他合適的具有導電以及反光特性的材料。在一些實施例中,第一電極E1、第二電極E2以及反射層E3屬於相同導電層。換句話說,第一電極E1、第二電極E2以及反射層E3是透過同一次沉積製程形成。在一些實施例中,第一電極E1、第二電極E2以及反射層E3包括相同的材料。在一些實施例中,絕緣結構120 的厚度大於第一電極E1的厚度、第二電極E2的厚度以及反射層E3的厚度。 The first electrode E1, the second electrode E2 and the reflective layer E3 may have a single-layer or multi-layer structure. The materials of the first electrode E1, the second electrode E2 and the reflective layer E3 include metal or other suitable materials with conductive and reflective properties. In some embodiments, the first electrode E1, the second electrode E2 and the reflective layer E3 belong to the same conductive layer. In other words, the first electrode E1, the second electrode E2 and the reflective layer E3 are formed through the same deposition process. In some embodiments, the first electrode E1, the second electrode E2, and the reflective layer E3 include the same material. In some embodiments, the insulating structure 120 The thickness is greater than the thickness of the first electrode E1, the thickness of the second electrode E2 and the thickness of the reflective layer E3.

介電層130位於半導體層110之上。在本實施例中,介電層130形成於第二電極E2、反射層E3以及絕緣結構120之上。介電層130覆蓋第二電極E2的頂面以及反射層E3的頂面。介電層130具有在法線方向ND上重疊於第一開口O1以及第二開口O2的第一通孔132。在一些實施例中,介電層130的材質包括氧化矽、氮化矽、氮氧化矽、有機材料或其他合適的材料。 The dielectric layer 130 is located on the semiconductor layer 110 . In this embodiment, the dielectric layer 130 is formed on the second electrode E2, the reflective layer E3 and the insulating structure 120. The dielectric layer 130 covers the top surface of the second electrode E2 and the top surface of the reflective layer E3. The dielectric layer 130 has a first through hole 132 overlapping the first opening O1 and the second opening O2 in the normal direction ND. In some embodiments, the dielectric layer 130 is made of silicon oxide, silicon nitride, silicon oxynitride, organic materials, or other suitable materials.

第一通孔132暴露出第一電極E1的至少部分頂面。在本實施例中,介電層130具有陣列的多個第一通孔132,每個第一通孔132重疊於對應的一個第一電極E1。在一些實施例中,第一通孔132的寬度、第一開口O1的寬度以及第二開口O2的寬度彼此相同,但本發明不以此為限。在其他實施例中,第一通孔132的寬度小於第一開口O1的寬度以及第二開口O2的寬度。另外,雖然在圖1A中,介電層130未填入第一開口O1以及第二開口O2中,但本發明不以此為限。在其他實施例中,介電層130填入第一開口O1以及第二開口O2中。在一些實施例中,第一通孔132的寬度為2微米至100微米。 The first through hole 132 exposes at least part of the top surface of the first electrode E1. In this embodiment, the dielectric layer 130 has a plurality of first through holes 132 in an array, and each first through hole 132 overlaps a corresponding first electrode E1. In some embodiments, the width of the first through hole 132 , the width of the first opening O1 and the width of the second opening O2 are the same as each other, but the invention is not limited thereto. In other embodiments, the width of the first through hole 132 is smaller than the width of the first opening O1 and the width of the second opening O2. In addition, although in FIG. 1A , the dielectric layer 130 is not filled in the first opening O1 and the second opening O2, the present invention is not limited thereto. In other embodiments, the dielectric layer 130 is filled in the first opening O1 and the second opening O2. In some embodiments, the width of the first through hole 132 is 2 microns to 100 microns.

對向電極400重疊於多個第一電極E1。在一些實施例中,對向電極400包括可以透光的材料(例如銦錫氧化物、銦鋅氧化物、鋁錫氧化物、鋁鋅氧化物、銦鎵鋅氧化物、有機導電材料或其他合適的材料或上述材料的堆疊層)或不透光的材料(例 如金屬)。 The counter electrode 400 overlaps the plurality of first electrodes E1. In some embodiments, the counter electrode 400 includes a light-transmissive material (such as indium tin oxide, indium zinc oxide, aluminum tin oxide, aluminum zinc oxide, indium gallium zinc oxide, organic conductive material, or other suitable materials or stacked layers of the above materials) or opaque materials (such as such as metal).

緩衝溶液200位於對向電極400與第一電極E1之間。緩衝溶液200位於對向電極400與介電層130之間。在一些實施例中,緩衝溶液200填入介電層130的第一通孔132,且緩衝溶液200接觸對向電極400、第一電極E1以及介電層130。在一些實施例中,緩衝溶液200例如為生理緩衝溶液或其他緩衝溶液(例如等滲緩衝溶液)。多個顆粒300位於緩衝溶液200中。顆粒300可以為生物顆粒、有機物顆粒或無機物顆粒。顆粒300的粒徑為2微米至100微米。 The buffer solution 200 is located between the counter electrode 400 and the first electrode E1. The buffer solution 200 is located between the counter electrode 400 and the dielectric layer 130 . In some embodiments, the buffer solution 200 is filled into the first through hole 132 of the dielectric layer 130 , and the buffer solution 200 contacts the counter electrode 400 , the first electrode E1 and the dielectric layer 130 . In some embodiments, the buffer solution 200 is, for example, a physiological buffer solution or other buffer solution (eg, isotonic buffer solution). A plurality of particles 300 are located in the buffer solution 200 . The particles 300 may be biological particles, organic particles or inorganic particles. The particle size of the particles 300 ranges from 2 microns to 100 microns.

在一些實施例中,在對向電極400以及第一電極E1上以一頻率施加交流電,以使對向電極400與第一電極E1之間產生電場。誘發極化顆粒300會因為介電泳力(dielectrophoretic force)而被吸引至介電層130重疊於第一電極E1的第一通孔132上。 In some embodiments, an alternating current is applied at a frequency on the counter electrode 400 and the first electrode E1 to generate an electric field between the counter electrode 400 and the first electrode E1. The induced polarization particles 300 will be attracted to the first through hole 132 of the dielectric layer 130 overlapping the first electrode E1 due to dielectrophoretic force.

請參考圖2,選擇需要的誘發極化顆粒300,並以光束LS照射選定的誘發極化顆粒300下方的半導體層110的位置。光束LS從透明基底100背對半導體層110的一側進入光鑷裝置10。 Referring to FIG. 2 , the required induced polarization particles 300 are selected, and the position of the semiconductor layer 110 below the selected induced polarization particles 300 is irradiated with the light beam LS. The light beam LS enters the optical tweezers device 10 from the side of the transparent substrate 100 facing away from the semiconductor layer 110 .

在一些實施例中,光束LS照射所選之第一電極E1下方的PIN二極體。LS的直徑為2微米至120微米。舉例來說,光束LS照射第一摻雜區112以及過渡區114,使選定的誘發極化顆粒300的下方的PIN二極體產生光電流,並反轉選定的誘發極化顆粒300的介電泳力的方向,使選定的誘發極化顆粒300被排斥並離開介電層130的第一通孔132。在一些實施例中,緩衝溶液200 沿著流動方向LF流動,因此,離開第一通孔132的誘發極化顆粒300會順著緩衝溶液200而流動至下游。在一些實施例中,收集並分析流至下游的誘發極化顆粒300,但本發明不以此為限。在其他實施例中,收集並分析保留於第一通孔132上的誘發極化顆粒300。 In some embodiments, the light beam LS illuminates the PIN diode beneath the selected first electrode E1. LS diameters range from 2 microns to 120 microns. For example, the light beam LS irradiates the first doped region 112 and the transition region 114 to cause the PIN diode under the selected induced polarization particles 300 to generate a photocurrent and reverse the dielectric of the selected induced polarization particles 300 The direction of the swimming force causes the selected induced polarization particles 300 to be repelled and leave the first through hole 132 of the dielectric layer 130 . In some embodiments, buffer solution 200 Flow along the flow direction LF, therefore, the induced polarization particles 300 leaving the first through hole 132 will flow downstream along the buffer solution 200 . In some embodiments, the induced polarization particles 300 flowing downstream are collected and analyzed, but the invention is not limited thereto. In other embodiments, the induced polarization particles 300 remaining on the first through hole 132 are collected and analyzed.

在一些實施例中,光束LS包括雷射光、紫外光、可見光或其他合適的光。 In some embodiments, the light beam LS includes laser light, ultraviolet light, visible light or other suitable light.

在一些實施例中,穿過透明基底100、過渡區114以及絕緣結構120的光束LS可以被反射層E3反射,並重新回到半導體層110,因此,半導體層110可以產生較大的光電流。在一些實施例中,半導體層110產生的光電流與暗電流的比值大於或等於兩個數量級。 In some embodiments, the light beam LS passing through the transparent substrate 100, the transition region 114 and the insulating structure 120 can be reflected by the reflective layer E3 and return to the semiconductor layer 110. Therefore, the semiconductor layer 110 can generate a larger photocurrent. In some embodiments, the ratio of photocurrent to dark current generated by semiconductor layer 110 is greater than or equal to two orders of magnitude.

半導體層110的摻雜形態會影響PIN二極體照光後所產生的電流的方向。在本實施例中,第一摻雜區112為N型半導體,第二摻雜區116為P型半導體,且誘發極化顆粒300的表面帶有負電。在其他實施例中,第一摻雜區112為P型半導體,第二摻雜區116為N型半導體,且誘發極化顆粒300的表面帶有正電。 The doping form of the semiconductor layer 110 will affect the direction of the current generated after the PIN diode is illuminated. In this embodiment, the first doped region 112 is an N-type semiconductor, the second doped region 116 is a P-type semiconductor, and the surface of the induced polarization particles 300 is negatively charged. In other embodiments, the first doped region 112 is a P-type semiconductor, the second doped region 116 is an N-type semiconductor, and the surface of the induced polarization particle 300 is positively charged.

圖3A至圖9A是依照本發明的一實施例的一種光鑷裝置的製造方法的剖面示意圖。圖3B至圖9B是圖3A至圖9A的結構的上視示意圖。在此必須說明的是,圖3A至圖9B的實施例沿用圖1A、圖1B和圖2的實施例的元件標號與部分內容,其中採用相同或近似的標號來表示相同或近似的元件,並且省略了相同技 術內容的說明。關於省略部分的說明可參考前述實施例,在此不贅述。 3A to 9A are schematic cross-sectional views of a manufacturing method of an optical tweezers device according to an embodiment of the present invention. Figures 3B to 9B are schematic top views of the structures of Figures 3A to 9A. It must be noted here that the embodiments of FIGS. 3A to 9B follow the component numbers and part of the content of the embodiments of FIGS. 1A , 1B and 2 , where the same or similar numbers are used to represent the same or similar elements, and Omitting the same skills Description of technical content. For descriptions of omitted parts, reference may be made to the foregoing embodiments and will not be described again here.

請參考圖3A與圖3B,形成半導體材料層110a於透明基底100之上。在本實施例中,由於半導體材料層110a位於透明基底100之上,可以藉由薄膜製程形成半導體材料層110a,藉此降低光鑷裝置的生產成本。在一些實施例中,形成半導體材料層110a的方法例如包括低溫多晶矽(Low Temperature Poly-Silicon)製程或其他合適的製程。此外,相較於在晶圓上製作光鑷裝置,採用薄膜製程可以較輕易的獲得大面積的光鑷裝置。 Referring to FIGS. 3A and 3B , a semiconductor material layer 110 a is formed on the transparent substrate 100 . In this embodiment, since the semiconductor material layer 110a is located on the transparent substrate 100, the semiconductor material layer 110a can be formed through a thin film process, thereby reducing the production cost of the optical tweezers device. In some embodiments, the method of forming the semiconductor material layer 110a includes, for example, a Low Temperature Poly-Silicon process or other suitable processes. In addition, compared with manufacturing optical tweezers devices on wafers, large-area optical tweezers devices can be obtained more easily using thin film processes.

請參考圖4A至圖5A以及圖4B至圖5B,對半導體材料層110a執行摻雜製程,以形成包括第一摻雜區112、第二摻雜區116以及過渡區114的半導體層110,其中過渡區114位於第一摻雜區112與第二摻雜區116之間。 Referring to FIGS. 4A to 5A and 4B to 5B, a doping process is performed on the semiconductor material layer 110a to form the semiconductor layer 110 including the first doped region 112, the second doped region 116 and the transition region 114, wherein The transition region 114 is located between the first doped region 112 and the second doped region 116 .

請先參考圖4A與圖4B,形成第一罩幕圖案PR1於半導體材料層110a的第一區R1之上,且第一罩幕圖案PR1暴露出半導體材料層110a的第二區R2以及第三區R3,其中第一區R1環繞第三區R3,且第一區R1位於第二區R2以及第三區R3之間。在一些實施例中,第一罩幕圖案PR1例如為圖案化的光阻。 Please refer to FIG. 4A and FIG. 4B. A first mask pattern PR1 is formed on the first region R1 of the semiconductor material layer 110a, and the first mask pattern PR1 exposes the second region R2 and the third region R2 of the semiconductor material layer 110a. Region R3, wherein the first region R1 surrounds the third region R3, and the first region R1 is located between the second region R2 and the third region R3. In some embodiments, the first mask pattern PR1 is, for example, patterned photoresist.

以第一罩幕圖案PR1為遮罩,對半導體材料層110a的第二區R2以及第三區R3執行第一摻雜製程以形成半導體材料層110a。第一摻雜製程例如是P型摻雜或N型摻雜。在本實施例中,第一摻雜製程為P型摻雜製程。在本實施例中,第一摻雜製程於 第二區R2以及第三區R3中形成具有相同摻雜類型的第二摻雜區116以及第一摻雜區112a。 Using the first mask pattern PR1 as a mask, a first doping process is performed on the second region R2 and the third region R3 of the semiconductor material layer 110a to form the semiconductor material layer 110a. The first doping process is, for example, P-type doping or N-type doping. In this embodiment, the first doping process is a P-type doping process. In this embodiment, the first doping process is performed in The second doped region 116 and the first doped region 112a having the same doping type are formed in the second region R2 and the third region R3.

在執行第一摻雜製程之後,移除第一罩幕圖案PR1。在一些實施例中,藉由蝕刻(例如灰化)移除第一罩幕圖案PR1。 After performing the first doping process, the first mask pattern PR1 is removed. In some embodiments, the first mask pattern PR1 is removed by etching (eg, ashing).

請參考圖5A與圖5B,形成第二罩幕圖案PR2於半導體材料層110a的第一區R1以及第二區R2之上,且第二罩幕圖案PR2暴露出半導體材料層110a的第三區R3。在一些實施例中,第二罩幕圖案PR2例如為圖案化的光阻。 Referring to FIG. 5A and FIG. 5B, a second mask pattern PR2 is formed on the first region R1 and the second region R2 of the semiconductor material layer 110a, and the second mask pattern PR2 exposes the third region of the semiconductor material layer 110a. R3. In some embodiments, the second mask pattern PR2 is, for example, patterned photoresist.

以第二罩幕圖案PR2為遮罩,對半導體材料層110a的第三區R3執行第二摻雜製程。第二摻雜製程例如是P型摻雜或N型摻雜。在本實施例中,第二摻雜製程不同於第一摻雜製程,且第二摻雜製程為N型摻雜製程。在本實施例中,第二摻雜製程於第三區R3中形成第一摻雜區112。 Using the second mask pattern PR2 as a mask, a second doping process is performed on the third region R3 of the semiconductor material layer 110a. The second doping process is, for example, P-type doping or N-type doping. In this embodiment, the second doping process is different from the first doping process, and the second doping process is an N-type doping process. In this embodiment, the second doping process forms the first doping region 112 in the third region R3.

至此,包括第一摻雜區112、第二摻雜區116以及過渡區114的半導體層110大致完成,其中半導體材料層110a(請參考圖4A)的第三區R3對應第一摻雜區112的位置,半導體材料層110a的第二區R2對應第二摻雜區116的位置,且半導體材料層110a的第一區R1對應過渡區114的位置。 At this point, the semiconductor layer 110 including the first doped region 112, the second doped region 116 and the transition region 114 is substantially completed, in which the third region R3 of the semiconductor material layer 110a (please refer to FIG. 4A) corresponds to the first doped region 112. The second region R2 of the semiconductor material layer 110a corresponds to the position of the second doping region 116, and the first region R1 of the semiconductor material layer 110a corresponds to the position of the transition region 114.

在執行第二摻雜製程之後,移除第二罩幕圖案PR2。在一些實施例中,藉由蝕刻(例如灰化)移除第二罩幕圖案PR2。 After performing the second doping process, the second mask pattern PR2 is removed. In some embodiments, the second mask pattern PR2 is removed by etching (eg, ashing).

請參考圖6A與圖6B,形成絕緣材料層120a於半導體層110上。在一些實施例中,絕緣材料層120a包括氧化矽、氮化矽、 氮氧化矽或其他合適的材料。 Referring to FIGS. 6A and 6B , an insulating material layer 120 a is formed on the semiconductor layer 110 . In some embodiments, the insulating material layer 120a includes silicon oxide, silicon nitride, silicon oxynitride or other suitable material.

在一些實施例中,絕緣材料層120a中包括氫元素,且對半導體層110與絕緣材料層120a執行退火製程,以使絕緣材料層120a中的氫元素擴散至半導體層110,藉此修復半導體層110在摻雜製程中所產生的損傷。在一些實施例中,前述退火製程是將半導體層110與絕緣材料層120a使用快速熱退火製程加熱至攝氏400度至攝氏625度。 In some embodiments, the insulating material layer 120a includes hydrogen element, and an annealing process is performed on the semiconductor layer 110 and the insulating material layer 120a, so that the hydrogen element in the insulating material layer 120a diffuses to the semiconductor layer 110, thereby repairing the semiconductor layer. 110 Damage caused during the doping process. In some embodiments, the aforementioned annealing process uses a rapid thermal annealing process to heat the semiconductor layer 110 and the insulating material layer 120a to a temperature of 400 degrees Celsius to 625 degrees Celsius.

請參考圖7A與圖7B,圖案化絕緣材料層120a,以形成暴露出第一摻雜區112以及第二摻雜區116的絕緣結構120。在本實施例中,形成第三罩幕圖案PR3於絕緣材料層120a上,並以第三罩幕圖案PR3為遮罩對絕緣材料層120a進行一次或多次的蝕刻製程,以形成多個絕緣結構120,其中每個絕緣結構120的第一開口O1暴露出對應的第一摻雜區112,且第二摻雜區116被絕緣結構120之間的空隙所暴露出來。在一些實施例中,第三罩幕圖案PR3例如為圖案化的光阻。 Referring to FIGS. 7A and 7B , the insulating material layer 120 a is patterned to form an insulating structure 120 that exposes the first doped region 112 and the second doped region 116 . In this embodiment, a third mask pattern PR3 is formed on the insulating material layer 120a, and one or more etching processes are performed on the insulating material layer 120a using the third mask pattern PR3 as a mask to form a plurality of insulating materials. Structure 120 , wherein the first opening O1 of each insulation structure 120 exposes the corresponding first doped region 112 , and the second doped region 116 is exposed by the gap between the insulation structures 120 . In some embodiments, the third mask pattern PR3 is, for example, patterned photoresist.

在一些實施例中,在圖案化絕緣材料層120a之後,移除第三罩幕圖案PR3。在一些實施例中,藉由蝕刻(例如灰化)移除第三罩幕圖案PR3。 In some embodiments, after patterning the insulating material layer 120a, the third mask pattern PR3 is removed. In some embodiments, the third mask pattern PR3 is removed by etching (eg, ashing).

請參考圖8A與圖8B,形成導電層於絕緣結構120以及半導體層110上,其中導電層包括位於第一摻雜區112上的第一電極E1、位於第二摻雜區116上的第二電極E2以及位於絕緣結構120上的反射層E3。 Referring to FIGS. 8A and 8B , a conductive layer is formed on the insulating structure 120 and the semiconductor layer 110 . The conductive layer includes a first electrode E1 located on the first doped region 112 and a second electrode E1 located on the second doped region 116 . The electrode E2 and the reflective layer E3 located on the insulating structure 120 .

在本實施例中,由於絕緣結構120的頂面與半導體層110的頂面之間具有斷差,因此,在沉積導電層時,位於絕緣結構120的頂面上的反射層E3會分離於位於半導體層110的頂面上的第一電極E1以及第二電極E2。 In this embodiment, since there is a gap between the top surface of the insulating structure 120 and the top surface of the semiconductor layer 110, when the conductive layer is deposited, the reflective layer E3 located on the top surface of the insulating structure 120 will be separated from the top surface of the semiconductor layer 110. The first electrode E1 and the second electrode E2 on the top surface of the semiconductor layer 110 .

請參考圖9A與圖9B,形成介電層130於半導體層110之上。在本實施例中,介電層130形成於部分第一電極E1、第二電極E2以及絕緣結構120上。介電層130具有重疊於第一電極E1的第一通孔132,且介電層130覆蓋第二電極E2的頂面以及反射層E3的頂面。 Referring to FIGS. 9A and 9B , a dielectric layer 130 is formed on the semiconductor layer 110 . In this embodiment, the dielectric layer 130 is formed on part of the first electrode E1, the second electrode E2, and the insulation structure 120. The dielectric layer 130 has a first through hole 132 overlapping the first electrode E1, and the dielectric layer 130 covers the top surface of the second electrode E2 and the top surface of the reflective layer E3.

最後,請回到圖1A與圖1B,提供重疊於第一電極E1的對向電極400;提供緩衝溶液200於對向電極400與第一電極E1之間以及對向電極400與介電層130之間;提供多個顆粒300於緩衝溶液200中。至此,光鑷裝置10大致完成。 Finally, please return to FIGS. 1A and 1B to provide the counter electrode 400 overlapping the first electrode E1; provide the buffer solution 200 between the counter electrode 400 and the first electrode E1 and between the counter electrode 400 and the dielectric layer 130 between; providing a plurality of particles 300 in the buffer solution 200. At this point, the optical tweezers device 10 is roughly completed.

圖10是依照本發明的一實施例的一種光鑷裝置20的剖面示意圖。在此必須說明的是,圖10的實施例沿用圖1A、圖1B和圖2的實施例的元件標號與部分內容,其中採用相同或近似的標號來表示相同或近似的元件,並且省略了相同技術內容的說明。關於省略部分的說明可參考前述實施例,在此不贅述。 Figure 10 is a schematic cross-sectional view of an optical tweezers device 20 according to an embodiment of the present invention. It must be noted here that the embodiment of Figure 10 follows the component numbers and part of the content of the embodiment of Figures 1A, 1B and 2, where the same or similar numbers are used to represent the same or similar elements, and the same or similar elements are omitted. Description of technical content. For descriptions of omitted parts, reference may be made to the foregoing embodiments and will not be described again here.

圖10的光鑷裝置20與圖1A與圖1B的光鑷裝置10的差異在於:光鑷裝置10的半導體層110中的N型半導體與P型半導體的位置不同於光鑷裝置20的半導體層110A中的N型半導體與P型半導體的位置。光鑷裝置10的半導體層110中的第一摻雜區 112與第二摻雜區116分別是N型半導體與P型半導體,而光鑷裝置20的半導體層110A中的第一摻雜區112A與第二摻雜區116A分別是P型半導體與N型半導體。 The difference between the optical tweezers device 20 of FIG. 10 and the optical tweezers device 10 of FIGS. 1A and 1B is that the positions of the N-type semiconductor and the P-type semiconductor in the semiconductor layer 110 of the optical tweezers device 10 are different from those of the semiconductor layer of the optical tweezers device 20 The location of N-type semiconductor and P-type semiconductor in 110A. The first doped region in the semiconductor layer 110 of the optical tweezers device 10 112 and the second doped region 116 are N-type semiconductor and P-type semiconductor respectively, and the first doped region 112A and the second doped region 116A in the semiconductor layer 110A of the optical tweezer device 20 are P-type semiconductor and N-type semiconductor respectively. Semiconductors.

在圖10的實施例中,第一電極E1電性連接至P型半導體,而第二電極E2電性連接至N型半導體。在本實施例中,誘發極化顆粒300的表面帶有正電。 In the embodiment of FIG. 10 , the first electrode E1 is electrically connected to the P-type semiconductor, and the second electrode E2 is electrically connected to the N-type semiconductor. In this embodiment, the surface of the induced polarization particles 300 is positively charged.

圖11是依照本發明的一實施例的一種光鑷裝置30的剖面示意圖。在此必須說明的是,圖11的實施例沿用圖1A、圖1B和圖2的實施例的元件標號與部分內容,其中採用相同或近似的標號來表示相同或近似的元件,並且省略了相同技術內容的說明。關於省略部分的說明可參考前述實施例,在此不贅述。 FIG. 11 is a schematic cross-sectional view of an optical tweezers device 30 according to an embodiment of the present invention. It must be noted here that the embodiment of Figure 11 follows the component numbers and part of the content of the embodiment of Figures 1A, 1B and 2, where the same or similar numbers are used to represent the same or similar elements, and the same or similar elements are omitted. Description of technical content. For descriptions of omitted parts, reference may be made to the foregoing embodiments and will not be described again here.

圖11的光鑷裝置30與圖1A與圖1B的光鑷裝置10的差異在於:光鑷裝置10的半導體層110包括PIN二極體,而光鑷裝置30的半導體層110B包括NIN結構。 The difference between the optical tweezers device 30 of FIG. 11 and the optical tweezers device 10 of FIGS. 1A and 1B is that the semiconductor layer 110 of the optical tweezers device 10 includes a PIN diode, while the semiconductor layer 110B of the optical tweezers device 30 includes a NIN structure.

在圖11的實施例中,半導體層110B中的第一摻雜區112B與第二摻雜區116B皆為相同摻雜類型的半導體,如N型半導體。過渡區114B為為本質半導體或輕摻雜類型的P型半導體。在圖11的實施例中,第一電極E1與第二電極E2皆電性連接至N型半導體。 In the embodiment of FIG. 11 , the first doped region 112B and the second doped region 116B in the semiconductor layer 110B are both semiconductors of the same doping type, such as N-type semiconductors. The transition region 114B is an intrinsic semiconductor or a lightly doped P-type semiconductor. In the embodiment of FIG. 11 , both the first electrode E1 and the second electrode E2 are electrically connected to the N-type semiconductor.

在本實施例中,當光束照射至NIN結構時,NIN結構會產生光電流,藉此吸引或排斥顆粒300。 In this embodiment, when a light beam is irradiated to the NIN structure, the NIN structure generates a photocurrent, thereby attracting or repelling the particles 300 .

圖12是依照本發明的一實施例的一種光鑷裝置40的剖 面示意圖。在此必須說明的是,圖12的實施例沿用圖1A、圖1B和圖2的實施例的元件標號與部分內容,其中採用相同或近似的標號來表示相同或近似的元件,並且省略了相同技術內容的說明。關於省略部分的說明可參考前述實施例,在此不贅述。 Figure 12 is a cross-section of an optical tweezers device 40 according to an embodiment of the present invention. Surface diagram. It must be noted here that the embodiment of FIG. 12 follows the component numbers and part of the content of the embodiment of FIG. 1A, FIG. 1B and FIG. 2, where the same or similar numbers are used to represent the same or similar elements, and the same or similar elements are omitted. Description of technical content. For descriptions of omitted parts, reference may be made to the foregoing embodiments and will not be described again here.

圖12的光鑷裝置40與圖1A與圖1B的光鑷裝置10的差異在於:光鑷裝置10的半導體層110包括PIN二極體,而光鑷裝置40的半導體層110C包括PIP結構。 The difference between the optical tweezers device 40 of FIG. 12 and the optical tweezers device 10 of FIGS. 1A and 1B is that the semiconductor layer 110 of the optical tweezers device 10 includes a PIN diode, while the semiconductor layer 110C of the optical tweezers device 40 includes a PIP structure.

在圖12的實施例中,半導體層110C中的第一摻雜區112C與第二摻雜區116C皆為相同摻雜類型的半導體,如P型半導體。過渡區114C為本質半導體或輕摻雜類型的N型半導體。在圖12的實施例中,第一電極E1與第二電極E2皆電性連接至P型半導體。 In the embodiment of FIG. 12 , the first doped region 112C and the second doped region 116C in the semiconductor layer 110C are both semiconductors of the same doping type, such as P-type semiconductors. The transition region 114C is an intrinsic semiconductor or a lightly doped N-type semiconductor. In the embodiment of FIG. 12 , both the first electrode E1 and the second electrode E2 are electrically connected to the P-type semiconductor.

在本實施例中,當光束照射至PIP結構時,PIP結構會產生光電流,藉此吸引或排斥顆粒300。 In this embodiment, when a light beam is irradiated onto the PIP structure, the PIP structure generates a photocurrent, thereby attracting or repelling the particles 300 .

圖13至圖17是依照本發明的一實施例的一種光鑷裝置50的製造方法的剖面示意圖。在此必須說明的是,圖13至圖16的實施例沿用圖1A、圖1B和圖2的實施例的元件標號與部分內容,其中採用相同或近似的標號來表示相同或近似的元件,並且省略了相同技術內容的說明。關於省略部分的說明可參考前述實施例,在此不贅述。 13 to 17 are schematic cross-sectional views of a manufacturing method of the optical tweezers device 50 according to an embodiment of the present invention. It must be noted here that the embodiments of Figures 13 to 16 follow the component numbers and part of the content of the embodiments of Figures 1A, 1B and 2, where the same or similar numbers are used to represent the same or similar elements, and Explanations of the same technical content are omitted. For descriptions of omitted parts, reference may be made to the foregoing embodiments and will not be described again here.

請參考圖13至圖15,在本實施例中,絕緣結構220包括多層結構。舉例來說,形成絕緣結構220於過渡區114上的方法 包括以下步驟。請參考圖13,形成第一絕緣材料層222a於半導體層110上。形成第二絕緣材料層224a於第一絕緣材料層222a上。在一些實施例中,第一絕緣材料層222a與第二絕緣材料層224a包括不同的材料。舉例來說,第一絕緣材料層222a包括氧化矽,且第二絕緣材料層224a包括氮化矽。形成第三罩幕圖案PR3於第二絕緣材料層224a之上,其中第三罩幕圖案PR3在法線方向ND上重疊於半導體層110的過渡區114。在一些實施例中,第三罩幕圖案PR3的寬度大於或等於過渡區114的寬度。 Please refer to FIGS. 13 to 15 . In this embodiment, the insulation structure 220 includes a multi-layer structure. For example, a method of forming the insulating structure 220 on the transition region 114 Include the following steps. Referring to FIG. 13 , a first insulating material layer 222a is formed on the semiconductor layer 110 . A second insulating material layer 224a is formed on the first insulating material layer 222a. In some embodiments, the first insulating material layer 222a and the second insulating material layer 224a include different materials. For example, the first insulating material layer 222a includes silicon oxide, and the second insulating material layer 224a includes silicon nitride. A third mask pattern PR3 is formed on the second insulating material layer 224a, wherein the third mask pattern PR3 overlaps the transition region 114 of the semiconductor layer 110 in the normal direction ND. In some embodiments, the width of the third mask pattern PR3 is greater than or equal to the width of the transition region 114 .

請參考圖13與圖14,以第三罩幕圖案PR3為遮罩,執行乾蝕刻製程以圖案化第一絕緣材料層222a以及第二絕緣材料層224a。圖案化的第一絕緣材料層222b以及圖案化的第二絕緣材料層224b暴露出第一摻雜區112以及第二摻雜區116。在一些實施例中,前述乾蝕刻製程為等向性蝕刻製程(例如雷射蝕刻或電漿蝕刻)。在一些實施例中,圖案化的第一絕緣材料層222b部分覆蓋第一摻雜區112以及第二摻雜區116。 Referring to FIGS. 13 and 14 , using the third mask pattern PR3 as a mask, a dry etching process is performed to pattern the first insulating material layer 222 a and the second insulating material layer 224 a. The patterned first insulating material layer 222b and the patterned second insulating material layer 224b expose the first doped region 112 and the second doped region 116. In some embodiments, the dry etching process is an isotropic etching process (such as laser etching or plasma etching). In some embodiments, the patterned first insulating material layer 222b partially covers the first doped region 112 and the second doped region 116 .

請參考圖14與圖15,在乾蝕刻製程後,以第三罩幕圖案PR3為遮罩,執行濕蝕刻製程以移除至少部分圖案化的第一絕緣材料層222b。在一些實施例中,圖案化的第二絕緣材料層224b也可以於濕蝕刻製程中被部分移除。在濕蝕刻製程中,圖案化的第一絕緣材料層222b的蝕刻速率大於圖案化的第二絕緣材料層224b的蝕刻速率。換句話說,圖案化的第一絕緣材料層222b會於濕蝕刻製程中被移除較多。在一些實施例中,前述濕蝕刻製程為 異向性蝕刻製程。在一些實施例中,利用濃度為0.45%的氫氟酸進行濕蝕刻製程。 Referring to FIGS. 14 and 15 , after the dry etching process, using the third mask pattern PR3 as a mask, a wet etching process is performed to remove at least part of the patterned first insulating material layer 222b. In some embodiments, the patterned second insulating material layer 224b may also be partially removed during a wet etching process. In the wet etching process, the etching rate of the patterned first insulating material layer 222b is greater than the etching rate of the patterned second insulating material layer 224b. In other words, more of the patterned first insulating material layer 222b will be removed during the wet etching process. In some embodiments, the aforementioned wet etching process is Anisotropic etching process. In some embodiments, the wet etching process is performed using hydrofluoric acid with a concentration of 0.45%.

透過乾蝕刻製程與濕蝕刻製程,可以獲得多個絕緣結構220,每個絕緣結構220包括第一絕緣層222以及第二絕緣層224。第一絕緣層222位於第二絕緣層224與過渡區114之間。在本實施例中,第一絕緣層222與第二絕緣層224皆為環形,且第一絕緣層222的寬度Wa小於第二絕緣層224的寬度Wb。在一些實施例中,第一絕緣層222的厚度Ta大於第二絕緣層224的厚度Tb。因此,有助於使絕緣結構220在濕蝕刻製程後出現下窄上寬的剖面形狀。 Through a dry etching process and a wet etching process, a plurality of insulating structures 220 can be obtained. Each insulating structure 220 includes a first insulating layer 222 and a second insulating layer 224 . The first insulation layer 222 is located between the second insulation layer 224 and the transition region 114 . In this embodiment, both the first insulating layer 222 and the second insulating layer 224 are annular, and the width Wa of the first insulating layer 222 is smaller than the width Wb of the second insulating layer 224 . In some embodiments, the thickness Ta of the first insulating layer 222 is greater than the thickness Tb of the second insulating layer 224 . Therefore, it is helpful for the insulating structure 220 to have a cross-sectional shape that is narrow at the bottom and wide at the top after the wet etching process.

請參考圖16,形成導電層於絕緣結構120以及半導體層110上,其中導電層包括位於於第一摻雜區112上的第一電極E1、位於第二摻雜區116上的第二電極E2以及位於絕緣結構220上的反射層E3。 Referring to FIG. 16 , a conductive layer is formed on the insulating structure 120 and the semiconductor layer 110 . The conductive layer includes a first electrode E1 located on the first doped region 112 and a second electrode E2 located on the second doped region 116 . and a reflective layer E3 located on the insulating structure 220 .

在本實施例中,由於絕緣結構220的頂面與半導體層110的頂面之間具有斷差,因此,在沉積導電層時,絕緣結構220的頂面上的反射層E3會分離於半導體層110的頂面上的第一電極E1以及第二電極E2。由於第一絕緣層222的寬度小於第二絕緣層224的寬度,可以減少反射層E3接觸第一電極E1及/或第二電極E2的機率,進而降低短路的風險。 In this embodiment, since there is a gap between the top surface of the insulating structure 220 and the top surface of the semiconductor layer 110, when the conductive layer is deposited, the reflective layer E3 on the top surface of the insulating structure 220 will be separated from the semiconductor layer. The first electrode E1 and the second electrode E2 on the top surface of 110 . Since the width of the first insulating layer 222 is smaller than the width of the second insulating layer 224 , the probability that the reflective layer E3 contacts the first electrode E1 and/or the second electrode E2 can be reduced, thereby reducing the risk of short circuit.

在本實施例中,第一電極E1的側壁與第一絕緣層222的側壁之間具有間隙,且第二電極E2的側壁與第一絕緣層222的側 壁之間具有間隙。 In this embodiment, there is a gap between the side wall of the first electrode E1 and the side wall of the first insulating layer 222 , and the side wall of the second electrode E2 and the side wall of the first insulating layer 222 There are gaps between the walls.

請參考圖17,形成介電層130於半導體層110之上。在本實施例中,介電層130形成於第二電極E2、絕緣結構120以及反射層E3上。介電層130具有重疊於第一電極E1的第一通孔132,且介電層130覆蓋第二電極E2的頂面以及反射層E3的頂面。在一些實施例中,部分介電層130填入第一電極E1的側壁與第一絕緣層222的側壁之間的間隙以及第二電極E2的側壁與第一絕緣層222的側壁之間的間隙。在法線方向ND上,部分介電層130位於部分第二絕緣層224與部分半導體層110之間。在一些實施例中,部分介電層130位於第一絕緣層222與第一電極E1之間以及第一絕緣層222與第二電極E2之間。 Referring to FIG. 17 , a dielectric layer 130 is formed on the semiconductor layer 110 . In this embodiment, the dielectric layer 130 is formed on the second electrode E2, the insulation structure 120 and the reflective layer E3. The dielectric layer 130 has a first through hole 132 overlapping the first electrode E1, and the dielectric layer 130 covers the top surface of the second electrode E2 and the top surface of the reflective layer E3. In some embodiments, part of the dielectric layer 130 fills the gap between the sidewalls of the first electrode E1 and the sidewalls of the first insulating layer 222 and the gap between the sidewalls of the second electrode E2 and the sidewalls of the first insulating layer 222 . In the normal direction ND, part of the dielectric layer 130 is located between part of the second insulating layer 224 and part of the semiconductor layer 110 . In some embodiments, a portion of the dielectric layer 130 is located between the first insulating layer 222 and the first electrode E1 and between the first insulating layer 222 and the second electrode E2.

最後,提供重疊於第一電極E1的對向電極400;提供緩衝溶液200於對向電極400與第一電極E1之間以及對向電極400與介電層130之間;提供多個顆粒300於緩衝溶液200中。至此,光鑷裝置50大致完成。 Finally, the counter electrode 400 is provided overlapping the first electrode E1; the buffer solution 200 is provided between the counter electrode 400 and the first electrode E1 and between the counter electrode 400 and the dielectric layer 130; and a plurality of particles 300 are provided between Buffer solution 200. At this point, the optical tweezers device 50 is roughly completed.

綜上所述,本發明的光鑷裝置包括位於絕緣結構上的反射層。通過反射層的設置,在對光鑷裝置的背面照射光束時,穿過透明基底、半導體層以及絕緣結構的光束可以被反射層反射,並重新回到半導體層,因此,半導體層可以產生較大的光電流。 To sum up, the optical tweezers device of the present invention includes a reflective layer located on an insulating structure. Through the arrangement of the reflective layer, when the back side of the optical tweezers device is irradiated with a light beam, the light beam passing through the transparent substrate, semiconductor layer and insulating structure can be reflected by the reflective layer and return to the semiconductor layer. Therefore, the semiconductor layer can produce a larger photocurrent.

10:光鑷裝置 10: Optical tweezers device

100:透明基底 100:Transparent base

110:半導體層 110: Semiconductor layer

112:第一摻雜區 112: First doped region

114:過渡區 114:Transition area

116:第二摻雜區 116: Second doping region

120:絕緣結構 120:Insulation structure

130:介電層 130: Dielectric layer

132:第一通孔 132: First through hole

200:緩衝溶液 200:Buffer solution

300:顆粒/誘發極化顆粒 300: Particles/Induced Polarization Particles

400:對向電極 400: Counter electrode

E1:第一電極 E1: first electrode

E2:第二電極 E2: second electrode

E3:反射層 E3: Reflective layer

ND:法線方向 ND: normal direction

O1:第一開口 O1: First opening

O2:第二開口 O2: Second opening

W1,W2:寬度 W1, W2: Width

Claims (15)

一種光鑷裝置,包括:一透明基底;一半導體層,位於該透明基底之上,且包括一第一摻雜區、一第二摻雜區以及一過渡區,其中該過渡區位於該第一摻雜區與該第二摻雜區之間;一第一電極,位於該第一摻雜區上,且電性連接至該第一摻雜區;一絕緣結構,位於該過渡區上,其中該絕緣結構具有在該透明基底的一法線方向上重疊於該第一電極的一第一開口;以及一反射層,位於該絕緣結構上,且具有在該法線方向上重疊於該第一開口的一第二開口。 An optical tweezers device includes: a transparent substrate; a semiconductor layer located on the transparent substrate and including a first doping region, a second doping region and a transition region, wherein the transition region is located on the first between the doped region and the second doped region; a first electrode located on the first doped region and electrically connected to the first doped region; an insulating structure located on the transition region, wherein The insulation structure has a first opening that overlaps the first electrode in a normal direction of the transparent substrate; and a reflective layer is located on the insulation structure and has a first opening that overlaps the first electrode in the normal direction. A second opening of an opening. 如請求項1所述的光鑷裝置,其中該絕緣結構包括一第一絕緣層以及一第二絕緣層,該第一絕緣層位於該第二絕緣層與該過渡區之間,其中該第一絕緣層的厚度大於該第二絕緣層的厚度。 The optical tweezers device of claim 1, wherein the insulation structure includes a first insulation layer and a second insulation layer, the first insulation layer is located between the second insulation layer and the transition region, wherein the first insulation layer The thickness of the insulating layer is greater than the thickness of the second insulating layer. 如請求項2所述的光鑷裝置,其中該第一絕緣層與該第二絕緣層皆為環形,且該第一絕緣層的寬度小於該第二絕緣層的寬度。 The optical tweezers device of claim 2, wherein both the first insulating layer and the second insulating layer are annular, and the width of the first insulating layer is smaller than the width of the second insulating layer. 如請求項2所述的光鑷裝置,更包括:一介電層,位於該半導體層之上,且具有在該法線方向上重疊於該第一開口以及該第二開口的一第一通孔,其中在該法線方 向上,部分該介電層位於部分該第二絕緣層與部分該半導體層之間。 The optical tweezers device according to claim 2, further comprising: a dielectric layer located on the semiconductor layer and having a first pass overlapping the first opening and the second opening in the normal direction. hole, where in the direction of the normal Upward, part of the dielectric layer is located between part of the second insulating layer and part of the semiconductor layer. 如請求項2所述的光鑷裝置,更包括:一介電層,位於該半導體層之上,且具有在該法線方向上重疊於該第一開口以及該第二開口的一第一通孔,其中部分該介電層位於該第一絕緣層與該第一電極之間。 The optical tweezers device according to claim 2, further comprising: a dielectric layer located on the semiconductor layer and having a first pass overlapping the first opening and the second opening in the normal direction. A hole, wherein part of the dielectric layer is located between the first insulating layer and the first electrode. 如請求項1所述的光鑷裝置,更包括:一第二電極,位於該第二摻雜區上,且電性連接至該第二摻雜區,其中該第一電極為島狀結構,且該第二電極環繞該第一電極。 The optical tweezers device according to claim 1, further comprising: a second electrode located on the second doped region and electrically connected to the second doped region, wherein the first electrode has an island structure, And the second electrode surrounds the first electrode. 如請求項1所述的光鑷裝置,其中該第一摻雜區與該第二摻雜區中的一者為P型半導體,該第一摻雜區與該第二摻雜區中的另一者為N型半導體,且該過渡區為本質半導體或輕摻雜的純度接近本質的半導體。 The optical tweezers device of claim 1, wherein one of the first doped region and the second doped region is a P-type semiconductor, and the other of the first doped region and the second doped region One is an N-type semiconductor, and the transition region is an intrinsic semiconductor or a lightly doped semiconductor with a purity close to essential. 如請求項1所述的光鑷裝置,其中該第一摻雜區與該第二摻雜區皆為相同摻雜類型的半導體,且該過渡區為另一種摻雜類型的半導體。 The optical tweezers device of claim 1, wherein the first doping region and the second doping region are both semiconductors of the same doping type, and the transition region is a semiconductor of another doping type. 如請求項1所述的光鑷裝置,其中該絕緣結構的厚度大於該第一電極的厚度。 The optical tweezers device of claim 1, wherein the thickness of the insulating structure is greater than the thickness of the first electrode. 如請求項1所述的光鑷裝置,其中該絕緣結構環繞該第一電極與該第一開口,且該反射層環繞該第二開口。 The optical tweezers device of claim 1, wherein the insulating structure surrounds the first electrode and the first opening, and the reflective layer surrounds the second opening. 一種光鑷裝置的製造方法,包括:形成一半導體材料層於一透明基底之上;對該半導體材料層執行摻雜製程,以形成包括一第一摻雜區、一第二摻雜區以及一過渡區的一半導體層,其中該過渡區位於該第一摻雜區與該第二摻雜區之間;形成一絕緣結構於該過渡區上,其中該絕緣結構具有一第一開口;形成一導電層於該絕緣結構以及該半導體層上,其中該導電層包括位於於該第一摻雜區上的一第一電極以及位於該絕緣結構上的反射層,其中該絕緣結構的該第一開口在該透明基底的一法線方向上重疊於該第一電極,且該反射層具有在該法線方向上重疊於該第一開口的一第二開口。 A method of manufacturing an optical tweezers device, including: forming a semiconductor material layer on a transparent substrate; performing a doping process on the semiconductor material layer to form a first doped region, a second doped region and a A semiconductor layer in a transition region, wherein the transition region is between the first doped region and the second doped region; forming an insulating structure on the transition region, wherein the insulating structure has a first opening; forming an A conductive layer is on the insulating structure and the semiconductor layer, wherein the conductive layer includes a first electrode located on the first doped region and a reflective layer located on the insulating structure, wherein the first opening of the insulating structure The reflective layer overlaps the first electrode in a normal direction of the transparent substrate, and the reflective layer has a second opening that overlaps the first opening in the normal direction. 如請求項11所述的光鑷裝置的製造方法,其中形成該絕緣結構於該過渡區上的方法包括:形成一第一絕緣材料層於該半導體層上;形成一第二絕緣材料層於該第一絕緣材料層上;形成一罩幕圖案於該第二絕緣材料層之上,其中該罩幕圖案在該法線方向上重疊於該半導體層的該過渡區;以該罩幕圖案為遮罩,執行乾蝕刻製程以圖案化該第一絕緣材料層以及該第二絕緣材料層;以及在該乾蝕刻製程後,以該罩幕圖案為遮罩,執行濕蝕刻製程以移除至少部分該第一絕緣材料層。 The method of manufacturing an optical tweezers device according to claim 11, wherein the method of forming the insulating structure on the transition region includes: forming a first insulating material layer on the semiconductor layer; forming a second insulating material layer on the semiconductor layer. on the first insulating material layer; forming a mask pattern on the second insulating material layer, wherein the mask pattern overlaps the transition area of the semiconductor layer in the normal direction; using the mask pattern as a mask Mask, perform a dry etching process to pattern the first insulating material layer and the second insulating material layer; and after the dry etching process, use the mask pattern as a mask, perform a wet etching process to remove at least part of the first layer of insulating material. 如請求項12所述的光鑷裝置的製造方法,其中在該濕蝕刻製程中,該第一絕緣材料層的蝕刻速率大於該第二絕緣材料層的蝕刻速率。 The method of manufacturing an optical tweezers device according to claim 12, wherein in the wet etching process, the etching rate of the first insulating material layer is greater than the etching rate of the second insulating material layer. 如請求項11所述的光鑷裝置的製造方法,更包括:提供重疊於該第一電極的一對向電極;提供一緩衝溶液於該對向電極與該第一電極之間;以及提供多個顆粒於該緩衝溶液中。 The manufacturing method of the optical tweezers device according to claim 11, further comprising: providing a pair of counter electrodes overlapping the first electrode; providing a buffer solution between the counter electrode and the first electrode; and providing a plurality of counter electrodes. particles in the buffer solution. 如請求項11所述的光鑷裝置的製造方法,其中該光鑷裝置被配置成使該半導體層接收光束,該光束從該透明基底背對該半導體層的一側進入該光鑷裝置。 The method of manufacturing an optical tweezers device as claimed in claim 11, wherein the optical tweezers device is configured to enable the semiconductor layer to receive a light beam, and the light beam enters the optical tweezers device from a side of the transparent substrate facing away from the semiconductor layer.
TW112108587A 2023-03-08 2023-03-08 Optoelectronic tweezer device and fabrication method thereof TWI835578B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW112108587A TWI835578B (en) 2023-03-08 2023-03-08 Optoelectronic tweezer device and fabrication method thereof
CN202311010373.2A CN117130150A (en) 2023-03-08 2023-08-11 Optical tweezers device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW112108587A TWI835578B (en) 2023-03-08 2023-03-08 Optoelectronic tweezer device and fabrication method thereof

Publications (2)

Publication Number Publication Date
TWI835578B true TWI835578B (en) 2024-03-11
TW202437553A TW202437553A (en) 2024-09-16

Family

ID=88855678

Family Applications (1)

Application Number Title Priority Date Filing Date
TW112108587A TWI835578B (en) 2023-03-08 2023-03-08 Optoelectronic tweezer device and fabrication method thereof

Country Status (2)

Country Link
CN (1) CN117130150A (en)
TW (1) TWI835578B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101377965A (en) * 2007-08-31 2009-03-04 达信科技股份有限公司 Disk sheet structure and manufacturing method thereof, and light forceps device using the disk sheet structure
CN103676126A (en) * 2013-12-20 2014-03-26 同济大学 Operation instrument for optical tweezers
CN104777602A (en) * 2015-04-23 2015-07-15 东北大学 Device for classifying and collecting atmosphere PM2.5 particles through hollow optical fiber taper and optical tweezers
CN114822904A (en) * 2022-01-25 2022-07-29 友达光电股份有限公司 Optical tweezers device and method for manufacturing same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101377965A (en) * 2007-08-31 2009-03-04 达信科技股份有限公司 Disk sheet structure and manufacturing method thereof, and light forceps device using the disk sheet structure
CN103676126A (en) * 2013-12-20 2014-03-26 同济大学 Operation instrument for optical tweezers
CN104777602A (en) * 2015-04-23 2015-07-15 东北大学 Device for classifying and collecting atmosphere PM2.5 particles through hollow optical fiber taper and optical tweezers
CN114822904A (en) * 2022-01-25 2022-07-29 友达光电股份有限公司 Optical tweezers device and method for manufacturing same

Also Published As

Publication number Publication date
CN117130150A (en) 2023-11-28

Similar Documents

Publication Publication Date Title
TWI734108B (en) Integrated chip and method of forming the same
CN108447821B (en) Array substrate and manufacturing method thereof
CN102227825B (en) Optoelectronic semiconductor chip and method for producing optoelectronic semiconductor chip
CN105428474B (en) A kind of simple making method of efficient LED chip
US8450824B2 (en) Optically transmissive metal electrode, electronic device, and optical device
TWI515911B (en) Thin film transistor substrate and manufacturing method thereof, display
US6946313B2 (en) Method of making an aligned electrode on a semiconductor structure
TW202136725A (en) Snspd with integrated aluminum nitride seed or waveguide layer
WO2019226788A1 (en) Led display structures and fabrication of same
US10627673B2 (en) Light emitting diode array containing a multilayer bus electrode and method of making the same
TW202144749A (en) Snspd with integrated aluminum nitride seed or waveguide layer
TWI803169B (en) Optoelectronic tweezer device and fabrication method thereof
TWI835578B (en) Optoelectronic tweezer device and fabrication method thereof
CN111627933B (en) Active element substrate and manufacturing method thereof
CN116914061A (en) Micro LED display assembly and preparation method thereof
TWI248687B (en) Element for the optoelectronics and method for its production
US20210320223A1 (en) Optoelectronic semiconductor chip and method for producing an optoelectronic semiconductor chip
KR100873187B1 (en) Manufacturing method of light emitting diode
TW201431118A (en) Method for producing an optoelectronic semiconductor chip and optoelectronic semiconductor chip
WO2020238430A1 (en) Photodiode device, array substrate and manufacturing method therefor, display panel and display apparatus
KR100603839B1 (en) method for fabricating the array substrate for liquid crystal display device
WO2014203881A1 (en) Method for manufacturing silicon carbide semiconductor element
TWI853289B (en) Semiconductor device and manufacturing method thereof
CN220984552U (en) MicroLED display assembly
KR101335614B1 (en) Vertical structured light emitting diodes and method for manufacturing the same