TW201431118A - Method for producing an optoelectronic semiconductor chip and optoelectronic semiconductor chip - Google Patents

Method for producing an optoelectronic semiconductor chip and optoelectronic semiconductor chip Download PDF

Info

Publication number
TW201431118A
TW201431118A TW102145269A TW102145269A TW201431118A TW 201431118 A TW201431118 A TW 201431118A TW 102145269 A TW102145269 A TW 102145269A TW 102145269 A TW102145269 A TW 102145269A TW 201431118 A TW201431118 A TW 201431118A
Authority
TW
Taiwan
Prior art keywords
layer
semiconductor layer
sequence
layer sequence
semiconductor
Prior art date
Application number
TW102145269A
Other languages
Chinese (zh)
Inventor
Korbinian Perzlmaier
Sebastian Taeger
Original Assignee
Osram Opto Semiconductors Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osram Opto Semiconductors Gmbh filed Critical Osram Opto Semiconductors Gmbh
Publication of TW201431118A publication Critical patent/TW201431118A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor
    • H01L33/42Transparent materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0016Processes relating to electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Abstract

In at least one embodiment, the method is designed for producing an optoelectronic semiconductor chip (1) and comprises the following steps: A) epitaxially growing a semiconductor layer sequence (3) on a growth substrate (2), B) applying a current spreading layer (4) composed of a transparent conductive oxide to the semiconductor layer sequence (3), C) applying an etching mask (6) to the current spreading layer (4), D) patterning the current spreading layer (4) and the semiconductor layer sequence (3) by etching with the aid of the same etching mask (6), wherein a distance between an edge of the semiconductor layer sequence (3) and an edge of the current spreading layer (4) is at most 3 [mu]m.

Description

製造光電半導體晶片的方法及光電半導體晶片 Method for manufacturing optoelectronic semiconductor wafer and optoelectronic semiconductor wafer

本發明提供一種製造光電半導體晶片的方法。此外,本發明提供一種以該方法製成的半導體晶片。 The present invention provides a method of fabricating an optoelectronic semiconductor wafer. Further, the present invention provides a semiconductor wafer fabricated by this method.

本發明的目的是提供一種能夠有效率地製造光電半導體晶片的方法。 It is an object of the present invention to provide a method of efficiently manufacturing an optoelectronic semiconductor wafer.

此外,上述目的藉由一種具有請求項之獨立項特徵的方法和一種光電半導體晶片來達成。較佳的其它形式描述在請求項各附屬項中。 Moreover, the above object is achieved by a method having the features of the individual terms of the claim and an optoelectronic semiconductor wafer. Other preferred forms are described in the sub-items of the request.

依據至少一實施形式,本方法涉及半導體層序列之磊晶生長的步驟。該半導體層序列生長在一生長基板上。該生長基板例如是一種藍寶石-基板或SiC-基板。 According to at least one embodiment, the method involves the step of epitaxial growth of a sequence of semiconductor layers. The semiconductor layer sequence is grown on a growth substrate. The growth substrate is, for example, a sapphire-substrate or a SiC-substrate.

依據至少一實施形式,該半導體層序列具有一個或多個用於產生輻射之活性區。至少一活性區在一垂直於該半導體層序列之生長方向中較佳係連續地且無 空隙地經由該半導體層序列而延伸。 According to at least one embodiment, the semiconductor layer sequence has one or more active regions for generating radiation. At least one active region is preferably continuous and absent in a growth direction perpendicular to the sequence of the semiconductor layer The voids extend through the sequence of semiconductor layers.

該半導體層序列較佳是以III-V-化合物半 導體材料為主。此半導體材料例如是氮化物-化合物半導體材料(例如,AlnIn1-n-mGamN)或磷化物-化合物半導體材料(例如,AlnIn1-n-mGamP)或砷化物-化合物半導體材料(例如,AlnIn1-n-mGamAs),其中0≦n≦1,0≦m≦1且n+m≦1。因此,此半導體層序列可具有摻雜物質以及其它成份。然而,為了簡單之故,只設定該半導體層序列之晶格的主要成份,即,Al,As,Ga,In,N或P,這些主要成份之一部份亦可由少量的其它物質來取代及/或補充。 The semiconductor layer sequence is preferably a III-V-compound semiconductor material. The semiconductor material is, for example, a nitride-compound semiconductor material (for example, Al n In 1-nm Ga m N) or a phosphide-compound semiconductor material (for example, Al n In 1-nm Ga m P) or an arsenide-compound semiconductor. A material (for example, Al n In 1-nm Ga m As), where 0 ≦ n ≦ 1, 0 ≦ m ≦ 1 and n + m ≦ 1. Thus, the semiconductor layer sequence can have dopant species as well as other components. However, for the sake of simplicity, only the main components of the crystal lattice of the semiconductor layer sequence, ie, Al, As, Ga, In, N or P, are set, and one of these main components may be replaced by a small amount of other substances. / or add.

例如,在製成的半導體晶片之操作中發出紫 外線輻射、可見光及/或鄰近紅外線的輻射。特別是活性區係用來產生藍光,其光譜區大約是在430奈米(含)和485奈米之間。 For example, emitting violet in the operation of the fabricated semiconductor wafer Radiation from outside, visible light and/or radiation in the vicinity of infrared rays. In particular, the active region is used to generate blue light, and its spectral region is approximately between 430 nm and 485 nm.

依據至少一實施形式,本方法包括一種在該 半導體層序列上施加電流擴張層之步驟。該電流擴張層較佳是施加在該半導體層序列之遠離該生長基板之一側上。該電流擴張層包括一種或多種透明之導電氧化物或該電流擴張層是由一種或多種所述氧化物構成。因此,該電流擴張層可另外具有一種摻雜。 According to at least one embodiment, the method includes an The step of applying a current spreading layer on the semiconductor layer sequence. The current spreading layer is preferably applied to one side of the semiconductor layer sequence away from the growth substrate. The current spreading layer comprises one or more transparent conductive oxides or the current expanding layer is composed of one or more of the oxides. Therefore, the current spreading layer may additionally have a doping.

依據至少一實施形式,該半導體層序列直接 施加在該生長基板上。該半導體層序列和該生長基板較佳是整面互相接觸。該生長基板亦可在面向該半導體層序列之一側上具有一種結構。該生長基板可以是一種所 謂已結構化的藍寶石-基板(簡稱為PSS,patterned sapphire substrate)。 According to at least one embodiment, the semiconductor layer sequence is directly Applied on the growth substrate. Preferably, the semiconductor layer sequence and the growth substrate are in contact with each other over the entire surface. The growth substrate may also have a structure on one side facing the semiconductor layer sequence. The growth substrate can be a type of It is a structured sapphire-substrate (PSS, patterned sapphire substrate).

依據至少一實施形式,該電流擴張層至少部 份地直接與該半導體層序列相接觸。即,該電流擴張層部份地與該半導體層序列相接觸。特別是該電流擴張層之與該半導體層序列相接觸之面積份量在俯視圖中觀看時至少是該半導體層序列之面積的70%或80%或90%。 According to at least one embodiment, the current expansion layer is at least partially The portion is in direct contact with the semiconductor layer sequence. That is, the current spreading layer is partially in contact with the semiconductor layer sequence. In particular, the area fraction of the current spreading layer in contact with the semiconductor layer sequence is at least 70% or 80% or 90% of the area of the semiconductor layer sequence when viewed in plan view.

依據至少一實施形式,本方法包括將一種蝕 刻光罩施加在該電流擴張層上之步驟。因此,該蝕刻光罩係用來使該電流擴張層和該半導體層序列結構化。例如,該蝕刻光罩藉由光漆而形成。 According to at least one embodiment, the method includes an etch A step of applying a reticle to the current spreading layer. Thus, the etch mask is used to structure the current spreading layer and the semiconductor layer sequence. For example, the etch mask is formed by varnish.

依據至少一實施形式,本方法具有一種使該 電流擴張層結構化的步驟。該結構化較佳是藉由蝕刻來達成,其中該結構化藉由該蝕刻光罩來預設。在該結構化之後,較佳是將該蝕刻光罩去除,特別是完全地且無殘留物地去除。 According to at least one embodiment, the method has a The step of structuring the current expansion layer. The structuring is preferably achieved by etching, wherein the structuring is predetermined by the etch mask. After the structuring, the etch mask is preferably removed, in particular completely and without residue.

依據至少一實施形式,該電流擴張層和該半 導體層序列依據相同之蝕刻光罩而被結構化。藉由恰巧一蝕刻光罩,則可預設該電流擴張層和該半導體層序列之結構。 According to at least one embodiment, the current spreading layer and the half The conductor layer sequence is structured according to the same etch mask. The structure of the current spreading layer and the semiconductor layer sequence can be predetermined by etching the mask.

依據至少一實施形式,該半導體層序列之一 邊緣至該電流擴張層之一邊緣之距離或平均距離沿著垂直於該生長方向之橫方向的一部份或周圍至多是3微米或2.5微米或2微米或1.5微米。或是,該距離或平均距離至多是該電流擴張層之平均層厚度之20倍、10倍、5 倍或2倍。換言之,該電流擴張層之邊緣相對於該半導體層序列之邊緣係近似於疊合而延伸。 According to at least one embodiment, one of the semiconductor layer sequences The distance or average distance from the edge to one of the edges of the current spreading layer is at most 3 microns or 2.5 microns or 2 microns or 1.5 microns along a portion or periphery of the transverse direction perpendicular to the growth direction. Or, the distance or the average distance is at most 20 times, 10 times, and 5 times the average layer thickness of the current expansion layer. Double or double. In other words, the edge of the current spreading layer extends approximately superposed with respect to the edge of the semiconductor layer sequence.

在至少一實施形式中,本方法係用於製造一種光電半導體晶片,特別是製造一種發光二極體。本方法至少包括以下各步驟:A)在一生長基板上磊晶生長半導體層序列,其中該半導體層序列具有至少一用於產生輻射之活性區,B)在該半導體層序列之遠離該生長基板之一側上施加一由透明之導電氧化物構成的電流擴張層,其中該電流擴張層至少部份地直接與該半導體層序列相接觸,C)在該電流擴張層上施加一種蝕刻光罩,D)依據相同的蝕刻光罩藉由蝕刻使該電流擴張層和該半導體層序列結構化,其中該半導體層序列之一邊緣至該電流擴張層之一邊緣之距離或平均距離在一垂直於該半導體層序列之生長方向之方向中觀看時至多是3微米。 In at least one embodiment, the method is used to fabricate an optoelectronic semiconductor wafer, in particular to fabricate a light emitting diode. The method comprises at least the following steps: A) epitaxially growing a semiconductor layer sequence on a growth substrate, wherein the semiconductor layer sequence has at least one active region for generating radiation, and B) is remote from the growth substrate in the semiconductor layer sequence Applying a current spreading layer composed of a transparent conductive oxide on one side, wherein the current expanding layer is at least partially in direct contact with the semiconductor layer sequence, C) applying an etching mask on the current expanding layer, D) structuring the current spreading layer and the semiconductor layer sequence by etching according to the same etching mask, wherein a distance or an average distance from one edge of the semiconductor layer sequence to one edge of the current expanding layer is perpendicular to the The viewing direction of the semiconductor layer sequence is at most 3 microns when viewed.

本方法的上述步驟較佳是以設定的順序來進行。此處,在各別的步驟之間亦可進行其它未計入的步驟或上述各步驟可精準地以設定的順序來進行而未具備中間步驟。 The above steps of the method are preferably carried out in a set order. Here, other steps not counted may be performed between the respective steps or the above steps may be performed precisely in a set order without an intermediate step.

在已設定的本方法中,該電流擴張層和該半導體層序列之結構化係以相同的蝕刻光罩來進行。因此,為了使該電流擴張層和該半導體層序列結構化,只需唯一的光平面。這樣,藉由輻射活性面之最大化使成 本下降且使效率提高。 In the method that has been set, the structuring of the current spreading layer and the semiconductor layer sequence is performed with the same etch mask. Therefore, in order to structure the current spreading layer and the semiconductor layer sequence, only a single light plane is required. In this way, by maximizing the radiation active surface This decreases and the efficiency is improved.

半導體層序列通常在第一光平面中被結構化 且由透明之導電氧化物(簡稱為TCO)構成的電流擴張層只在後來的光平面中被結構化。若半導體層序列大致上係藉由雷射束來劃分,則以上述方式劃分成多個光平面特別是需要的。在此種雷射劃分中產生較大的殘渣,因此,在此種雷射劃分中,半導體層序列須以一種大致上是由二氧化矽構成的犧牲層來覆蓋。為了防止該電流擴張層上的損傷,此種雷射劃分通常在施加該電流擴張層之前進行。 The semiconductor layer sequence is typically structured in the first plane of light The current spreading layer consisting of a transparent conductive oxide (TCO for short) is only structured in the later light plane. If the semiconductor layer sequence is substantially divided by a laser beam, it is particularly necessary to divide into a plurality of light planes in the manner described above. Larger residues are produced in such laser divisions. Therefore, in such laser division, the semiconductor layer sequence must be covered by a sacrificial layer consisting essentially of cerium oxide. In order to prevent damage on the current spreading layer, such laser division is typically performed prior to application of the current spreading layer.

依據至少一實施形式,該電流擴張層之結構 化的步驟所包括的部份步驟(partial step)為對該電流擴張層進行濕式化學蝕刻。在此種濕式化學蝕刻中,較佳是該半導體層序列之材料未被剝蝕或該半導體層序列未明顯地受到蝕刻所影響。該濕式化學蝕刻因此可被限制在該電流擴張層上。 According to at least one embodiment, the structure of the current expansion layer The partial step included in the step of the step is a wet chemical etching of the current spreading layer. In such wet chemical etching, it is preferred that the material of the semiconductor layer sequence is not ablated or the semiconductor layer sequence is not significantly affected by etching. The wet chemical etch can thus be confined to the current spreading layer.

依據至少一實施形式,該結構化之步驟所包 括的部份步驟(partial step)為對該半導體層序列進行乾式化學蝕刻。在該電流擴張層例如以濕式化學方式部份地被去除之後,進行該部份步驟。在此種乾式蝕刻中,較佳是只將該半導體層序列之材料剝蝕且該電流擴張層之材料未被剝蝕或未大範圍地被剝蝕。於是,該半導體層序列之側邊上的活性區可受到保護而不受來自該電流擴張層之導電材料的污染。 According to at least one embodiment, the step of structuring is included A partial step is a dry chemical etching of the semiconductor layer sequence. This partial step is carried out after the current expansion layer has been partially removed, for example, in a wet chemical manner. In such dry etching, it is preferred that only the material of the semiconductor layer sequence is ablated and the material of the current spreading layer is not ablated or not extensively ablated. Thus, the active region on the side of the semiconductor layer sequence can be protected from contamination by the conductive material from the current spreading layer.

依據至少一實施形式,該電流擴張層包括錫 及/或鋅。例如,該電流擴張層是一種由銦-錫-氧化物或氧化鋅構成的層。該電流擴張層之多層構造亦可由不同的TCOs之層所構成。 According to at least one embodiment, the current spreading layer comprises tin And / or zinc. For example, the current spreading layer is a layer composed of indium-tin-oxide or zinc oxide. The multilayer structure of the current spreading layer can also be composed of layers of different TCOs.

依據至少一實施形式,該生長基板保留在該 半導體層序列上。然後,該半導體層序列不是接合至一與該生長基板不同的載體基板上。該生長基板因此仍存在於已製成的半導體晶片中。 According to at least one embodiment, the growth substrate remains in the On the semiconductor layer sequence. Then, the semiconductor layer sequence is not bonded to a different carrier substrate than the growth substrate. The growth substrate is therefore still present in the finished semiconductor wafer.

依據至少一實施形式,該半導體層序列之邊 緣和該電流擴張層之邊緣之間的距離或平均距離至少為100奈米或200奈米或300奈米或500奈米及/或在俯視圖中觀看時至少為該電流擴張層之平均層厚度的50%或100%。藉由此種距離,則該半導體層序列之邊緣和該電流擴張層之邊緣例如可藉由光顯微鏡或電子顯微鏡而互相區分。 According to at least one embodiment, the side of the semiconductor layer sequence The distance or average distance between the edge and the edge of the current spreading layer is at least 100 nanometers or 200 nanometers or 300 nanometers or 500 nanometers and/or at least the average layer thickness of the current spreading layer when viewed in plan view. 50% or 100%. By such a distance, the edge of the semiconductor layer sequence and the edge of the current spreading layer can be distinguished from one another by, for example, a light microscope or an electron microscope.

依據至少一實施形式,在該電流擴張層之濕 式化學蝕刻之步驟中,該蝕刻光罩受到欠蝕刻(under-etched)。這表示:該蝕刻光罩位於該電流擴張層上。該電流擴張層因此完全被該蝕刻光罩所覆蓋且在俯視圖中觀看時該蝕刻光罩所具有的面積大於該電流擴張層的面積。 According to at least one embodiment, the current expansion layer is wet In the step of chemical etching, the etch mask is under-etched. This means that the etch mask is located on the current spreading layer. The current spreading layer is thus completely covered by the etch mask and has an area greater than the area of the current spreading layer when viewed in plan view.

依據至少一實施形式,該電流擴張層和該半 導體層序列受到乾式化學蝕刻。就像往常一樣,乾式化學蝕刻是一種化學乾式蝕刻(簡稱為CDE)或反應式離子蝕刻(簡稱為RIE)。多種乾式蝕刻步驟可互相組合或只使用唯一的乾式蝕刻步驟。 According to at least one embodiment, the current spreading layer and the half The conductor layer sequence is subjected to dry chemical etching. As usual, dry chemical etching is a chemical dry etch (referred to as CDE) or reactive ion etch (abbreviated as RIE). A variety of dry etching steps can be combined with each other or only a single dry etching step can be used.

若該電流擴張層和該半導體層序列分別受到 乾式化學蝕刻,則該電流擴張層之邊緣和該半導體層序列之邊緣之間的距離較佳是至多200奈米或100奈米或50奈米。各邊緣亦可互相處於疊合狀況。 If the current expansion layer and the semiconductor layer sequence are respectively received For dry chemical etching, the distance between the edge of the current spreading layer and the edge of the semiconductor layer sequence is preferably at most 200 nm or 100 nm or 50 nm. The edges can also be in a superposed condition with each other.

依據至少一實施形式,本方法包括步驟E), 其在步驟D)之後進行。步驟E)中,該電流擴張層之邊緣和該半導體層序列之邊緣相互之間的距離會改變。此種改變較佳是藉由該電流擴張層之蝕刻來達成,特別是藉由濕式化學蝕刻來達成。 According to at least one embodiment, the method comprises the step E), It is carried out after step D). In step E), the distance between the edge of the current spreading layer and the edge of the semiconductor layer sequence changes. This change is preferably achieved by etching of the current spreading layer, in particular by wet chemical etching.

依據至少一實施形式,本方法包括步驟F)。 步驟F)在步驟D)之後進行。步驟F)中該生長基板和半導體層序列劃分成半導體晶片。此種劃分較佳是部份地或全部藉由雷射束來達成。此種劃分特別是可以為一種所謂隱形切割(stealth dicing)。於是,藉由一種聚焦之脈波式雷射束的非線性吸收,其中該生長基板在適當的強度下對該雷射束之波長而言是可穿過的,則在載體複合物內部中可在該材料中產生一種損傷區。 According to at least one embodiment, the method comprises a step F). Step F) is carried out after step D). In step F), the growth substrate and the semiconductor layer sequence are divided into semiconductor wafers. This division is preferably achieved in part or in whole by a laser beam. This division can in particular be a so-called stealth dicing. Thus, by non-linear absorption of a focused pulsed laser beam, wherein the growth substrate is permeable to the wavelength of the laser beam at an appropriate intensity, then within the carrier composite A damaged area is created in the material.

依據至少一實施形式,該劃分藉由雷射束來 進行,其中該雷射束經由一遠離該半導體層序列之背面而入射至該生長基板中。於是,可防止在該半導體層序列上形成熔渣。藉由雷射束,則可在該生長基板及/或在半導體層序列中產生額定斷裂區。在產生額定斷裂區之後,例如(在該生長基板及/或半導體層序列中)進行一種折斷使成各別的半導體晶片。 According to at least one embodiment, the division is by means of a laser beam The process is performed in which the laser beam is incident into the growth substrate via a back surface away from the semiconductor layer sequence. Thus, formation of slag on the semiconductor layer sequence can be prevented. By means of the laser beam, a nominal fracture zone can be produced in the growth substrate and/or in the semiconductor layer sequence. After the generation of the nominal fracture zone, for example (in the growth substrate and/or semiconductor layer sequence) a break is made into individual semiconductor wafers.

依據至少一實施形式,該半導體層序列具有 至少2.5微米或3微米之厚度。或是,該半導體層序列之厚度至多是15微米或12微米或9微米。 According to at least one embodiment, the semiconductor layer sequence has A thickness of at least 2.5 microns or 3 microns. Alternatively, the semiconductor layer sequence has a thickness of at most 15 microns or 12 microns or 9 microns.

依據至少一實施形式,該生長基板之厚度至 少是50微米或75微米或100微米。或是,該生長基板之厚度至多是3毫米或1.5毫米或500微米或400微米或300微米。在生長該半導體層序列之後,可使該生長基板薄化。 According to at least one embodiment, the thickness of the growth substrate is up to Less is 50 microns or 75 microns or 100 microns. Alternatively, the thickness of the growth substrate is at most 3 mm or 1.5 mm or 500 microns or 400 microns or 300 microns. After growing the semiconductor layer sequence, the growth substrate can be thinned.

依據至少一實施形式,該電流擴張層連續地 越過該半導體層序列而延伸。因此,在該電流擴張層中可未形成凹口或洞孔。 According to at least one embodiment, the current spreading layer is continuously Extending over the sequence of the semiconductor layer. Therefore, no notches or holes may be formed in the current expansion layer.

依據至少一實施形式,越過該半導體層序列 之電流擴張層具有固定的厚度。固定的厚度之意義可以是指:在越過該半導體晶片的範圍中,厚度的變動至多是該半導體層序列之平均厚度的30%或20%或15%或10%或5%。 According to at least one embodiment, the semiconductor layer sequence is crossed The current spreading layer has a fixed thickness. The meaning of the fixed thickness may mean that the variation in thickness in the range over the semiconductor wafer is at most 30% or 20% or 15% or 10% or 5% of the average thickness of the semiconductor layer sequence.

依據至少一實施形式,該電流擴張層在步驟 D)之後具有多個側邊,這些側邊是該電流擴張層之側面的邊界面。這些側邊相對於該半導體層序列之生長方向的角度例如至少是15度或30度及/或至多是60度或75度。這些側邊之寬度在俯視圖中觀看時例如至多是1.0微米或0.5微米。當該電流擴張層以乾式化學蝕刻方式而被結構化時特別是屬上述情況。同樣,各側邊在該電流擴張層之俯視圖中觀看時至少部份地以鋸齒形或散線形式鄰接該電流擴張層,使該電流擴張層之一邊緣在俯視圖中觀看時較明顯地編織成鋸齒狀,其中此種鋸齒之 在垂直於該生長方向之方向中的平均深度例如至少是100奈米或250奈米或該電流擴張層之平均厚度及/或至多是600奈米或400奈米。當該電流擴張層以濕式化學方式被結構化時特別是屬後者之情況。 According to at least one embodiment, the current spreading layer is in the step D) is followed by a plurality of sides which are the boundary faces of the sides of the current spreading layer. The angle of the sides relative to the direction of growth of the semiconductor layer sequence is, for example, at least 15 or 30 degrees and/or at most 60 or 75 degrees. The width of these sides is, for example, at most 1.0 microns or 0.5 microns when viewed in plan view. This is particularly the case when the current spreading layer is structured by dry chemical etching. Similarly, each of the sides abuts the current spreading layer at least partially in the form of a zigzag or a scattered line when viewed in a plan view of the current spreading layer, such that one of the edges of the current expanding layer is more woven into a plan view. Jagged, in which the serration The average depth in the direction perpendicular to the growth direction is, for example, at least 100 nm or 250 nm or the average thickness of the current expansion layer and/or at most 600 nm or 400 nm. This is especially the case when the current spreading layer is structured in a wet chemical manner.

依據至少一實施形式,在該電流擴張層之一遠離該半導體層序列之側面上施加至少一金屬接觸層。此金屬接觸層是由一種或多種金屬形成或由金屬合金形成。此金屬接觸層特別是一種接合墊。該電流擴張層亦可在該金屬接觸層下方連續地延伸而未中斷。 According to at least one embodiment, at least one metal contact layer is applied on the side of the current spreading layer which is remote from the semiconductor layer sequence. This metal contact layer is formed of one or more metals or formed of a metal alloy. This metal contact layer is in particular a bond pad. The current spreading layer may also extend continuously below the metal contact layer without interruption.

依據至少一實施形式,在該半導體層序列和該電流擴張層之間在一由該金屬接觸層所覆蓋的區域中存在一電性隔離用的隔離層。此隔離層可具有與該金屬接觸層相同的基本形式和基面,特別是所具有的容許度(tolerance)至多是5倍或3倍或2倍。該隔離層在俯視圖中觀看時較佳是大於該金屬接觸層且在周圍突出於該金屬接觸層。由於該隔離層,則特別是不會形成一種由該金屬接觸層至該半導體層序列之直接的電流路徑。或是,在一區域中(其中一接合線施加在該金屬接觸層上)該金屬接觸層部份地接觸該半導體層序列,以達成較佳的接合,在此種情況下該半導體層序列可不具導電性。該隔離層可使輻射通過、使輻射反射或使光散射。 According to at least one embodiment, an isolating layer for electrical isolation is present between the semiconductor layer sequence and the current spreading layer in a region covered by the metal contact layer. This spacer layer may have the same basic form and base as the metal contact layer, in particular having a tolerance of at most 5 or 3 or 2 times. The spacer layer is preferably larger than the metal contact layer and protrudes around the metal contact layer when viewed in plan view. Due to the isolation layer, in particular, a direct current path from the metal contact layer to the semiconductor layer sequence is not formed. Or, in a region (on which a bonding wire is applied on the metal contact layer), the metal contact layer partially contacts the semiconductor layer sequence to achieve a better bonding, in which case the semiconductor layer sequence may not Conductive. The barrier layer can pass radiation, reflect radiation or scatter light.

依據至少一實施形式,該隔離層被結構化且因此只局部地存在著。未整面地施加該隔離層。於是,事後不需將該隔離層的材料去除。 According to at least one embodiment, the separating layer is structured and thus only partially present. The barrier layer is applied incompletely. Therefore, it is not necessary to remove the material of the separator afterwards.

依據至少一實施形式,在該半導體層序列及/ 或該電流擴張層之遠離該生長基板之一側面上施加一電性隔離用之可透過輻射的鈍化層。該鈍化層較佳是一種封閉層,其連續地覆蓋該半導體層序列,施加有至少一金屬接觸層的多個區域較佳是不具備該鈍化層。 According to at least one embodiment, in the semiconductor layer sequence and / Or a radiation permeable passivation layer for electrical isolation is applied to a side of the current expansion layer away from the growth substrate. The passivation layer is preferably a closed layer that continuously covers the semiconductor layer sequence, and a plurality of regions to which at least one metal contact layer is applied preferably do not have the passivation layer.

依據至少一實施形式,該鈍化層的一部份在 該至少一金屬接觸層之遠離該生長基板之一側上於該半導體層序列上延伸。該金屬接觸層之一部份因此位於該鈍化層和該電流擴張層之間。該金屬接觸層在俯視圖中觀看時較佳是至多覆蓋該鈍化層之10%或20%。 According to at least one embodiment, a part of the passivation layer is The side of the at least one metal contact layer extending away from the side of the growth substrate extends over the semiconductor layer sequence. A portion of the metal contact layer is thus located between the passivation layer and the current spreading layer. The metal contact layer preferably covers up to 10% or 20% of the passivation layer when viewed in plan view.

依據至少一實施形式,該電流擴張層具有至 少30奈米或50奈米或70奈米或100奈米之厚度。或是,該電流擴張層具有至多500奈米或300奈米或220奈米之厚度。 According to at least one embodiment, the current spreading layer has Less than 30 nm or 50 nm or 70 nm or 100 nm thickness. Alternatively, the current spreading layer has a thickness of at most 500 nm or 300 nm or 220 nm.

依據至少一實施形式,該半導體層序列及/ 或已製成的半導體晶片在俯視圖中觀看時具有至少200微米或300微米或450微米之平均橫向尺寸。所謂平均橫向尺寸可以是該半導體晶片及/或該半導體層序列之平均邊長。或是,該平均橫向尺寸至多是2毫米或1.5毫米或1毫米。 According to at least one embodiment, the semiconductor layer sequence and/or Or the fabricated semiconductor wafer has an average lateral dimension of at least 200 microns or 300 microns or 450 microns when viewed in plan view. The average lateral dimension may be the average side length of the semiconductor wafer and/or the semiconductor layer sequence. Alternatively, the average lateral dimension is at most 2 mm or 1.5 mm or 1 mm.

依據至少一實施形式,該半導體層序列之邊 緣和該電流擴張層之邊緣之間的距離在俯視圖中觀看時在該半導體層序列之周圍保持相同。保持相同的意義是指:各別局部地仍存在的距離由平均距離偏離至多50%或30%或15%或偏離該電流擴張層之平均厚度之2倍及/或偏離至多600奈米或500奈米或400奈米或300奈米。 According to at least one embodiment, the side of the semiconductor layer sequence The distance between the edge and the edge of the current spreading layer remains the same around the sequence of semiconductor layers as viewed in plan view. By maintaining the same meaning, it is meant that the distances that are still locally present are locally offset by an average distance by up to 50% or 30% or 15% or from twice the average thickness of the current expansion layer and/or by a deviation of up to 600 nm or 500. Nano or 400 nm or 300 nm.

依據至少一實施形式,該電流擴張層之遠離 該半導體層序列之一側具有至多10奈米或5奈米之平均粗糙度。換言之,該電流擴張層是平滑的。或是,一適當的粗糙度可適用於該半導體層序列及/或該鈍化層及/或該隔離層之遠離該生長基板之一側。 According to at least one embodiment, the current spreading layer is far away One side of the semiconductor layer sequence has an average roughness of at most 10 nm or 5 nm. In other words, the current spreading layer is smooth. Alternatively, a suitable roughness may be applied to the semiconductor layer sequence and/or the passivation layer and/or the isolation layer away from the side of the growth substrate.

依據至少一實施形式,該電流擴張層具有顆 粒狀或粒狀結構。平均的顆粒大小例如至少是10奈米或30奈米或50奈米及/或至多300奈米或200奈米或150奈米。藉由此種顆粒狀的結構,則該電流擴張層之遠離該半導體層序列之一側具有至少10奈米或30奈米或50奈米之平均粗糙度及/或至多200奈米或100奈米或50奈米之平均粗糙度。藉由此種較粗糙的電流擴張層,可使光耦出效率提高。 According to at least one embodiment, the current spreading layer has Granular or granular structure. The average particle size is, for example, at least 10 nm or 30 nm or 50 nm and/or at most 300 nm or 200 nm or 150 nm. With such a granular structure, the current-expanding layer has an average roughness of at least 10 nm or 30 nm or 50 nm away from one side of the semiconductor layer sequence and/or at most 200 nm or 100 nm. Average roughness of meters or 50 nm. With such a coarse current spreading layer, the optical coupling efficiency can be improved.

依據至少一實施形式,在已製成的半導體晶 片中只藉由該電流擴張層來設定電流擴張性。橫向(由該金屬接觸層離開的方向)中的電流擴張性因此可只藉由該電流擴張層來達成。於是,可使用不是以金屬為主、特別是可透光之薄金屬層來擴張電流。該半導體晶片特別是包括非連續式或柵格形式之金屬電極,其具有至多15奈米或20奈米之厚度且在俯視圖中觀看時基本上完全覆蓋該半導體層序列。 According to at least one embodiment, the finished semiconductor crystal The current expansion property is set only by the current expansion layer in the sheet. The current expandability in the lateral direction (the direction in which the metal contact layer leaves) can thus be achieved only by the current spreading layer. Thus, a thin metal layer that is not primarily metal, especially light transmissive, can be used to expand the current. The semiconductor wafer comprises, in particular, a metal electrode in the form of a discontinuous or grid, having a thickness of at most 15 nm or 20 nm and substantially completely covering the semiconductor layer sequence when viewed in plan view.

依據至少一實施形式,該半導體層序列在步驟D)之後具有多個側邊。這些側邊特別是該半導體層序列之邊界面,其定向成與該生長基板之基板上側成橫向。 According to at least one embodiment, the semiconductor layer sequence has a plurality of sides after step D). These sides, in particular the boundary faces of the semiconductor layer sequence, are oriented transverse to the upper side of the substrate of the growth substrate.

依據至少一實施形式,該半導體層序列之側 邊相對於該半導體層序列之生長方向所形成的角度至多是30度或15度或10度或5度。即,該半導體層序列之側邊係平行於或基本上平行於該生長方向而延伸。或是,該角度亦可至少為30度或35度或40度及/或至多為75度或60度或55度或50度。 According to at least one embodiment, the side of the semiconductor layer sequence The angle formed by the side with respect to the growth direction of the semiconductor layer sequence is at most 30 degrees or 15 degrees or 10 degrees or 5 degrees. That is, the sides of the semiconductor layer sequence extend parallel or substantially parallel to the growth direction. Alternatively, the angle may be at least 30 degrees or 35 degrees or 40 degrees and/or at most 75 degrees or 60 degrees or 55 degrees or 50 degrees.

此外,本發明提供一種光電半導體晶片。此半導體晶片係依據一個或多個上述實施形式中所述方法而製成。該方法之特徵因此亦揭示於該光電半導體晶片中且反之亦然。 Further, the present invention provides an optoelectronic semiconductor wafer. The semiconductor wafer is fabricated in accordance with one or more of the methods described in the above embodiments. The features of the method are therefore also disclosed in the optoelectronic semiconductor wafer and vice versa.

在至少一實施形式中,該半導體晶片包括一生長基板,其上以磊晶方式直接沈積一半導體層序列。此半導體層序列包括至少一用來產生輻射的活性區。在遠離該生長基板之一側上,至少部份地在該半導體層序列上直接施加一電流擴張層。此電流擴張層是由透明之導電氧化物所形成或以此種氧化物為主。該半導體層序列之邊緣至該電流擴張層之邊緣之距離在垂直於該半導體層序列之生長方向的方向中觀看時至多是1.0微米。 In at least one embodiment, the semiconductor wafer includes a growth substrate on which a semiconductor layer sequence is deposited directly in an epitaxial manner. The semiconductor layer sequence includes at least one active region for generating radiation. On the side remote from the growth substrate, a current spreading layer is applied at least partially directly over the semiconductor layer sequence. The current spreading layer is formed of a transparent conductive oxide or is mainly composed of such an oxide. The distance from the edge of the semiconductor layer sequence to the edge of the current spreading layer is at most 1.0 micrometer when viewed in a direction perpendicular to the growth direction of the semiconductor layer sequence.

以下,將依據各實施例且參考各圖式來詳述上述方法及光電半導體晶片。各圖式中相同的參考符號表示相同的元件。然而,各元件之間的大小比例未必依比例繪出。反之,為了易於理解,各別的元件已予放大地顯示出。 Hereinafter, the above method and optoelectronic semiconductor wafer will be described in detail in accordance with various embodiments and with reference to the drawings. The same reference symbols in the various drawings represent the same elements. However, the size ratio between the various elements is not necessarily drawn to scale. Conversely, for ease of understanding, the individual components have been shown enlarged.

1‧‧‧光電半導體晶片 1‧‧‧Optoelectronic semiconductor wafer

2‧‧‧生長基板 2‧‧‧ Growth substrate

20‧‧‧基板上側 20‧‧‧Upper side of the substrate

25‧‧‧額定斷裂區 25‧‧‧rated fault zone

3‧‧‧半導體層序列 3‧‧‧Semiconductor layer sequence

30‧‧‧輻射主側 30‧‧‧Main side of radiation

31‧‧‧n-側 31‧‧‧n-side

32‧‧‧活性區 32‧‧‧Active area

33‧‧‧p-側 33‧‧‧p-side

35‧‧‧側邊 35‧‧‧ side

4‧‧‧電流擴張層 4‧‧‧current expansion layer

5‧‧‧隔離層 5‧‧‧Isolation

6‧‧‧蝕刻光罩 6‧‧‧ etching mask

7‧‧‧金屬接觸層 7‧‧‧Metal contact layer

8‧‧‧鈍化層 8‧‧‧ Passivation layer

D‧‧‧距離 D‧‧‧Distance

G‧‧‧生長方向 G‧‧‧Growth direction

R‧‧‧雷射束 R‧‧‧Laser beam

α‧‧‧角度 ‧‧‧‧ angle

第1圖至第3圖顯示此處用於製造所述光電半導體晶 片的方法之實施例的剖面圖。 Figures 1 to 3 show the use of the optoelectronic semiconductor crystal here for fabrication A cross-sectional view of an embodiment of a method of sheet.

第4圖顯示本方法之不同方式的剖面圖。 Figure 4 shows a cross-sectional view of the different ways of the method.

第1圖中顯示本發明用於製造光電半導體晶片1的方法。依據第1A圖,在生長基板2(較佳是藍寶石-基板)上以磊晶方式沈積一種半導體層序列3。此半導體層序列3較佳是以InAlGaN為主。 The method for manufacturing the optoelectronic semiconductor wafer 1 of the present invention is shown in Fig. 1. According to FIG. 1A, a semiconductor layer sequence 3 is epitaxially deposited on a growth substrate 2, preferably a sapphire-substrate. This semiconductor layer sequence 3 is preferably mainly InAlGaN.

該半導體層序列3直接沈積在該生長基板2之基板上側20。與圖式不同,基板上側20可具有結構。直接在基板上側20上由n-導電材料生長該半導體層序列3之n-側31。與第1A圖之圖式不同,在基板上側20和n-側31之間存在半導體層序列3之其它層,例如,鈍化層、光罩層及/或生長層。在由該生長基板2離開的方向中,至少一活性區32緊跟著該n-側。該活性區32包括至少一pn-接面及/或至少一量子井結構。 The semiconductor layer sequence 3 is deposited directly on the substrate upper side 20 of the growth substrate 2. Unlike the drawings, the upper side 20 of the substrate can have a structure. The n-side 31 of the semiconductor layer sequence 3 is grown directly on the substrate upper side 20 from an n-conductive material. Unlike the pattern of FIG. 1A, there are other layers of the semiconductor layer sequence 3 between the upper side 20 and the n-side 31 of the substrate, for example, a passivation layer, a photomask layer, and/or a growth layer. In the direction away from the growth substrate 2, at least one active region 32 follows the n-side. The active region 32 includes at least one pn junction and/or at least one quantum well structure.

在由該生長基板2離開的方向中,由p-導電材料(例如,以鎂來摻雜之GaN)形成p-側33之活性區32。與圖式不同,該n-側和該p-側亦可互換。在此種情況下,該p-側較靠近該生長基板2。 In the direction away from the growth substrate 2, the active region 32 of the p-side 33 is formed of a p-conductive material (for example, GaN doped with magnesium). Unlike the drawings, the n-side and the p-side are also interchangeable. In this case, the p-side is closer to the growth substrate 2.

依據第1B圖,在該半導體層序列3之遠離該生長基板2之一側上直接相接觸地局部施加一可選擇的(optional)電性隔離層5。此隔離層5例如由氧化矽、氮化矽或氧化氮化矽所製成。此隔離層5之厚度例如至少20奈米或50奈米及/或至多200奈米或120奈米。在俯視圖中觀看時,該隔離層5較佳是至多覆蓋該半導體 層序列3之20%或10%。 According to FIG. 1B, an optional electrically isolating layer 5 is applied locally in direct contact with one side of the semiconductor layer sequence 3 remote from the growth substrate 2. This spacer layer 5 is made of, for example, hafnium oxide, tantalum nitride or hafnium oxynitride. The thickness of this barrier layer 5 is, for example, at least 20 nm or 50 nm and/or at most 200 nm or 120 nm. The spacer layer 5 preferably covers at most the semiconductor when viewed in a top view. 20% or 10% of the layer sequence 3.

由於只局部地施加該隔離層5,則可在該隔 離層5之一邊緣上避免在p-側中形成小的步級。此種步級可來自於該隔離層5之事後蝕刻。或是,由於此種事後蝕刻,則可在p-側之未由該隔離層5所覆蓋之區域中形成較大的粗糙度。 Since the isolation layer 5 is only applied locally, it can be separated Avoiding the formation of small steps in the p-side is avoided on one of the edges of the layer 5. Such a step can be derived from the subsequent etching of the isolation layer 5. Alternatively, due to such post-etching, a large roughness can be formed in the region of the p-side which is not covered by the spacer layer 5.

在第1C圖所示的步驟中,在該半導體層序 列3整面上施加一電流擴張層4。此電流擴張層4例如由銦-錫-氧化物(簡稱為ITO)所形成。該電流擴張層4過大地形成且覆蓋該隔離層5。 In the step shown in FIG. 1C, in the semiconductor sequence A current spreading layer 4 is applied to the entire surface of column 3. This current expansion layer 4 is formed, for example, of indium-tin-oxide (abbreviated as ITO). The current spreading layer 4 is formed excessively and covers the isolation layer 5.

如第1D圖所示,在電流擴張層4上施加一 蝕刻光罩6。此蝕刻光罩6較佳是由光漆形成且特別是藉由光技術而被結構化。在該蝕刻光罩6中形成多個凹口,凹口中可露出該電流擴張層4。 As shown in FIG. 1D, a current is applied to the current expansion layer 4. The reticle 6 is etched. The etch mask 6 is preferably formed of a lacquer and is specifically structured by optical techniques. A plurality of recesses are formed in the etch mask 6, and the current spreading layer 4 is exposed in the recess.

在如第1E圖所示的步驟中,以濕式化學蝕 刻在該蝕刻光罩6之凹口中將該電流擴張層4去除。與圖式不同,亦可不是對該蝕刻光罩6進行欠蝕刻(under-etched)而是在一與該半導體層序列3之生長方向G垂直的方向中使電流擴張層4與該蝕刻光罩6齊平。 然而,該蝕刻光罩6在該電流擴張層4上之突起較佳是至少50奈米或200奈米。 In the step shown in Figure 1E, wet chemical etching The current spreading layer 4 is removed in the recess of the etch mask 6. Different from the drawing, the etching mask 6 may not be under-etched, but the current expanding layer 4 and the etching mask may be formed in a direction perpendicular to the growth direction G of the semiconductor layer sequence 3. 6 flush. However, the protrusion of the etch mask 6 on the current spreading layer 4 is preferably at least 50 nm or 200 nm.

依據第1F圖,使該電流擴張層4和該半導 體層序列3結構化。該半導體層序列3之結構化較佳是藉由乾式化學蝕刻來進行。在該半導體層序列3之乾式化學蝕刻之後,將該蝕刻光罩6去除。 According to the 1F map, the current expansion layer 4 and the semiconductor The layer sequence 3 is structured. The structuring of the semiconductor layer sequence 3 is preferably carried out by dry chemical etching. After the dry chemical etching of the semiconductor layer sequence 3, the etch mask 6 is removed.

在橫切面中觀看時,該半導體層序列3可選 擇地具有多個部份區域,其突出於生長基板2上。該半導體層序列3之這些部份區域藉由該半導體層序列3之束緊作用而互相隔開。位於具有隔離層5之中央部份區域旁之多個部份區域可不具備該隔離層5。這些位於邊緣之部份區域亦可省略。 The semiconductor layer sequence 3 is optional when viewed in a cross section The ground has a plurality of partial regions which protrude from the growth substrate 2. These partial regions of the semiconductor layer sequence 3 are separated from each other by the tightening action of the semiconductor layer sequence 3. A plurality of partial regions located beside the central portion of the isolation layer 5 may not have the isolation layer 5. These partial areas on the edge can also be omitted.

第1G圖中詳細顯示該半導體層序列3之側 邊,其藉由蝕刻而形成。此側邊35例如相對於生長方向G而言具有大約45度之角度α。該半導體層序列3之邊緣和該電流擴張層4之邊緣之間的距離D大約是1微米。此種小的距離D可以”該電流擴張層4及該半導體層序列3以相同的蝕刻光罩6而被結構化”來達成。 The side of the semiconductor layer sequence 3 is shown in detail in FIG. 1G. The edge is formed by etching. This side 35 has, for example, an angle a of approximately 45 degrees with respect to the growth direction G. The distance D between the edge of the semiconductor layer sequence 3 and the edge of the current spreading layer 4 is about 1 micrometer. Such a small distance D can be achieved by "the current spreading layer 4 and the semiconductor layer sequence 3 are structured by the same etching mask 6".

在第1H圖之步驟中,在該電流擴張層4上施加多個金屬接觸層7,特別是以結構化方式施加而成。該隔離層5較佳是位於中央部份區域之金屬接觸層7和該半導體層序列3之間。該隔離層5只一部份由中央金屬接觸層7所覆蓋且所具有的基面大於該金屬接觸層7之基面。在該半導體層序列4之位於邊緣的部份區域中,該電流擴張層4可只位於該半導體層序列3和該金屬接觸層7之間。與圖式不同,各金屬接觸層7可具有多個不同的金屬層。 In the step of Figure 1H, a plurality of metal contact layers 7 are applied to the current spreading layer 4, in particular in a structured manner. The spacer layer 5 is preferably between the metal contact layer 7 in the central portion and the semiconductor layer sequence 3. The spacer layer 5 is only partially covered by the central metal contact layer 7 and has a base surface larger than the base surface of the metal contact layer 7. In a partial region of the semiconductor layer sequence 4 situated at the edge, the current spreading layer 4 can be situated only between the semiconductor layer sequence 3 and the metal contact layer 7. Unlike the drawings, each metal contact layer 7 can have a plurality of different metal layers.

第1I圖中顯示:在該半導體層序列3之遠離該生長基板2之此側上及在該電流擴張層4上分別施加一鈍化層8。例如,該鈍化層8由電性隔離用之氧化物或氮化物所形成。 It is shown in FIG. 1I that a passivation layer 8 is applied on the side of the semiconductor layer sequence 3 remote from the growth substrate 2 and on the current expansion layer 4, respectively. For example, the passivation layer 8 is formed of an oxide or nitride for electrical isolation.

在俯視圖中觀看時,可選擇地使該鈍化層8 以區域方式覆蓋金屬接觸層7。或是,該鈍化層8亦可在與該生長方向G成橫向之方向中與金屬接觸層7相隔開且未接觸金屬接觸層7。 The passivation layer 8 is optionally made when viewed in a top view The metal contact layer 7 is covered in a regional manner. Alternatively, the passivation layer 8 may be spaced apart from the metal contact layer 7 in a direction transverse to the growth direction G and not in contact with the metal contact layer 7.

第1J圖中顯示了劃分成各別之半導體晶片1 的步驟。第1J圖中特別是未顯示該隔離層、該鈍化層及各金屬接觸層。 Figure 1J shows the division into individual semiconductor wafers 1 A step of. In particular, the spacer layer, the passivation layer, and the metal contact layers are not shown in FIG. 1J.

為了進行劃分,由該生長基板2之遠離該半 導體層序列3之一側將雷射束R入射至該生長基板2中。藉由該雷射束R,在該生長基板2中設定額定斷裂區25。然後,可在各額定斷製區25上例如藉由折斷來進行完整的劃分。 For the division, the growth substrate 2 is away from the half One side of the conductor layer sequence 3 enters the laser beam R into the growth substrate 2. The rated fracture region 25 is set in the growth substrate 2 by the laser beam R. The complete division can then be carried out on each of the rated breaking zones 25, for example by breaking.

或是,與第1J圖之圖式不同,雷射束R亦 可由施加有該半導體層序列2之此側入射進來。在此種情況下,該半導體層序列2較佳是在入射有雷射束R之此種位置上完全由該生長基板2去除。於是,可防止熔渣的形成或減少熔渣的形式。 Or, unlike the pattern of Figure 1J, the laser beam R is also It can be incident on the side to which the semiconductor layer sequence 2 is applied. In this case, the semiconductor layer sequence 2 is preferably completely removed by the growth substrate 2 at such a position where the laser beam R is incident. Thus, the formation of slag can be prevented or the form of slag can be reduced.

第2圖顯示另一種製造方法。第2A圖和第 2B圖對應於第1D圖至第1F圖。其它步驟未顯示在第2圖中且能以類似於第1圖的方式來進行。 Figure 2 shows another manufacturing method. Figure 2A and The 2B map corresponds to the 1D to 1F maps. Other steps are not shown in Fig. 2 and can be performed in a manner similar to Fig. 1.

依據第2B圖,以乾式化學蝕刻方式依據先前第2A圖中已製成的共同之蝕刻光罩6來對電流擴張層4和半導體層序列3進行蝕刻。因此,半導體層序列3和電流擴張層4之結構化可在相同的蝕刻步驟中進行。於是,可使半導體層序列3之邊緣和電流擴張層4之邊 緣之間的突起消失且幾乎是零或是零。該半導體層序列3和該電流擴張層4可成為齊平狀。 According to FIG. 2B, the current spreading layer 4 and the semiconductor layer sequence 3 are etched in a dry chemical etching manner in accordance with the common etching mask 6 which has been produced in the previous FIG. 2A. Therefore, the structuring of the semiconductor layer sequence 3 and the current spreading layer 4 can be performed in the same etching step. Thus, the edge of the semiconductor layer sequence 3 and the edge of the current expansion layer 4 can be made The protrusion between the edges disappears and is almost zero or zero. The semiconductor layer sequence 3 and the current spreading layer 4 may be flush.

本製造方法之另一形式顯示在第3圖中。依 據第3A圖,經由該蝕刻光罩6中之凹口來對該半導體層序列3及該電流擴張層4進行蝕刻。此蝕刻較佳是以乾式化學蝕刻來進行。於是,可能造成該電流擴張層4在該半導體層序列3上之突起。 Another form of the manufacturing method is shown in Fig. 3. according to According to FIG. 3A, the semiconductor layer sequence 3 and the current spreading layer 4 are etched through the recesses in the etch mask 6. This etching is preferably carried out by dry chemical etching. Thus, a protrusion of the current spreading layer 4 on the semiconductor layer sequence 3 may be caused.

依據第3B圖,該電流擴張層4在該半導體 層序列3上之突起大致上可藉由另外的濕式化學蝕刻步驟來去除。只要該蝕刻光罩6仍未去除,則此種事後的蝕刻可優先進行。 According to FIG. 3B, the current spreading layer 4 is in the semiconductor The protrusions on layer sequence 3 can be substantially removed by an additional wet chemical etching step. As long as the etching mask 6 has not been removed, such subsequent etching can be preferentially performed.

與圖式不同,第3A圖中該蝕刻光罩6和電 流擴張層4可成為齊平狀。第3B圖中同樣亦可與圖式不同,使半導體層序列3位於電流擴張層4上。 Unlike the drawing, the etching mask 6 and the electricity in FIG. 3A The flow expansion layer 4 can be flush. In Fig. 3B, the semiconductor layer sequence 3 can also be placed on the current spreading layer 4, similarly to the drawing.

第4圖中顯示上述製造方法之另一方式。依 據第4A圖,該隔離層5以整面方式施加在該半導體層序列3上且隨後被結構化成一由SiO2所形成之第一蝕刻光罩6a。然後,請參閱第4B圖,該半導體層序列3依據第一蝕刻光罩6a而被結構化。 Another mode of the above manufacturing method is shown in Fig. 4. According to Fig. 4A, the spacer layer 5 is applied over the semiconductor layer sequence 3 in a full-face manner and subsequently structured into a first etch mask 6a formed of SiO 2 . Then, referring to FIG. 4B, the semiconductor layer sequence 3 is structured in accordance with the first etch mask 6a.

然後,請參閱第4C圖,施加該電流擴張層4。 依據一由光漆所形成的未顯示的第二蝕刻光罩使該電流擴張層4結構化。於是,在該電流擴張層4之邊緣和該半導體層序列3之邊緣之間造成一種不規則之較大距離。 Then, referring to FIG. 4C, the current expanding layer 4 is applied. The current spreading layer 4 is structured according to a second etching mask not shown which is formed of a varnish. Thus, an irregularly large distance is created between the edge of the current spreading layer 4 and the edge of the semiconductor layer sequence 3.

藉由第1圖至第3圖所示的方法,可使該電 流擴張層4之邊緣和該半導體層序列3之邊緣之間的距離減少。因此,可使半導體晶片1達成較大的放射面積。亦可使該半導體層序列3周圍之距離很均勻地形成。在第4圖所示的方法中,該電流擴張層4之邊緣和該半導體層序列3之邊緣之間的距離可以有較大的變動,此乃因不易對不同的蝕刻光罩作出準確的校準。 The electricity can be made by the method shown in Figures 1 to 3. The distance between the edge of the flow expansion layer 4 and the edge of the semiconductor layer sequence 3 is reduced. Therefore, the semiconductor wafer 1 can be made to have a large radiation area. It is also possible to form the distance around the semiconductor layer sequence 3 very uniformly. In the method shown in FIG. 4, the distance between the edge of the current spreading layer 4 and the edge of the semiconductor layer sequence 3 can be greatly changed, because it is difficult to accurately calibrate different etching masks. .

本發明當然不限於依據各實施例中所作的描述。反之,本發明包含每一新的特徵和各特徵的每一種組合,特別是包含各申請專利範圍之特徵之每一種組合,當相關的特徵或相關的組合本身未明顯地顯示在各申請專利範圍中或各實施例中時亦屬本發明。 The invention is of course not limited to the description made in accordance with the various embodiments. Rather, the invention encompasses each novel feature and each combination of features, and in particular each of the features of the inventions. The invention is also in the middle or in the examples.

本專利申請案主張德國專利申請案10 2012 112 771.9之優先權,其已揭示的整個內容在此一併作為參考。 The present patent application claims the priority of the German Patent Application No. 10 2012 112 77, the entire disclosure of which is hereby incorporated by reference.

2‧‧‧生長基板 2‧‧‧ Growth substrate

3‧‧‧半導體層序列 3‧‧‧Semiconductor layer sequence

4‧‧‧電流擴張層 4‧‧‧current expansion layer

5‧‧‧隔離層 5‧‧‧Isolation

30‧‧‧輻射主側 30‧‧‧Main side of radiation

35‧‧‧側邊 35‧‧‧ side

Claims (14)

一種製造光電半導體晶片(1)的方法,包括以下步驟:A)在一生長基板(2)上磊晶生長半導體層序列(3),其中該半導體層序列(3)具有至少一用於產生輻射之活性區,B)在該半導體層序列(3)之遠離該生長基板(2)之一側上施加一由透明之導電氧化物構成的電流擴張層(4),其中該電流擴張層(4)至少部份地直接與該半導體層序列(3)相接觸,C)在該電流擴張層(4)上施加一種蝕刻光罩(6),D)依據相同的蝕刻光罩(6)藉由蝕刻使該電流擴張層(4)和該半導體層序列(3)結構化,其中上述步驟以給定的順序進行,且該半導體層序列(3)之一邊緣至該電流擴張層(4)之一邊緣之距離(D)在一垂直於該半導體層序列(3)之生長方向(G)的方向中觀看時至多是3微米。 A method of fabricating an optoelectronic semiconductor wafer (1) comprising the steps of: A) epitaxially growing a semiconductor layer sequence (3) on a growth substrate (2), wherein the semiconductor layer sequence (3) has at least one for generating radiation Active region, B) applying a current expansion layer (4) composed of a transparent conductive oxide on a side of the semiconductor layer sequence (3) remote from the growth substrate (2), wherein the current expansion layer (4) At least partially in direct contact with the semiconductor layer sequence (3), C) applying an etch mask (6) on the current spreading layer (4), D) by means of the same etch mask (6) Etching structuring the current spreading layer (4) and the semiconductor layer sequence (3), wherein the steps are performed in a given order, and one edge of the semiconductor layer sequence (3) is to the current expanding layer (4) The distance (D) of an edge is at most 3 micrometers when viewed in a direction perpendicular to the growth direction (G) of the semiconductor layer sequence (3). 如請求項1之方法,其中該步驟D)包括已設定順序之以下各部份步驟:D1)只對該電流擴張層(4)進行濕式化學蝕刻,以及D2)對該半導體層序列(3)進行乾式化學蝕刻,其中該半導體層序列(3)是以AlnIn1-n-mGamN為主,其中0≦n≦1,0≦m≦1且n+m≦1,該電流擴張層(4)包含錫及/或鋅且該生長基板(2)是藍寶石基板,其中該生長基板(2)保留在該半導體層序列(3)上,該距離(D)至多是1.5微米且至少是該電流擴張層(4)之平 均厚度之50%。 The method of claim 1, wherein the step D) comprises the following steps of the set sequence: D1) wet chemical etching only the current expansion layer (4), and D2) the semiconductor layer sequence (3) Performing a dry chemical etching, wherein the semiconductor layer sequence (3) is dominated by Al n In 1-nm Ga m N, wherein 0≦n≦1, 0≦m≦1 and n+m≦1, the current expansion The layer (4) comprises tin and/or zinc and the growth substrate (2) is a sapphire substrate, wherein the growth substrate (2) remains on the semiconductor layer sequence (3), the distance (D) being at most 1.5 microns and at least It is 50% of the average thickness of the current expanding layer (4). 如請求項1或2之方法,其中在該步驟D1)中對該蝕刻光罩(6)進行欠蝕刻,使該蝕刻光罩(6)在步驟D2)之前位於該電流擴張層(4)上。 The method of claim 1 or 2, wherein the etching mask (6) is under-etched in the step D1) such that the etching mask (6) is located on the current spreading layer (4) before the step D2) . 如請求項1之方法,其中在步驟D)中以乾式化學蝕刻對該電流擴張層(4)和該半導體層序列(3)進行蝕刻,其中該距離(D)介於0奈米(含)和200奈米之間。 The method of claim 1, wherein the current expanding layer (4) and the semiconductor layer sequence (3) are etched by dry chemical etching in step D), wherein the distance (D) is between 0 nm (inclusive) And between 200 nm. 如請求項2至4中任一項之方法,其中在步驟D)之後所進行的步驟E)中藉由該電流擴張層(4)之濕式化學蝕刻來改變該距離(D)。 The method of any one of claims 2 to 4, wherein the distance (D) is changed by wet chemical etching of the current spreading layer (4) in step E) performed after step D). 如請求項1至5中任一項之方法,其中在步驟D)之後,於步驟F)中將該生長基板(2)和該半導體層序列(3)劃分成半導體晶片(1),其中該劃分的至少一部份係藉由雷射束來進行,該雷射束在遠離該半導體層序列(3)之一側上入射至該生長基板(2)中。 The method of any one of claims 1 to 5, wherein after step D), the growth substrate (2) and the semiconductor layer sequence (3) are divided into semiconductor wafers (1) in step F), wherein At least part of the division is carried out by means of a laser beam which is incident on the growth substrate (2) on a side remote from the semiconductor layer sequence (3). 如請求項1至6中任一項之方法,其中該電流擴張層(4)連續地以固定的厚度在該半導體層序列(3)上延伸,且在該電流擴張層(4)之遠離該半導體層序列(3)之一側上存在至少一金屬接觸層(7)。 The method of any one of claims 1 to 6, wherein the current spreading layer (4) continuously extends over the semiconductor layer sequence (3) with a fixed thickness, and away from the current spreading layer (4) At least one metal contact layer (7) is present on one side of the semiconductor layer sequence (3). 如請求項1至7中任一項之方法,其中該半導體層序列(3)和該電流擴張層(4)之間在一由該金屬接觸層(7)所覆蓋的區域中存在一電性隔離用的隔離層(5),該隔離層(5)在俯視圖中觀看時其周圍突出於該金屬接觸層。 The method of any one of claims 1 to 7, wherein an electrical property exists between the semiconductor layer sequence (3) and the current spreading layer (4) in a region covered by the metal contact layer (7) An isolating layer (5) for isolation, the spacer layer (5) protruding around the metal contact layer when viewed in plan view. 如請求項1至8中任一項之方法,其中該隔離層(5)被結構化地只局部地被施加而成且事後不須將該隔離層(5)之材料去除。 The method of any one of claims 1 to 8, wherein the barrier layer (5) is applied structurally only partially and the material of the barrier layer (5) is not subsequently removed. 如請求項1至9中任一項之方法,其中在該半導體層序列(3)之遠離該生長基板(2)之一側上及該電流擴張層(4)上分別施加一電性隔離用之可透過輻射之鈍化層(8),其中該鈍化層(8)至少一部份係在該金屬接觸層(7)之遠離該生長基板(2)之一側上延伸。 The method of any one of claims 1 to 9, wherein an electrical isolation is applied to one side of the semiconductor layer sequence (3) remote from the growth substrate (2) and the current expansion layer (4). The radiation passivation layer (8), wherein at least a portion of the passivation layer (8) extends on a side of the metal contact layer (7) away from the growth substrate (2). 如請求項1至10中任一項之方法,其中- 該電流擴張層(4)具有一種介於50奈米(含)和300奈米之間的厚度,- 該半導體層序列(3)的厚度介於2.5微米(含)和12微米之間,- 已製成的半導體晶片(1)在俯視圖中觀看時具有介於200微米(含)和1500微米之間的平均橫向尺寸,及- 該距離(D)在俯視圖中觀看時於該半導體層序列(3)之周圍保持相同,該距離(D)之容許度至多是500奈米。 The method of any one of claims 1 to 10, wherein - the current expansion layer (4) has a thickness of between 50 nm and 300 nm, - the semiconductor layer sequence (3) The thickness is between 2.5 micrometers (inclusive) and 12 micrometers, - the fabricated semiconductor wafer (1) has an average lateral dimension between 200 micrometers (inclusive) and 1500 micrometers when viewed in plan view, and - The distance (D) remains the same around the sequence of semiconductor layers (3) when viewed in plan view, the tolerance of the distance (D) being at most 500 nm. 如請求項1至11中任一項之方法,其中該電流擴張層(4)具有顆粒狀的結構且該電流擴張層(4)之遠離該半導體層序列(3)之一側具有至少30奈米之平均粗糙度,其中在已製成的半導體晶片(1)中電流擴張只藉由透明之導電氧化物所構成的電流擴張層(4)來達成。 The method of any one of claims 1 to 11, wherein the current expansion layer (4) has a granular structure and the current expansion layer (4) has at least 30 nanometers away from one side of the semiconductor layer sequence (3) The average roughness of the rice in which the current expansion in the fabricated semiconductor wafer (1) is achieved only by the current expansion layer (4) composed of a transparent conductive oxide. 如請求項1至12中任一項之方法,其中該電流擴張 層(4)在步驟D)之後具有側邊,所述側邊相對於該半導體層序列(3)之生長方向(G)所形成的角度係介於15度(含)和75度之間及/或所述側邊在該電流擴張層(4)之俯視圖中觀看時至少部份地以鋸齒狀在橫向中鄰接該電流擴張層(4)。 The method of any one of claims 1 to 12, wherein the current expansion The layer (4) has a side after step D), the angle formed by the side relative to the growth direction (G) of the semiconductor layer sequence (3) is between 15 degrees (inclusive) and 75 degrees and The side edge abuts the current spreading layer (4) in a lateral direction at least partially in a zigzag manner when viewed in a plan view of the current spreading layer (4). 一種光電半導體晶片(1),其係以請求項1至13中任一項之方法所製成,其中該距離(D)至多是1.0微米。 An optoelectronic semiconductor wafer (1) made by the method of any one of claims 1 to 13, wherein the distance (D) is at most 1.0 micron.
TW102145269A 2012-12-20 2013-12-10 Method for producing an optoelectronic semiconductor chip and optoelectronic semiconductor chip TW201431118A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102012112771.9A DE102012112771A1 (en) 2012-12-20 2012-12-20 Method for producing an optoelectronic semiconductor chip and optoelectronic semiconductor chip

Publications (1)

Publication Number Publication Date
TW201431118A true TW201431118A (en) 2014-08-01

Family

ID=49713080

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102145269A TW201431118A (en) 2012-12-20 2013-12-10 Method for producing an optoelectronic semiconductor chip and optoelectronic semiconductor chip

Country Status (3)

Country Link
DE (1) DE102012112771A1 (en)
TW (1) TW201431118A (en)
WO (1) WO2014095353A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014107306A1 (en) 2014-05-23 2015-11-26 Osram Opto Semiconductors Gmbh Method for producing an optoelectronic semiconductor chip and optoelectronic semiconductor chip
DE102015111301B4 (en) 2015-07-13 2022-11-03 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Optoelectronic semiconductor chip
JP7227357B2 (en) * 2019-11-26 2023-02-21 天津三安光電有限公司 infrared light emitting diode

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6184456B1 (en) * 1996-12-06 2001-02-06 Canon Kabushiki Kaisha Photovoltaic device
US6777257B2 (en) * 2002-05-17 2004-08-17 Shin-Etsu Handotai Co., Ltd. Method of fabricating a light emitting device and light emitting device
KR100593886B1 (en) * 2003-06-24 2006-07-03 삼성전기주식회사 METHOD OF PRODUCING A GaN BASED SEMICONDUCTOR LED DEVICE
DE102004025610A1 (en) * 2004-04-30 2005-11-17 Osram Opto Semiconductors Gmbh Optoelectronic component with several current spreading layers and method for its production
US7683380B2 (en) * 2007-06-25 2010-03-23 Dicon Fiberoptics, Inc. High light efficiency solid-state light emitting structure and methods to manufacturing the same
US8927348B2 (en) * 2008-05-14 2015-01-06 Toyoda Gosei Co., Ltd. Method of manufacturing group-III nitride semiconductor light-emitting device, and group-III nitride semiconductor light-emitting device, and lamp
DE102008038852B4 (en) * 2008-06-03 2024-02-01 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Method for producing an optoelectronic component and optoelectronic component
TWI493748B (en) * 2008-08-29 2015-07-21 Nichia Corp Semiconductor light emitting elements and semiconductor light emitting devices
JP5273081B2 (en) * 2010-03-30 2013-08-28 豊田合成株式会社 Semiconductor light emitting device
JP2012204397A (en) * 2011-03-23 2012-10-22 Toshiba Corp Semiconductor light emitting device and method for manufacturing the same

Also Published As

Publication number Publication date
DE102012112771A1 (en) 2014-06-26
WO2014095353A1 (en) 2014-06-26

Similar Documents

Publication Publication Date Title
CN102668132B (en) The front end line of light-emitting diode (LED) wafer and resultant device
TWI524550B (en) Method for producing an optoelectronic semiconductor chip, and optoelectronic semiconductor chip
TWI478391B (en) Light-emitting diode chip and method for producing a light-emitting diode chip
TWI502769B (en) Wafer-level light emitting diode structure, light emitting diode chip, and fabricating method thereof
US20120064642A1 (en) Method to remove sapphire substrate
US20140038320A1 (en) Method of manufacturing a light emitting diode
US8969175B2 (en) Method for producing singulated semiconductor devices
US20150053261A1 (en) Solar cell
US10784408B2 (en) Optoelectronic semiconductor chip and method of producing an optoelectronic semiconductor chip
KR100648136B1 (en) Light Emitting Diode and manufacturing method of the same
KR20140086184A (en) Nitride semiconductor light emitting device and method of manufacturing the same
TW201431118A (en) Method for producing an optoelectronic semiconductor chip and optoelectronic semiconductor chip
Lee et al. Single Si submicron wire photodetector fabricated by simple wet etching process
TWI466327B (en) Method for fabricating wafer-level light emitting diode structure
US9711679B2 (en) Front-side emitting mid-infrared light emitting diode fabrication methods
US10008487B2 (en) Optoelectroic semiconductor chip and method of producing an optoelectronic semiconductor chip
US20210320223A1 (en) Optoelectronic semiconductor chip and method for producing an optoelectronic semiconductor chip
TWI498952B (en) Method for fabricating a semiconductor body
US8853057B2 (en) Method for fabricating semiconductor devices
KR20230150869A (en) Optoelectronic semiconductor components, and methods for producing at least one optoelectronic semiconductor component
US10535515B2 (en) Method of producing an optoelectronic semiconductor chip and optoelectronic semiconductor chip
TWI594455B (en) Photoelectric semiconductor chip and its manufacturing method
JP6587765B1 (en) Infrared LED element
KR101705726B1 (en) method for manufacturing semiconductor substrate
KR100679739B1 (en) Method For Manufacturing Light Emitting Diode Having Photonic Crystals