TWI832609B - Optical interconnection device and manufacturing method thereof and computing device - Google Patents

Optical interconnection device and manufacturing method thereof and computing device Download PDF

Info

Publication number
TWI832609B
TWI832609B TW111147877A TW111147877A TWI832609B TW I832609 B TWI832609 B TW I832609B TW 111147877 A TW111147877 A TW 111147877A TW 111147877 A TW111147877 A TW 111147877A TW I832609 B TWI832609 B TW I832609B
Authority
TW
Taiwan
Prior art keywords
optical
analog
chip
digital
transistor
Prior art date
Application number
TW111147877A
Other languages
Chinese (zh)
Other versions
TW202323884A (en
Inventor
沈亦晨
孟懷宇
徐葉龍
Original Assignee
大陸商上海曦智科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大陸商上海曦智科技有限公司 filed Critical 大陸商上海曦智科技有限公司
Publication of TW202323884A publication Critical patent/TW202323884A/en
Application granted granted Critical
Publication of TWI832609B publication Critical patent/TWI832609B/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

An optical interconnection device includes: a plurality of digital chips including a first digital chip and a second digital chip; a plurality of analog chips including a first analog chip and a second analog chip; and an optical interconnection component; wherein the first digital chip is communicatively connected to the first analog chip, the second digital chip is communicatively connected to the second analog chip, the first analog chip is communicatively connected to the second analog chip through the optical interconnection component, and an information transmission path from the first digital chip to the second digital chip includes the first digital chip, the first analog chip, a plurality of optical waveguides of the optical interconnection component, the second analog chip, and the second digital chip. A manufacturing method of an optical interconnection device and a computing device are also provided.

Description

光互連裝置及其製造方法、計算裝置Optical interconnection device and manufacturing method thereof, computing device

本發明涉及晶片技術領域,更為具體而言,涉及一種光互連裝置及其製造方法、計算裝置。The present invention relates to the field of wafer technology, and more specifically, to an optical interconnection device, a manufacturing method thereof, and a computing device.

超大型積體電路技術已經成為支撐資訊化社會發展演進的支柱。在資訊系統中廣泛應用的各類晶片通常依賴於電晶片的工藝制程的升級以實現其性能提升和功耗優化。VLSI technology has become the pillar supporting the development and evolution of the information society. Various types of chips widely used in information systems usually rely on the upgrade of electronic chip processes to achieve performance improvement and power consumption optimization.

數位電晶片的發展追逐更先進制程,強調的是運算速度與成本比。而類比電晶片強調的是高信噪比、低失真、低耗電、高可靠性和穩定性,制程的縮小反而可能導致類比電路性能的降低。而類比電晶片研發週期普遍比數位電晶片長,在同一更先進制程,同時優化數位和類比電路會限制產品迭代週期並且浪費研發和生產成本。The development of digital transistors pursues more advanced processes, emphasizing the ratio of computing speed to cost. Analog circuit chips emphasize high signal-to-noise ratio, low distortion, low power consumption, high reliability and stability. The shrinking process may actually lead to a reduction in analog circuit performance. The R&D cycle of analog transistors is generally longer than that of digital transistors. In the same more advanced process, optimizing digital and analog circuits at the same time will limit the product iteration cycle and waste R&D and production costs.

本發明提供了一種光互連裝置,不僅可以在不同工藝制程優化數位電晶片和類比電晶片各自性能,也解決了類比電晶片產品迭代週期慢的問題,採用光互連代替電互連,光互連帶寬大、時延低、功耗小、集成密度高和抗電磁干擾能力強。The present invention provides an optical interconnection device, which can not only optimize the respective performances of digital electronic chips and analog electronic chips in different processes, but also solve the problem of slow iteration cycle of analog electronic chip products. Optical interconnection is used instead of electrical interconnection. It has large interconnection bandwidth, low latency, low power consumption, high integration density and strong anti-electromagnetic interference capability.

根據本發明的一方面,提供一種光互連裝置,所述光互連裝置包括:多個數位電晶片,其包括第一數位電晶片和第二數位電晶片;多個類比電晶片,其包括第一類比電晶片和第二類比電晶片;以及光互連件,其包括光子積體電路,所述光子積體電路包括多個光波導;其中,所述第一數位電晶片與所述第一類比電晶片通信連接,所述第二數位電晶片與所述第二類比電晶片通信連接,所述第一類比電晶片與所述第二類比電晶片通過所述光互連件實現通信連接;其中,所述第一數位電晶片到所述第二數位電晶片的資訊傳輸路徑包括資訊先後經過所述第一數位電晶片、所述第一類比電晶片、所述光互連件的光波導、所述第二類比電晶片、以及所述第二數位電晶片。According to an aspect of the present invention, an optical interconnection device is provided. The optical interconnection device includes: a plurality of digital transistors, including a first digital transistor and a second digital transistor; and a plurality of analog transistors, including A first analog electronic chip and a second analog electronic chip; and an optical interconnect including a photonic integrated circuit including a plurality of optical waveguides; wherein the first digital electronic chip and the third An analog electronic chip is communicatively connected. The second digital electronic chip is communicatively connected with the second analog electronic chip. The first analog electronic chip and the second analog electronic chip are communicated through the optical interconnect. ; Wherein, the information transmission path from the first digital transistor to the second digital transistor includes information passing through the first digital transistor, the first analog transistor, and the optical interconnect. a waveguide, the second analog transistor, and the second digital transistor.

在一些實施方式中,所述光互連裝置還包括承載基板;所述光互連件設置在所述承載基板上;所述多個類比電晶片設置在所述光互連件上,所述多個數位電晶片設置在所述光互連件周圍。In some embodiments, the optical interconnect device further includes a carrier substrate; the optical interconnect is disposed on the carrier substrate; the plurality of analog transistors is disposed on the optical interconnect, and the A plurality of digital electronic chips are disposed around the optical interconnect.

在一些實施方式中,所述多個數位電晶片相比所述多個類比電晶片更接近於所述承載基板。In some embodiments, the plurality of digital transistors is closer to the carrier substrate than the plurality of analog transistors.

在一些實施方式中,所述第一數位電晶片到所述第一類比電晶片的電連接路徑先後經過所述承載基板的導電佈線結構、所述光互連件中的導電佈線結構。In some embodiments, the electrical connection path from the first digital electronic chip to the first analog electronic chip passes through the conductive wiring structure of the carrier substrate and the conductive wiring structure in the optical interconnection member successively.

在一些實施方式中,所述光互連件的光子積體電路還包括:第一電光轉換單元,其與所述第一類比電晶片電連接,用於將所述第一類比電晶片的類比電信號承載的資訊承載到第一光信號中,所述第一光信號在所述光互連件的光波導中傳輸;以及第一光電轉換單元,其與所述第二類比電晶片電連接,用於將接收的第一光信號轉換為傳輸至所述第二類比電晶片的類比電信號。In some embodiments, the photonic integrated circuit of the optical interconnect further includes: a first electro-optical conversion unit, which is electrically connected to the first analog transistor chip and is used to convert the analog transistor of the first analog transistor chip to Information carried by the electrical signal is carried into a first optical signal, which is transmitted in the optical waveguide of the optical interconnect; and a first photoelectric conversion unit electrically connected to the second analog electronic chip , for converting the received first optical signal into an analog electrical signal transmitted to the second analog electrical chip.

在一些實施方式中,,所述光互連件的光子積體電路還包括:第二電光轉換單元,其與所述第二類比電晶片電連接,用於將所述第二類比電晶片的類比電信號承載的資訊承載到第二光信號中,所述第二光信號在所述光互連件的光波導中傳輸;以及第二光電轉換單元,其與所述第一類比電晶片電連接,用於將接收的第二光信號轉換為傳輸至所述第一類比電晶片的類比電信號。In some embodiments, the photonic integrated circuit of the optical interconnect further includes: a second electro-optical conversion unit, which is electrically connected to the second analog transistor chip and is used to convert the second analog transistor chip. The information carried by the analog electrical signal is carried into a second optical signal, and the second optical signal is transmitted in the optical waveguide of the optical interconnect; and a second photoelectric conversion unit electrically connected to the first analog electrical chip. Connection for converting the received second optical signal into an analog electrical signal transmitted to the first analog electrical chip.

在一些實施方式中,所述第一電光轉換單元、第二電光轉換單元均各自包括多個調變器,用於將電信號承載的資訊調變到不同波長的光信號上並以波分複用的方式進行傳輸;所述第一光電轉換單元、第二光電轉換單元均各自包括多個光電探測器,其對接收的所述光信號進行波分解複用並轉化為電信號。In some embodiments, each of the first electro-optical conversion unit and the second electro-optical conversion unit includes a plurality of modulators for modulating the information carried by the electrical signal to an optical signal of different wavelengths and using wavelength division multiplexing. The first photoelectric conversion unit and the second photoelectric conversion unit each include a plurality of photodetectors, which perform wave decomposition and multiplexing of the received optical signals and convert them into electrical signals.

在一些實施方式中,所述調變器包括微環調變器;和/或所述探測器包括微環濾波探測器。In some embodiments, the modulator includes a microring modulator; and/or the detector includes a microring filtered detector.

在一些實施方式中,所述光互連件的光子積體電路還包括:介電層以及多個導電佈線單元;所述介電層覆蓋所述多個光波導、所述第一電光轉換單元、所述第一光電轉換單元、所述第二電光轉換單元、所述第二光電轉換單元;所述多個導電佈線單元被配置為將所述第一電光轉換單元、所述第一光電轉換單元、所述第二電光轉換單元、所述第二光電轉換單元與對應的類比電晶片進行電連接;所述多個導電佈線單元包括多個電連接結構,所述多個電連接結構中的每一個均各自穿過至少部分所述介電層。In some embodiments, the photonic integrated circuit of the optical interconnect further includes: a dielectric layer and a plurality of conductive wiring units; the dielectric layer covers the plurality of optical waveguides, the first electro-optical conversion unit , the first photoelectric conversion unit, the second electro-optic conversion unit, the second photoelectric conversion unit; the plurality of conductive wiring units are configured to connect the first electro-optic conversion unit, the first photoelectric conversion unit The unit, the second electro-optical conversion unit, and the second photoelectric conversion unit are electrically connected to the corresponding analog electronic chip; the plurality of conductive wiring units include a plurality of electrical connection structures, and the plurality of electrical connection structures Each passes through at least part of the dielectric layer.

在一些實施方式中,所述多個數位電晶片和所述多個類比電晶片中的一個或多個包括小晶片。In some embodiments, one or more of the plurality of digital electronic dies and the plurality of analog electronic dies includes chiplets.

在一些實施方式中,所述第一數位電晶片、所述第二數位電晶片還包括超短距串平行介面,以分別與用於第一類比電晶片、第二類比電晶片進行通信。In some embodiments, the first digital transistor and the second digital transistor further include ultra-short-pitch serial parallel interfaces for communicating with the first analog transistor and the second analog transistor respectively.

根據本發明的一方面,提供一種計算裝置,其包括光互連裝置。According to one aspect of the invention, a computing device is provided that includes an optical interconnect device.

根據本發明的一方面,提供一種光互連裝置的製造方法,包括:提供晶圓;在所述晶圓上形成多個光子積體電路;其中,所述多個光子積體電路中的每一個包括多個光波導、電光轉換單元以及光電轉換單元;在所述多個光子積體電路中的每一個上安裝所需的至少一個類比電晶片;對所述晶圓進行分割,得到多個獨立的光互連件;以及將所述光互連件安裝在承載基板上;將數位電晶片安裝在承載基板上。According to an aspect of the present invention, a method for manufacturing an optical interconnection device is provided, including: providing a wafer; forming a plurality of photonic integrated circuits on the wafer; wherein each of the plurality of photonic integrated circuits One includes a plurality of optical waveguides, electro-optical conversion units and photoelectric conversion units; mounting at least one required analog electronic chip on each of the plurality of photonic integrated circuits; dividing the wafer to obtain multiple An independent optical interconnection component; and mounting the optical interconnection component on a carrier substrate; and mounting a digital electronic chip on the carrier substrate.

在本發明的實施方式中,採用小晶片(Chiplet)技術,可以突破晶片面積的物理瓶頸,是實現更高性能晶片的一個重要途徑。由於每個裸片的面積變小,單片晶圓上可擺放的裸片數目增加從而可以提高良率和降低成本。In the embodiment of the present invention, the use of small chip (chiplet) technology can break through the physical bottleneck of the chip area, which is an important way to achieve higher performance chips. As the area of each die becomes smaller, the number of die that can be placed on a single wafer increases, which can improve yield and reduce costs.

另外,本發明可在提高系統性能時可以靈活地只升級部分模組, 因此可以加快系統升級的迭代週期。In addition, the present invention can flexibly upgrade only some modules when improving system performance, thus speeding up the iteration cycle of system upgrades.

根據本發明的實施方式,通過在光互連件上集成一系列類比電晶片,而類比電晶片和光互連件周圍的一系列數位電晶片之間通過超短距串並轉換介面相連。將不同類比電晶片上的資訊載入在光信號上,然後讓光信號在光互連件中高速穿梭,完成不同類比電晶片之間的資訊互連,再利用數位電晶片上的超短距串並轉換介面將高速類比電信號轉換成數位電晶片處理的低速並行信號,使得數位電晶片之間通過光電互連形成有機整體。對比電互連,光互連帶寬大、時延低、功耗小、集成密度高和抗電磁干擾能力強。而且片上或片間光互連傳輸資訊對距離不敏感,允許更多資料傳遞更遠距離,使得電腦架構的設計具有更大的靈活度。According to an embodiment of the present invention, a series of analog transistor chips are integrated on the optical interconnect, and the analog transistor and a series of digital transistors around the optical interconnect are connected through an ultra-short distance serial-to-parallel conversion interface. The information on different analog transistors is loaded onto the optical signal, and then the optical signal is shuttled through the optical interconnect at high speed to complete the information interconnection between different analog transistors, and then the ultra-short distance on the digital transistor is used. The serial-to-parallel conversion interface converts high-speed analog electrical signals into low-speed parallel signals processed by digital electronic chips, allowing the digital electronic chips to form an organic whole through optical and electrical interconnections. Compared with electrical interconnection, optical interconnection has large bandwidth, low delay, low power consumption, high integration density and strong anti-electromagnetic interference capability. Moreover, on-chip or inter-chip optical interconnection transmission information is not sensitive to distance, allowing more data to be transmitted over longer distances, making the design of computer architecture more flexible.

在一些實施方式中,調變器陣列採用高效率小面積的微環調變器陣列,探測器陣列採用具有波分解複用功能的微環濾波探測器。通過在不同類比電晶片下方的光互連件中集成調變器陣列和探測器陣列,可以在類比電晶片之間進行大量的資訊傳輸而不會受功耗和頻寬密度的限制。通過排布調變器陣列、探測器陣列和相應類比電晶片的位置,可以實現多個獨立的資料傳輸通道,每條通道由相互通信的兩塊數位電晶片獨佔,不存在競爭衝突的問題,橫截面頻寬大,信號延遲低,最終提高資訊處理通量。In some embodiments, the modulator array uses a high-efficiency, small-area micro-ring modulator array, and the detector array uses a micro-ring filter detector with a wave decomposition multiplexing function. By integrating modulator arrays and detector arrays in optical interconnects underneath different analog transistors, a large amount of information can be transmitted between analog transistors without being limited by power consumption and bandwidth density. By arranging the positions of the modulator array, detector array and corresponding analog transistors, multiple independent data transmission channels can be realized. Each channel is exclusively occupied by two digital transistors that communicate with each other. There is no problem of competition and conflict. The cross-sectional bandwidth is large and the signal delay is low, ultimately increasing the information processing throughput.

利用一系列類比電晶片,數位電晶片在光互連件上可以實現點對點全連接,可以讓一系列數位電晶片同時對資訊進行並行處理,並且晶片間具有緊密的資訊互連,能夠更好地滿足人工智慧演算法對計算能力和頻寬的要求。對比現有的人工智慧產品,該光互連裝置能集成更多的計算單元和存儲單元,而且利用光互連能保證它們之間有機的資訊互連,從而提供更高的系統能效比。Using a series of analog chips, digital chips can achieve full point-to-point connections on optical interconnects, allowing a series of digital chips to process information in parallel at the same time, and there is tight information interconnection between chips, which can better Meet the computing power and bandwidth requirements of artificial intelligence algorithms. Compared with existing artificial intelligence products, this optical interconnection device can integrate more computing units and storage units, and the use of optical interconnection can ensure organic information interconnection between them, thereby providing a higher system energy efficiency ratio.

本發明實施方式的各個方面、特徵、優點等將在下文結合附圖進行具體描述。根據以下結合附圖的具體描述,本發明的上述方面、特徵、優點等將會變得更加清楚。Various aspects, features, advantages, etc. of the embodiments of the present invention will be described in detail below with reference to the accompanying drawings. The above aspects, features, advantages, etc. of the present invention will become clearer from the following detailed description in conjunction with the accompanying drawings.

為了便於理解本發明技術方案的各個方面、特徵以及優點,下面結合附圖對本發明進行具體描述。應當理解,下述的各種實施方式只用於舉例說明,而非用於限制本發明的保護範圍。In order to facilitate understanding of various aspects, features and advantages of the technical solution of the present invention, the present invention is described in detail below with reference to the accompanying drawings. It should be understood that the various embodiments described below are only for illustration and are not intended to limit the scope of the present invention.

在本文中提及的“包括”為一開放式用語,故應解釋成“包括但不限定於”。“大致”是指在可接收的誤差範圍內,本申請所屬技術領域中具有通常知識者能夠在一定誤差範圍內解決所述技術問題,基本達到所述技術效果。The word "including" mentioned in this article is an open-ended term and should be interpreted as "including but not limited to". "Approximately" means that within an acceptable error range, a person with ordinary knowledge in the technical field to which this application belongs can solve the technical problem within a certain error range and basically achieve the technical effect.

此外,“連接”一詞在此包含任何直接及間接的連接手段。因此,若文中描述一第一裝置連接於一第二裝置,則代表所述第一裝置可直接連接於所述第二裝置,或通過其它裝置間接地連接至所述第二裝置。In addition, the term "connection" here includes any direct and indirect means of connection. Therefore, if a first device is connected to a second device, it means that the first device can be directly connected to the second device, or indirectly connected to the second device through other devices.

本文中的“第一”、“第二”等描述,是用於區分不同的設備、模組、結構等,不代表先後順序,也不限定“第一”和“第二”是不同的類型。此外,在本申請的說明書、申請專利範圍及上述附圖中描述的一些流程中,包含了按照特定順序出現的多個操作,這些操作可以不按照其在本文中出現的順序來執行或並存執行。操作的序號如101、102等,僅僅是用於區分各個不同的操作,序號本身不代表任何的執行順序。另外,這些流程可以包括更多或更少的操作,並且這些操作可以按循序執行或並行執行。Descriptions such as "first" and "second" in this article are used to distinguish different devices, modules, structures, etc., and do not represent the order, nor do they limit "first" and "second" to be different types. . In addition, some of the processes described in the specification, patent scope and above-mentioned drawings of this application contain multiple operations that appear in a specific order. These operations may not be performed in the order in which they appear in this article or may be performed concurrently. . The sequence numbers of operations, such as 101, 102, etc., are only used to distinguish different operations. The sequence numbers themselves do not represent any execution order. Additionally, these processes can include more or fewer operations, and these operations can be performed sequentially or in parallel.

在本發明的一些實施方式中,所述光互連裝置包括多個數位電晶片、多個類比電晶片和光互連件。其中,光互連件可以實現電信號與光信號的轉換,以及光信號的資訊傳輸。多個數位電晶片中包括第一數位電晶片和第二數位電晶片,多個類比電晶片中與所述第一數位電晶片和第二數位電晶片分別通信連接的稱為第一類比電晶片和第二類比電晶片。本文中的“第一”和“第二”旨在區分不同的物件,而非意在對物件進行排序和限制物件的數量。所述光互連件具有多個光波導,例如,可以採用光互連件實現。所述第一數位電晶片與所述第一類比電晶片通信連接,所述第二數位電晶片與所述第二類比電晶片通信連接,所述第一類比電晶片與所述第二類比電晶片通過所述光互連件實現通信連接。也就是說,所述第一數位電晶片到所述第二數位電晶片的資訊傳輸路徑包括資訊先後經過所述第一數位電晶片、所述第一類比電晶片、所述光互連件的所述光波導、所述第二類比電晶片、以及所述第二數位電晶片。不限於以上示例,根據需要,所述多個數位電晶片中的任意兩個晶片可以通過類比電晶片、光互連件實現資訊互通即通信連接。In some embodiments of the present invention, the optical interconnect device includes a plurality of digital electronic chips, a plurality of analog electronic chips and an optical interconnect. Among them, optical interconnects can realize the conversion of electrical signals and optical signals, as well as the information transmission of optical signals. The plurality of digital transistors include a first digital transistor and a second digital transistor. Among the plurality of analog transistors, the one that is communicatively connected to the first digital transistor and the second digital transistor is called the first analog transistor. and the second analog transistor. The terms “first” and “second” in this article are intended to distinguish different objects, rather than to order the objects or limit the number of objects. The optical interconnection member has a plurality of optical waveguides, and may be implemented using an optical interconnection member, for example. The first digital transistor is communicatively connected to the first analog transistor, the second digital transistor is communicatively connected to the second analog transistor, and the first analog transistor is communicatively connected to the second analog transistor. The wafer implements communication connections through the optical interconnect. That is to say, the information transmission path from the first digital transistor to the second digital transistor includes information passing through the first digital transistor, the first analog transistor, and the optical interconnect. the optical waveguide, the second analog transistor, and the second digital transistor. Not limited to the above examples, as needed, any two chips among the plurality of digital transistors can realize information exchange, that is, communication connection, through analog transistors and optical interconnects.

在一些實施方式中,所述光互連裝置還包括承載基板,所述光互連件設置在所述承載基板上。在所述光互連件上設置所述多個類比電晶片,在所述光互連件周圍設置所述多個數位電晶片。其中,所述數位電晶片到所述類比電晶片的電連接路徑包括先後經過所述數位電晶片的導電佈線結構、所述承載基板的導電佈線結構、所述光互連件中的導電佈線結構(例如,孔中導電結構)、以及所述類比電晶片的導電佈線結構的電傳導路徑。在一些實施方式中,可採用超短距串並行介面用於數位電晶片與類比電晶片之間的通信。In some embodiments, the optical interconnection device further includes a carrier substrate, and the optical interconnection member is disposed on the carrier substrate. The plurality of analog transistors are disposed on the optical interconnect, and the plurality of digital transistors are disposed around the optical interconnect. Wherein, the electrical connection path from the digital transistor chip to the analog transistor chip includes successively passing through the conductive wiring structure of the digital transistor chip, the conductive wiring structure of the carrying substrate, and the conductive wiring structure in the optical interconnect. (for example, a conductive structure in a hole), and an electrical conduction path of a conductive wiring structure analogous to an electrical chip. In some embodiments, an ultra-short-range serial-parallel interface may be used for communication between digital and analog chips.

在一些實施方式中,所述光互連裝置還包括雷射模組,其產生光信號。在一些實施方式中,所述光互連件括光耦合結構,其將外部光源(包括光纖)的光信號耦合至該光互連裝置光互連件中。所述光耦合結構例如包括光柵耦合器或端面耦合器。在一些實施方式中,所述光互連件包括電光轉換單元,其與所述第一類比電晶片耦接,用於將所述第一類比電晶片的類比電信號承載的資訊承載到所述光信號中;所述光互連件還包括光電轉換單元,其與所述第二類比電晶片耦接,用於將接收的所述光信號轉換為將被傳輸至所述第二類比電晶片的類比電信號。在一些實施方式中,為了實現雙向通信,在光互連件中與類比電晶片對應的區域集成有電光轉換單元和光電轉換單元二者。在一些實施方式中,所述電光轉換單元和光電轉換單元集成在相應的類比電晶片的下方。In some embodiments, the optical interconnect device further includes a laser module that generates optical signals. In some embodiments, the optical interconnect includes an optical coupling structure that couples an optical signal from an external light source (including an optical fiber) into the optical interconnect device optical interconnect. The light coupling structure includes, for example, a grating coupler or an end face coupler. In some embodiments, the optical interconnect includes an electro-optical conversion unit coupled to the first analog transistor chip for carrying information carried by the analog electrical signal of the first analog transistor chip to the first analog transistor chip. In the optical signal; the optical interconnect also includes a photoelectric conversion unit coupled to the second analog electronic chip for converting the received optical signal into a signal that will be transmitted to the second analog electronic chip. analog electrical signal. In some embodiments, in order to achieve bidirectional communication, both the electro-optical conversion unit and the photoelectric conversion unit are integrated in the area corresponding to the analog electronic chip in the optical interconnect. In some embodiments, the electro-optical conversion unit and the photoelectric conversion unit are integrated below the corresponding analog electronic chip.

根據本發明的實施方式,第一數位電晶片向第二數位電晶片發送資訊時,第一數位電晶片發出的承載資訊的數位電信號可通過超短距串並行介面轉換為高速串列電信號並傳輸至第一類比電晶片,通過電光轉換單元將所述類比電晶片的類比電信號承載的資訊承載到光信號中,所述光信號通過光互連件的光波導傳輸至第二類比電晶片下方的光電轉換單元,並由該光電轉換單元將光信號轉換成類比電信號即高速串列電信號,所述第二類比電晶片將該高速串列電信號發送至設於第二數位電晶片上的超短距串並行介面,該超短距串並行介面將該高速串列電信號轉換成承載有所述資訊的低速並行信號即數位電信號,並輸入到第二數位電晶片中,從而完成第一數位電晶片和第二數位電晶片之間的資訊傳輸。第二數位電晶片向第一數位電晶片發送資訊時,其傳輸過程與從第一數位電晶片向第二數位電晶片發送資訊的傳輸過程相同。According to an embodiment of the present invention, when the first digital transistor sends information to the second digital transistor, the digital electrical signal carrying the information sent by the first digital transistor can be converted into a high-speed serial electrical signal through the ultra-short distance serial-parallel interface. And transmitted to the first analog electronic chip, the information carried by the analog electronic signal of the analog electronic chip is carried into an optical signal through the electro-optical conversion unit, and the optical signal is transmitted to the second analog electronic signal through the optical waveguide of the optical interconnect. The photoelectric conversion unit below the chip converts the optical signal into an analog electrical signal, that is, a high-speed serial electrical signal. The second analog electrical chip sends the high-speed serial electrical signal to a second digital circuit. An ultra-short-range serial-parallel interface on the chip. The ultra-short-range serial-parallel interface converts the high-speed serial electrical signal into a low-speed parallel signal carrying the information, that is, a digital electrical signal, and inputs it into the second digital electronic chip, Thus, the information transmission between the first digital transistor chip and the second digital transistor chip is completed. When the second digital transistor sends information to the first digital transistor, the transmission process is the same as the transmission process of sending information from the first digital transistor to the second digital transistor.

在一些實施方式中,所述電光轉換單元包括調變器陣列,其將所述第一類比電晶片的類比電信號承載的資訊調變到不同波長的所述光信號上並以波分複用的方式進行傳輸;所述光電轉換單元包括探測器陣列,其對接收的所述光信號進行波分解複用並轉化為向所述第二類比電晶片傳輸的類比電信號。在一些實施方式中,所述調變器陣列包括多個微環調變器。在一些實施方式中,所述探測器陣列包括多個微環濾波探測器。In some embodiments, the electro-optical conversion unit includes a modulator array, which modulates the information carried by the analog electrical signal of the first analog electrical chip to the optical signal of different wavelengths and uses wavelength division multiplexing. The photoelectric conversion unit includes a detector array, which performs wave decomposition and multiplexing on the received optical signal and converts it into an analog electrical signal that is transmitted to the second analog electronic chip. In some embodiments, the modulator array includes a plurality of microring modulators. In some embodiments, the detector array includes a plurality of microring filter detectors.

需要說明的是,本發明對所述光互連裝置使用的晶片的數量不做特別限定,其中,任意兩個數位電晶片之間的通信過程與上述的第一數位電晶片與第二數位電晶片的通信過程相同。It should be noted that the present invention does not specifically limit the number of chips used in the optical interconnection device. The communication process between any two digital electronic chips is related to the above-mentioned first digital electronic chip and the second digital electronic chip. The communication process for the chip is the same.

第1圖是根據本發明的示例性實施方式的光互連裝置的結構示意圖。在本發明的一種示例性實施方式中,所述光互連裝置包括承載基板100、光互連件200、數位電晶片A~D、以及類比電晶片a~d。光互連件200設置在承載基板100上,類比電晶片a~d設置在光互連件200上,數位電晶片A~D設置承載基板100上且分佈在光互連件200的周圍。對此,當數位電晶片更新時,可以方便地、獨立地對其進行更換,而可以保持光互連件及類比電晶片不發生改變,也基本無需對其它電佈線結構進行改動。Figure 1 is a schematic structural diagram of an optical interconnection device according to an exemplary embodiment of the present invention. In an exemplary embodiment of the present invention, the optical interconnection device includes a carrier substrate 100, an optical interconnection member 200, digital electronic chips A to D, and analog electronic chips a to d. The optical interconnect 200 is disposed on the carrier substrate 100 , the analog electronic chips a to d are disposed on the optical interconnect 200 , and the digital electronic chips A to D are disposed on the carrier substrate 100 and distributed around the optical interconnect 200 . In this regard, when the digital transistor is updated, it can be replaced easily and independently, while the optical interconnects and analog transistor can be kept unchanged, and there is basically no need to change other electrical wiring structures.

其中,示例性的,光互連件包括光子積體電路,所述光子積體包括光波導單元、多個電光轉換單元和多個光電轉換單元,其中,光波導單元可包括多個光波導。在一些實施方式中,所述電光轉換單元包括一個或多個光調變器,多個調變器可構成調變器陣列。所述光電轉換單元包括一個或多個光電探測器,多個探測器可構成探測器陣列。示例性的,調變器可基於電信號可對初始光進行調變,從而產生承載資訊的光信號,亦即,將電信號承載的資訊承載到光信號中。光互連件具備使電信號與光信號進行轉換的功能,從而能夠使用光的互連通信,代替電信號的通信。Wherein, as an example, the optical interconnection includes a photonic integrated circuit, and the photonic integrated circuit includes an optical waveguide unit, a plurality of electro-optical conversion units and a plurality of photoelectric conversion units, wherein the optical waveguide unit may include a plurality of optical waveguides. In some embodiments, the electro-optical conversion unit includes one or more optical modulators, and the plurality of modulators may constitute a modulator array. The photoelectric conversion unit includes one or more photoelectric detectors, and the plurality of detectors may constitute a detector array. For example, the modulator can modulate the initial light based on the electrical signal to generate an optical signal carrying information, that is, the information carried by the electrical signal is carried into the optical signal. Optical interconnects have the function of converting electrical signals and optical signals, so that optical interconnect communications can be used instead of electrical signal communications.

第2圖是根據本發明的示例性實施方式的光互連裝置的連接的示意圖,圖中以透視的方式示出了光互連件中與類比電晶片對應的區域中形成的電光轉換單元和光電轉換單元。下面結合第2圖闡述本發明實施方式的光互連裝置中部件之間的連接和通信過程。Figure 2 is a schematic diagram of the connection of an optical interconnection device according to an exemplary embodiment of the present invention. The figure shows in a perspective manner an electro-optical conversion unit formed in a region of the optical interconnection member corresponding to the analog electronic chip and Photoelectric conversion unit. The connection and communication process between components in the optical interconnection device according to the embodiment of the present invention will be described below with reference to Figure 2 .

光互連件200包括光子積體電路,所述光子積體包括多個光波導、多個電光轉換單元和多個光電轉換單元。在一些實施方式中,所述電光轉換單元包括一個或多個光調變器,多個調變器可構成調變器陣列。所述光電轉換單元包括一個或多個光電探測器,多個探測器可構成探測器陣列。示例性的,調變器可基於電信號可對初始光進行調變,從而產生承載資訊的光信號,亦即,將電信號承載的資訊承載到光信號中。光互連件具備使電信號與光信號進行轉換的功能,從而能夠使用光的互連通信,代替電信號的通信。The optical interconnect 200 includes a photonic integrated circuit including a plurality of optical waveguides, a plurality of electro-optical conversion units, and a plurality of optoelectronic conversion units. In some embodiments, the electro-optical conversion unit includes one or more optical modulators, and the plurality of modulators may constitute a modulator array. The photoelectric conversion unit includes one or more photoelectric detectors, and the plurality of detectors may constitute a detector array. For example, the modulator can modulate the initial light based on the electrical signal to generate an optical signal carrying information, that is, the information carried by the electrical signal is carried into the optical signal. Optical interconnects have the function of converting electrical signals and optical signals, so that optical interconnect communications can be used instead of electrical signal communications.

第2圖中類比電晶片的設置區域a’~d’,對應設置第1圖中的類比電晶片a~d,類比電晶片a~d中任意兩者之間通過光互連件200的光波導通信。在第2圖中,光互連件200中設有多個電光轉換單元和多個光電轉換單元,第2圖示出了,在光互連件200中與設置區域a’對應的部分,設置有12個電光轉換單元、12個光電轉換單元。第2圖中數位電晶片的設置區域A’~D’,對應設置第1圖中的數位電晶片A~D,數位電晶片A~D分別設有超短距串並轉換介面,並且,數位電晶片A與類比電晶片a通信連接,數位電晶片B與類比電晶片b通信連接,數位電晶片C與類比電晶片c通信連接,數位電晶片D與類比電晶片d通信連接。如第3圖所示,數位電晶片A到類比電晶片a的電連接路徑包括先後經過數位電晶片A的導電佈線結構(未示出)、承載基板100的導電佈線結構301、光互連件200中導電佈線結構、以及類比電晶片a的導電佈線結構(未示出)的電傳導路徑。示例性的,光互連件200中的導電佈線結構可包括導電矽通孔201,導電矽通孔201佈置於光互連件200的矽基底中並貫穿矽基底。示例性的,光互連件200中亦可包括其它孔中導電結構,孔中導電結構穿過光互連件200的至少一部分。其他數位電晶片與對應類比電晶片之間的電連接路徑與數位電晶片A到類比電晶片a的電連接路徑類似。在一些實施方式中,數位電晶片A到類比電晶片a的電連接路徑亦可以採用本領域合適的其他連接方式。The arrangement areas a'~d' of the analog transistors in Figure 2 correspond to the analog transistor chips a~d in Figure 1. The light passing through the optical interconnect 200 between any two of the analog transistors a~d Waveguide communications. In Figure 2, the optical interconnect 200 is provided with a plurality of electro-optical conversion units and a plurality of photoelectric conversion units. Figure 2 shows that in the portion of the optical interconnect 200 corresponding to the arrangement area a', There are 12 electro-optical conversion units and 12 photoelectric conversion units. The setting areas A'~D' of the digital transistors in Figure 2 correspond to the digital transistors A~D in Figure 1. The digital transistors A~D are respectively equipped with ultra-short distance serial-to-parallel conversion interfaces, and the digital The electronic chip A is connected to the analog chip a, the digital chip B is connected to the analog chip b, the digital chip C is connected to the analog chip c, and the digital chip D is connected to the analog chip d. As shown in Figure 3, the electrical connection path from the digital chip A to the analog chip a includes the conductive wiring structure (not shown) of the digital chip A, the conductive wiring structure 301 of the carrier substrate 100, and the optical interconnect. The conductive wiring structure in 200, and the electrical conduction path of the conductive wiring structure (not shown) analogous to the electrical chip a. Exemplarily, the conductive wiring structure in the optical interconnect 200 may include conductive silicon through holes 201, which are arranged in the silicon substrate of the optical interconnect 200 and penetrate the silicon substrate. For example, the optical interconnect 200 may also include other conductive structures in the holes, and the conductive structures in the holes pass through at least a portion of the optical interconnect 200 . The electrical connection path between other digital transistors and the corresponding analog transistor is similar to the electrical connection path from the digital transistor A to the analog transistor a. In some embodiments, the electrical connection path from the digital electronic chip A to the analog electronic chip a may also adopt other suitable connection methods in this field.

在示例性實施方式中,利用光互連件200中的所述光波導,任意一個數位電晶片能夠與其他任意一個數位電晶片通信,形成點對點全連接的拓撲通信連接結構。雷射模組300同時輸出多個波長雷射,通過光互連件200中的光耦合結構,例如光柵耦合器或端面耦合器將光信號耦合進入光互連件200,在光互連件200中的分束器將光的能量平均分配到不同類比電晶片在光互連件200中對應的電光轉換單元。示例性的,分束器可以採用寬波段分束器。以數位電晶片A為例,數位電晶片A到其他數位電晶片B~D的資訊傳輸過程包括:數位電晶片A的數位電信號經由該數位電晶片A上的超短距串並轉換介面轉換為高速串列信號,該高速串列信號經過承載基板100上的導電佈線結構(例如金屬走線)和光互連件200中的導電佈線結構(例如導電矽通孔和/或其它導電線路)傳輸至類比電晶片a上,經過類比電晶片a處理,類比電晶片a輸出的電信號傳輸給光互連件200,輸入到光互連件200中的電光轉換單元。示例性的,電光轉換單元包括多個調變器,可以構成調變器陣列,通過該調變器陣列基於電信號對光進行調變,將類比電晶片a輸出的電信號承載的資訊載入在不同波長的光信號上並波分複用。通過光互連件200的光波導傳輸到光電轉換單元中。示例性的,光電轉換單元包括多個光電探測器,可以構成探測器陣列,探測器陣列對調變的光信號進行波分解複用,並進行光電轉換,以電信號輸出。光互連件200輸出承載資訊的電信號至類比電晶片b~d,經類比電晶片b~d處理。類比電晶片b~d輸出的電信號被傳輸至對應的數位電晶片B~D。類比電晶片b~d與對應的數位電晶片B~D之間的通信可以通過超短距串並轉換介面。In an exemplary embodiment, by utilizing the optical waveguide in the optical interconnect 200, any digital electronic chip can communicate with any other digital electronic chip, forming a point-to-point fully connected topological communication connection structure. The laser module 300 outputs multiple wavelength lasers at the same time, and couples the optical signal into the optical interconnect 200 through the optical coupling structure in the optical interconnect 200, such as a grating coupler or an end face coupler. The beam splitter in the beam splitter evenly distributes the energy of the light to the corresponding electro-optical conversion units of different analog electronic chips in the optical interconnect 200 . For example, the beam splitter may use a wide-band beam splitter. Taking digital transistor A as an example, the information transmission process from digital transistor A to other digital transistors B~D includes: the digital electrical signal of digital transistor A is converted through the ultra-short distance serial-to-parallel conversion interface on the digital transistor A. It is a high-speed serial signal that is transmitted through a conductive wiring structure (such as a metal trace) on the carrier substrate 100 and a conductive wiring structure (such as a conductive silicon via and/or other conductive lines) in the optical interconnect 200 To the analog transistor chip a, after being processed by the analog transistor chip a, the electrical signal output by the analog transistor chip a is transmitted to the optical interconnector 200 and input to the electro-optical conversion unit in the optical interconnector 200. Exemplarily, the electro-optical conversion unit includes a plurality of modulators, which can form a modulator array, through which the modulator array modulates light based on electrical signals, and loads the information carried by the electrical signals output by the analog electronic chip a. Wavelength division multiplexing of optical signals of different wavelengths. The optical waveguide is transmitted through the optical interconnect 200 into the photoelectric conversion unit. For example, the photoelectric conversion unit includes a plurality of photoelectric detectors, which can form a detector array. The detector array performs wavelength decomposition and multiplexing on the modulated optical signal, performs photoelectric conversion, and outputs it as an electrical signal. The optical interconnect 200 outputs electrical signals carrying information to the analog transistor chips b~d, and is processed by the analog transistor chips b~d. The electrical signals output by the analog transistors b~d are transmitted to the corresponding digital transistors B~D. The communication between the analog transistor chips b~d and the corresponding digital transistor chips B~D can be through an ultra-short distance serial-to-parallel conversion interface.

在示例性的實施方式中,數位電晶片A~D相比類比電晶片a~d更接近於承載基板,縮短了數位電晶片A~D與承載基板100的連接距離,簡化了封裝方式。數位電晶片A~D設置在光互連件200周圍,而無需設置在光互連件200上,可不占用光互連件200的面積。類比電晶片a~d直接設置在光互連件200上,則優化了其與光互連件200的通信距離。In an exemplary embodiment, the digital electronic chips A to D are closer to the carrier substrate than the analog electronic chips a to d, which shortens the connection distance between the digital electronic chips A to D and the carrier substrate 100 and simplifies the packaging method. The digital electronic chips A to D are disposed around the optical interconnection member 200 without being disposed on the optical interconnection member 200 and do not occupy the area of the optical interconnection member 200 . Analog electronic chips a~d are directly disposed on the optical interconnect 200, thus optimizing the communication distance between them and the optical interconnect 200.

在一些實施方式中,數位電晶片A~D和類比電晶片a~d均為小晶片(Chiplet)。四個數位電晶片A~D分別通過四個類比電晶片a~d和光互連件200經過數模、電光、光電和模數轉換,形成點對點全連接。每兩個數位電晶片之間都具有獨立的資料傳輸通道,使得兩兩數位電晶片之間不存在競爭衝突的問題,信號延遲低,資訊處理通量大。該結構複用了四個類比電晶片a~d和四個數位電晶片A~D,在提高系統能效比的同時,降低了電晶片的尺寸,從而降低了晶片設計和加工成本,並且有效提高了晶片的良率。In some implementations, the digital transistor chips A to D and the analog transistor chips a to d are both small chips (Chiplet). The four digital transistors A to D respectively undergo digital-to-analog, electro-optical, optoelectronic and analog-to-digital conversion through the four analog transistor chips a to d and the optical interconnect 200 to form a full point-to-point connection. There are independent data transmission channels between each two digital transistors, so that there is no competition conflict between two digital transistors, the signal delay is low, and the information processing throughput is large. This structure reuses four analog transistor chips a~d and four digital transistor chips A~D, which not only improves the system energy efficiency ratio, but also reduces the size of the transistor chip, thereby reducing chip design and processing costs, and effectively improving improve wafer yield.

在一些實施方式中,如第4圖所示,本發明實施方式中一個電光轉換單元包括多個調變器,其中,多個調變器構成調變器陣列,應指出,調變器陣列一詞僅表示照一定位置排列,在滿足功能需求的基礎上,陣列一詞並不對各調變器排列形式、排列規律等做特別限定,也不限定為是二維形式的陣列。所述調變器陣列由一系列微環調變器401組成,所述微環調變器401基於載流子耗盡效應,可以支援高調變速率,該類型的波導結構在脊形波導不同區域進行摻雜,形成橫向或縱向的PN結結構402。PN結工作在反偏模式,當施加反偏電壓後,PN結內的耗盡區增大,內建電場增強,耗盡區內沒有自由載流子,對應的環形波導403的折射率發生改變,導致其共振波長發生平移,共振峰附近某一特定波長的強度會發生較大的改變,從而達到強度調變的目的。微環調變器401的尺寸小,功耗低,調變效率高。將來自電晶片上的電資訊資料調變時,可通過調節微環調變器401上的加熱電極404而對應特定波長的載波,經調變的不同波長的光信號在光波導407上獨立傳播,實現了多通道的波分複用的信號傳輸。其中,多個微環可對應多個不同的波長。因為微環調變器401對溫度的敏感性,在調變過程中,可以通過監測橫向或縱向PN結本身對光吸收產生的光電流和利用類比電晶片上的回饋控制來調節微環調變器401的偏置點使得光調變幅度保持最大化。In some embodiments, as shown in Figure 4, an electro-optical conversion unit in an embodiment of the present invention includes multiple modulators, wherein the multiple modulators constitute a modulator array. It should be noted that the modulator array is The word "array" only means to arrange according to a certain position. On the basis of meeting the functional requirements, the word "array" does not specifically limit the arrangement form and arrangement rules of each modulator, nor is it limited to a two-dimensional array. The modulator array consists of a series of micro-ring modulators 401. The micro-ring modulators 401 are based on the carrier depletion effect and can support high modulation rates. This type of waveguide structure has different regions in the ridge waveguide. Doping is performed to form a lateral or vertical PN junction structure 402. The PN junction works in reverse bias mode. When a reverse bias voltage is applied, the depletion region in the PN junction increases, the built-in electric field is enhanced, there are no free carriers in the depletion region, and the refractive index of the corresponding ring waveguide 403 changes. , causing its resonance wavelength to shift, and the intensity of a specific wavelength near the resonance peak to change significantly, thereby achieving the purpose of intensity modulation. The microring modulator 401 has small size, low power consumption and high modulation efficiency. When modulating the electrical information data from the electronic chip, the heating electrode 404 on the microring modulator 401 can be adjusted to correspond to the carrier wave of a specific wavelength. The modulated optical signals of different wavelengths propagate independently on the optical waveguide 407 , realizing multi-channel wavelength division multiplexing signal transmission. Among them, multiple microrings can correspond to multiple different wavelengths. Because the microring modulator 401 is sensitive to temperature, during the modulation process, the microring modulation can be adjusted by monitoring the photocurrent generated by the light absorption of the horizontal or vertical PN junction itself and using feedback control on the analog transistor chip. The bias point of the detector 401 is such that the light modulation amplitude is maintained to be maximized.

在一些實施方式中,如第5圖所示,一個光電轉換單元包括多個探測器,其中,多個探測器構成探測器陣列,應指出,探測器陣列一詞僅表示照一定位置排列,在滿足功能需求的基礎上,陣列一詞並不對各探測器排列形式、排列規律等做特別限定,也不限定為是二維形式的陣列。示例性的,所述探測器陣列由一系列微環濾波探測器501構成,微環濾波探測器501包括加熱電極502、環形波導503、信號光探測器504。通過調節微環濾波探測器501上的加熱電極502來調節環形波導503,從光波導507中過濾出特定波長的光信號,下載到與電晶片耦合的信號光探測器504上,實現光信號到類比電信號的轉換。其中,多個微環可對應多個不同的波長。另外,通過與光波導507、信號光探測器504連接的波導終端505來吸收波導末端的殘餘光能量,使其不影響其他光波導的信號傳輸。In some embodiments, as shown in Figure 5, a photoelectric conversion unit includes multiple detectors, wherein the multiple detectors constitute a detector array. It should be noted that the term detector array only means that the detector array is arranged in a certain position. On the basis of meeting functional requirements, the term array does not specifically limit the arrangement form and arrangement rules of each detector, nor is it limited to a two-dimensional array. For example, the detector array is composed of a series of micro-ring filter detectors 501. The micro-ring filter detector 501 includes a heating electrode 502, a ring waveguide 503, and a signal light detector 504. By adjusting the heating electrode 502 on the micro-ring filter detector 501 to adjust the ring waveguide 503, the optical signal of a specific wavelength is filtered out from the optical waveguide 507 and downloaded to the signal light detector 504 coupled with the electronic chip to realize the optical signal to Analog electrical signal conversion. Among them, multiple microrings can correspond to multiple different wavelengths. In addition, the residual light energy at the end of the waveguide is absorbed through the waveguide terminal 505 connected to the optical waveguide 507 and the signal light detector 504, so that it does not affect the signal transmission of other optical waveguides.

類比通過光互連件200中設置合適的電光轉換單元、光電轉換單元、光波導,可以在類比電晶片之間進行大量的資訊傳輸而不會受功耗和頻寬密度的限制。可根據需要排布光互連件200中調變器陣列、探測器陣列的位置以及相應類比電晶片的位置,可以實現多個獨立的資料傳輸通道,每條通道由相互通信的兩塊數位電晶片獨佔,不存在競爭衝突的問題,橫截面頻寬大,信號延遲低,最終提高資訊處理通量。By arranging appropriate electro-optical conversion units, photoelectric conversion units, and optical waveguides in the analog optical interconnect 200, a large amount of information can be transmitted between analog transistor chips without being limited by power consumption and bandwidth density. The positions of the modulator array, the detector array and the corresponding analog transistors in the optical interconnect 200 can be arranged as needed, and multiple independent data transmission channels can be realized. Each channel consists of two digital circuits that communicate with each other. The chip is exclusive, there is no problem of competition and conflict, the cross-sectional bandwidth is large, the signal delay is low, and the information processing throughput is ultimately improved.

在本發明的一些實施方式中,所述數位電晶片可以是CPU、GPU和存儲晶片中的一種或多種。In some embodiments of the present invention, the digital chip may be one or more of a CPU, a GPU, and a memory chip.

本發明示例性的實施方式提供一種光互連裝置的製造方法,可用於製造前述各實施方式中的光互連裝置。該方法包括:Exemplary embodiments of the present invention provide a method for manufacturing an optical interconnection device, which can be used to manufacture the optical interconnection device in each of the foregoing embodiments. The method includes:

S601、提供晶圓。S601. Provide wafers.

S602、在所述晶圓上形成多個光子積體電路。S602. Form multiple photonic integrated circuits on the wafer.

其中,所述多個光子積體電路中的每一個可包括多個光波導,以及電光轉換單元、光電轉換單元,多個光波導可用於構成光波導單元,即光波導單元包括多個光波導。所述多個光子積體電路中的每一個光子積體電路還可包括多個導電佈線單元,多個導電佈線單元可將電光轉換單元和/或光電轉換單元連接至對應的類比電晶片,以接收來自類比電晶片的待通信的電信號和/或向類比電晶片發送用於通信的電信號。通常,多個光子積體電路形成於晶圓上的多個區域,在後續步驟中,晶圓會被切割,以形成獨立的單個光子積體電路,所述光子積體電路用於構成光互連件,即光互連件包括所述光子積體電路。Wherein, each of the plurality of photonic integrated circuits may include a plurality of optical waveguides, as well as an electro-optical conversion unit and a photoelectric conversion unit. The plurality of optical waveguides may be used to constitute an optical waveguide unit, that is, the optical waveguide unit includes a plurality of optical waveguides. . Each photonic integrated circuit in the plurality of photonic integrated circuits may further include a plurality of conductive wiring units, and the plurality of conductive wiring units may connect the electro-optical conversion unit and/or the photoelectric conversion unit to the corresponding analog transistor chip, so as to Receive electrical signals to be communicated from the analog transistor chip and/or send electrical signals for communication to the analog transistor chip. Typically, multiple photonic integrated circuits are formed in multiple areas on a wafer. In subsequent steps, the wafer is cut to form independent single photonic integrated circuits. The photonic integrated circuits are used to form optical interconnects. Connectors, ie optical interconnects, include the photonic integrated circuits.

S603、在所述多個光子積體電路中的每一個上安裝所需的至少一個類比電晶片。類比電晶片的數量可以是一個或多個,例如,設置第一類比電晶片和第二類比電晶片,使所述第一類比電晶片與第一導電佈線單元電連接,所述第二類比電晶片與第二導電佈線單元電連接,第一電光轉換單元通過第一導電佈線單元接收所述第一類比電晶片的第一電信號,並編碼產生第一光信號;所述第一光電轉換器用於將第一光信號轉換為電信號並傳輸給第二導電佈線單元。S603. Install at least one required analog chip on each of the plurality of photonic integrated circuits. The number of analog transistor chips may be one or more. For example, a first analog transistor chip and a second analog transistor chip are provided so that the first analog transistor chip is electrically connected to the first conductive wiring unit, and the second analog transistor chip is electrically connected to the first conductive wiring unit. The chip is electrically connected to the second conductive wiring unit, and the first electro-optical conversion unit receives the first electrical signal of the first analog electronic chip through the first conductive wiring unit and encodes it to generate the first optical signal; the first photoelectric converter uses Converting the first optical signal into an electrical signal and transmitting it to the second conductive wiring unit.

S604、對所述晶圓進行分割,得到多個獨立的光互連件。S604. Segment the wafer to obtain multiple independent optical interconnects.

S605、將所述光互連件安裝在承載基板上。S605. Install the optical interconnection component on the carrier substrate.

S606、將數位電晶片安裝在承載基板上。S606. Install the digital electronic chip on the carrier substrate.

在一些實施例中,單個光互連裝置中包括單個的光子積體電路以及安裝(設置)在所述光子積體電路上的所述第一類比電晶片和所述第二類比電晶片。其中,第一類比電晶片、第二類比電晶片能夠通過第一導電佈線單元、第一電光轉換單元、多個光波導中的至少一個、第一光電轉換單元以及第二導電佈線單元進行通信。獨立的單個光互連裝置中具體包括一個所述光子積體電路。In some embodiments, a single optical interconnection device includes a single photonic integrated circuit and the first analog transistor chip and the second analog transistor chip mounted (disposed) on the photonic integrated circuit. Wherein, the first analog electronic chip and the second analog electronic chip can communicate through the first conductive wiring unit, the first electro-optical conversion unit, at least one of the plurality of optical waveguides, the first photoelectric conversion unit and the second conductive wiring unit. One of said photonic integrated circuits is embodied in an independent single optical interconnection device.

應指出,步驟的編號並不代表執行順序。示例性的,可以在數位電晶片安裝之前安裝光互連件,示例性的,可以在數位電晶片安裝之後,安裝光互連件,對此不作特別的限定。It should be noted that the numbering of steps does not represent the order in which they are performed. For example, the optical interconnection component can be installed before the digital transistor chip is installed. For example, the optical interconnection component can be installed after the digital transistor chip is installed. This is not particularly limited.

上述S601中,晶圓包括半導體層。在一實例中,上述晶圓可以是絕緣體上半導體晶圓,例如:SOI(Silicon-On-Insulator,絕緣層上覆矽)晶圓。如第6圖所示,絕緣體上半導體晶圓可包括:絕緣層602、形成在絕緣層602上的半導體層603以及位於所述絕緣層602下方的背襯底層601。In the above S601, the wafer includes a semiconductor layer. In one example, the wafer may be a semiconductor-on-insulator wafer, such as an SOI (Silicon-On-Insulator) wafer. As shown in FIG. 6 , the semiconductor-on-insulator wafer may include an insulating layer 602 , a semiconductor layer 603 formed on the insulating layer 602 , and a backing layer 601 located below the insulating layer 602 .

上述S602中,可通過在半導體層603上進行圖形化、沉積、摻雜等工藝形成光子積體電路。In the above S602, a photonic integrated circuit can be formed by performing processes such as patterning, deposition, and doping on the semiconductor layer 603.

上述S603中,在一實例中,可通過鍵合或焊接等電連接方式將第一類比電晶片電連接到第一導電佈線單元上,將第二類比電晶片電連接到第二導電佈線單元上。In the above S603, in one example, the first analog electronic chip can be electrically connected to the first conductive wiring unit, and the second analog electronic chip can be electrically connected to the second conductive wiring unit through electrical connection methods such as bonding or welding. .

在一具體實例中,上述S602中“在所述晶圓上形成多個光子積體電路”,具體可採用如下步驟來實現:In a specific example, "forming multiple photonic integrated circuits on the wafer" in S602 above can be implemented by the following steps:

S21、在所述晶圓上形成所述光波導單元、所述第一電光轉換單元和所述第一光電轉換單元。S21. Form the optical waveguide unit, the first electro-optical conversion unit and the first photoelectric conversion unit on the wafer.

S22、在形成有所述光波導單元、所述第一電光轉換單元和所述第一光電轉換單元的晶圓上沉積介電層,以覆蓋所述光波導單元、所述第一電光轉換單元、所述第一光電轉換單元以及所述晶圓。S22. Deposit a dielectric layer on the wafer on which the optical waveguide unit, the first electro-optical conversion unit and the first electro-optical conversion unit are formed to cover the optical waveguide unit and the first electro-optical conversion unit. , the first photoelectric conversion unit and the wafer.

S23、在所述介電層中形成第一開孔和第二開孔。S23. Form a first opening and a second opening in the dielectric layer.

S24、在所述第一開孔中形成第一電連接結構以及在所述第二開孔中形成第二電連接結構。S24. Form a first electrical connection structure in the first opening and a second electrical connection structure in the second opening.

其中,所述第一導電佈線單元包括所述第一電連接結構;所述第二導電佈線單元包括所述第二電連接結構。Wherein, the first conductive wiring unit includes the first electrical connection structure; the second conductive wiring unit includes the second electrical connection structure.

上述S21,如第6圖和第7圖所示,可對晶圓的半導體層603進行圖形化得到光波導單元103、第一電光轉換單元104和第一光電轉換單元105對應區域。具體地,採用光刻和蝕刻技術,去除並不需要的材料,以進行圖形化。在一些實施例中,上述絕緣層可以作為刻蝕停止層。在一些實施方式中,所述電光轉換單元包括一個或多個調變器,多個調變器可構成調變器陣列。所述光電轉換單元包括一個或多個光電探測器,多個探測器可構成探測器陣列。作為簡化,第7圖中僅示出了一個調變器、一個探測器。In the above S21, as shown in Figures 6 and 7, the semiconductor layer 603 of the wafer can be patterned to obtain areas corresponding to the optical waveguide unit 103, the first electro-optical conversion unit 104 and the first photoelectric conversion unit 105. Specifically, photolithography and etching techniques are used to remove unnecessary material for patterning. In some embodiments, the above-mentioned insulating layer may serve as an etching stop layer. In some embodiments, the electro-optical conversion unit includes one or more modulators, and the plurality of modulators may constitute a modulator array. The photoelectric conversion unit includes one or more photoelectric detectors, and the plurality of detectors may constitute a detector array. For simplicity, only one modulator and one detector are shown in Figure 7 .

上述S22中,如第8圖所示,在形成有所述光波導單元103、所述第一電光轉換單元104和所述第一光電轉換單元105的晶圓上沉積介電層106,以覆蓋所述光波導單元103、所述第一電光轉換單元104、所述第一光電轉換單元105以及所述晶圓。具體地,通過沉積,在光波導單元103、第一電光轉換單元104、第一光電轉換單元105、絕緣層602上形成介電層106。上述介電層106的材料與絕緣層602的材料可相同。In the above S22, as shown in Figure 8, a dielectric layer 106 is deposited on the wafer on which the optical waveguide unit 103, the first electro-optical conversion unit 104 and the first photoelectric conversion unit 105 are formed to cover The optical waveguide unit 103, the first electro-optical conversion unit 104, the first photoelectric conversion unit 105 and the wafer. Specifically, the dielectric layer 106 is formed on the optical waveguide unit 103, the first electro-optical conversion unit 104, the first photoelectric conversion unit 105, and the insulating layer 602 through deposition. The dielectric layer 106 and the insulating layer 602 may be made of the same material.

上述S23中,如第8圖所示,在所述介電層106中形成第一開孔和第二開孔。可採用刻蝕技術形成上述第一開孔和第二開孔,根據連接需要,第一開孔、第二開孔的個數可以為一個或多個。In the above S23, as shown in FIG. 8, a first opening and a second opening are formed in the dielectric layer 106. The above-mentioned first opening and second opening can be formed using etching technology. According to the connection requirements, the number of the first opening and the second opening can be one or more.

在一些實施例中,介電層106是多層結構,通過多個子介電層形成,在介電層中可形成有多層導電層,導電層之間通過開孔中的導電材料連接。例如先沉積形成第一子介電層,再形成第一導電層,然後再沉積形成第二子介電層,再形成第二導電層,然後形成第三子介電層,再形成第三導電層,然後形成第四子介電層。其中,第一至第三導電層中,不同的導電層通過開孔中的導電材料進行互連,各導電層可以為圖案化的金屬材料層。In some embodiments, the dielectric layer 106 is a multi-layer structure formed by multiple sub-dielectric layers. Multiple conductive layers may be formed in the dielectric layer, and the conductive layers are connected through conductive materials in the openings. For example, first deposit to form a first sub-dielectric layer, then form a first conductive layer, then deposit to form a second sub-dielectric layer, then form a second conductive layer, then form a third sub-dielectric layer, and then form a third conductive layer. layer, and then form a fourth sub-dielectric layer. Among the first to third conductive layers, different conductive layers are interconnected through conductive materials in the openings, and each conductive layer can be a patterned metal material layer.

上述S24中,如第8圖所示,可通過沉積導電材料,在所述第一開孔中形成第一導電佈線單元101的第一電連接結構101a以及在所述第二開孔中形成第二導電佈線單元102的第二電連接結構102a。所述第一電連接結構101a穿過至少部分所述介電層106;所述第二電連接結構102a穿過至少部分所述介電層106。In the above S24, as shown in FIG. 8, the first electrical connection structure 101a of the first conductive wiring unit 101 can be formed in the first opening and the second electrical connection structure 101a can be formed in the second opening by depositing conductive material. The second electrical connection structure 102a of the two conductive wiring units 102. The first electrical connection structure 101a passes through at least part of the dielectric layer 106; the second electrical connection structure 102a passes through at least part of the dielectric layer 106.

沉積導電材料後,可通過化學機械拋光或機械研磨的平坦化工藝以沿著介電層106的安裝面去除過量的導電材料,從而使得第一電連接結構101a和第二電連接結構102a與介電層106的安裝面齊平。After the conductive material is deposited, excess conductive material can be removed along the mounting surface of the dielectric layer 106 through a planarization process of chemical mechanical polishing or mechanical grinding, so that the first electrical connection structure 101 a and the second electrical connection structure 102 a are in contact with the dielectric layer 106 . The mounting surface of electrical layer 106 is flush.

後續,在晶圓上的每一個光子積體電路上安裝第一類比電晶片和第二類比電晶片,具體地,在介電層106/光子積體電路的安裝面上對應於每一個光子積體電路的區域內安裝第一類比電晶片和第二類比電晶片,也即在介電層106/光子積體電路的安裝面上對應於每一個光子積體電路的區域,將第一類比電晶片和第二類比電晶片與該區域內的第一電連接結構101a和第二電連接結構102a進行電連接。Subsequently, the first analog electronic chip and the second analog electronic chip are installed on each photonic integrated circuit on the wafer. Specifically, the mounting surface of the dielectric layer 106/photonic integrated circuit corresponds to each photonic integrated circuit. The first analog electronic chip and the second analog electronic chip are installed in the area of the integrated circuit, that is, in the area corresponding to each photonic integrated circuit on the mounting surface of the dielectric layer 106/photonic integrated circuit, the first analog electronic chip is installed The wafer and the second analog electronic wafer are electrically connected to the first electrical connection structure 101a and the second electrical connection structure 102a in this area.

後續,還可在介電層106上形成密封劑,以掩埋或覆蓋第一類比電晶片和第二類比電晶片。之後,可固化並且可以平坦化密封劑。Subsequently, a sealant may also be formed on the dielectric layer 106 to bury or cover the first analog electronic chip and the second analog electronic chip. Afterwards, the sealant can be cured and can be planarized.

在一些實施方式中,可包括對背襯底層601減薄的工序。In some embodiments, a process of thinning the backing layer 601 may be included.

在一些實施例中,S604可在S603之後執行,亦即,在對光子積體電路晶圓進行分割前批量安裝第一類比電晶片、第二類比電晶片,該種方式可以在晶圓級製程中對第一類比電晶片、第二類比電晶片進行批量封裝,此時,僅需製造光子積體電路晶圓,無需將光子積體電路形成單個的晶片。In some embodiments, S604 can be performed after S603, that is, the first analog electronic wafer and the second analog electronic wafer are installed in batches before the photonic integrated circuit wafer is divided. This method can be performed in a wafer-level process. The first analog electronic chip and the second analog electronic chip are packaged in batches. At this time, only photonic integrated circuit wafers are needed to be manufactured, and there is no need to form the photonic integrated circuit into a single chip.

在一些實施方式中,在製造光子積體電路時,還可包括製造導電佈線結構,所述導電佈線結構能用於連接數位電晶片、類比電晶片,使得數位電晶片、類比電晶片之間能實現電信號通信,此時,光互連件包括上述導電佈線結構,示例性的,光互連件可以作為仲介層。示例性的,上述導電佈線結構可以包括導電矽通孔,亦可包括其它導電線路。In some embodiments, when manufacturing a photonic integrated circuit, it may also include manufacturing a conductive wiring structure. The conductive wiring structure can be used to connect digital electronic chips and analog electronic chips, so that digital electronic chips and analog electronic chips can be connected. To realize electrical signal communication, at this time, the optical interconnection member includes the above-mentioned conductive wiring structure. For example, the optical interconnection member can serve as an intermediary layer. For example, the conductive wiring structure may include conductive silicon vias or other conductive lines.

另外,可選的,可先進行晶圓分割的工序,以先形成獨立的光子積體電路/獨立的包含光子積體電路的光互連件,然後再進行第一類比電晶片和第二類比電晶片的安裝工序,即將所述第一類比電晶片、第二類比電晶片安裝在所述獨立的光子積體電路上。In addition, optionally, the wafer dividing process can be performed first to form independent photonic integrated circuits/independent optical interconnects including photonic integrated circuits, and then the first analog electronic wafer and the second analog The installation process of the transistor chip is to install the first analog transistor chip and the second analog transistor chip on the independent photonic integrated circuit.

可選的,可對多個獨立的光子積體電路進行一定程度的封裝,以形成多個獨立的光子積體電路晶片(包括裸晶片),光子積體電路晶片作為光互連的晶片,即光互連件可採用光子積體電路晶片。具體地,該方法,包括:Optionally, multiple independent photonic integrated circuits can be packaged to a certain extent to form multiple independent photonic integrated circuit wafers (including bare wafers). The photonic integrated circuit wafers serve as optical interconnect wafers, that is, Optical interconnects may use photonic integrated circuit chips. Specifically, this method includes:

S1001、提供晶圓。S1001. Provide wafers.

S1002、在所述晶圓上形成多個光子積體電路。S1002. Form multiple photonic integrated circuits on the wafer.

其中,所述多個光子積體電路中的每一個包括第一導電佈線單元、第二導電佈線單元、光波導單元以及第一電光轉換單元和第一光電轉換單元;所述第一電光轉換單元和所述第一光電轉換單元分別耦合至所述光波導單元;所述第一導電佈線單元與所述第一電光轉換單元電連接;所述第二導電佈線單元與所述第一光電轉換單元電連接。Wherein, each of the plurality of photonic integrated circuits includes a first conductive wiring unit, a second conductive wiring unit, an optical waveguide unit, a first electro-optical conversion unit and a first photoelectric conversion unit; the first electro-optical conversion unit and the first photoelectric conversion unit are respectively coupled to the optical waveguide unit; the first conductive wiring unit is electrically connected to the first electro-optical conversion unit; the second conductive wiring unit is to the first photoelectric conversion unit Electrical connection.

S1003、對所述晶圓進行分割,得到多個獨立的光子積體電路。S1003. Segment the wafer to obtain multiple independent photonic integrated circuits.

其中,多個光子積體電路被分割獨立的光子積體電路,從而每一個所述光子積體電路晶片中包括獨立的光子積體電路。Wherein, the plurality of photonic integrated circuits are divided into independent photonic integrated circuits, so that each photonic integrated circuit chip includes an independent photonic integrated circuit.

S1004、在所述多個獨立的光子積體電路晶片中的每一個上安裝第一類比電晶片和第二類比電晶片,以使所述第一類比電晶片與所述第一導電佈線單元電連接,所述第二類比電晶片與所述第二導電佈線單元電連接。S1004. Install a first analog transistor chip and a second analog transistor chip on each of the plurality of independent photonic integrated circuit wafers, so that the first analog transistor chip is electrically connected to the first conductive wiring unit. connection, the second analog electrical chip is electrically connected to the second conductive wiring unit.

作為一個示例,S1004可在S1003之後執行,但不限於此。As an example, S1004 may be executed after S1003, but is not limited thereto.

其中,所述第一類比電晶片、所述第二類比電晶片能夠通過所述第一導電佈線單元、所述第一電光轉換單元、所述光波導單元、所述第一光電轉換單元以及所述第二導電佈線單元進行通信。Wherein, the first analog electronic chip and the second analog electronic chip can pass through the first conductive wiring unit, the first electro-optical conversion unit, the optical waveguide unit, the first photoelectric conversion unit and the The second conductive wiring unit communicates.

上述S1002的具體實現可參見上述各實施例中相應內容,在此不在贅述。For the specific implementation of the above S1002, please refer to the corresponding contents in the above embodiments, and will not be described again here.

本申請所屬技術領域中具有通常知識者應當理解,以上所公開的僅為本發明的實施方式而已,當然不能以此來限定本發明之權利範圍,依本發明實施方式所作的等同變化,仍屬本發明申請專利範圍所涵蓋的範圍。Those with ordinary knowledge in the technical field to which this application belongs should understand that what is disclosed above is only the implementation mode of the present invention. Of course, it cannot be used to limit the scope of rights of the present invention. Equivalent changes made according to the implementation mode of the present invention still belong to The scope covered by the patent application for this invention.

100:承載基板 101:第一導電佈線單元 101a:第一電連接結構 102:第二導電佈線單元 102a:第二電連接結構 103:光波導單元 104:第一電光轉換單元 105:第一光電轉換單元 106:介電層 200:光互連件 201:導電矽通孔 300:雷射模組 301:導電佈線結構 401:微環調變器 402:PN結結構 403:環形波導 404,502:加熱電極 407,507:光波導 501:微環濾波探測器 503:環形波導 504:信號光探測器 505:波導終端 601:背襯底層 602:絕緣層 603:半導體層 A~D:數位電晶片 A’~D’,a’~d’:設置區域 a~d:類比電晶片 100: Carrying substrate 101: First conductive wiring unit 101a: First electrical connection structure 102: Second conductive wiring unit 102a: Second electrical connection structure 103: Optical waveguide unit 104: First electro-optical conversion unit 105: First photoelectric conversion unit 106:Dielectric layer 200: Optical interconnects 201: Conductive silicon vias 300:Laser module 301: Conductive wiring structures 401: Microring modulator 402: PN junction structure 403: Ring waveguide 404,502: Heating electrode 407,507: Optical waveguide 501:Micro-ring filter detector 503: Ring waveguide 504:Signal light detector 505:Waveguide terminal 601: Backing bottom layer 602: Insulation layer 603: Semiconductor layer A~D: digital electronic chip A’~D’,a’~d’: setting area a~d: analog transistor

[第1圖]顯示根據本發明的示例性實施方式的光互連裝置的俯視示意圖。 [第2圖]顯示根據本發明的示例性實施方式的光互連裝置中光互連件的光波導佈置、電光轉換單元、光電轉換單元佈置示意圖。 [第3圖]顯示光互連裝置的剖面示意圖。 [第4圖]顯示本發明實施方式中一個電光轉換單元包括多個調變器時的結構示意圖。 [第5圖]顯示本發明實施方式中一個光電轉換單元包括多個探測器時的結構示意圖。 [第6圖]顯示本申請一實施例製造光子積體電路時相關結構的剖面示意圖。 [第7圖]顯示本申請一實施例製造光子積體電路時相關結構的剖面示意圖。 [第8圖]顯示本申請一實施例製造光子積體電路時相關結構的剖面示意圖。 [Fig. 1] A schematic top view showing an optical interconnection device according to an exemplary embodiment of the present invention. [Fig. 2] A schematic diagram showing the arrangement of optical waveguides, electro-optical conversion units, and photoelectric conversion units of optical interconnectors in an optical interconnection device according to an exemplary embodiment of the present invention. [Figure 3] shows a schematic cross-sectional view of the optical interconnection device. [Figure 4] shows a schematic structural diagram of an electro-optical conversion unit including multiple modulators in an embodiment of the present invention. [Figure 5] shows a schematic structural diagram when one photoelectric conversion unit includes multiple detectors in the embodiment of the present invention. [Figure 6] shows a schematic cross-sectional view of the relevant structure when manufacturing a photonic integrated circuit according to an embodiment of the present application. [Figure 7] shows a schematic cross-sectional view of the relevant structure when manufacturing a photonic integrated circuit according to an embodiment of the present application. [Figure 8] shows a schematic cross-sectional view of the relevant structure when manufacturing a photonic integrated circuit according to an embodiment of the present application.

100:承載基板 100: Carrying substrate

200:光互連件 200: Optical interconnects

300:雷射模組 300:Laser module

A’~D’,a’~d’:設置區域 A’~D’,a’~d’: setting area

Claims (13)

一種光互連裝置,包括: 多個數位電晶片,其包括第一數位電晶片和第二數位電晶片; 多個類比電晶片,其包括第一類比電晶片和第二類比電晶片;以及 光互連件,其包括光子積體電路,所述光子積體電路包括多個光波導; 其中,所述第一數位電晶片與所述第一類比電晶片通信連接,所述第二數位電晶片與所述第二類比電晶片通信連接,所述第一類比電晶片與所述第二類比電晶片通過所述光互連件實現通信連接; 其中,所述第一數位電晶片到所述第二數位電晶片的資訊傳輸路徑包括資訊先後經過所述第一數位電晶片、所述第一類比電晶片、所述光互連件的光波導、所述第二類比電晶片、以及所述第二數位電晶片。 An optical interconnection device including: A plurality of digital transistors, including a first digital transistor and a second digital transistor; A plurality of analog transistors including a first analog transistor and a second analog transistor; and An optical interconnect including a photonic integrated circuit including a plurality of optical waveguides; Wherein, the first digital transistor chip is communicatively connected with the first analog transistor chip, the second digital transistor chip is communicatively connected with the second analog transistor chip, and the first analog transistor chip is communicatively connected with the second analog transistor chip. The analog electronic chip realizes communication connection through the optical interconnect; Wherein, the information transmission path from the first digital transistor to the second digital transistor includes information passing through the first digital transistor, the first analog transistor, and the optical waveguide of the optical interconnect. , the second analog transistor chip, and the second digital transistor chip. 如請求項1之光互連裝置,其中所述光互連裝置還包括承載基板; 所述光互連件設置在所述承載基板上; 所述多個類比電晶片設置在所述光互連件上,所述多個數位電晶片設置在所述光互連件周圍。 The optical interconnection device of claim 1, wherein the optical interconnection device further includes a carrier substrate; The optical interconnect is disposed on the carrier substrate; The plurality of analog transistors are disposed on the optical interconnect, and the plurality of digital transistors are disposed around the optical interconnect. 如請求項2之光互連裝置,其中所述多個數位電晶片相比所述多個類比電晶片更接近所述承載基板。The optical interconnection device of claim 2, wherein the plurality of digital transistors is closer to the carrier substrate than the plurality of analog transistors. 如請求項2之光互連裝置,其中所述第一數位電晶片到所述第一類比電晶片的電連接路徑先後經過所述承載基板的導電佈線結構、所述光互連件中的導電佈線結構。The optical interconnection device of claim 2, wherein the electrical connection path from the first digital electronic chip to the first analog electronic chip successively passes through the conductive wiring structure of the carrier substrate and the conductive wiring structure in the optical interconnection member. wiring structure. 如請求項1至4任一項之光互連裝置,其中所述光互連件的光子積體電路還包括: 第一電光轉換單元,其與所述第一類比電晶片電連接,用於將所述第一類比電晶片的類比電信號承載的資訊承載到第一光信號中,所述第一光信號在所述光互連件的光波導中傳輸;以及 第一光電轉換單元,其與所述第二類比電晶片電連接,用於將接收的第一光信號轉換為傳輸至所述第二類比電晶片的類比電信號。 The optical interconnect device according to any one of claims 1 to 4, wherein the photonic integrated circuit of the optical interconnect further includes: A first electro-optical conversion unit is electrically connected to the first analog electronic chip and is used to carry information carried by the analog electrical signal of the first analog electronic chip into a first optical signal. The first optical signal is Transmission in the optical waveguide of the optical interconnect; and A first photoelectric conversion unit is electrically connected to the second analog transistor chip, and is used to convert the received first optical signal into an analog electrical signal that is transmitted to the second analog transistor chip. 如請求項5之光互連裝置,其中所述光互連件的光子積體電路還包括: 第二電光轉換單元,其與所述第二類比電晶片電連接,用於將所述第二類比電晶片的類比電信號承載的資訊承載到第二光信號中,所述第二光信號在所述光互連件的光波導中傳輸;以及 第二光電轉換單元,其與所述第一類比電晶片電連接,用於將接收的第二光信號轉換為傳輸至所述第一類比電晶片的類比電信號。 The optical interconnect device of claim 5, wherein the photonic integrated circuit of the optical interconnect further includes: A second electro-optical conversion unit is electrically connected to the second analog electronic chip and is used to carry the information carried by the analog electrical signal of the second analog electronic chip into a second optical signal. The second optical signal is Transmission in the optical waveguide of the optical interconnect; and A second photoelectric conversion unit is electrically connected to the first analog transistor chip, and is used to convert the received second optical signal into an analog electrical signal that is transmitted to the first analog transistor chip. 如請求項6之光互連裝置,其中所述第一電光轉換單元、第二電光轉換單元均各自包括多個調變器,用於將電信號承載的資訊調變到不同波長的光信號上並以波分複用的方式進行傳輸; 所述第一光電轉換單元、第二光電轉換單元均各自包括多個光電探測器,其對接收的所述光信號進行波分解複用並轉化為電信號。 The optical interconnection device of claim 6, wherein each of the first electro-optical conversion unit and the second electro-optical conversion unit includes a plurality of modulators for modulating information carried by electrical signals into optical signals of different wavelengths. And transmitted by wavelength division multiplexing; Each of the first photoelectric conversion unit and the second photoelectric conversion unit includes a plurality of photodetectors, which perform wavelength decomposition and multiplexing of the received optical signals and convert them into electrical signals. 如請求項7之光互連裝置,其中所述調變器包括微環調變器;和/或 所述探測器包括微環濾波探測器。 The optical interconnection device of claim 7, wherein the modulator includes a microring modulator; and/or The detector includes a microring filter detector. 如請求項7之光互連裝置,其中所述光互連件的光子積體電路還包括:介電層以及多個導電佈線單元; 所述介電層覆蓋所述多個光波導、所述第一電光轉換單元、所述第一光電轉換單元、所述第二電光轉換單元、所述第二光電轉換單元; 所述多個導電佈線單元被配置為將所述第一電光轉換單元、所述第一光電轉換單元、所述第二電光轉換單元、所述第二光電轉換單元與對應的類比電晶片進行電連接; 所述多個導電佈線單元包括多個電連接結構,所述多個電連接結構中的每一個均各自穿過至少部分所述介電層。 The optical interconnect device of claim 7, wherein the photonic integrated circuit of the optical interconnect further includes: a dielectric layer and a plurality of conductive wiring units; The dielectric layer covers the plurality of optical waveguides, the first electro-optical conversion unit, the first photoelectric conversion unit, the second electro-optical conversion unit, and the second photoelectric conversion unit; The plurality of conductive wiring units are configured to electrically connect the first electro-optical conversion unit, the first photoelectric conversion unit, the second electro-optical conversion unit, the second photoelectric conversion unit and the corresponding analog transistor chip. connection; The plurality of conductive wiring units include a plurality of electrical connection structures, each of the plurality of electrical connection structures passing through at least part of the dielectric layer. 如請求項8之光互連裝置,其中所述多個數位電晶片和所述多個類比電晶片中的一個或多個包括小晶片。The optical interconnection device of claim 8, wherein one or more of the plurality of digital transistors and the plurality of analog transistors comprise chiplets. 如請求項9之光互連裝置,其中所述第一數位電晶片、所述第二數位電晶片還包括超短距串平行介面,以分別與用於第一類比電晶片、第二類比電晶片進行通信。The optical interconnection device of claim 9, wherein the first digital electronic chip and the second digital electronic chip further include ultra-short pitch serial parallel interfaces for respectively connecting to the first analog electronic chip and the second analog electronic chip. chip communicates. 一種計算裝置,其包括如請求項1至11任一項之光互連裝置。A computing device including the optical interconnection device according to any one of claims 1 to 11. 一種如請求項1至11 任一項之光互連裝置的製造方法,包括: 提供晶圓; 在所述晶圓上形成多個光子積體電路; 其中,所述多個光子積體電路中的每一個包括多個光波導、電光轉換單元以及光電轉換單元; 在所述多個光子積體電路中的每一個上安裝所需的至少一個類比電晶片; 對所述晶圓進行分割,得到多個獨立的光互連件; 將所述光互連件安裝在承載基板上;以及 將數位電晶片安裝在承載基板上。 A method for manufacturing an optical interconnection device according to any one of claims 1 to 11, including: Provide wafers; forming a plurality of photonic integrated circuits on the wafer; Wherein, each of the plurality of photonic integrated circuits includes a plurality of optical waveguides, electro-optical conversion units and photoelectric conversion units; mounting the required at least one analog transistor on each of the plurality of photonic integrated circuits; Segment the wafer to obtain multiple independent optical interconnects; Mounting the optical interconnect on a carrier substrate; and Mount the digital transistor on the carrier substrate.
TW111147877A 2021-12-14 2022-12-13 Optical interconnection device and manufacturing method thereof and computing device TWI832609B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111527948.9A CN116299887A (en) 2021-12-14 2021-12-14 Optical interconnection device, manufacturing method thereof and computing device
CN202111527948.9 2021-12-14

Publications (2)

Publication Number Publication Date
TW202323884A TW202323884A (en) 2023-06-16
TWI832609B true TWI832609B (en) 2024-02-11

Family

ID=86774886

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111147877A TWI832609B (en) 2021-12-14 2022-12-13 Optical interconnection device and manufacturing method thereof and computing device

Country Status (3)

Country Link
CN (1) CN116299887A (en)
TW (1) TWI832609B (en)
WO (1) WO2023109645A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101995616A (en) * 2009-08-19 2011-03-30 中国科学院半导体研究所 Multi-channel optical transceiving module totally made of silicon-based material
TWI598647B (en) * 2012-03-01 2017-09-11 奧瑞可國際公司 Chip assembly configuration with densely packed optical interconnects
CN111103653A (en) * 2018-10-26 2020-05-05 美光科技公司 Semiconductor package with Photonic Integrated Circuit (PIC) chip
US10725254B2 (en) * 2017-09-20 2020-07-28 Aayuna Inc. High density opto-electronic interconnection configuration utilizing passive alignment

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101589319B (en) * 2006-09-19 2011-07-13 揖斐电株式会社 Optical interconnect device and method for manufacturing the same
CN101995617B (en) * 2009-08-19 2012-07-18 中国科学院半导体研究所 Optical transmission/reception module made of silicon-based materials
CN103326789B (en) * 2013-05-03 2016-01-06 华中科技大学 A kind of microwave Phase Shifting System of frequency-tunable and method
US9391708B2 (en) * 2014-05-21 2016-07-12 Stmicroelectronics S.R.L. Multi-substrate electro-optical interconnection system
US10666353B1 (en) * 2018-11-20 2020-05-26 Juniper Networks, Inc. Normal incidence photodetector with self-test functionality
TWI672480B (en) * 2018-12-03 2019-09-21 財團法人工業技術研究院 Optical measurement apparatus and method
CN111326599B (en) * 2020-03-10 2021-09-24 Nano科技(北京)有限公司 Silicon-based photoelectric integrated chip device and transmitting system with same
CN112992886A (en) * 2021-02-09 2021-06-18 中国科学院微电子研究所 Integrated circuit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101995616A (en) * 2009-08-19 2011-03-30 中国科学院半导体研究所 Multi-channel optical transceiving module totally made of silicon-based material
TWI598647B (en) * 2012-03-01 2017-09-11 奧瑞可國際公司 Chip assembly configuration with densely packed optical interconnects
US10725254B2 (en) * 2017-09-20 2020-07-28 Aayuna Inc. High density opto-electronic interconnection configuration utilizing passive alignment
CN111103653A (en) * 2018-10-26 2020-05-05 美光科技公司 Semiconductor package with Photonic Integrated Circuit (PIC) chip

Also Published As

Publication number Publication date
CN116299887A (en) 2023-06-23
TW202323884A (en) 2023-06-16
WO2023109645A1 (en) 2023-06-22

Similar Documents

Publication Publication Date Title
CN112925069B (en) Integrated optical transceiver, compact optical engine and multichannel optical engine
Arakawa et al. Silicon photonics for next generation system integration platform
US6967347B2 (en) Terahertz interconnect system and applications
US8791405B2 (en) Optical waveguide and coupler apparatus and method of manufacturing the same
CN113759477A (en) Multi-channel optical engine packaging type small chip and common packaging type photoelectric module
US20140270629A1 (en) Optical waveguide network of an interconnecting ic module
CN113759475B (en) Inner packaging type photoelectric module
CN112687672B (en) Silicon-based photoelectron heterogeneous integrated interconnection module
US20140270621A1 (en) Photonic multi-chip module
CN113759476A (en) Integrated heat sink for co-packaged optoelectronic modules
CN113764390A (en) Packaged light engine
CN111461317B (en) Single-chip integrated photon convolution neural network computing system and preparation method thereof
Tanaka et al. Silicon photonics optical transmitter technology for Tb/s-class I/O co-packaged with CPU
WO2023109692A1 (en) Optical interconnection device and manufacturing method therefor
US20230308188A1 (en) Photonic communication platform and related circuits
TW202215088A (en) Teraphy chiplet optical input/output system
Fried Optical I/O for high speed CMOS systems
TWI832609B (en) Optical interconnection device and manufacturing method thereof and computing device
CN112736073B (en) Silicon-based optical computation heterogeneous integrated module
CN117406337A (en) Heterogeneous photoelectric fusion integrated system based on wafer-to-wafer bonding
CN117055152A (en) Photoelectric fusion integrated chip based on silicon-silicon oxide-erbium-doped lithium niobate heterogeneous wafer and method
CN115840322A (en) Photon analog-to-digital conversion system and chip based on wavelength multiplexing and optical capture
CN112687673B (en) Chip embedded slide structure with different thicknesses and preparation method thereof
CN116184566A (en) Semiconductor packaging structure, information transmission method, manufacturing method and optical interconnection equipment
US20240149632A1 (en) Integrated Optical Transceiver