TWI831526B - Bandgap reference circuit and method of generating reference voltage and reference current simultaneously - Google Patents

Bandgap reference circuit and method of generating reference voltage and reference current simultaneously Download PDF

Info

Publication number
TWI831526B
TWI831526B TW111148438A TW111148438A TWI831526B TW I831526 B TWI831526 B TW I831526B TW 111148438 A TW111148438 A TW 111148438A TW 111148438 A TW111148438 A TW 111148438A TW I831526 B TWI831526 B TW I831526B
Authority
TW
Taiwan
Prior art keywords
resistor
current
voltage
circuit
transistor
Prior art date
Application number
TW111148438A
Other languages
Chinese (zh)
Other versions
TW202427097A (en
Inventor
王維德
Original Assignee
天鈺科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 天鈺科技股份有限公司 filed Critical 天鈺科技股份有限公司
Priority to TW111148438A priority Critical patent/TWI831526B/en
Application granted granted Critical
Publication of TWI831526B publication Critical patent/TWI831526B/en
Publication of TW202427097A publication Critical patent/TW202427097A/en

Links

Images

Landscapes

  • Control Of Electrical Variables (AREA)
  • Amplifiers (AREA)

Abstract

The present disclosure provides a bandgap reference circuit including a common circuit, a current compensation circuit, a voltage locking circuit, and a current mirror circuit. The common circuit includes a first resistor, a second resistor, and a first transistor in series connected from an output terminal. The output terminal is used to output a reference circuit. A first branch of the current mirror circuit is connected with the output terminal, and used to provide a parallel current. A second branch of the current mirror circuit is used to output a reference current. The current compensation circuit is used to make a current generated in the current compensation circuit have an opposite temperature coefficient to a current generated in the common circuit. The voltage locking circuit is used to make a voltage difference between two ends of the second resistor have an opposite temperature coefficient to a voltage at the emitter of the first transistor. The present disclosure also provides a method of generating a reference voltage and a reference current simultaneously.

Description

帶差參考電路和同時產生參考電壓及參考電流的方法 Band difference reference circuit and method of generating reference voltage and reference current simultaneously

本案涉及帶差(bandgap)參考電路領域,尤其涉及同時產生參考電壓及參考電流的帶差參考電路和方法。 This case relates to the field of bandgap reference circuits, especially to bandgap reference circuits and methods that simultaneously generate reference voltages and reference currents.

習知的帶差參考電路,通常會需要提供與溫度無關的參考電壓及參考電流,但這些電路通常僅能單獨產生參考電壓或參考電流,而無法同時產生參考電壓與參考電流,因此目前通常是分別設置單獨產生參考電壓的電路以及單獨產生參考電流的電路,導致元件整體的數量成倍增加,進而增加能耗。 Conventional band difference reference circuits usually need to provide temperature-independent reference voltages and reference currents. However, these circuits can usually only generate reference voltages or reference currents independently, but cannot generate reference voltages and reference currents at the same time. Therefore, they are usually Separate circuits for generating reference voltages and circuits for generating reference currents will double the number of components, thereby increasing energy consumption.

本案一方面提供一種帶差參考電路,包括:公共電路,所述公共電路包括從一輸出端依次串聯的第一電阻、第二電阻以及第一電晶體,所述第一電晶體的基極和集極接地,所述第一電晶體的射極與所述第二電阻連接於電流補償端,所述第二電阻與所述第一電阻連接於電壓鎖定端,所述輸出端用於輸出參考電壓;電流補償電路,包括與所述輸出端連接的一端和接地端;電壓鎖定電路,包括與所述輸出端連接的一端和接地端;以及電流鏡電路,所述電流鏡電路的第一支路與所述輸出端連接,用於提供並聯電流,所述電流鏡電路的第二支路用於輸出參考電流,所述並聯電流等於所述公共電路、所述電流補償電路以及所述電壓鎖定電路的電流之和;所述參考電流等於所述並聯電流或與所述並聯電流成比例;其中,所述電流補償電路還包括連接於所述電流補償端的一端,所述電流補償電路用於使所述電流補償電路上產生的電流與所述公共電路上產生的電流 具有相反的溫度係數;所述電壓鎖定電路還包括連接於所述電壓鎖定端的一端,所述電壓鎖定電路用於使所述第二電阻兩端的電壓差與所述第一電晶體的射極的電壓具有相反的溫度係數。 On the one hand, this case provides a band difference reference circuit, including: a common circuit, the common circuit includes a first resistor, a second resistor and a first transistor connected in series from an output end, and the base of the first transistor and The collector is grounded, the emitter of the first transistor and the second resistor are connected to the current compensation terminal, the second resistor and the first resistor are connected to the voltage locking terminal, and the output terminal is used to output a reference voltage; current compensation circuit, including one end connected to the output terminal and a ground terminal; voltage locking circuit, including one end connected to the output terminal and a ground terminal; and a current mirror circuit, the first branch of the current mirror circuit The second branch of the current mirror circuit is used to output a reference current. The parallel current is equal to the common circuit, the current compensation circuit and the voltage lock. The sum of the currents of the circuit; the reference current is equal to or proportional to the parallel current; wherein the current compensation circuit also includes an end connected to the current compensation end, and the current compensation circuit is used to make The current generated on the current compensation circuit and the current generated on the common circuit has an opposite temperature coefficient; the voltage locking circuit also includes an end connected to the voltage locking terminal, the voltage locking circuit is used to make the voltage difference across the second resistor and the emitter of the first transistor Voltage has opposite temperature coefficients.

本案實施例提供的帶差參考電路,藉由設置公共電路,並設置電壓鎖定電路與公共電路連接,可以使公共電路上第二電阻兩端的電壓差與第一電晶體的射極的電壓具有相反的溫度係數,從而使公共電路在輸出端處輸出的參考電壓為抵消過溫度係數的電壓。藉由設置電流補償電路與公共電路連接,可以使電流補償電路上產生的電流與公共電路上產生的電流具有相反的溫度係數,從而使得通過輸出端的並聯電流為經過抵消過溫度係數的電流。藉由設置電流鏡電路,可以在電流鏡電路的第二支路上輸出與電流鏡電路的第一支路上相同的電流,亦即輸出參考電流。因此,本案實施例的帶差參考電路,藉由設置公共電路,能夠同時輸出抵消了溫度係數的參考電壓及參考電流,相較於習知的電路,節省了元件的數量,降低了能耗及成本。 The band difference reference circuit provided in the embodiment of this case can make the voltage difference between the two ends of the second resistor on the common circuit and the voltage of the emitter of the first transistor have the opposite effect by setting up a common circuit and setting up a voltage locking circuit to connect to the common circuit. temperature coefficient, so that the reference voltage output by the common circuit at the output end is a voltage that offsets the temperature coefficient. By configuring the current compensation circuit to be connected to the common circuit, the current generated on the current compensation circuit and the current generated on the common circuit can have opposite temperature coefficients, so that the parallel current passing through the output end is a current that has offset the temperature coefficient. By setting up a current mirror circuit, the same current as the first branch of the current mirror circuit can be output on the second branch of the current mirror circuit, that is, a reference current can be output. Therefore, the band difference reference circuit of this embodiment can simultaneously output a reference voltage and a reference current that offset the temperature coefficient by setting up a common circuit. Compared with the conventional circuit, it saves the number of components, reduces energy consumption and cost.

在一實施例中,所述電流補償電路包括金氧半場效應電晶體、第三電阻以及第一放大器,所述金氧半場效應電晶體的汲極與所述輸出端連接,所述金氧半場效應電晶體的源極與所述第三電阻的一端及所述第一放大器的負輸入端連接,所述金氧半場效應電晶體的閘極與所述第一放大器的輸出端連接;所述第三電阻的另一端接地;所述第一放大器的正輸入端與所述電流補償端連接;所述電壓鎖定端包括第四電阻、第二電晶體以及第二放大器,所述第四電阻的一端與所述輸出端連接,所述第四電阻的另一端與所述第二放大器的負輸入端及所述第二電晶體的射極連接;所述第二電晶體的基極和集極接地;所述第二放大器的正輸入端與所述電壓鎖定端連接。 In one embodiment, the current compensation circuit includes a metal oxide half field effect transistor, a third resistor and a first amplifier. The drain of the metal oxide half field effect transistor is connected to the output end. The metal oxide half field effect transistor is connected to the output terminal. The source of the effect transistor is connected to one end of the third resistor and the negative input end of the first amplifier, and the gate of the metal oxide half field effect transistor is connected to the output end of the first amplifier; The other end of the third resistor is grounded; the positive input end of the first amplifier is connected to the current compensation end; the voltage lock end includes a fourth resistor, a second transistor and a second amplifier, and the fourth resistor One end is connected to the output end, and the other end of the fourth resistor is connected to the negative input end of the second amplifier and the emitter of the second transistor; the base and collector of the second transistor Ground; the positive input terminal of the second amplifier is connected to the voltage lock terminal.

在一實施例中,所述帶差參考電路還包括調節電路,用於調整所述第一電阻、所述第二電阻、所述第三電阻及所述第四電阻的阻值。 In one embodiment, the band difference reference circuit further includes an adjustment circuit for adjusting the resistance values of the first resistor, the second resistor, the third resistor and the fourth resistor.

在一實施例中,所述參考電壓表示為:VREF=VBE1+△VBE2,1(1+R1/R2);其中VBE1為所述第一電晶體的射極的電壓,△VBE2,1為所述第二電阻兩端的電壓差,R1為所述第一電阻的阻值,R2為所述第二電阻的阻值。 In one embodiment, the reference voltage is expressed as: V REF =V BE1 +△V BE2,1 (1+R1/R2); where V BE1 is the voltage of the emitter of the first transistor, △V BE2,1 is the voltage difference across the second resistor, R1 is the resistance of the first resistor, and R2 is the resistance of the second resistor.

在一實施例中,所述參考電流表示為:IREF=nIP=n[VBE1/R3+(1+R1/R4)(△VBE2,1/R2)]; 其中IP為通過所述輸出端的並聯電流,n為所述參考電流與所述並聯電流之間的比值且為正數,VBE1為所述第一電晶體的射極的電壓,R3為所述第三電阻的阻值,R1為所述第一電阻的阻值,R4為所述第四電阻的阻值,△VBE2,1為所述第二電阻兩端的電壓差,R2為所述第二電阻的阻值。 In one embodiment, the reference current is expressed as: I REF =nI P =n[V BE1 /R3+(1+R1/R4)(△V BE2,1 /R2)]; where IP is passed by the The parallel current at the output end, n is the ratio between the reference current and the parallel current and is a positive number, V BE1 is the voltage of the emitter of the first transistor, R3 is the resistance of the third resistor, R1 is the resistance of the first resistor, R4 is the resistance of the fourth resistor, ΔV BE2,1 is the voltage difference across the second resistor, and R2 is the resistance of the second resistor.

在一實施例中,所述第一電阻與所述第四電阻的阻值相等,所述參考電流表示為:IREF=nIP=n[VBE1/R3+2(△VBE2,1/R2)];其中IP為通過所述輸出端的並聯電流,n為所述參考電流與所述並聯電流之間的比值且為正數,VBE1為所述第一電晶體的射極的電壓,R3為所述第三電阻的阻值,△VBE2,1為所述第二電阻兩端的電壓差,R2為所述第二電阻的阻值。 In one embodiment, the resistance values of the first resistor and the fourth resistor are equal, and the reference current is expressed as: I REF =nI P =n[V BE1 /R3+2(ΔV BE2,1 / R2)]; where IP is the parallel current passing through the output terminal, n is the ratio between the reference current and the parallel current and is a positive number, V BE1 is the voltage of the emitter of the first transistor, R3 is the resistance of the third resistor, ΔV BE2,1 is the voltage difference across the second resistor, and R2 is the resistance of the second resistor.

本案實施例另一方面提供一種同時產生參考電壓及參考電流的方法,包括:提供公共電路,所述公共電路包括從一輸出端依次串聯的第一電阻、第二電阻以及第一電晶體,將所述第一電晶體的基極和集極接地,將所述第一電晶體的射極與所述第二電阻連接於電流補償端,將所述第二電阻與所述第一電阻連接於電壓鎖定端;提供電壓鎖定電路,所述電壓鎖定電路包括與所述輸出端連接的一端、接地端以及與所述電壓鎖定端連接的一端;提供電流補償電路,所述電流補償電路包括與所述輸出端連接的一端、接地端以及與所述電流補償端連接的一端;鎖定所述電壓鎖定端的電壓,使所述第二電阻兩端的電壓差與所述第一電晶體的射極的電壓具有相反的溫度係數;在所述輸出端輸出參考電壓;在所述電流補償電路上產生與所述公共電路上的電流具有相反的溫度係數的電流;以及提供一電流鏡電路,將所述電流鏡電路的第一支路與所述輸出端連接,並在所述電流鏡電路的第二支路輸出參考電流。 On the other hand, the embodiment of the present case provides a method for generating a reference voltage and a reference current at the same time, including: providing a common circuit, the common circuit including a first resistor, a second resistor and a first transistor connected in series from an output end. The base and collector of the first transistor are grounded, the emitter of the first transistor and the second resistor are connected to the current compensation terminal, and the second resistor and the first resistor are connected to a voltage locking terminal; a voltage locking circuit is provided, the voltage locking circuit includes an end connected to the output terminal, a ground terminal and an end connected to the voltage locking end; a current compensation circuit is provided, the current compensation circuit includes the The end connected to the output end, the ground end and the end connected to the current compensation end; lock the voltage of the voltage lock end so that the voltage difference between the two ends of the second resistor is equal to the voltage of the emitter of the first transistor having an opposite temperature coefficient; outputting a reference voltage at the output terminal; generating a current having an opposite temperature coefficient to the current on the common circuit on the current compensation circuit; and providing a current mirror circuit to convert the current The first branch of the mirror circuit is connected to the output terminal, and a reference current is output in the second branch of the current mirror circuit.

本案實施例提供的同時產生參考電壓及參考電流的方法,藉由提供公共電路,並設置電壓鎖定電路與公共電路連接,可以使公共電路上第二電阻兩端的電壓差與第一電晶體的射極的電壓具有相反的溫度係數,從而使公共 電路在輸出端處輸出的參考電壓為抵消過溫度係數的電壓。藉由提供電流補償電路與公共電路連接,可以使電流補償電路上產生的電流與公共電路上產生的電流具有相反的溫度係數,從而使得通過輸出端的並聯電流為經過抵消過溫度係數的電流。藉由設置電流鏡電路,可以在電流鏡電路的第二支路上輸出與電流鏡電路的第一支路上相同的電流,亦即輸出參考電流。因此,本案實施例的帶差參考電路,藉由設置公共電路,能夠同時輸出抵消了溫度係數的參考電壓及參考電流,相較於習知的電路,節省了元件的數量,降低了能耗及成本。 The method of generating a reference voltage and a reference current at the same time provided by the embodiment of this case provides a common circuit and sets a voltage locking circuit to connect to the common circuit, so that the voltage difference across the second resistor on the common circuit can be matched with the radiation of the first transistor. pole voltages have opposite temperature coefficients, causing the common The reference voltage output by the circuit at the output terminal is a voltage that offsets the temperature coefficient. By providing a current compensation circuit connected to the common circuit, the current generated on the current compensation circuit and the current generated on the common circuit can have opposite temperature coefficients, so that the parallel current passing through the output end is a current that has offset the temperature coefficient. By setting up a current mirror circuit, the same current as the first branch of the current mirror circuit can be output on the second branch of the current mirror circuit, that is, a reference current can be output. Therefore, the band difference reference circuit of this embodiment can simultaneously output a reference voltage and a reference current that offset the temperature coefficient by setting up a common circuit. Compared with the conventional circuit, it saves the number of components, reduces energy consumption and cost.

在一實施例中,提供電流補償電路包括提供金氧半場效應電晶體、第三電阻以及第一放大器,所述金氧半場效應電晶體的汲極與所述輸出端連接,所述金氧半場效應電晶體的源極與所述第三電阻的一端及所述第一放大器的負輸入端連接,所述金氧半場效應電晶體的閘極與所述第一放大器的輸出端連接;所述第三電阻的另一端接地;所述第一放大器的正輸入端與所述電流補償端連接;以及提供電壓鎖定電路包括提供第四電阻、第二電晶體以及第二放大器,所述第四電阻的一端與所述輸出端連接,所述第四電阻的另一端與所述第二放大器的負輸入端及所述第二電晶體的射極連接;所述第二電晶體的基極和集極接地;所述第二放大器的正輸入端與所述電壓鎖定端連接。 In one embodiment, providing a current compensation circuit includes providing a metal oxide half field effect transistor, a third resistor and a first amplifier. The drain of the metal oxide half field effect transistor is connected to the output terminal. The metal oxide half field effect transistor is connected to the output terminal. The source of the effect transistor is connected to one end of the third resistor and the negative input end of the first amplifier, and the gate of the metal oxide half field effect transistor is connected to the output end of the first amplifier; The other end of the third resistor is grounded; the positive input terminal of the first amplifier is connected to the current compensation terminal; and providing the voltage locking circuit includes providing a fourth resistor, a second transistor and a second amplifier, the fourth resistor One end of the fourth resistor is connected to the output end, and the other end of the fourth resistor is connected to the negative input end of the second amplifier and the emitter of the second transistor; the base and collector of the second transistor The positive input terminal of the second amplifier is connected to the voltage lock terminal.

在一實施例中,所述參考電壓表示為:VBEF=VBE1+△VBE2,1(1+R1/R2);其中VBE1為所述第一電晶體的射極的電壓,△VBE2,1為所述第二電阻兩端的電壓差,R1為所述第一電阻的阻值,R2為所述第二電阻的阻值;以及在所述輸出端輸出參考電壓包括:調節所述第一電阻及所述第二電阻的阻值,使得所述參考電壓為零溫度係數的電壓。 In one embodiment, the reference voltage is expressed as: V BEF =V BE1 + △V BE2,1 (1+R1/R2); where V BE1 is the voltage of the emitter of the first transistor, △V BE2,1 is the voltage difference across the second resistor, R1 is the resistance of the first resistor, R2 is the resistance of the second resistor; and outputting the reference voltage at the output terminal includes: adjusting the The resistance values of the first resistor and the second resistor are such that the reference voltage is a voltage with zero temperature coefficient.

在一實施例中,所述參考電流表示為:IREF=nIP=n[VBE1/R3+(1+R1/R4)(△VBE2,1/R2)];其中IP為通過所述輸出端的並聯電流,n為所述參考電流與所述並聯電流之間的比值且為正數,VBE1為所述第一電晶體的射極的電壓,R3為所述第三電阻的阻值,R1為所述第一電阻的阻值,R4為所述第四電阻的阻值,△VBE2,1為所述第二電阻兩端的電壓差,R2為所述第二電阻的阻值;以及在所述電流鏡電路 的第二支路輸出參考電流包括:調節所述第一電阻、所述第二電阻、所述第三電阻及所述第四電阻的阻值,使得所述參考電流為零溫度係數的電流。 In one embodiment, the reference current is expressed as: I REF =nI P =n[V BE1 /R3+(1+R1/R4)(ΔV BE2,1 /R2)]; where I P is passed by the The parallel current at the output end, n is the ratio between the reference current and the parallel current and is a positive number, V BE1 is the voltage of the emitter of the first transistor, R3 is the resistance of the third resistor, R1 is the resistance of the first resistor, R4 is the resistance of the fourth resistor, ΔV BE2,1 is the voltage difference across the second resistor, R2 is the resistance of the second resistor; and Outputting the reference current in the second branch of the current mirror circuit includes: adjusting the resistance values of the first resistor, the second resistor, the third resistor and the fourth resistor, so that the reference current is A current with zero temperature coefficient.

在一實施例中,所述第一電阻與所述第四電阻的阻值相等,所述參考電流表示為:IREF=nIP=n[VBE1/R3+2(△VBE2,1/R2)];其中IP為通過所述輸出端的並聯電流,n為所述參考電流與所述並聯電流之間的比值且為正數,VBE1為所述第一電晶體的射極的電壓,R3為所述第三電阻的阻值,△VBE2,1為所述第二電阻兩端的電壓差,R2為所述第二電阻的阻值;以及在所述電流鏡電路的第二支路輸出參考電流包括:調節所述第二電阻及所述第三電阻的阻值,使得所述參考電流為零溫度係數的電流。 In one embodiment, the resistance values of the first resistor and the fourth resistor are equal, and the reference current is expressed as: I REF =nI P =n[V BE1 /R3+2(ΔV BE2,1 / R2)]; where IP is the parallel current passing through the output terminal, n is the ratio between the reference current and the parallel current and is a positive number, V BE1 is the voltage of the emitter of the first transistor, R3 is the resistance of the third resistor, △V BE2,1 is the voltage difference across the second resistor, R2 is the resistance of the second resistor; and in the second branch of the current mirror circuit Outputting the reference current includes: adjusting the resistance values of the second resistor and the third resistor so that the reference current is a current with zero temperature coefficient.

100:帶差參考電路 100: Band difference reference circuit

1:電流鏡電路 1: Current mirror circuit

10:第一支路 10:The first branch

11:公共電路 11:Public circuit

13:電流補償電路 13: Current compensation circuit

15:電壓鎖定電路 15: Voltage lock circuit

30:第二支路 30:Second branch

R1:第一電阻 R1: first resistor

R2:第二電阻 R2: second resistor

R3:第三電阻 R3: The third resistor

R4:第四電阻 R4: The fourth resistor

Q1:第一電晶體 Q1: The first transistor

Q2:第二電晶體 Q2: Second transistor

OP1:第一放大器 OP1: first amplifier

OP2:第二放大器 OP2: Second amplifier

M1、M2、M3:金氧半場效應電晶體 M1, M2, M3: metal oxide half field effect transistor

V1、V4:端點 V 1 , V 4 : endpoints

V2:電流補償端 V 2 : Current compensation terminal

V3:電壓鎖定端 V 3 : voltage lock terminal

VDD:電源電壓端 V DD : power supply voltage terminal

P:輸出端 P: output terminal

VREF:參考電壓 V REF : reference voltage

IP:並聯電流 IP : Parallel current

IREF:參考電流 I REF : reference current

IPTAT:公共電流 I PTAT : Common current

ICTAT:第一電流 I CTAT : first current

I2:第二電流 I 2 : second current

S1、S2、S3、S4、S5、S6、S7:步驟 S1, S2, S3, S4, S5, S6, S7: steps

圖1為本案一實施例的帶差參考電路的示意圖。 Figure 1 is a schematic diagram of a band difference reference circuit according to an embodiment of the present invention.

圖2為本案一實施例的帶差參考電路的電路圖。 FIG. 2 is a circuit diagram of a band difference reference circuit according to an embodiment of the present invention.

圖3為本案一實施例的同時產生參考電壓及參考電流的方法的流程圖。 FIG. 3 is a flow chart of a method for generating a reference voltage and a reference current simultaneously according to an embodiment of the present invention.

下面將結合本案實施例中的附圖,對本案實施例中的技術方案進行清楚、完整地描述,顯然,所描述的實施例是本案的一部分實施例,而不是全部的實施例。 The technical solutions in the embodiments of this case will be clearly and completely described below with reference to the accompanying drawings in the embodiments of this case. Obviously, the described embodiments are part of the embodiments of this case, rather than all of the embodiments.

除非另有定義,本案所使用的所有的技術和科學術語與屬於本案的技術領域的技術人員通常理解的含義相同。在本案的說明書中所使用的術語只是為了描述具體的實施例的目的,不是旨在於限制本案。 Unless otherwise defined, all technical and scientific terms used herein have the same meanings as commonly understood by a person skilled in the art belonging to the subject matter. The terms used in the description of this case are only for the purpose of describing specific embodiments and are not intended to limit this case.

為能進一步闡述本發明達成預定目的所採取的技術手段及功效,以下結合附圖及較佳實施方式,對本案作出如下詳細說明。 In order to further elaborate on the technical means and effects adopted by the present invention to achieve the intended purpose, the case is described in detail below in conjunction with the accompanying drawings and preferred embodiments.

本案實施例提供一種帶差參考電路,請一併參閱圖1及圖2,帶差參考電路100包括公共電路11、電流補償電路13、電壓鎖定電路15以及電流鏡電路1。其中,公共電路11包括從一輸出端P依次串聯的第一電阻R1、第二電阻R2以及第一電晶體Q1,第一電阻R1和第二電阻R2連接於電壓鎖定端V3,第一電晶 體Q1的基極和集極接地,第一電晶體Q1的射極和第二電阻R2連接於電流補償端V2,輸出端P用於輸出參考電壓VREF。電流補償電路13包括與輸出端P連接的一端和接地端。電壓鎖定電路15包括與輸出端P連接的一端和接地端。電流鏡電路1的第一支路10與輸出端P連接以提供並聯電流IP,電流鏡電路1的第二支路30用於輸出參考電流IREF,並聯電流IP等於公共電路11、電流補償電路13以及電壓鎖定電路15的電流之和,參考電流IREF可以等於並聯電流IP或與並聯電流IP成比例。例如,參考電流IREF與並聯電流IP之間的比例可為0.8、1、1.5、2、4等。 This embodiment provides a band difference reference circuit. Please refer to FIGS. 1 and 2 together. The band difference reference circuit 100 includes a common circuit 11 , a current compensation circuit 13 , a voltage locking circuit 15 and a current mirror circuit 1 . Among them, the common circuit 11 includes a first resistor R1, a second resistor R2 and a first transistor Q1 connected in series from an output terminal P. The first resistor R1 and the second resistor R2 are connected to the voltage locking terminal V 3 . The base and collector of the crystal Q1 are grounded, the emitter of the first transistor Q1 and the second resistor R2 are connected to the current compensation terminal V 2 , and the output terminal P is used to output the reference voltage VREF . The current compensation circuit 13 includes one end connected to the output terminal P and a ground terminal. The voltage lock circuit 15 includes one end connected to the output terminal P and a ground terminal. The first branch 10 of the current mirror circuit 1 is connected to the output terminal P to provide a parallel current IP . The second branch 30 of the current mirror circuit 1 is used to output the reference current I REF . The parallel current IP is equal to the current of the common circuit 11 and The reference current I REF , the sum of the currents of the compensation circuit 13 and the voltage locking circuit 15, may be equal to the parallel current IP or proportional to the parallel current IP . For example, the ratio between the reference current I REF and the parallel current IP can be 0.8, 1, 1.5, 2, 4, etc.

在本實施例中,電流補償電路13還與公共電路11連接於電流補償端V2,用於使電流補償電路13上產生的第一電流ICTAT與公共電路11上產生的公共電流IPTAT具有相反的溫度係數。例如,公共電流IPTAT具有正溫度係數,第一電流ICTAT具有負溫度係數。電壓鎖定電路15還與公共電路11連接於電壓鎖定端V3,用於使第二電阻R2兩端的電壓差與第一電晶體Q1的射極的電壓具有相反的溫度係數。例如,第二電阻R2兩端的電壓差具有正溫度係數,第一電晶體Q1的射極的電壓具有負溫度係數。 In this embodiment, the current compensation circuit 13 is also connected to the current compensation terminal V 2 with the common circuit 11, so that the first current I CTAT generated on the current compensation circuit 13 and the common current I PTAT generated on the common circuit 11 have the same relationship. Opposite temperature coefficient. For example, the common current I PTAT has a positive temperature coefficient and the first current I CTAT has a negative temperature coefficient. The voltage locking circuit 15 is also connected to the voltage locking terminal V 3 with the common circuit 11 for making the voltage difference across the second resistor R2 and the voltage of the emitter of the first transistor Q1 have an opposite temperature coefficient. For example, the voltage difference across the second resistor R2 has a positive temperature coefficient, and the voltage at the emitter of the first transistor Q1 has a negative temperature coefficient.

在本實施例中,電流鏡電路1包括一電源電壓端VDD作為電源,第一支路10包括金氧半場效應電晶體M1,金氧半場效應電晶體M1的源極與電源電壓端VDD連接,汲極與共同連接到輸出端P的公共電路11、電流補償電路13及電壓鎖定電路15連接,以提供流經輸出端P的並聯電流IP。第二支路30包括金氧半場效應電晶體M2,金氧半場效應電晶體M2的源極與電源電壓端VDD連接,汲極用於輸出參考電流IREF。電流鏡電路1的金氧半場效應電晶體M1和金氧半場效應電晶體M2的閘極之間相互連接。在電流鏡電路1中,第一支路10上的並聯電流IP與第二支路30上的參考電流IREF成一定比例。具體來說,並聯電流IP與參考電流IREF之間的比例與金氧半場效應電晶體M1與金氧半場效應電晶體M2有關。例如,當金氧半場效應電晶體M1與金氧半場效應電晶體M2相同時,並聯電流IP與參考電流IREF相等。 In this embodiment, the current mirror circuit 1 includes a power supply voltage terminal V DD as a power supply. The first branch 10 includes a metal oxide half field effect transistor M1. The source of the metal oxide half field effect transistor M1 is connected to the power supply voltage terminal V DD. connection, the drain is connected to the common circuit 11, the current compensation circuit 13 and the voltage locking circuit 15 that are commonly connected to the output terminal P to provide a parallel current IP flowing through the output terminal P. The second branch 30 includes a metal oxide semi-field effect transistor M2. The source of the metal oxide semi-field effect transistor M2 is connected to the power supply voltage terminal V DD , and the drain is used to output the reference current I REF . The gates of the metal oxide half field effect transistor M1 and the metal oxide half field effect transistor M2 of the current mirror circuit 1 are connected to each other. In the current mirror circuit 1, the parallel current IP on the first branch 10 is proportional to the reference current I REF on the second branch 30. Specifically, the ratio between the parallel current IP and the reference current I REF is related to the metal oxide half field effect transistor M1 and the metal oxide half field effect transistor M2. For example, when the MOSFET M1 and the MOSFET M2 are the same, the parallel current IP is equal to the reference current I REF .

在本實施例中,電流補償電路13包括第三電阻R3以及第一放大器OP1,第三電阻R3的一端接地,另一端與第一放大器OP1的負輸入端連接(記為端點V1),第一放大器OP1的正輸入端與電流補償端V2連接。電流補償端V2位於第二電阻R2與第一電晶體Q1之間。 In this embodiment, the current compensation circuit 13 includes a third resistor R3 and a first amplifier OP1. One end of the third resistor R3 is grounded, and the other end is connected to the negative input end of the first amplifier OP1 (denoted as endpoint V 1 ). The positive input terminal of the first amplifier OP1 is connected to the current compensation terminal V2 . The current compensation terminal V2 is located between the second resistor R2 and the first transistor Q1.

在本實施例中,電流補償電路13還包括金氧半場效應電晶體M3。金氧半場效應電晶體M3的源極與第三電阻R3、第一放大器OP1的負輸入端連接於端點V1,汲極連接於輸出端P,閘極與第一放大器OP1的輸出端連接,亦即第一放大器OP1還用於控制金氧半場效應電晶體M3的偏壓。 In this embodiment, the current compensation circuit 13 further includes a metal oxide semiconductor field effect transistor M3. The source of the MOSFET M3 is connected to the third resistor R3, the negative input terminal of the first amplifier OP1 is connected to the end point V 1 , the drain is connected to the output terminal P, and the gate is connected to the output terminal of the first amplifier OP1 , that is, the first amplifier OP1 is also used to control the bias voltage of the metal oxide semiconductor field effect transistor M3.

在本實施例中,電壓鎖定電路15包括第二電晶體Q2以及第二放大器OP2。第二電晶體Q2的基極和集極接地,射極與第二放大器OP2的負輸入端連接於端點V4。第二放大器OP2的正輸入端與電壓鎖定端V3連接,用於使電壓鎖定端V3的電壓與第二電晶體Q2的射極的電壓相等,電壓鎖定端V3位於第一電阻R1與第二電阻R2之間。電壓鎖定電路15還包括第四電阻R4,第四電阻R4的一端、第二電晶體Q2的射極、以及第二放大器OP2的負輸入端連接於端點V4,第四電阻R4的另一端與輸出端P連接。第二放大器OP2的輸出端與金氧半場效應電晶體M1和金氧半場效應電晶體M2的閘極連接在一起,以控制第一支路10和第二支路30的偏壓。 In this embodiment, the voltage locking circuit 15 includes a second transistor Q2 and a second amplifier OP2. The base and collector of the second transistor Q2 are grounded, and the emitter and the negative input terminal of the second amplifier OP2 are connected to the terminal V 4 . The positive input terminal of the second amplifier OP2 is connected to the voltage locking terminal V3 for making the voltage of the voltage locking terminal V3 equal to the voltage of the emitter of the second transistor Q2. The voltage locking terminal V3 is located between the first resistor R1 and between the second resistor R2. The voltage locking circuit 15 also includes a fourth resistor R4. One end of the fourth resistor R4, the emitter of the second transistor Q2, and the negative input end of the second amplifier OP2 are connected to the terminal V 4 . The other end of the fourth resistor R4 Connect to output terminal P. The output terminal of the second amplifier OP2 is connected to the gates of the metal oxide semiconductor field effect transistor M1 and the metal oxide semiconductor field effect transistor M2 to control the bias voltage of the first branch 10 and the second branch 30 .

在本實施例中,第二電晶體Q2與第一電晶體Q1均為負溫度係數的元件。亦即第一電晶體Q1與第二電晶體Q2的等效電阻會隨著溫度的升高而降低。因此第二電晶體Q2的射極的電壓(記為VBE2)與第一電晶體Q1在射極的電壓(記為VBE1)均具有負溫度係數。本實施例中的第二電晶體Q2與第一電晶體Q1還可以分別包括複數相同類型的電晶體,但第一電晶體Q1與第二電晶體Q2包括的電晶體的數量不同(例如數量比例為8:1),本案對此不做限制。 In this embodiment, both the second transistor Q2 and the first transistor Q1 are negative temperature coefficient components. That is, the equivalent resistance of the first transistor Q1 and the second transistor Q2 will decrease as the temperature increases. Therefore, the voltage at the emitter of the second transistor Q2 (denoted as V BE2 ) and the voltage at the emitter of the first transistor Q1 (denoted as V BE1 ) both have negative temperature coefficients. In this embodiment, the second transistor Q2 and the first transistor Q1 may also include a plurality of transistors of the same type, but the first transistor Q1 and the second transistor Q2 include different numbers of transistors (for example, the number ratio is 8:1), there is no restriction on this in this case.

在本實施例中,第二放大器OP2的正輸入端接於第一電阻R1與第二電阻R2之間的電壓鎖定端V3,負輸入端接於第二電晶體Q2的射極(記為端點V4),由於虛短路(virtual short)的效應,使得在電壓鎖定端V3及端點V4處的電壓相等。由於在公共電路11上,從電壓鎖定端V3到接地端依次經過第二電阻R2和第一電晶體Q1,而在電壓鎖定電路15上,從端點V4到接地端只經過第二電晶體Q2,在電壓相同的情況下,流經第一電晶體Q1的電流與流經第二電晶體Q2的電流密度不同,而在第一電晶體Q1與第二電晶體Q2具有相同的溫度係數的情況下,施加在第二電阻R2上的電壓差(等效於第二電晶體Q2與第一電晶體Q1的射極之間的電壓差,記為△VBE2,1)具有與第一電晶體Q1的發射端的電壓VBE1相反的溫度係數。 In this embodiment, the positive input terminal of the second amplifier OP2 is connected to the voltage locking terminal V 3 between the first resistor R1 and the second resistor R2, and the negative input terminal is connected to the emitter of the second transistor Q2 (denoted as Endpoint V 4 ), due to the effect of a virtual short circuit, the voltages at the voltage locking end V 3 and the end point V 4 are equal. Because on the common circuit 11, from the voltage locking terminal V3 to the ground terminal, it passes through the second resistor R2 and the first transistor Q1 in sequence, while on the voltage locking circuit 15, from the terminal V4 to the grounding terminal, it only passes through the second resistor R2 and the first transistor Q1. Crystal Q2, when the voltage is the same, the current flowing through the first transistor Q1 and the current density flowing through the second transistor Q2 are different, and the first transistor Q1 and the second transistor Q2 have the same temperature coefficient. In the case of , the voltage difference applied to the second resistor R2 (equivalent to the voltage difference between the emitters of the second transistor Q2 and the first transistor Q1, recorded as △V BE2,1 ) has the same value as the first The voltage V BE1 at the emitter terminal of transistor Q1 has an opposite temperature coefficient.

在本實施例中,公共電路11用於輸出參考電壓VREF,且可以由第一電晶體Q1的發射端的電壓VBE1、第二電阻R2兩端的電壓差△VBE2,1、第一電阻R1、第二電阻R2決定參考電壓VREF。具體來說,參考電壓VREF可以表示為:VREF=VBE1+△VBE2,1(1+R1/R2); (1) 其中VBE1為第一電晶體Q1的射極的電壓,△VBE2,1為第二電阻R2兩端的電壓差,R1為第一電阻R1的阻值,R2為第二電阻R2的阻值。具體來說,輸出端P處輸出的參考電壓VREF為施加在第一電阻R1、第二電阻R2以及第一電晶體Q1三個元件上的電壓之和,其中,由於第一電晶體Q1的基極和集極接地,因此施加在第一電晶體Q1上的電壓即為VBE1,而施加在第二電阻R2上的電壓即為△VBE2,1,此時通過第二電阻R2的電流可以表示為△VBE2,1/R2,則與第二電阻R2串聯的第一電阻R1上的電壓即可表示為(△VBE2,1/R2)*R1,因此第一電阻R1與第二電阻R2上的電壓和即為△VBE2,1(1+R1/R2)。 In this embodiment, the common circuit 11 is used to output the reference voltage V REF , and can be determined by the voltage V BE1 at the emitter end of the first transistor Q1 , the voltage difference ΔV BE2,1 across the second resistor R2 , and the first resistor R1 , the second resistor R2 determines the reference voltage VREF . Specifically, the reference voltage V REF can be expressed as: V REF =V BE1 +△V BE2,1 (1+R1/R2); (1) where V BE1 is the voltage of the emitter of the first transistor Q1, △ V BE2,1 is the voltage difference across the second resistor R2, R1 is the resistance of the first resistor R1, and R2 is the resistance of the second resistor R2. Specifically, the reference voltage V REF output at the output terminal P is the sum of the voltages applied to the three components of the first resistor R1, the second resistor R2, and the first transistor Q1, where, due to the The base and collector are grounded, so the voltage applied to the first transistor Q1 is V BE1 , and the voltage applied to the second resistor R2 is △V BE2,1 . At this time, the current through the second resistor R2 can be expressed as △V BE2,1 /R2, then the voltage on the first resistor R1 connected in series with the second resistor R2 can be expressed as (△V BE2,1 /R2)*R1, so the first resistor R1 and the second resistor R2 The sum of the voltages across resistor R2 is △V BE2,1 (1+R1/R2).

在本實施例中,由於VBE1與△VBE2,1具有相反的溫度係數,因此可利用公式(1),藉由調整第一電阻R1與第二電阻R2的阻值,使輸出端P輸出的參考電壓VREF具有零溫度係數(亦即抵消溫度係數的影響)。具體來說,第一電晶體Q1為PNP雙極性電晶體,當其基極和集極接地時,其射極處的電壓VBE1具有負溫度係數,亦即電壓VBE1的值會隨著溫度的升高而下降。而施加在第二電阻R2兩端的電壓差△VBE2,1具有與電壓VBE1相反的正溫度係數,亦即電壓△VBE2,1的值會隨著溫度的升高而增加。由於施加在第二電阻R2兩端的電壓差△VBE2,1具有正溫度係數,因此由此產生的流經第二電阻R2的公共電流IPTAT也具有正溫度係數,由於第一電阻R1與第二電阻R2串聯,因此公共電流IPTAT同樣流經第一電阻R1,使得施加在第一電阻R1兩端的電壓差也具有正溫度係數。藉由調整第一電阻R1與第二電阻R2的阻值,可以進而調整輸出端P處輸出的參考電壓VREF的溫度係數,從而使參考電壓VREF不受溫度的影響,亦即,使參考電壓VREF具有零溫度係數。 In this embodiment, since V BE1 and △V BE2,1 have opposite temperature coefficients, formula (1) can be used to adjust the resistance values of the first resistor R1 and the second resistor R2 to make the output terminal P output The reference voltage V REF has zero temperature coefficient (that is, the effect of the temperature coefficient is canceled). Specifically, the first transistor Q1 is a PNP bipolar transistor. When its base and collector are grounded, the voltage V BE1 at its emitter has a negative temperature coefficient, that is, the value of the voltage V BE1 will change with the temperature. rises and falls. The voltage difference ΔV BE2,1 applied across the second resistor R2 has a positive temperature coefficient opposite to the voltage V BE1 , that is, the value of the voltage ΔV BE2,1 will increase as the temperature increases. Since the voltage difference ΔV BE2,1 applied across the second resistor R2 has a positive temperature coefficient, the resulting common current I PTAT flowing through the second resistor R2 also has a positive temperature coefficient. The two resistors R2 are connected in series, so the common current I PTAT also flows through the first resistor R1, so that the voltage difference applied across the first resistor R1 also has a positive temperature coefficient. By adjusting the resistance values of the first resistor R1 and the second resistor R2, the temperature coefficient of the reference voltage V REF output at the output terminal P can be adjusted, so that the reference voltage V REF is not affected by temperature, that is, the reference voltage V REF Voltage V REF has zero temperature coefficient.

本案實施例提供的帶差參考電路100,藉由設置公共電路11及電壓鎖定電路15,並將電壓鎖定電路15中的第二放大器OP2的負輸入端接在端點V4,正輸入端接在電壓鎖定端V3,可以利用第二放大器OP2的虛短路效應將電壓鎖定端V3與端點V4的電壓鎖定,並藉由將電壓鎖定端V3處依次連接第一電阻R1和第一電晶體Q1的射極,在端點V4處連接第二電晶體Q2的射極,並將第一電晶體Q1 的基極和集極以及第二電晶體Q2的基極和集極接地,可以利用流經第一電晶體Q1和第二電晶體Q2的電流密度不同,從而使施加在第二電阻R2兩端的電壓差具有與第一電晶體Q1的射極上的電壓相反的溫度係數。進而藉由調整第一電阻R1與第二電阻R2的阻值,從而使輸出端P能夠輸出具有零溫度係數的參考電壓VREFThe band difference reference circuit 100 provided in the embodiment of this case is provided by setting a common circuit 11 and a voltage locking circuit 15, and connecting the negative input terminal of the second amplifier OP2 in the voltage locking circuit 15 to the end point V 4 and the positive input terminal At the voltage locking terminal V 3 , the virtual short-circuit effect of the second amplifier OP2 can be used to lock the voltage of the voltage locking terminal V 3 and the end point V 4 , and by connecting the voltage locking terminal V 3 to the first resistor R1 and the first resistor R1 in sequence. The emitter of a transistor Q1 is connected to the emitter of the second transistor Q2 at the end point V4 , and the base and collector of the first transistor Q1 and the base and collector of the second transistor Q2 are grounded. , different current densities flowing through the first transistor Q1 and the second transistor Q2 can be utilized, so that the voltage difference applied across the second resistor R2 has a temperature coefficient opposite to the voltage on the emitter of the first transistor Q1. Then, by adjusting the resistance values of the first resistor R1 and the second resistor R2, the output terminal P can output the reference voltage VREF with zero temperature coefficient.

在本實施例中,由於虛短路效應,端點V1處的電壓與電流補償端V2的電壓相等,而電流補償端V2處的電壓為第一電晶體Q1的射極的電壓VBE1,電壓VBE1具有負溫度係數的特性,因此端點V1處的電壓同樣具有負溫度係數的特性。由於端點V1處的電壓作用於第三電阻R3,因此流經第三電阻R3的第一電流ICTAT即具有與電壓VBE1相同的負溫度係數,亦即隨著溫度的升高,第一電流ICTAT的值會隨之降低。另一方面,公共電路11上的公共電流IPTAT具有正溫度係數。因此,公共電路11和電流補償電路13上的電流具有相反的溫度係數。 In this embodiment, due to the virtual short circuit effect, the voltage at the end point V 1 is equal to the voltage at the current compensation terminal V 2 , and the voltage at the current compensation terminal V 2 is the voltage V BE1 of the emitter of the first transistor Q1 , the voltage V BE1 has the characteristic of negative temperature coefficient, so the voltage at the end point V 1 also has the characteristic of negative temperature coefficient. Since the voltage at the terminal V 1 acts on the third resistor R3, the first current I CTAT flowing through the third resistor R3 has the same negative temperature coefficient as the voltage V BE1 , that is, as the temperature increases, the first current I CTAT The value of a current I CTAT will decrease accordingly. On the other hand, the common current I PTAT on the common circuit 11 has a positive temperature coefficient. Therefore, the currents on the common circuit 11 and the current compensation circuit 13 have opposite temperature coefficients.

在本實施例中,電流補償電路13、電壓鎖定電路15以及公共電路11均連接於輸出端P上,因此經過輸出端P的並聯電流IP即為三個電路的電流之和,且公共電路11上的公共電流IPTAT與電流補償電路13上的第一電流ICTAT具有相反的溫度係數。例如,公共電流IPTAT具有正溫度係數,而第一電流ICTAT具有負溫度係數。因此並聯電流IP包括了具有相反溫度係數的公共電流IPTAT和第一電流ICTAT,使得並聯電流IP的溫度係數可以藉由調整公共電流IPTAT和第一電流ICTAT的值,從而成為具有零溫度係數的電流,進而使得從電流鏡電路1的第二支路30輸出的參考電流IREF同樣為具有零溫度係數的電流。 In this embodiment, the current compensation circuit 13, the voltage locking circuit 15 and the common circuit 11 are all connected to the output terminal P, so the parallel current IP passing through the output terminal P is the sum of the currents of the three circuits, and the common circuit The common current I PTAT on 11 and the first current I CTAT on the current compensation circuit 13 have opposite temperature coefficients. For example, the common current I PTAT has a positive temperature coefficient, while the first current I CTAT has a negative temperature coefficient. Therefore, the parallel current IP includes the common current I PTAT and the first current I CTAT with opposite temperature coefficients, so that the temperature coefficient of the parallel current IP can be adjusted by adjusting the values of the common current I PTAT and the first current I CTAT , thus becoming The current has a zero temperature coefficient, so that the reference current I REF output from the second branch 30 of the current mirror circuit 1 is also a current with a zero temperature coefficient.

在本實施例中,電流鏡電路1的第二支路30用於複製並聯電流IP,以產生參考電流IREF。具體來說,參考電流IREF可以表示為:IREF=nIP=n[ICTAT+IPTAT+I2]=n[VBE1/R3+△VBE2,1/R2+I2]; (2) 其中,R3為第三電阻R3的阻值,n為參考電流IREF與並聯電流IP之間的比值,VBE1/R3為電流補償電路13上的電流,△VBE2,1/R2為公共電路11上的電流,I2為電壓鎖定電路15上的電流。此外,n可為任意正數,例如:0.8、1、1.5、2、4等。由於公共電路11、電流補償電路13及電壓鎖定電路15上的電流均具有一定的溫度係數,且公共電路11與電流補償電路13上電流的溫度係數相反,因此並聯電流IP可以藉由調整每一支路上電流的溫度係數來實現零溫度係數。 In this embodiment, the second branch 30 of the current mirror circuit 1 is used to copy the parallel current IP to generate the reference current I REF . Specifically, the reference current I REF can be expressed as: I REF =nI P =n[I CTAT +I PTAT +I 2 ]=n[V BE1 /R3+△V BE2,1 /R2+I 2 ]; (2 ) Among them, R3 is the resistance of the third resistor R3, n is the ratio between the reference current I REF and the parallel current IP , V BE1 /R3 is the current on the current compensation circuit 13, △V BE2,1 /R2 is The current on the common circuit 11, I2, is the current on the voltage lock circuit 15. In addition, n can be any positive number, such as: 0.8, 1, 1.5, 2, 4, etc. Since the currents on the common circuit 11, the current compensation circuit 13 and the voltage locking circuit 15 all have a certain temperature coefficient, and the temperature coefficients of the currents on the common circuit 11 and the current compensation circuit 13 are opposite, the parallel current IP can be adjusted by adjusting each The temperature coefficient of the current on one branch is used to achieve zero temperature coefficient.

在一實施例中,電壓鎖定電路15上的第二電流I2可由第一電阻R1與第四電阻R4的阻值來調整。在此情況下,可根據第一電阻R1與第四電阻R4的電阻值比值來對應改變第二電晶體Q2與第一電晶體Q1的數量比例,從而將第二電流I2與公共電流IPTAT相關聯。亦即:I2=(R1/R4)IPTAT; (3) 則參考電流可以表示為:IREF=nIP=n[ICTAT+IPTAT+I2]=n[VBE1/R3+(1+R1/R4)(△VBE2,1/R2)]; (4) 換句話說,在這樣的實施例中,可藉由調整第一電阻R1、第二電阻R2、第三電阻R3與第四電阻R4的阻值,使並聯電流IP具有零溫度係數(亦即抵消溫度係數的影響)。並且在電路設計上,具有較高的靈活性,以符合各種應用需求。例如,在低電流的需求下,可增加第四電阻R4的阻值,並對應減小第二電晶體Q2與第一電晶體Q1的數量比例。 In one embodiment, the second current I 2 on the voltage lock circuit 15 can be adjusted by the resistance values of the first resistor R1 and the fourth resistor R4. In this case, the quantity ratio of the second transistor Q2 and the first transistor Q1 can be changed according to the resistance value ratio of the first resistor R1 and the fourth resistor R4, so that the second current I 2 and the common current I PTAT associated. That is: I 2 =(R1/R4)I PTAT ; (3) The reference current can be expressed as: I REF =nI P =n[I CTAT +I PTAT +I 2 ]=n[V BE1 /R3+(1 +R1/R4)(△V BE2,1 /R2)]; (4) In other words, in such an embodiment, the first resistor R1, the second resistor R2, the third resistor R3 and the third resistor can be adjusted. The resistance of the four resistors R4 makes the parallel current IP have a zero temperature coefficient (that is, canceling the influence of the temperature coefficient). And it has high flexibility in circuit design to meet various application needs. For example, under low current requirements, the resistance of the fourth resistor R4 can be increased, and the ratio of the second transistor Q2 to the first transistor Q1 can be correspondingly reduced.

由此可見,藉由設置第四電阻R4與第一電阻R1之間的阻值(連同設置第一電晶體Q1與第二電晶體Q2之間的數量比例),可以使電壓鎖定電路15上的第二電流I2的值與公共電路11上的公共電流IPTAT的值相關聯,從而使得參考電流IREF可以完全由各個元件的參數來決定,進而可以藉由調整第一電阻R1、第二電阻R2、第三電阻R3以及第四電阻R4來得到具有零溫度係數的參考電流IREFIt can be seen that by setting the resistance between the fourth resistor R4 and the first resistor R1 (along with setting the quantitative ratio between the first transistor Q1 and the second transistor Q2), the voltage locking circuit 15 can be The value of the second current I 2 is associated with the value of the common current I PTAT on the common circuit 11 , so that the reference current I REF can be completely determined by the parameters of each component, and can then be adjusted by adjusting the first resistor R1 and the second resistor R1 . The resistor R2, the third resistor R3 and the fourth resistor R4 are used to obtain the reference current I REF with zero temperature coefficient.

在另一實施例中,第四電阻R4的阻值與第一電阻R1的阻值也可以實質上相等,使得電壓鎖定電路15上的第二電流I2與公共電路11上的公共電流IPTAT的電流值實質上相等。具體來說,由於公共電路11與電壓鎖定電路15均為從輸出端P連接到接地端,在電壓鎖定端V3與端點V4的電壓相等時,第一電阻R1與第四電阻R4受到的跨壓也相等。因此當第一電阻R1的阻值與第四電阻R4的阻值相同時,公共電路11上的公共電流IPTAT與電壓鎖定電路15上的第二電流I2也相同,且具有相同的溫度係數,此時的參考電流IREF則可表示為:IREF=nIP=n[ICTAT+2IPTAT]=n[VBE1/R3+2(△VBE2,1/R2)]; (5) 由此可見,參考電流IREF中包括具有相反溫度係數的VBE1和△VBE2,1,以及作為變量的R2和R3。因此可利用公式(5),藉由調整第二電阻R2與第三電阻R3的阻值,使參考電流IREF具有零溫度係數(亦即抵消溫度係數的影響)。 In another embodiment, the resistance of the fourth resistor R4 and the resistance of the first resistor R1 may also be substantially equal, so that the second current I 2 on the voltage locking circuit 15 and the common current I PTAT on the common circuit 11 The current values are essentially the same. Specifically, since the common circuit 11 and the voltage lock circuit 15 are both connected from the output terminal P to the ground terminal, when the voltages of the voltage lock terminal V 3 and the end point V 4 are equal, the first resistor R1 and the fourth resistor R4 are affected by The cross-voltage is also the same. Therefore, when the resistance value of the first resistor R1 is the same as the resistance value of the fourth resistor R4, the common current I PTAT on the common circuit 11 and the second current I 2 on the voltage locking circuit 15 are also the same and have the same temperature coefficient. , the reference current I REF at this time can be expressed as: I REF =nI P =n[I CTAT +2I PTAT ]=n[V BE1 /R3+2(△V BE2,1 /R2)]; (5) It can be seen that the reference current I REF includes V BE1 and ΔV BE2,1 with opposite temperature coefficients, as well as R2 and R3 as variables. Therefore, formula (5) can be used to adjust the resistance values of the second resistor R2 and the third resistor R3 so that the reference current I REF has a zero temperature coefficient (that is, the influence of the temperature coefficient is offset).

本案實施例提供的帶差參考電路100,藉由設置公共電路11和電流補償電路13,並將電流補償電路13的第一放大器OP1的正輸入端接在電流補償端 V2,負輸入端接在端點V1,可以使端點V1及電流補償端V2具有相同的電壓,從而使第三電阻R3兩端的電壓差的溫度係數與第一電晶體Q1的射極的電壓的溫度係數相同,進而使電流補償電路13的第一電流ICTAT具有與公共電路的公共電流IPTAT相反的溫度係數,最終使公共電路11、電流補償電路13與電壓鎖定電路15的電流之和為抵消了溫度係數的並聯電流IP。另一方面,藉由設置第四電阻R4的阻值與第一電阻R1的阻值相等,可以使電壓鎖定電路15上的第二電流I2與公共電流IPTAT相等,從而簡化計算過程,並得到具有零溫度係數的並聯電流IP。藉由設置電流鏡電路1,可以使第二支路30輸出與並聯電流IP相等或成比例的參考電流IREF,亦即具有零溫度係數的參考電流IREFThe band difference reference circuit 100 provided in the embodiment of this case is provided by setting a common circuit 11 and a current compensation circuit 13, and connecting the positive input terminal of the first amplifier OP1 of the current compensation circuit 13 to the current compensation terminal V 2 and the negative input terminal At the end point V 1 , the end point V 1 and the current compensation terminal V 2 can be made to have the same voltage, so that the temperature coefficient of the voltage difference across the third resistor R3 is the same as the temperature coefficient of the voltage of the emitter of the first transistor Q1 Similarly, the first current I CTAT of the current compensation circuit 13 has an opposite temperature coefficient to the common current I PTAT of the common circuit, and finally the sum of the currents of the common circuit 11, the current compensation circuit 13 and the voltage locking circuit 15 cancels Temperature coefficient of parallel current IP . On the other hand, by setting the resistance of the fourth resistor R4 to be equal to the resistance of the first resistor R1, the second current I2 on the voltage locking circuit 15 can be equal to the common current I PTAT , thus simplifying the calculation process and obtaining Parallel current IP with zero temperature coefficient. By setting the current mirror circuit 1, the second branch 30 can be made to output a reference current I REF that is equal to or proportional to the parallel current IP , that is, a reference current I REF with zero temperature coefficient.

在本實施例中,帶差參考電路還包括調節電路(圖未示),用於調整第一電阻R1、第二電阻R2、第三電阻R3以及第四電阻R4的阻值,以用於調整參考電壓VREF及參考電流IREF。具體來說,由公式(1)及公式(2)可知,帶差參考電路100輸出的參考電壓VREF及參考電流IREF的溫度係數由第一電晶體Q1、第二電晶體Q2的特性與第一電阻R1、第二電阻R2、第三電阻R3以及第四電阻R4的阻值共同決定,雖然藉由設置第一電阻R1、第二電阻R2、第三電阻R3以及第四電阻R4的阻值可以抵消溫度係數的影響,但該等電阻本身在製程上仍會有漂移,因此需要藉由調節電路來進行補償。其中,第四電阻R4的阻值與第一電阻R1相關聯,具體來說,第四電阻R4的阻值與第一電阻R1的阻值實質相等或成一定比例,因此在調整第一電阻R1的阻值時,第四電阻R4的阻值需要同步調整,以保證與第一電阻R1之間的對應關係。 In this embodiment, the band difference reference circuit also includes an adjustment circuit (not shown) for adjusting the resistance values of the first resistor R1, the second resistor R2, the third resistor R3 and the fourth resistor R4. Reference voltage V REF and reference current I REF . Specifically, it can be known from formulas (1) and (2) that the temperature coefficients of the reference voltage V REF and the reference current I REF output by the band difference reference circuit 100 are determined by the characteristics of the first transistor Q1 and the second transistor Q2 and The resistance values of the first resistor R1, the second resistor R2, the third resistor R3 and the fourth resistor R4 are determined together. Although the resistance values of the first resistor R1, the second resistor R2, the third resistor R3 and the fourth resistor R4 are set, The value can offset the effect of the temperature coefficient, but the resistors themselves will still drift during the manufacturing process, so the circuit needs to be adjusted to compensate. Among them, the resistance of the fourth resistor R4 is related to the first resistor R1. Specifically, the resistance of the fourth resistor R4 is substantially equal to or in a certain proportion to the resistance of the first resistor R1. Therefore, when adjusting the first resistor R1 When the resistance value is , the resistance value of the fourth resistor R4 needs to be adjusted synchronously to ensure the corresponding relationship with the first resistor R1 .

在本實施例中,調節電路可以包括複數電阻串,每一電阻串分別與第一電阻R1、第二電阻R2、第三電阻R3以及第四電阻R4並聯,每一電阻串包括並聯設置的複數支路,每一支路包括一個電阻以及一個開關,藉由控制複數支路上開關的開啟與閉合,即可以調整第一電阻R1、第二電阻R2、第三電阻R3以及第四電阻R4的阻值。在其他實施例中,也可以直接將第一電阻R1、第二電阻R2、第三電阻R3以及第四電阻R4均設置為可調節阻值的電阻,並將第一電阻R1、第二電阻R2、第三電阻R3以及第四電阻R4分別與調節電路連接,調節電路可以藉由發出指令,從而調節每一電阻的阻值。 In this embodiment, the adjustment circuit may include a plurality of resistor strings. Each resistor string is connected in parallel with the first resistor R1, the second resistor R2, the third resistor R3, and the fourth resistor R4. Each resistor string includes a plurality of resistors arranged in parallel. Each branch includes a resistor and a switch. By controlling the opening and closing of the switches on the plurality of branches, the resistances of the first resistor R1, the second resistor R2, the third resistor R3 and the fourth resistor R4 can be adjusted. value. In other embodiments, the first resistor R1, the second resistor R2, the third resistor R3, and the fourth resistor R4 can also be directly set as resistors with adjustable resistance values, and the first resistor R1, the second resistor R2 The third resistor R3 and the fourth resistor R4 are respectively connected to the adjustment circuit. The adjustment circuit can adjust the resistance value of each resistor by issuing instructions.

本案實施例提供的帶差參考電路100,藉由設置第二放大器OP2的負輸入端連接於端點V4,正輸入端連接於電壓鎖定端V3,且第一放大器OP1的負 輸入端連接於端點V1,正輸入端連接於電流補償端V2,還可以使第一電晶體Q1的射極上的電壓VBE1小於第二電晶體Q2的射極上的電壓,亦即,施加在第三電阻R3兩端的電壓差降低,從而有利於降低電流補償電路13的功耗。舉例來說,在調整了第一電阻R1、第二電阻R2、第三電阻R3以及第四電阻R4的阻值之後,電流補償端V2處的電壓相較於端點V4處的電壓大約小10%,因此第三電阻R3的阻值也可以相對降低約10%,電流補償電路13上的第一電流ICTAT的功耗約降低20%。從而降低帶差參考電路100整體的功耗。 The band difference reference circuit 100 provided in the embodiment of this case is configured by setting the negative input terminal of the second amplifier OP2 to be connected to the terminal V 4 , the positive input terminal to be connected to the voltage locking terminal V 3 , and the negative input terminal of the first amplifier OP1 to be connected to At the terminal V 1 , the positive input terminal is connected to the current compensation terminal V 2 , and the voltage V BE1 on the emitter of the first transistor Q1 can also be made smaller than the voltage on the emitter of the second transistor Q2 , that is, the voltage V BE1 on the emitter of the first transistor Q1 is applied to the terminal V 1 . The voltage difference across the three resistors R3 is reduced, which is beneficial to reducing the power consumption of the current compensation circuit 13 . For example, after adjusting the resistance values of the first resistor R1, the second resistor R2, the third resistor R3 and the fourth resistor R4 , the voltage at the current compensation terminal V 2 is about 10% smaller, so the resistance of the third resistor R3 can also be relatively reduced by about 10%, and the power consumption of the first current I CTAT on the current compensation circuit 13 is reduced by about 20%. Thereby, the overall power consumption of the band difference reference circuit 100 is reduced.

綜上所述,本案實施例提供的帶差參考電路100,藉由將公共電路11、電流補償電路13以及電壓鎖定電路15共同連接於輸出端P,並將電流補償電路13接於公共電路11上的電流補償端V2,電壓鎖定電路15接於公共電路11上的電壓鎖定端V3,可以藉由一個電路同時輸出零溫度係數的參考電壓VREF及參考電流IREF,在提高了泛用性的同時,降低了元件的數量,有利於提高空間利用率,並降低能耗。 To sum up, the band difference reference circuit 100 provided in the embodiment of this case is by connecting the common circuit 11, the current compensation circuit 13 and the voltage locking circuit 15 to the output terminal P, and connecting the current compensation circuit 13 to the common circuit 11 The current compensation terminal V 2 on the voltage locking circuit 15 is connected to the voltage locking terminal V 3 on the common circuit 11. The reference voltage V REF and the reference current I REF with zero temperature coefficient can be simultaneously output through one circuit, which improves the general performance. While being practical, it reduces the number of components, which is beneficial to improving space utilization and reducing energy consumption.

本案實施例還提供了一種同時產生參考電壓及參考電流的方法,所述同時產生參考電壓及參考電流的方法可以示例性的應用於上述的帶差參考電路100,請參閱圖3,其包括:步驟S1:提供公共電路11,公共電路11包括從一輸出端P依次串聯的第一電阻R1、第二電阻R2以及第一電晶體Q1,第一電晶體Q1的基極和集極接地,第一電晶體Q1的射極與第二電阻R2連接於電流補償端V2,第二電阻R2與第一電阻R1連接於電壓鎖定端V3;步驟S2:提供電壓鎖定電路15,電壓鎖定電路15包括與輸出端P連接的一端、接地端以及與電壓鎖定端V3連接的一端;步驟S3:提供電流補償電路13,電流補償電路13包括與輸出端P連接的一端、接地端以及與電流補償端V2連接的一端;步驟S4:鎖定電壓鎖定端V3的電壓,使第二電阻R2兩端的電壓差與第一電晶體Q1的射極的電壓具有相反的溫度係數;步驟S5:在輸出端P輸出參考電壓VREF;步驟S6:在電流補償電路13上產生與公共電路11上的電流具有相反的溫度係數的電流; 步驟S7:提供一電流鏡電路1,將電流鏡電路1的第一支路10與輸出端P連接,並在電流鏡電路1的第二支路30輸出參考電流IREFThe embodiment of this case also provides a method of generating a reference voltage and a reference current at the same time. The method of generating a reference voltage and a reference current at the same time can be exemplarily applied to the above-mentioned band difference reference circuit 100. Please refer to Figure 3, which includes: Step S1: Provide a common circuit 11. The common circuit 11 includes a first resistor R1, a second resistor R2 and a first transistor Q1 connected in series from an output terminal P. The base and collector of the first transistor Q1 are grounded. The emitter of a transistor Q1 and the second resistor R2 are connected to the current compensation terminal V 2 , and the second resistor R2 and the first resistor R1 are connected to the voltage locking terminal V 3 ; Step S2: Provide a voltage locking circuit 15 and a voltage locking circuit 15 It includes one end connected to the output terminal P, a ground terminal and an end connected to the voltage locking terminal V3 ; Step S3: Provide a current compensation circuit 13. The current compensation circuit 13 includes an end connected to the output terminal P, a ground terminal and a current compensation circuit. One end connected to terminal V 2 ; Step S4: Lock the voltage of terminal V 3 so that the voltage difference across the second resistor R2 and the voltage of the emitter of the first transistor Q1 have an opposite temperature coefficient; Step S5: At the output The terminal P outputs the reference voltage VREF ; Step S6: Generate a current with an opposite temperature coefficient to the current on the common circuit 11 on the current compensation circuit 13; Step S7: Provide a current mirror circuit 1, and connect the current mirror circuit 1 to One branch 10 is connected to the output terminal P, and the second branch 30 of the current mirror circuit 1 outputs the reference current I REF .

在本實施例中,步驟S2還包括:提供第二電晶體Q2以及第二放大器OP2,將第二電晶體Q2的基極和集極接地,並將第二放大器OP2的負輸入端與第二電晶體Q2的射極連接,以及將第二放大器OP2的正輸入端與電壓鎖定端V3連接。 In this embodiment, step S2 also includes: providing a second transistor Q2 and a second amplifier OP2, grounding the base and collector of the second transistor Q2, and connecting the negative input terminal of the second amplifier OP2 with the second The emitter of the transistor Q2 is connected, and the positive input terminal of the second amplifier OP2 is connected to the voltage locking terminal V 3 .

在本實施例中,步驟S2還包括:提供第四電阻R4,將第四電阻R4的一端與輸出端P連接,將第四電阻R4的另一端與第二放大器OP2的負輸入端及第二電晶體Q2的射極連接;將第二電晶體Q2的基極和集極接地;以及將第二放大器OP2的正輸入端與電壓鎖定端V3連接。 In this embodiment, step S2 also includes: providing a fourth resistor R4, connecting one end of the fourth resistor R4 to the output terminal P, and connecting the other end of the fourth resistor R4 to the negative input terminal of the second amplifier OP2 and the second The emitter of the transistor Q2 is connected; the base and collector of the second transistor Q2 are connected to ground; and the positive input terminal of the second amplifier OP2 is connected to the voltage locking terminal V 3 .

在本實施例中,步驟S3還包括:提供金氧半場效應電晶體M3、第三電阻R3以及第一放大器OP1,將金氧半場效應電晶體M3的汲極與輸出端P連接,將金氧半場效應電晶體M3的源極與第三電阻R3的一端及第一放大器OP1的負輸入端連接,將金氧半場效應電晶體M3的閘極與第一放大器OP1的輸出端連接;將第三電阻R3的另一端接地;以及將第一放大器OP1的正輸入端與電流補償端V2連接。 In this embodiment, step S3 also includes: providing a metal oxide half field effect transistor M3, a third resistor R3 and a first amplifier OP1, connecting the drain of the metal oxide half field effect transistor M3 to the output terminal P, and connecting the metal oxide half field effect transistor M3 with the output terminal P. The source of the half field effect transistor M3 is connected to one end of the third resistor R3 and the negative input end of the first amplifier OP1, and the gate of the metal oxide half field effect transistor M3 is connected to the output end of the first amplifier OP1; The other end of the resistor R3 is connected to ground; and the positive input terminal of the first amplifier OP1 is connected to the current compensation terminal V 2 .

在本實施例中,步驟S5中輸出的參考電壓VREF可以表示為:VREF=VBE1+△VBE2,1(1+R1/R2);其中VBE1為所述第一電晶體Q1的射極的電壓,△VBE2,1為所述第二電阻R2兩端的電壓差,R1為所述第一電阻R1的阻值,R2為所述第二電阻R2的阻值,通過第二電阻R2的電流可以表示為△VBE2,1/R2,則與第二電阻R2串聯的第一電阻R1上的電壓即可表示為(△VBE2,1/R2)*R1,因此第一電阻R1與第二電阻R2上的電壓和即為△VBE2,1(1+R1/R2)。 In this embodiment, the reference voltage V REF output in step S5 can be expressed as: V REF =V BE1 +△V BE2,1 (1+R1/R2); where V BE1 is the voltage of the first transistor Q1 The emitter voltage, △V BE2,1 is the voltage difference across the second resistor R2, R1 is the resistance of the first resistor R1, R2 is the resistance of the second resistor R2, through the second resistor The current of R2 can be expressed as △V BE2,1 /R2, then the voltage on the first resistor R1 connected in series with the second resistor R2 can be expressed as (△V BE2,1 /R2)*R1, so the first resistor R1 The sum of the voltage on the second resistor R2 is △V BE2,1 (1+R1/R2).

在一實施例中,步驟S5還包括:調節第一電阻R1及第二電阻R2的阻值,使得參考電壓VREF為零溫度係數的電壓。 In one embodiment, step S5 further includes: adjusting the resistance values of the first resistor R1 and the second resistor R2 so that the reference voltage V REF is a voltage with zero temperature coefficient.

在本實施例中,步驟S7中輸出的參考電流IREF可以表示為:IREF=nIP=n[VBE1/R3+(1+R1/R4)(△VBE2,1/R2)];其中IP為通過所述輸出端P的並聯電流,n為參考電流IREF與並聯電流IP之間的比值,且n為正數(例如:0.8、1、1.5、2、4等),VBE1為第一電晶體Q1的射極的電壓,R3為第三電阻R3的阻值,R1為第一電阻R1的阻值,R4為第四電阻 R4的阻值,△VBE2,1為第二電阻R2兩端的電壓差,R2為第二電阻R2的阻值,VBE1/R3為電流補償電路13上的電流,△VBE2,1/R2為公共電路11上的電流。 In this embodiment, the reference current I REF output in step S7 can be expressed as: I REF =nI P =n[V BE1 /R3+(1+R1/R4)(ΔV BE2,1 /R2)]; where IP is the parallel current passing through the output terminal P, n is the ratio between the reference current I REF and the parallel current IP , and n is a positive number (for example: 0.8, 1, 1.5, 2, 4, etc.), V BE1 is the voltage of the emitter of the first transistor Q1, R3 is the resistance of the third resistor R3, R1 is the resistance of the first resistor R1, R4 is the resistance of the fourth resistor R4, △V BE2,1 is the resistance of the second resistor R3. The voltage difference between the two ends of the resistor R2, R2 is the resistance of the second resistor R2, V BE1 /R3 is the current on the current compensation circuit 13, △V BE2,1 /R2 is the current on the common circuit 11.

在本實施例中,步驟S7還包括:在第一支路10設置金氧半場效應電晶體M1並在第二支路30設置金氧半場效應電晶體M2;將金氧半場效應電晶體M1的源極與電源電壓端VDD連接,並將金氧半場效應電晶體M1的汲極與輸出端P連接;將金氧半場效應電晶體M2的源極與電源電壓端VDD連接,並在金氧半場效應電晶體M2的汲極輸出參考電流IREF;將金氧半場效應電晶體M1和金氧半場效應電晶體M2的閘極之間相互連接;將第二放大器OP2的輸出端與金氧半場效應電晶體M1和金氧半場效應電晶體M2的閘極連接在一起,以控制第一支路10和第二支路30的偏壓。 In this embodiment, step S7 also includes: setting a metal oxide half field effect transistor M1 in the first branch 10 and setting a metal oxide half field effect transistor M2 in the second branch 30; The source is connected to the power supply voltage terminal V DD , and the drain of the metal oxide half field effect transistor M1 is connected to the output terminal P; the source of the metal oxide half field effect transistor M2 is connected to the power supply voltage terminal V DD , and the metal oxide half field effect transistor M1 is connected to the drain. The drain output reference current I REF of the oxygen half field effect transistor M2; connect the gates of the metal oxygen half field effect transistor M1 and the metal oxygen half field effect transistor M2 to each other; connect the output end of the second amplifier OP2 with the metal oxygen half field effect transistor M2. The gates of the half field effect transistor M1 and the metal oxide half field effect transistor M2 are connected together to control the bias voltages of the first branch 10 and the second branch 30 .

在一實施例中,步驟S7還包括:調節第一電阻R1、第二電阻R2、第三電阻R3及第四電阻R4的阻值,使得參考電流IREF為零溫度係數的電流。 In one embodiment, step S7 further includes: adjusting the resistance values of the first resistor R1, the second resistor R2, the third resistor R3 and the fourth resistor R4 so that the reference current I REF is a current with zero temperature coefficient.

在另一實施例中,第一電阻R1的阻值可以與第四電阻R4的阻值實質相等,此時參考電流IREF可以簡化表示為:IREF=nIP=n[VBE1/R3+2(△VBE2,1/R2)];在本實施例中,步驟S7還包括:調節第二電阻R2及第三電阻R3的阻值,使得參考電流IREF為零溫度係數的電流。 In another embodiment, the resistance of the first resistor R1 may be substantially equal to the resistance of the fourth resistor R4. In this case, the reference current I REF may be simply expressed as: I REF =nI P =n[V BE1 /R3+ 2(ΔV BE2,1 /R2)]; in this embodiment, step S7 also includes: adjusting the resistance values of the second resistor R2 and the third resistor R3 so that the reference current I REF is a current with zero temperature coefficient.

本案實施例提供的同時產生參考電壓及參考電流的方法,藉由將公共電路、電流補償電路、電壓鎖定電路以及電流鏡電路共同連接於輸出端,並將電流補償電路接於公共電路上的電流補償端,電壓鎖定電路接於公共電路上的電壓鎖定端,可以藉由一個電路同時輸出零溫度係數的參考電壓VREF及參考電流IREF,在提高了泛用性的同時,降低了元件的數量,有利於提高空間利用率,並降低能耗。 The method provided by the embodiment of this case is to generate a reference voltage and a reference current at the same time by connecting a common circuit, a current compensation circuit, a voltage locking circuit and a current mirror circuit to the output end, and connecting the current compensation circuit to the current on the common circuit. At the compensation end, the voltage locking circuit is connected to the voltage locking end on the public circuit. It can simultaneously output the reference voltage V REF and the reference current I REF with zero temperature coefficient through one circuit, which improves the versatility and reduces the cost of the components. Quantity, which helps improve space utilization and reduce energy consumption.

本領域具有通常知識者應當認識到,以上的實施方式僅是用來說明本發明,而並非用作為對本發明的限定,只要在本發明的實質精神範圍之內,對以上實施例所作的適當改變和變化都落在本發明要求保護的範圍之內。 Those of ordinary skill in the art should realize that the above embodiments are only used to illustrate the present invention and are not used to limit the present invention. As long as they are within the scope of the essential spirit of the present invention, appropriate changes can be made to the above embodiments. and changes are within the scope of protection claimed by the present invention.

1:電流鏡電路 1: Current mirror circuit

11:公共電路 11:Public circuit

13:電流補償電路 13: Current compensation circuit

15:電壓鎖定電路 15: Voltage lock circuit

V2:電流補償端 V 2 : Current compensation terminal

V3:電壓鎖定端 V 3 : voltage lock terminal

P:輸出端 P: output terminal

VREF:參考電壓 V REF : reference voltage

IP:並聯電流 IP : Parallel current

IREF:參考電流 I REF : reference current

IPTAT:公共電流 I PTAT : Common current

ICTAT:第一電流 I CTAT : first current

I2:第二電流 I 2 : second current

Claims (9)

一種帶差參考電路,其改良在於,包括:公共電路,所述公共電路包括從一輸出端依次串聯的第一電阻、第二電阻以及第一電晶體,所述第一電晶體的基極和集極接地,所述第一電晶體的射極與所述第二電阻連接於電流補償端,所述第二電阻與所述第一電阻連接於電壓鎖定端,所述輸出端用於輸出參考電壓;電流補償電路,包括與所述輸出端連接的一端和接地端;電壓鎖定電路,包括與所述輸出端連接的一端和接地端;以及電流鏡電路,所述電流鏡電路的第一支路與所述輸出端連接,用於提供並聯電流,所述電流鏡電路的第二支路用於輸出參考電流,所述並聯電流等於所述公共電路、所述電流補償電路以及所述電壓鎖定電路的電流之和;所述參考電流等於所述並聯電流或與所述並聯電流成比例;其中,所述電流補償電路還包括連接於所述電流補償端的一端,所述電流補償電路用於使所述電流補償電路上產生的電流與所述公共電路上產生的電流具有相反的溫度係數;所述電壓鎖定電路還包括連接於所述電壓鎖定端的一端,所述電壓鎖定電路用於使所述第二電阻兩端的電壓差與所述第一電晶體的射極的電壓具有相反的溫度係數;其中,所述參考電壓表示為:VREF=VBE1+△VBE2,1(1+R1/R2);其中VBE1為所述第一電晶體的射極的電壓,△VBE2,1為所述第二電阻兩端的電壓差,R1為所述第一電阻的阻值,R2為所述第二電阻的阻值。 A band difference reference circuit is improved in that it includes: a common circuit, the common circuit includes a first resistor, a second resistor and a first transistor connected in series from an output end, and the base of the first transistor and The collector is grounded, the emitter of the first transistor and the second resistor are connected to the current compensation terminal, the second resistor and the first resistor are connected to the voltage locking terminal, and the output terminal is used to output a reference voltage; current compensation circuit, including one end connected to the output terminal and a ground terminal; voltage locking circuit, including one end connected to the output terminal and a ground terminal; and a current mirror circuit, the first branch of the current mirror circuit The second branch of the current mirror circuit is used to output a reference current. The parallel current is equal to the common circuit, the current compensation circuit and the voltage lock. The sum of the currents of the circuit; the reference current is equal to or proportional to the parallel current; wherein the current compensation circuit also includes an end connected to the current compensation end, and the current compensation circuit is used to make The current generated on the current compensation circuit and the current generated on the common circuit have opposite temperature coefficients; the voltage locking circuit also includes an end connected to the voltage locking terminal, and the voltage locking circuit is used to enable the The voltage difference across the second resistor and the voltage of the emitter of the first transistor have an opposite temperature coefficient; wherein, the reference voltage is expressed as: V REF =V BE1 +△V BE2,1 (1+R1/ R2); where V BE1 is the voltage of the emitter of the first transistor, △V BE2,1 is the voltage difference across the second resistor, R1 is the resistance of the first resistor, and R2 is the The resistance of the second resistor. 如請求項1所述之帶差參考電路,其中,所述電流補償電路包括金氧半場效應電晶體、第三電阻以及第一放大器,所述金氧半場效應電晶體的汲極與所述輸出端連接,所述金氧半場效應電晶體的源極與所述第三電阻的一端及所述第一放大器的負輸入端連接,所述金氧半場效應電晶體的閘極與所述第一放大器的輸出端連接;所述第三電阻的另一端接地;所述第一放大器的正輸入端與所述電流補償端連接; 所述電壓鎖定電路包括第四電阻、第二電晶體以及第二放大器,所述第四電阻的一端與所述輸出端連接,所述第四電阻的另一端與所述第二放大器的負輸入端及所述第二電晶體的射極連接;所述第二電晶體的基極和集極接地;所述第二放大器的正輸入端與所述電壓鎖定端連接。 The band difference reference circuit of claim 1, wherein the current compensation circuit includes a metal oxide half field effect transistor, a third resistor and a first amplifier, and the drain electrode of the metal oxide half field effect transistor is connected to the output terminal is connected, the source electrode of the metal oxide half field effect transistor is connected to one end of the third resistor and the negative input end of the first amplifier, and the gate electrode of the metal oxide half field effect transistor is connected to the first The output end of the amplifier is connected; the other end of the third resistor is connected to ground; the positive input end of the first amplifier is connected to the current compensation end; The voltage lock circuit includes a fourth resistor, a second transistor and a second amplifier. One end of the fourth resistor is connected to the output end, and the other end of the fourth resistor is connected to the negative input of the second amplifier. The terminal is connected to the emitter of the second transistor; the base and collector of the second transistor are grounded; the positive input terminal of the second amplifier is connected to the voltage lock terminal. 如請求項2所述之帶差參考電路,其中,還包括調節電路,用於調整所述第一電阻、所述第二電阻、所述第三電阻及所述第四電阻的阻值。 The band difference reference circuit according to claim 2, further comprising an adjustment circuit for adjusting the resistance values of the first resistor, the second resistor, the third resistor and the fourth resistor. 如請求項3所述之帶差參考電路,其中,所述參考電流表示為:IREF=nIP=n[VBE1/R3+(1+R1/R4)(△VBE2,1/R2)];其中IP為通過所述輸出端的並聯電流,n為所述參考電流與所述並聯電流之間的比值且為正數,VBE1為所述第一電晶體的射極的電壓,R3為所述第三電阻的阻值,R1為所述第一電阻的阻值,R4為所述第四電阻的阻值,△VBE2,1為所述第二電阻兩端的電壓差,R2為所述第二電阻的阻值。 The band difference reference circuit as described in request item 3, wherein the reference current is expressed as: I REF =nI P =n[V BE1 /R3+(1+R1/R4)(△V BE2,1 /R2)] ; Where IP is the parallel current passing through the output terminal, n is the ratio between the reference current and the parallel current and is a positive number, V BE1 is the voltage of the emitter of the first transistor, and R3 is the The resistance of the third resistor, R1 is the resistance of the first resistor, R4 is the resistance of the fourth resistor, △V BE2,1 is the voltage difference across the second resistor, R2 is the The resistance of the second resistor. 如請求項3所述之帶差參考電路,其中,所述第一電阻與所述第四電阻的阻值相等,所述參考電流表示為:IREF=nIP=n[VBE1/R3+2(△VBE2,1/R2)];其中IP為通過所述輸出端的並聯電流,n為所述參考電流與所述並聯電流之間的比值且為正數,VBE1為所述第一電晶體的射極的電壓,R3為所述第三電阻的阻值,△VBE2,1為所述第二電阻兩端的電壓差,R2為所述第二電阻的阻值。 The band difference reference circuit as described in claim 3, wherein the resistance values of the first resistor and the fourth resistor are equal, and the reference current is expressed as: I REF =nI P =n[V BE1 /R3+ 2(△V BE2,1 /R2)]; where IP is the parallel current passing through the output terminal, n is the ratio between the reference current and the parallel current and is a positive number, V BE1 is the first The voltage of the emitter of the transistor, R3 is the resistance of the third resistor, ΔV BE2,1 is the voltage difference across the second resistor, and R2 is the resistance of the second resistor. 一種同時產生參考電壓及參考電流的方法,其改良在於,包括:提供公共電路,所述公共電路包括從一輸出端依次串聯的第一電阻、第二電阻以及第一電晶體,將所述第一電晶體的基極和集極接地,將所述第一電晶體的射極與所述第二電阻連接於電流補償端,將所述第二電阻與所述第一電阻連接於電壓鎖定端;提供電壓鎖定電路,所述電壓鎖定電路包括與所述輸出端連接的一端、接地端以及與所述電壓鎖定端連接的一端;提供電流補償電路,所述電流補償電路包括與所述輸出端連接的一端、接地端以及與所述電流補償端連接的一端; 鎖定所述電壓鎖定端的電壓,使所述第二電阻兩端的電壓差與所述第一電晶體的射極的電壓具有相反的溫度係數;在所述輸出端輸出參考電壓;在所述電流補償電路上產生與所述公共電路上的電流具有相反的溫度係數的電流;以及提供一電流鏡電路,將所述電流鏡電路的第一支路與所述輸出端連接,並在所述電流鏡電路的第二支路輸出參考電流;其中,所述參考電壓表示為:VREF=VBE1+△VBE2,1(1+R1/R2);其中VBE1為所述第一電晶體的射極的電壓,△VBE2,1為所述第二電阻兩端的電壓差,R1為所述第一電阻的阻值,R2為所述第二電阻的阻值;以及在所述輸出端輸出參考電壓包括:調節所述第一電阻及所述第二電阻的阻值,使得所述參考電壓為零溫度係數的電壓。 A method for generating a reference voltage and a reference current at the same time. An improvement thereof includes: providing a common circuit. The common circuit includes a first resistor, a second resistor and a first transistor connected in series from an output end. The base and collector of a transistor are grounded, the emitter of the first transistor and the second resistor are connected to the current compensation terminal, and the second resistor and the first resistor are connected to the voltage locking terminal. ; Provide a voltage locking circuit, the voltage locking circuit includes an end connected to the output end, a ground end and an end connected to the voltage locking end; Provide a current compensation circuit, the current compensation circuit includes an end connected to the output end One end of the connection, the ground end and the end connected to the current compensation end; lock the voltage of the voltage locking end so that the voltage difference across the second resistor and the voltage of the emitter of the first transistor have an opposite temperature coefficient; outputting a reference voltage at the output terminal; generating a current with an opposite temperature coefficient to the current on the common circuit on the current compensation circuit; and providing a current mirror circuit, which converts the current mirror circuit to The first branch is connected to the output terminal, and a reference current is output in the second branch of the current mirror circuit; where the reference voltage is expressed as: V REF =V BE1 +△V BE2,1 (1+ R1/R2); where V BE1 is the voltage of the emitter of the first transistor, △V BE2,1 is the voltage difference across the second resistor, R1 is the resistance of the first resistor, and R2 is the resistance of the second resistor; and outputting a reference voltage at the output end includes: adjusting the resistance of the first resistor and the second resistor so that the reference voltage is a voltage with zero temperature coefficient. 如請求項6所述之同時產生參考電壓及參考電流的方法,其中,提供電流補償電路包括提供金氧半場效應電晶體、第三電阻以及第一放大器,所述金氧半場效應電晶體的汲極與所述輸出端連接,所述金氧半場效應電晶體的源極與所述第三電阻的一端及所述第一放大器的負輸入端連接,所述金氧半場效應電晶體的閘極與所述第一放大器的輸出端連接;所述第三電阻的另一端接地;所述第一放大器的正輸入端與所述電流補償端連接;以及提供電壓鎖定電路包括提供第四電阻、第二電晶體以及第二放大器,所述第四電阻的一端與所述輸出端連接,所述第四電阻的另一端與所述第二放大器的負輸入端及所述第二電晶體的射極連接;所述第二電晶體的基極和集極接地;所述第二放大器的正輸入端與所述電壓鎖定端連接。 The method of simultaneously generating a reference voltage and a reference current as described in claim 6, wherein providing the current compensation circuit includes providing a metal oxide half field effect transistor, a third resistor and a first amplifier, and the drain of the metal oxide half field effect transistor The electrode of the metal oxide half field effect transistor is connected to the output end, the source electrode of the metal oxide half field effect transistor is connected to one end of the third resistor and the negative input end of the first amplifier, and the gate electrode of the metal oxide half field effect transistor is connected to the output end of the first amplifier; the other end of the third resistor is grounded; the positive input end of the first amplifier is connected to the current compensation end; and providing a voltage locking circuit includes providing a fourth resistor, a third Two transistors and a second amplifier, one end of the fourth resistor is connected to the output end, and the other end of the fourth resistor is connected to the negative input end of the second amplifier and the emitter of the second transistor. Connection; the base and collector of the second transistor are grounded; the positive input terminal of the second amplifier is connected to the voltage lock terminal. 如請求項7所述之同時產生參考電壓及參考電流的方法,其中,所述參考電流表示為:IREF=nIP=n[VBE1/R3+(1+R1/R4)(△VBE2,1/R2)]; 其中IP為通過所述輸出端的並聯電流,n為所述參考電流與所述並聯電流之間的比值且為正數,VBE1為所述第一電晶體的射極的電壓,R3為所述第三電阻的阻值,R1為所述第一電阻的阻值,R4為所述第四電阻的阻值,△VBE2,1為所述第二電阻兩端的電壓差,R2為所述第二電阻的阻值;以及在所述電流鏡電路的第二支路輸出參考電流包括:調節所述第一電阻、所述第二電阻、所述第三電阻及所述第四電阻的阻值,使得所述參考電流為零溫度係數的電流。 The method of generating a reference voltage and a reference current simultaneously as described in claim 7, wherein the reference current is expressed as: I REF =nI P =n[V BE1 /R3+(1+R1/R4)(△V BE2, 1 /R2)]; where IP is the parallel current passing through the output terminal, n is the ratio between the reference current and the parallel current and is a positive number, and V BE1 is the emitter of the first transistor. voltage, R3 is the resistance of the third resistor, R1 is the resistance of the first resistor, R4 is the resistance of the fourth resistor, △V BE2,1 is the voltage difference across the second resistor , R2 is the resistance of the second resistor; and outputting the reference current in the second branch of the current mirror circuit includes: adjusting the first resistor, the second resistor, the third resistor and the The resistance of the fourth resistor is such that the reference current is a current with zero temperature coefficient. 如請求項7所述之同時產生參考電壓及參考電流的方法,其中,所述第一電阻與所述第四電阻的阻值實質上相等,所述參考電流表示為:IREF=nIP=n[VBE1/R3+2(△VBE2,1/R2)];其中IP為通過所述輸出端的並聯電流,n為所述參考電流與所述並聯電流之間的比值且為正數,VBE1為所述第一電晶體的射極的電壓,R3為所述第三電阻的阻值,△VBE2,1為所述第二電阻兩端的電壓差,R2為所述第二電阻的阻值;以及在所述電流鏡電路的第二支路輸出參考電流包括:調節所述第二電阻及所述第三電阻的阻值,使得所述參考電流為零溫度係數的電流。 The method for generating a reference voltage and a reference current at the same time as described in claim 7, wherein the resistance values of the first resistor and the fourth resistor are substantially equal, and the reference current is expressed as: I REF =nI P = n[V BE1 /R3+2(△V BE2,1 /R2)]; where IP is the parallel current passing through the output terminal, n is the ratio between the reference current and the parallel current and is a positive number, V BE1 is the voltage of the emitter of the first transistor, R3 is the resistance of the third resistor, △V BE2,1 is the voltage difference across the second resistor, R2 is the resistance of the second resistor. resistance; and outputting a reference current in the second branch of the current mirror circuit includes: adjusting the resistance of the second resistor and the third resistor so that the reference current is a current with zero temperature coefficient.
TW111148438A 2022-12-16 2022-12-16 Bandgap reference circuit and method of generating reference voltage and reference current simultaneously TWI831526B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW111148438A TWI831526B (en) 2022-12-16 2022-12-16 Bandgap reference circuit and method of generating reference voltage and reference current simultaneously

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW111148438A TWI831526B (en) 2022-12-16 2022-12-16 Bandgap reference circuit and method of generating reference voltage and reference current simultaneously

Publications (2)

Publication Number Publication Date
TWI831526B true TWI831526B (en) 2024-02-01
TW202427097A TW202427097A (en) 2024-07-01

Family

ID=90824726

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111148438A TWI831526B (en) 2022-12-16 2022-12-16 Bandgap reference circuit and method of generating reference voltage and reference current simultaneously

Country Status (1)

Country Link
TW (1) TWI831526B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170329362A1 (en) * 2016-05-13 2017-11-16 Rohm Co., Ltd. On chip temperature independent current generator
TW202127173A (en) * 2020-01-07 2021-07-16 華邦電子股份有限公司 Constant current circuit and semiconductor apparatus
TWI783563B (en) * 2021-07-07 2022-11-11 新唐科技股份有限公司 Reference current/ voltage generator and circuit system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170329362A1 (en) * 2016-05-13 2017-11-16 Rohm Co., Ltd. On chip temperature independent current generator
TW202127173A (en) * 2020-01-07 2021-07-16 華邦電子股份有限公司 Constant current circuit and semiconductor apparatus
TWI783563B (en) * 2021-07-07 2022-11-11 新唐科技股份有限公司 Reference current/ voltage generator and circuit system

Also Published As

Publication number Publication date
TW202427097A (en) 2024-07-01

Similar Documents

Publication Publication Date Title
JP3647468B2 (en) Dual source for constant current and PTAT current
US5245273A (en) Bandgap voltage reference circuit
US6642699B1 (en) Bandgap voltage reference using differential pairs to perform temperature curvature compensation
JP3519361B2 (en) Bandgap reference circuit
TWI418968B (en) Circuit and method for generating reference voltage and reference current
JPS61187020A (en) Voltage reference circuit
CN115877907B (en) Band gap reference source circuit
CN111045470B (en) Band-gap reference circuit with low offset voltage and high power supply rejection ratio
CN107066006B (en) Novel band gap reference circuit structure
CN115016581A (en) Band-gap reference circuit structure with starting circuit
TWI831526B (en) Bandgap reference circuit and method of generating reference voltage and reference current simultaneously
JP4328391B2 (en) Voltage and current reference circuit
KR100200393B1 (en) Temperature compensation voltage regulator having beta compensation
CN109710013B (en) Voltage stabilizing circuit with offset suppression and load enhancement
CN114546019B (en) Temperature coefficient adjustable reference voltage source
CN115857608A (en) Band-gap reference source for realizing high-order temperature compensation in wide range by using depletion tube
CN112256078B (en) Positive temperature coefficient current source and zero temperature coefficient current source
US8760220B1 (en) Beta enhanced voltage reference circuit
CN114661086A (en) Band-gap reference voltage source circuit
CN111061329A (en) Band-gap reference circuit with high loop gain and double loop negative feedback
CN116400765A (en) Band difference reference circuit and method for simultaneously generating reference voltage and reference current
CN217640051U (en) Band gap reference circuit
CN111984052A (en) Voltage source
CN115390613B (en) Band-gap reference voltage source
CN117519403B (en) Band gap reference circuit and electronic equipment