TWI830603B - Dispenser system - Google Patents

Dispenser system Download PDF

Info

Publication number
TWI830603B
TWI830603B TW112106180A TW112106180A TWI830603B TW I830603 B TWI830603 B TW I830603B TW 112106180 A TW112106180 A TW 112106180A TW 112106180 A TW112106180 A TW 112106180A TW I830603 B TWI830603 B TW I830603B
Authority
TW
Taiwan
Prior art keywords
coating
suction
ejection
parameters
fluid
Prior art date
Application number
TW112106180A
Other languages
Chinese (zh)
Other versions
TW202335750A (en
Inventor
東岸修一
青木中尚
榊原教晃
Original Assignee
日商兵神裝備股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商兵神裝備股份有限公司 filed Critical 日商兵神裝備股份有限公司
Publication of TW202335750A publication Critical patent/TW202335750A/en
Application granted granted Critical
Publication of TWI830603B publication Critical patent/TWI830603B/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C11/00Component parts, details or accessories not specifically provided for in groups B05C1/00 - B05C9/00
    • B05C11/10Storage, supply or control of liquid or other fluent material; Recovery of excess liquid or other fluent material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C5/00Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/06Control using electricity

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Coating Apparatus (AREA)
  • Control Of Positive-Displacement Pumps (AREA)
  • Detergent Compositions (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

無。

Description

分配器系統Dispenser system

本發明係有關於用於進行塗敷材料或填充材料等流體的塗敷或填充之分配器系統。The present invention relates to a dispenser system for applying or filling fluids such as coating materials or filling materials.

目前,提供了一種用於進行流體的塗敷或填充之分配器系統。例如,作為用於進行流體的塗敷或填充之分配器系統,提出了能夠進行向塗敷對象物(工件)塗敷塗敷材料的塗敷動作之塗敷系統、或者能夠進行向填充對象物(工件)填充填充材料的填充動作之填充系統(例如參照專利文獻1)。Currently, a dispenser system is provided for applying or filling fluids. For example, as a dispenser system for applying or filling a fluid, a coating system capable of applying a coating material to a coating object (workpiece) or a coating system capable of applying a coating material to a filling object has been proposed. A filling system for filling (workpiece) filling action with filling material (see, for example, Patent Document 1).

上述專利文獻1中揭露了一種圖案形成裝置,其從噴嘴的噴出口噴出糊狀的圖案形成材料(塗敷材料),在作為塗敷對象物的基板上形成圖案。該專利文獻1中記載了如下內容:能夠形成具有規定的間距和截面形狀(圖案的高度或寬度等)的圖案,並且能夠形成對規定的間距和截面形狀進行變更後的圖案。The above-mentioned Patent Document 1 discloses a pattern forming device that ejects a paste-like pattern forming material (coating material) from a discharge port of a nozzle to form a pattern on a substrate as a coating target object. Patent Document 1 describes that patterns having predetermined pitches and cross-sectional shapes (pattern height, width, etc.) can be formed, and patterns can be formed that change predetermined pitches and cross-sectional shapes.

另外,上述專利文獻1中記載了如下內容:關於所希望的圖案的間距間隔或截面形狀,例如透過輸入“間距300μm、寬度80μm、高度150μm”等數值,自動地運算決定朝向電動機、泵以及光源單元等的輸出的多個參數。另外,上述專利文獻1中記載有如下內容:主要透過調整噴出口的噴嘴角度、工件與噴嘴的相對移動速度以及UV照度等來控制塗敷圖案。另一方面,關於從泵噴出的圖案形成材料(塗敷材料)的塗敷量的控制,上述專利文獻1中沒有詳細記載。In addition, the above-mentioned Patent Document 1 describes that by inputting numerical values such as "pitch 300 μm, width 80 μm, and height 150 μm" regarding the pitch interval or cross-sectional shape of a desired pattern, the orientation of the motor, pump, and light source is automatically calculated and determined. Multiple parameters for the output of the unit etc. In addition, the above-mentioned Patent Document 1 describes that the coating pattern is controlled mainly by adjusting the nozzle angle of the ejection port, the relative movement speed of the workpiece and the nozzle, and UV illuminance. On the other hand, the above-mentioned Patent Document 1 does not describe in detail the control of the application amount of the pattern forming material (coating material) ejected from the pump.

[現有技術文獻] 專利文獻 專利文獻1:日本發明專利第4082499號公報 [Prior art documents] patent documents Patent Document 1: Japanese Invention Patent No. 4082499

一般而言,實際情況是用戶如上述專利文獻1所記載,透過塗敷直徑和高度等塗敷尺寸(塗敷形狀)來管理塗敷材料的塗敷量。另一方面,在進行塗敷系統的動作控制等的控制裝置(控制器)中設定的參數幾乎都是泵的旋轉速度、塗敷材料的流量、塗敷量以及塗敷時間等。關於塗敷圖案,為了得到所希望的塗敷尺寸而進行設定和調整時,需要詳細的計算或技術訣竅。Generally speaking, the actual situation is that the user manages the coating amount of the coating material through coating dimensions (coating shape) such as coating diameter and height, as described in the above-mentioned Patent Document 1. On the other hand, most of the parameters set in a control device (controller) that controls the operation of the coating system are the rotation speed of the pump, the flow rate of the coating material, the coating amount, the coating time, and the like. Regarding the coating pattern, detailed calculations and technical know-how are required to set and adjust the coating pattern in order to obtain the desired coating size.

作為圖案形成裝置的一例,在塗敷系統中使用能夠進行噴出運轉和回吸運轉(反轉吸入)的分配器裝置之情況下,透過在停止時進行反轉吸入而消除噴嘴內的殘壓從而防止滴液,其中,噴出運轉是指:透過以使塗敷材料從泵機構部朝向噴出口移動之方式使泵機構部進行工作而噴出塗敷材料,回吸運轉是指:透過以使塗敷材料從噴出口朝向泵機構部移動之方式使泵機構部進行工作而吸入塗敷材料。但是,與反轉吸入相關的設定並不容易。具體而言,在調整塗敷量時變更了泵機構部的旋轉速度之情況下,塗敷材料的流量發生變化,因此,存在噴出壓力發生變化而最佳的反轉吸入設定發生變化這一不良情況。因此,在變更了反轉吸入設定之情況下,還存在本次塗敷材料的塗敷量變化這一不良情況。因此,存在下述問題點:需要進行多次調整直至得到向塗敷對象物塗敷的塗敷材料的所希望的塗敷量。As an example of a pattern forming device, when a dispenser device capable of discharge operation and suction operation (reverse suction) is used in a coating system, the residual pressure in the nozzle is eliminated by performing reverse suction when stopped. To prevent dripping, the discharge operation means that the coating material is discharged by operating the pump mechanism part so that the coating material moves from the pump mechanism part toward the discharge port, and the suction operation means that the coating material is discharged by moving the coating material from the pump mechanism part toward the discharge port. The pump mechanism operates to suck the coating material in such a manner that the material moves from the discharge port toward the pump mechanism. However, the settings related to reverse inhalation are not easy. Specifically, when the rotation speed of the pump mechanism is changed when adjusting the coating amount, the flow rate of the coating material changes, so the discharge pressure changes and the optimal reverse suction setting changes. condition. Therefore, when the reverse suction setting is changed, there is a problem that the amount of coating material applied this time changes. Therefore, there is a problem that it is necessary to perform multiple adjustments until a desired coating amount of the coating material applied to the coating object is obtained.

另外,在填充系統使用了上述那樣的分配器裝置之情況下,也透過在停止時進行反轉吸入而消除噴嘴內的殘壓從而防止滴液。然而,與塗敷系統使用了分配器裝置時同樣地,與反轉吸入相關的設定並不容易。具體而言,在調整填充量時變更了泵機構部的旋轉速度之情況下,填充材料的流量發生變化,因此,存在噴出壓力發生變化而最佳的反轉吸入設定發生變化這一不良情況。因此,在變更了反轉吸入設定之情況下,還存在本次填充材料的填充量變化這一不良情況。因此,存在需要進行多次調整直至得到向工件填充的填充材料的所希望的填充量這一問題點。In addition, when the filling system uses a dispenser device as described above, the residual pressure in the nozzle is eliminated by performing reverse suction during stop, thereby preventing dripping. However, as in the case where the dispenser device is used in the coating system, settings related to reverse suction are not easy. Specifically, when the rotational speed of the pump mechanism is changed when adjusting the filling amount, the flow rate of the filling material changes. Therefore, the discharge pressure changes and the optimal reverse suction setting changes. There is a disadvantage in that. Therefore, when the reverse suction setting is changed, there is a disadvantage that the filling amount of the filling material changes this time. Therefore, there is a problem that it is necessary to perform multiple adjustments until a desired filling amount of the filling material to be filled into the workpiece is obtained.

本發明是為了消除上述問題點而完成者,其目的在於,提供一種分配器系統,係構成能夠縮短向塗敷對象物塗敷的流體的塗敷量的調整時間之塗敷系統、和能夠縮短向填充對象物填充的流體的填充量的調整時間之填充系統。The present invention was made in order to eliminate the above-mentioned problems, and its object is to provide a dispenser system that constitutes a coating system that can shorten the adjustment time of the coating amount of fluid to be applied to the coating object, and that can shorten the time required to adjust the amount of fluid applied to the coating object. A filling system that adjusts the filling amount of fluid to be filled into the object.

為了達成上述目的,本發明係構成如下。In order to achieve the above object, the present invention is constituted as follows.

(1)本發明涉及之分配器系統的特徵在於,具備:分配器裝置以及控制裝置,所述分配器裝置具有噴出流體的噴出口和使流體相對於所述噴出口移動的泵機構部,且能夠進行噴出運轉和回吸運轉,所述噴出運轉是指以使流體從所述泵機構部朝向所述噴出口移動之方式使所述泵機構部進行工作,所述回吸運轉是指以使流體從所述噴出口朝向所述泵機構部移動之方式使所述泵機構部進行工作,所述控制裝置進行所述分配器裝置的動作控制;所述分配器系統能夠進行塗敷動作和填充動作的任意一方或雙方,所述塗敷動作是指在透過所述噴出運轉向工件噴出了流體之後進行所述回吸運轉,從而向工件塗敷流體,所述填充動作是指在透過所述噴出運轉向工件噴出了流體之後進行所述回吸運轉,從而向工件填充流體;所述控制裝置具有運轉參數設定部,所述運轉參數設定部根據流體之吸入條件自動設定與所述回吸運轉中的流體之吸入量具有相關關係的吸入參數。(1) The distributor system according to the present invention is characterized by including a distributor device having an ejection port for ejecting fluid and a pump mechanism unit for moving the fluid relative to the ejection port, and a control device, and It is possible to perform a discharge operation in which the pump mechanism is operated to move the fluid from the pump mechanism toward the discharge port, and a suction back operation in which the fluid is moved from the pump mechanism to the discharge port. The pump mechanism operates in such a manner that the fluid moves from the ejection port toward the pump mechanism, and the control device controls the operation of the dispenser device; the dispenser system can perform coating operations and filling. Either or both of the actions, the coating action refers to performing the suction operation after the fluid is ejected to the workpiece through the ejection operation, thereby applying the fluid to the workpiece, and the filling action refers to applying the fluid to the workpiece through the The ejection operation ejects the fluid to the workpiece and then performs the suction operation to fill the workpiece with the fluid; the control device has an operation parameter setting part, and the operation parameter setting part automatically sets the suction operation according to the suction conditions of the fluid. The suction volume of the fluid in the fluid has a correlation with the suction parameters.

根據上述分配器系統,由於與回吸運轉中的流體之吸入量具有相關關係的吸入參數根據流體之吸入條件自動設定,因此,例如用戶不用根據塗敷於工件的流體之塗敷截面的尺寸等進行試誤便可以順利地設定吸入參數。這樣,由於與流體之吸入量有關的吸入參數透過運轉參數設定部自動設定,因此,不需要難的調整技術訣竅。結果是,由於可以縮短回吸運轉時的流體吸入量之調整時間,因此,也可以縮短相對於工件塗敷的流體的塗敷量的調整時間。According to the above distributor system, the suction parameters related to the suction amount of the fluid in the suction operation are automatically set based on the suction conditions of the fluid. Therefore, for example, the user does not need to depend on the size of the application cross section of the fluid applied to the workpiece. Inhalation parameters can be set smoothly by trial and error. In this way, since the suction parameters related to the suction amount of the fluid are automatically set by the operation parameter setting unit, difficult adjustment know-how is not required. As a result, the time required to adjust the fluid suction amount during the suction-back operation can be shortened, and therefore the time required to adjust the amount of fluid applied to the workpiece can also be shortened.

另外,根據上述分配器系統,由於與回吸運轉中的流體之吸入量具有相關關係的吸入參數根據流體之吸入條件自動設定,因此,例如用戶不用根據填充於工件的流體之質量等進行試誤便可以順利地設定吸入參數。這樣,由於與流體之吸入量有關的吸入參數透過運轉參數設定部自動設定,因此,不需要難的調整技術訣竅。其結果是,由於可以縮短回吸運轉時的流體吸入量之調整時間,因此,也可以縮短相對於工件填充的流體的填充量的調整時間。In addition, according to the above distributor system, since the suction parameters related to the suction amount of the fluid in the suction operation are automatically set according to the suction conditions of the fluid, the user does not need to make trial and error based on the quality of the fluid filled in the workpiece, for example. You can then set the suction parameters smoothly. In this way, since the suction parameters related to the suction amount of the fluid are automatically set by the operation parameter setting unit, difficult adjustment know-how is not required. As a result, the adjustment time for the fluid suction amount during the suction back operation can be shortened, and therefore the adjustment time for the filling amount of the fluid to be filled into the workpiece can also be shortened.

(2)在本發明涉及之分配器系統中,較佳係特徵在於所述運轉參數設定部根據流體之噴出條件導出並設定與透過所述泵機構部噴出的流體之噴出量具有相關關係的噴出參數;所述運轉參數設定部根據與透過所述運轉參數設定部所設定之所述噴出參數的關係設定所述吸入參數。根據這樣的構成,由於吸入參數根據與噴出參數的關係自動設定,因此,例如用戶也可以不用根據塗敷於工件的流體之狀態進行試誤來設定吸入參數。藉此,由於不需要設定吸入參數時的複雜作業,因此,可以縮短流體吸入量之調整所需的時間。(2) In the dispenser system according to the present invention, it is preferable that the operation parameter setting unit derives and sets the discharge amount in correlation with the discharge amount of the fluid discharged through the pump mechanism unit based on the discharge conditions of the fluid. Parameter; the operation parameter setting part sets the suction parameter based on the relationship with the discharge parameter set by the operation parameter setting part. According to this configuration, the suction parameters are automatically set based on the relationship with the discharge parameters. Therefore, for example, the user can set the suction parameters without trial and error based on the state of the fluid applied to the workpiece. This eliminates the need for complicated operations in setting the suction parameters, thereby shortening the time required to adjust the fluid suction amount.

(3)該情況下,較佳係特徵在於所述控制裝置具有參數關係生成部,所述參數關係生成部根據與所述噴出參數和所述吸入參數之組合有關的實際值生成所述噴出參數與所述吸入參數之關係。根據這樣的構成,透過設定與噴出參數相對應之適當的吸入參數而自動地生成兩者之關係。因此,用戶也可以不用進行試誤而預先設定與噴出參數相對應之適當的吸入參數。(3) In this case, it is preferable that the control device has a parameter relationship generating unit that generates the discharge parameter based on an actual value related to a combination of the discharge parameter and the suction parameter. relationship with the inhalation parameters. According to such a configuration, the relationship between the two is automatically generated by setting appropriate suction parameters corresponding to the discharge parameters. Therefore, the user can preset appropriate suction parameters corresponding to the ejection parameters without making trial and error.

(4)在具有上述參數關係生成部之分配器系統中,較佳係特徵在於所述參數關係生成部利用使用多個點的線性插值或者多項式中的至少任意一個生成所述噴出參數與所述吸入參數之關係。根據這樣的構成,透過利用使用多個點的線性插值、或者多項式中的至少任意一個,可以設定與噴出參數相對應之適當的吸入參數。藉此,由於自動生成兩者之關係,因此,用戶不用進行試誤便可以預先設定與噴出參數相對應之適當的吸入參數。(4) In the dispenser system having the above-described parameter relationship generating unit, it is preferably characterized in that the parameter relationship generating unit generates the ejection parameter and the ejection parameter using at least one of linear interpolation using a plurality of points or a polynomial. relationship between inhalation parameters. According to such a configuration, by utilizing at least one of linear interpolation using a plurality of points or a polynomial, it is possible to set appropriate suction parameters corresponding to the discharge parameters. Thereby, since the relationship between the two is automatically generated, the user can preset appropriate suction parameters corresponding to the ejection parameters without making trial and error.

(5)在具有上述參數關係生成部之分配器系統中,較佳係特徵在於所述運轉參數設定部根據所述噴出運轉時相對於所述工件噴出的流體之目標噴出量和塗敷截面之目標塗敷尺寸中的至少任意一個設定所述噴出參數。根據這樣的構成,由於用於設定對應的吸入參數之噴出參數由運轉參數設定部根據流體之目標噴出量、以及塗敷截面之目標塗敷尺寸中的至少任意一個自動設定,因此,不需要用戶透過計算等算出噴出參數。此外,目標噴出量係包含質量和體積兩者的概念,目標塗敷尺寸係包含長度和面積兩者的概念。(5) In the dispenser system having the above-mentioned parameter relationship generating unit, it is preferably characterized in that the operation parameter setting unit is based on a target ejection amount of the fluid ejected relative to the workpiece during the ejection operation and a coating cross section. At least any one of the target coating sizes sets the ejection parameters. According to this configuration, since the discharge parameters for setting the corresponding suction parameters are automatically set by the operation parameter setting unit based on at least one of the target discharge amount of the fluid and the target coating size of the coating cross section, no user is required. The ejection parameters are calculated through calculation etc. In addition, the target discharge amount includes the concepts of both mass and volume, and the target coating size includes the concepts of both length and area.

(6)在透過上述運轉參數設定部設定噴出參數之構成中,較佳係特徵在於所述運轉參數設定部根據所述噴出運轉時相對於所述工件噴出的流體之所述目標噴出量和流體之實測噴出量的差異、以及塗敷截面之目標塗敷尺寸和實測塗敷尺寸的差異中的至少任意一個設定所述噴出參數。根據這樣的構成,由於用於設定對應的吸入參數之噴出參數由運轉參數設定部根據流體之目標噴出量和實測噴出量的差異、以及塗敷截面之目標塗敷尺寸和實測塗敷尺寸的差異中的至少任意一個自動設定,因此,不需要用戶透過計算等算出噴出參數。此外,目標噴出量和實測噴出量係包含質量和體積兩者的概念,目標塗敷尺寸和實測塗敷尺寸係包含長度和面積兩者的概念。(6) In the configuration in which the ejection parameter is set by the operation parameter setting unit, it is preferable that the operation parameter setting unit determines the ejection parameter based on the target ejection amount and the fluid ejected relative to the workpiece during the ejection operation. The ejection parameters are set based on at least one of the difference between the actual measured ejection amount and the difference between the target coating size of the coating cross section and the actual measured coating size. According to such a configuration, the discharge parameter for setting the corresponding suction parameter is determined by the operation parameter setting unit based on the difference between the target discharge amount of the fluid and the actual measured discharge amount, and the difference between the target coating size and the measured coating size of the coating cross section. At least one of them is automatically set, so the user does not need to calculate the ejection parameters through calculation or the like. In addition, the target discharge amount and the measured discharge amount include the concepts of both mass and volume, and the target coating size and the measured coating size include the concepts of both the length and the area.

(7)在本發明涉及之分配器系統中,較佳係特徵在於所述吸入參數為所述分配器裝置中的所述回吸運轉時的輸出和/或運轉時間。根據這樣的構成,可以使分配器裝置根據由運轉參數設定部所設定之與吸入參數對應的輸出和/或運轉時間進行回吸運轉。(7) In the distributor system according to the present invention, it is preferable that the suction parameter is the output and/or the operation time during the suction operation in the distributor device. According to such a structure, the distributor device can be made to perform a suction-back operation based on the output and/or the operation time corresponding to the suction parameter set by the operation parameter setting part.

(8)在本發明涉及之分配器系統中,較佳係特徵在於所述分配器裝置是單軸偏心螺桿式分配器。根據這樣構成,運轉參數與噴出量和吸入量大致成比例,因此,計算值與現實的值容易匹配,調整容易收斂。另外,與空氣式、螺旋式等的分配器裝置相比,噴出量和吸入量與運轉參數之比例度高,調整也變得更簡單。其結果是,可以使用單軸偏心螺桿式分配器構成能夠縮短向工件塗敷的流體的塗敷量的調整時間的分配器系統。(8) In the distributor system according to the present invention, it is preferably characterized in that the distributor device is a single-axis eccentric screw distributor. According to this configuration, the operating parameters are substantially proportional to the discharge amount and the suction amount. Therefore, the calculated value and the actual value can be easily matched, and the adjustment can be easily converged. In addition, compared with air-type, spiral-type distributor devices, etc., the ratio between the discharge amount and the suction amount and the operating parameters is high, and the adjustment becomes easier. As a result, a distributor system capable of shortening the adjustment time of the amount of fluid applied to the workpiece can be constructed using the uniaxial eccentric screw distributor.

[發明功效] 根據本發明涉及之方式,能夠提供分配器系統,其可構成能夠縮短向工件塗敷的流體的塗敷量的調整時間之塗敷系統、或者能夠縮短向工件填充的流體的填充量的調整時間之填充系統。 [Invention effect] According to the aspect of the present invention, it is possible to provide a dispenser system that can configure a coating system that can shorten the adjustment time of the amount of fluid applied to a workpiece, or that can shorten the adjustment time of the filling amount of the fluid that is applied to the workpiece. filling system.

以下,參照圖式對作為本發明分配器系統的一實施方式之塗敷系統進行說明。該等圖式為示意圖,並不一定以正確的比例表述大小。另外,在圖中,相同的構成部件賦予相同的符號進行圖示。Hereinafter, a coating system as one embodiment of the dispenser system of the present invention will be described with reference to the drawings. The drawings are schematic and do not necessarily represent sizes to correct proportions. In addition, in the drawings, the same components are represented by the same reference numerals.

參照圖1至圖12,對本實施方式涉及之塗敷系統100進行說明。如圖1中(a)所示,塗敷系統100主要具備分配器裝置1、分配器控制裝置2、機器人3、機器人控制裝置4以及輸入輸出裝置5(參照圖3)。該等裝置以能夠單向或雙向地進行資訊通信之方式透過有線通信或無線通信電連接。分配器控制裝置2主要負責分配器裝置1整體的控制。機器人控制裝置4主要負責機器人3整體的控制。機器人3上安裝有分配器裝置1。The coating system 100 according to this embodiment will be described with reference to FIGS. 1 to 12 . As shown in FIG. 1( a ), the coating system 100 mainly includes a dispenser device 1 , a dispenser control device 2 , a robot 3 , a robot control device 4 , and an input/output device 5 (see FIG. 3 ). These devices are electrically connected through wired communication or wireless communication in a manner that enables one-way or two-way information communication. The dispenser control device 2 is mainly responsible for the overall control of the dispenser device 1 . The robot control device 4 is mainly responsible for the overall control of the robot 3 . The robot 3 is equipped with a dispenser device 1 .

塗敷系統100按照根據分配器控制裝置2中規定的塗敷條件導出並設定之運轉參數使分配器裝置1按規定進行工作,並按照根據機器人控制裝置4中規定的塗敷條件導出並設定之運轉參數使機器人3按規定進行工作。這樣,塗敷系統100經過規定的塗敷過程進行如下處理:根據規定的塗敷條件向工件(塗敷對象物)塗敷作為流體的塗敷材料。The coating system 100 causes the dispenser device 1 to operate as specified according to the operating parameters derived and set based on the coating conditions specified in the dispenser control device 2, and in accordance with the coating conditions derived and set based on the robot control device 4. The operating parameters enable the robot 3 to work as specified. In this way, the coating system 100 performs a process of applying the fluid coating material to the workpiece (coating object) according to the predetermined coating conditions through the predetermined coating process.

此外,如圖1中(b)所示,透過使分配器控制裝置2及機器人控制裝置4兩者的控制功能集中於一個控制裝置,也能夠進行分配器裝置1及機器人3兩者的控制。另一方面,也可以將上述控制功能分割至三個以上的控制裝置而構成。In addition, as shown in FIG. 1( b ), by integrating the control functions of both the dispenser control device 2 and the robot control device 4 into one control device, both the dispenser device 1 and the robot 3 can be controlled. On the other hand, the control function may be divided into three or more control devices.

分配器裝置1用於向工件(塗敷對象物)噴出流體(塗敷材料)進行塗敷。分配器裝置1用於加壓輸送塗敷材料,主要部分由單軸偏心螺桿泵10構成。分配器裝置1能夠按照來自分配器控制裝置2的動作指令進行動作,驅動泵機構部11,並且從設置於前端部的噴出口12噴出塗敷材料,向工件進行點塗敷或線塗敷等。The dispenser device 1 is used to spray a fluid (coating material) onto a workpiece (coating object) for coating. The distributor device 1 is used to transport coating materials under pressure, and its main part is composed of a single-axis eccentric screw pump 10. The dispenser device 1 operates in accordance with an operation command from the dispenser control device 2, drives the pump mechanism portion 11, and ejects the coating material from the discharge port 12 provided at the front end portion to perform dot coating or line coating on the workpiece. .

如圖2所示,單軸偏心螺桿泵10是旋轉容積式的泵。單軸偏心螺桿泵10具有接受動力並偏心旋轉的陽螺紋型的轉子13、內周面14a形成為陰螺紋型的定子14、以及電動機15。As shown in FIG. 2 , the single-axis eccentric screw pump 10 is a rotary positive displacement pump. The uniaxial eccentric screw pump 10 has a male thread type rotor 13 that receives power and rotates eccentrically, a stator 14 with an inner peripheral surface 14a formed in a female thread type, and an electric motor 15 .

轉子13是呈具有n條(本實施方式中n=1)陽螺紋的形狀且由金屬製成的軸體。定子14是具有貫通孔14b的大致圓筒形的部件,內周面14a形成為n+1條(本實施方式中n=1)陰螺紋的形狀。單軸偏心螺桿泵10被形成為將泵機構部11內置於泵殼17之構成,泵機構部11的主要部分是透過將轉子13插通於定子14的貫通孔14b而構成。泵機構部11具有使塗敷材料相對於噴出口12移動的功能。The rotor 13 is a shaft body made of metal and has a shape of n male threads (n=1 in this embodiment). The stator 14 is a substantially cylindrical member having a through hole 14 b, and the inner peripheral surface 14 a is formed in the shape of n+1 (n=1 in this embodiment) female threads. The uniaxial eccentric screw pump 10 is configured such that the pump mechanism 11 is built into the pump casing 17 . The main part of the pump mechanism 11 is formed by inserting the rotor 13 into the through hole 14 b of the stator 14 . The pump mechanism unit 11 has a function of moving the coating material relative to the ejection port 12 .

電動機15是單軸偏心螺桿泵10的驅動源。電動機15經由動力傳遞部及偏心旋轉部(省略圖示)與轉子13的基端部連接。因此,單軸偏心螺桿泵10透過使電動機15進行工作,從而可以使轉子13在貫通孔14b的內部自由地偏心旋轉。The electric motor 15 is the driving source of the uniaxial eccentric screw pump 10 . The electric motor 15 is connected to the base end of the rotor 13 via a power transmission part and an eccentric rotation part (not shown). Therefore, in the uniaxial eccentric screw pump 10, by operating the motor 15, the rotor 13 can freely rotate eccentrically inside the through hole 14b.

單軸偏心螺桿泵10透過使轉子13在定子14的貫通孔14b內正向旋轉,可以使形成於轉子13與定子14之間的流體輸送路16沿長度方向前進。因此,透過使轉子13進行旋轉,能夠從定子14的一端側向流體輸送路16內吸入流體,並朝向定子14的另一端側輸送並噴出。另外,可以根據轉子13(電動機15)的旋轉量控制流體的輸送量(噴出量)。進而,透過將轉子13的旋轉方向切換為反方向,可以切換流體輸送路16內的流體的行進方向。In the uniaxial eccentric screw pump 10, by forward rotation of the rotor 13 in the through hole 14b of the stator 14, the fluid transfer path 16 formed between the rotor 13 and the stator 14 can be advanced in the length direction. Therefore, by rotating the rotor 13 , the fluid can be sucked into the fluid conveying path 16 from one end side of the stator 14 , and can be conveyed and discharged toward the other end side of the stator 14 . In addition, the conveyance amount (discharge amount) of the fluid can be controlled based on the rotation amount of the rotor 13 (motor 15). Furthermore, by switching the rotation direction of the rotor 13 to the reverse direction, the traveling direction of the fluid in the fluid transfer path 16 can be switched.

分配器裝置1能夠進行噴出運轉和回吸運轉(suck back),其中,噴出運轉是指:以塗敷材料從泵機構部11朝向噴出口12移動之方式使泵機構部11進行工作(正轉旋轉),回吸運轉是指:以塗敷材料從噴出口12朝向泵機構部11移動之方式使泵機構部11進行工作(反轉旋轉)。換言之,分配器裝置1透過使泵機構部11正向進行工作(正轉旋轉),能夠進行從噴出口12噴出塗敷材料的噴出運轉。進而,分配器裝置1透過使泵機構部11反方向進行工作(反轉旋轉),能夠進行將塗敷材料吸入的回吸運轉。另外,分配器裝置1在透過噴出運轉向工件噴出了塗敷材料之後進行回吸運轉,藉此能夠進行向工件塗敷塗敷材料的塗敷動作。The distributor device 1 can perform a discharge operation and a suck back operation (suck back). The discharge operation refers to operating the pump mechanism part 11 so that the coating material moves from the pump mechanism part 11 toward the discharge port 12 (forward rotation). Rotation), the suction back operation refers to operating the pump mechanism part 11 so that the coating material moves from the discharge port 12 toward the pump mechanism part 11 (reverse rotation). In other words, the dispenser device 1 can perform a discharge operation in which the coating material is discharged from the discharge port 12 by operating the pump mechanism 11 in the forward direction (forward rotation). Furthermore, the dispenser device 1 can perform a suction operation in which the coating material is sucked in by operating the pump mechanism portion 11 in the reverse direction (reverse rotation). In addition, the dispenser device 1 can perform a coating operation of applying the coating material to the workpiece by performing the suction operation after ejecting the coating material onto the workpiece through the discharge operation.

機器人3用於使分配器裝置1相對於工件相對移動。作為機器人3的一例,使用工業用機器人。機器人3可以根據來自機器人控制裝置4的機器人動作控制部41的指令信號使機械臂進行動作。因此,透過機器人動作控制部41的動作控制,可以使安裝於機械臂的前端部分的分配器裝置1沿預先規定的軌跡進行移動。The robot 3 is used to move the dispenser device 1 relative to the workpiece. As an example of the robot 3, an industrial robot is used. The robot 3 can operate the robot arm based on a command signal from the robot movement control unit 41 of the robot control device 4 . Therefore, through the motion control of the robot motion control unit 41, the dispenser device 1 mounted on the front end portion of the robot arm can be moved along a predetermined trajectory.

輸入輸出裝置5是用於進行塗敷條件(塗敷資訊)的輸入及顯示、用於校正(變更)噴出參數及吸入參數的輸入及顯示、以及所輸入的資訊的輸出之裝置。塗敷條件例如是諸如向工件塗敷的塗敷材料的目標塗敷量、目標塗敷尺寸(塗敷截面的塗敷直徑、塗敷高度)、塗敷時間、塗敷速度等與塗敷材料的塗敷圖案相關之資訊,但並不限定於該等條件。另外,上述“量”包括體積和質量兩者。另外,輸入輸出裝置5具備觸控面板。觸控面板承擔塗敷資訊的顯示功能(顯示裝置51)及輸入功能(輸入裝置52)雙方。顯示裝置51由液晶顯示裝置或有機EL顯示裝置等構成,顯示裝置51中顯示後述各種圖像(GUI)等。The input/output device 5 is a device for inputting and displaying coating conditions (coating information), inputting and displaying correction (changing) ejection parameters and suction parameters, and outputting input information. The coating conditions are, for example, the target coating amount of the coating material applied to the workpiece, the target coating size (coating diameter of the coating cross section, coating height), coating time, coating speed, etc., and the coating material. information related to the coating pattern, but is not limited to these conditions. In addition, the above-mentioned "amount" includes both volume and mass. In addition, the input-output device 5 is equipped with a touch panel. The touch panel has both a display function (display device 51 ) and an input function (input device 52 ) of coating information. The display device 51 is composed of a liquid crystal display device, an organic EL display device, or the like, and displays various images (GUI) and the like described below.

輸入輸出裝置5(觸控面板)構成為能夠相對於顯示裝置51上顯示的圖10~圖12所示那樣的各種圖像(GUI:Graphical User Interface、圖形化使用者介面)而顯示和/或輸入塗敷條件、運轉參數以及校正資訊。The input/output device 5 (touch panel) is configured to display and/or display various images (GUI: Graphical User Interface) as shown in FIGS. 10 to 12 displayed on the display device 51 . Enter coating conditions, operating parameters, and calibration information.

如圖3所示,分配器控制裝置2具有輸入受理部21、塗敷條件設定部22、運轉參數設定部23、參數關係生成部24、動作控制部25、存儲部26、校正資訊受理部27以及顯示控制部28。As shown in FIG. 3 , the dispenser control device 2 includes an input acceptance unit 21 , a coating condition setting unit 22 , an operation parameter setting unit 23 , a parameter relationship generation unit 24 , an operation control unit 25 , a storage unit 26 , and a correction information acceptance unit 27 and a display control unit 28.

輸入受理部21例如受理相對於工件的塗敷材料的塗敷條件的輸入,該塗敷條件由用戶相對於輸入輸出裝置5的顯示裝置51中顯示的各種圖像而輸入。The input accepting unit 21 accepts, for example, input of application conditions of the coating material for the workpiece input by the user with respect to various images displayed on the display device 51 of the input-output device 5 .

塗敷條件設定部22例如能夠設定向工件塗敷的塗敷材料的目標塗敷量、塗敷截面的目標塗敷尺寸以及運轉參數中的至少任意一者作為塗敷條件。塗敷尺寸是指將向工件點塗敷的塗敷材料設為旋轉橢圓體的半球時的塗敷截面的塗敷直徑及塗敷高度涉及之尺寸。此外,上述設定方法為一例,只要與塗敷直徑和/或塗敷高度相關聯,便能夠另外準備用於設定的計算方法。另外,在呈線狀向工件塗敷塗敷材料的線塗敷之情況下,與線的長度所涉及的值有關係,例如有時計算剖視線狀塗敷材料時的形狀(半圓柱型)的體積。The coating condition setting unit 22 can set, for example, at least any one of a target coating amount of the coating material to be applied to the workpiece, a target coating size of the coating cross section, and operating parameters as coating conditions. The coating size refers to the dimensions related to the coating diameter and coating height of the coating cross section when the coating material applied to the workpiece point is a hemisphere of a rotational ellipsoid. In addition, the above-mentioned setting method is an example, and as long as it is related to the coating diameter and/or the coating height, another calculation method for setting can be prepared. In addition, in the case of line coating in which the coating material is applied linearly to the workpiece, the value related to the length of the line is related. For example, the shape of the cross-sectional linear coating material (semi-cylindrical type) may be calculated. volume.

運轉參數設定部23根據塗敷材料的塗敷條件導出並設定運轉參數,該運轉參數與相對於工件的塗敷材料的塗敷量具有相關關係。此外,“根據塗敷材料的塗敷條件導出並設定”包括由運轉參數設定部23全自動地設定運轉參數之情況、或者設定運轉參數時由用戶手動進行部分操作(輸入條件)而設定運轉參數之情況等。The operation parameter setting unit 23 derives and sets operation parameters based on the application conditions of the coating material, and the operation parameters are correlated with the coating amount of the coating material relative to the workpiece. In addition, "derived and set based on the coating conditions of the coating material" includes the case where the operation parameters are fully automatically set by the operation parameter setting unit 23, or when the operation parameters are set, the user manually performs a partial operation (input conditions) to set the operation parameters. situation, etc.

運轉參數包括噴出參數和吸入參數。噴出參數是與泵機構部11的塗敷材料的噴出量具有相關關係之參數。噴出參數是根據塗敷材料的噴出條件導出並設定之參數。此外,噴出條件是指用戶相對於分配器控制裝置2輸入的噴出涉及之任意數值等,例如可以舉出“噴出時間”或“噴出旋轉速度”等。噴出參數例如是分配器裝置1中的正轉運轉時的輸出和/或運轉時間等。此外,上述“輸出”在單軸偏心螺桿式之情況下為轉子13或電動機15的旋轉速度,在柱塞式之情況下為柱塞的移動速度,在空氣式之情況下為空氣壓力等。吸入參數是與泵機構部11的塗敷材料的吸入量具有相關關係之參數。吸入參數根據塗敷材料的吸入條件導出並設定。吸入參數例如是分配器裝置1中的回吸運轉時的輸出和/或運轉時間等。此外,吸入條件是指用戶相對於分配器控制裝置2輸入的吸入涉及之任意數值等。The operating parameters include ejection parameters and suction parameters. The discharge parameter is a parameter that is correlated with the discharge amount of the coating material from the pump mechanism unit 11 . The ejection parameters are parameters derived and set based on the ejection conditions of the coating material. In addition, the discharge condition refers to any numerical value related to discharge input by the user to the dispenser control device 2, and examples thereof include “discharge time” or “discharge rotation speed”. The discharge parameter is, for example, the output and/or operation time during the forward rotation operation of the distributor device 1 . In addition, the above-mentioned "output" is the rotation speed of the rotor 13 or the motor 15 in the case of the uniaxial eccentric screw type, the moving speed of the plunger in the case of the plunger type, and the air pressure in the case of the air type. The suction parameter is a parameter that is correlated with the suction amount of the coating material of the pump mechanism unit 11 . The suction parameters are derived and set based on the suction conditions of the coating material. The suction parameter is, for example, the output and/or operation time during the suction operation in the distributor device 1 . In addition, the inhalation condition refers to any numerical value related to inhalation input by the user with respect to the dispenser control device 2 , etc.

運轉參數設定部23能夠透過後述方法導出並設定運轉參數。例如,運轉參數設定部23能夠在根據塗敷條件設定部22中設定的塗敷條件設定了運轉參數之基礎上,以噴出運轉中的塗敷材料的噴出量根據伴隨著回吸運轉的塗敷材料的塗敷量的減少而增加之方式進行設定。The operation parameter setting unit 23 can derive and set the operation parameters by a method described below. For example, the operation parameter setting unit 23 can, after setting the operation parameters based on the coating conditions set in the coating condition setting unit 22, adjust the ejection amount of the coating material during the ejection operation according to the coating process accompanying the suction operation. Set so that the amount of material applied decreases and increases.

運轉參數設定部23能夠透過後述方法導出並設定噴出參數。例如,運轉參數設定部23能夠根據與泵機構部11的塗敷材料的噴出量具有相關關係之塗敷材料的噴出條件導出並設定噴出參數、根據噴出運轉時向工件噴出(或者塗敷)的塗敷材料的目標噴出量(或者目標塗敷量)導出並設定噴出參數、以及/或者根據噴出運轉時向工件噴出(或者塗敷)的塗敷材料的目標噴出量(或者目標塗敷量)與塗敷材料的實測噴出量(或者實測塗敷量)的差異導出並設定噴出參數。The operation parameter setting unit 23 can derive and set the discharge parameters by a method described below. For example, the operation parameter setting unit 23 can derive and set the ejection parameters based on the ejection conditions of the coating material that are correlated with the ejection amount of the coating material by the pump mechanism unit 11 , and can set the ejection parameters based on the conditions of ejection (or coating) to the workpiece during the ejection operation. The target ejection amount (or target coating amount) of the coating material is derived and the ejection parameters are set, and/or the target ejection amount (or target coating amount) of the coating material to be ejected (or applied) to the workpiece during the ejection operation is derived. The difference from the actual measured discharge amount of the coating material (or the actual measured coating amount) is derived and the discharge parameters are set.

運轉參數設定部23能夠根據與運轉參數設定部23設定的噴出參數的關係導出並設定吸入參數。The operation parameter setting unit 23 can derive and set the suction parameters based on the relationship with the discharge parameters set by the operation parameter setting unit 23 .

另外,塗敷系統100能夠根據塗敷條件而進行用於實現運轉參數的最佳化的校準動作(初始設定)。在校準動作中,運轉參數設定部23將伴隨著回吸運轉的塗敷材料的吸入量臨時設定為臨時吸入量。例如,運轉參數設定部23被構成為:在將伴隨著回吸運轉的塗敷材料的吸入量臨時設定為臨時吸入量時,根據(1)目標塗敷量和/或目標塗敷尺寸等、(2)正轉旋轉速度和/或時間等的噴出參數、(3)由用戶輸入的任意值、(4)與其他的條件或參數無關的固定值、(5)吸入參數中的至少任意一者進行計算。In addition, the coating system 100 can perform a calibration operation (initial setting) for optimizing operating parameters based on coating conditions. In the calibration operation, the operation parameter setting unit 23 temporarily sets the suction amount of the coating material accompanying the suction back operation as the temporary suction amount. For example, the operation parameter setting unit 23 is configured to temporarily set the suction amount of the coating material accompanying the suction back operation as the temporary suction amount based on (1) the target coating amount and/or the target coating size, etc., At least any one of (2) ejection parameters such as forward rotation speed and/or time, (3) arbitrary values input by the user, (4) fixed values independent of other conditions or parameters, (5) suction parameters who perform calculations.

換言之,運轉參數設定部23在校準動作中將吸入量(臨時吸入量)初始設定為規定值,並根據初始設定的臨時吸入量、目標塗敷尺寸、目標塗敷量以及塗敷時間等初始設定噴出參數(旋轉速度)。然後,動作控制部25進行試驗塗敷,該試驗塗敷是指按照初始設定的噴出參數試驗性地執行塗敷動作。In other words, the operation parameter setting unit 23 initially sets the suction amount (temporary suction amount) to a predetermined value during the calibration operation, and initializes the initial settings based on the initially set temporary suction amount, target coating size, target coating amount, coating time, etc. Ejection parameters (rotation speed). Then, the operation control unit 25 performs test coating, which refers to experimentally executing a coating operation according to the initially set ejection parameters.

如上所述,在本實施方式中,運轉參數設定部23在初始設定中透過考慮了由反轉吸入引起的塗敷量減少之計算式求出初始的正轉旋轉速度,作為一例,由下式表示。亦即,根據由正轉旋轉速度=((噴出量)+(臨時的反轉吸入量))/(理論噴出量 × 正轉時間)表示的計算式進行計算。換言之,上式的分子的目的在於,將噴出量加上臨時的反轉吸入量而得到的量設定為臨時塗敷量,使臨時塗敷量與作為目標的塗敷量一致。作為目標的塗敷量是假定“所希望的塗敷直徑和塗敷高度的旋轉橢圓體的半球”而算出的。如上所述,透過算入“臨時的反轉吸入量”,能夠從初始階段算出更適當(接近於正解)的正轉旋轉速度。As described above, in the present embodiment, the operation parameter setting unit 23 obtains the initial forward rotation speed by using a calculation formula that takes into account the reduction in the coating amount due to the reverse suction in the initial setting. As an example, the following formula express. That is, the calculation is performed based on the calculation formula expressed by forward rotation speed = ((discharge amount) + (temporary reverse rotation suction amount)) / (theoretical discharge amount × forward rotation time). In other words, the purpose of the numerator of the above formula is to set the amount obtained by adding the ejection amount and the temporary reverse suction amount as the temporary coating amount, so that the temporary coating amount matches the target coating amount. The target coating amount is calculated assuming "a hemisphere of a spheroid with a desired coating diameter and coating height." As described above, by calculating the "temporary reverse rotation intake amount", a more appropriate (close to the correct solution) forward rotation speed can be calculated from the initial stage.

參數關係生成部24根據噴出參數和吸入參數的組合涉及之實際值生成噴出參數與吸入參數的關係。實際值是基於過去的計算結果或模擬結果等的值。The parameter relationship generation unit 24 generates a relationship between the discharge parameters and the suction parameters based on actual values related to the combination of the discharge parameters and the suction parameters. Actual values are values based on past calculation results or simulation results, etc.

動作控制部25按照運轉參數設定部23中設定的運轉參數進行分配器裝置1的動作控制。The operation control unit 25 controls the operation of the dispenser device 1 in accordance with the operation parameters set in the operation parameter setting unit 23 .

存儲部26中預先存儲(儲存)有負責分配器裝置1整體的控制之程式、數據、以及顯示裝置51中顯示的各種圖像等。另外,存儲部26中存儲有由用戶輸入的塗敷條件(圖案)的設定、以及所設定的運轉參數等的歷史。The storage unit 26 stores (stores) programs and data responsible for overall control of the dispenser device 1 , various images displayed on the display device 51 , and the like in advance. In addition, the storage unit 26 stores the settings of the coating conditions (patterns) input by the user, the history of the set operation parameters, and the like.

校正資訊受理部27受理運轉參數的校正涉及之校正資訊的輸入,該運轉參數的校正用於調整塗敷量以得到所希望的塗敷量。校正資訊受理部27受理向工件塗敷的塗敷材料的塗敷截面的實測塗敷尺寸或實測塗敷量、以及塗敷材料的塗敷截面的目標塗敷尺寸或目標塗敷量等作為校正資訊。The correction information accepting unit 27 accepts input of correction information related to correction of operating parameters for adjusting the coating amount to obtain a desired coating amount. The correction information receiving unit 27 accepts as correction the actual measured coating size or the measured coating amount of the coating cross section of the coating material applied to the workpiece, and the target coating size or target coating amount of the coating cross section of the coating material. information.

校正資訊受理部27包括噴出參數校正資訊受理部271和吸入參數校正資訊受理部272。噴出參數校正資訊受理部271受理噴出參數的校正涉及之校正資訊的輸入,該噴出參數的校正用於調整塗敷材料的噴出量。吸入參數校正資訊受理部272受理吸入參數的校正涉及之校正資訊的輸入,該吸入參數的校正用於調整塗敷材料的吸入量。The correction information reception unit 27 includes an ejection parameter correction information reception unit 271 and an suction parameter correction information reception unit 272. The ejection parameter correction information accepting unit 271 accepts the input of correction information related to the correction of ejection parameters for adjusting the ejection amount of the coating material. The suction parameter correction information accepting unit 272 accepts the input of correction information related to the correction of the suction parameter for adjusting the suction amount of the coating material.

運轉參數設定部23根據校正資訊受理部27中受理的校正資訊對運轉參數進行校正。例如,運轉參數設定部23利用校正資訊受理部27中受理的塗敷材料的實測塗敷尺寸與目標塗敷尺寸的關係對噴出參數進行校正。此外,並不限於實測塗敷尺寸或目標塗敷尺寸,也可以是實測塗敷量或目標塗敷量。另外,運轉參數設定部23能夠根據噴出參數和吸入參數的組合涉及之實際值,並利用噴出參數與吸入參數的關係對吸入參數進行校正。The operating parameter setting unit 23 corrects the operating parameters based on the correction information accepted by the correction information accepting unit 27 . For example, the operation parameter setting unit 23 corrects the ejection parameters using the relationship between the actual measured coating size and the target coating size of the coating material accepted by the correction information accepting unit 27 . In addition, it is not limited to the actual measured coating size or the target coating size, and may be the actual measured coating amount or the target coating amount. In addition, the operation parameter setting unit 23 can correct the suction parameter based on the actual value related to the combination of the discharge parameter and the suction parameter and using the relationship between the discharge parameter and the suction parameter.

顯示控制部28進行使輸入輸出裝置5的顯示裝置51顯示塗敷條件顯示部281、運轉參數顯示部282、校正資訊顯示部283的控制。塗敷條件顯示部281顯示輸入受理部21中受理的塗敷條件。該塗敷條件顯示部281例如是與圖10中(a)所示的塗敷形狀指定圖像中的“寬度”和“高度”等相關的圖像。The display control unit 28 controls the display device 51 of the input/output device 5 to display the coating condition display unit 281, the operation parameter display unit 282, and the correction information display unit 283. The coating condition display unit 281 displays the coating conditions accepted by the input accepting unit 21 . This application condition display part 281 is an image related to "width", "height", etc. in the application shape designation image shown in (a) of FIG. 10, for example.

運轉參數顯示部282根據輸入受理部21中受理的塗敷條件顯示透過運轉參數設定部23導出並設定的運轉參數(噴出參數和吸入參數)。該運轉參數顯示部282例如是與圖10中(a)所示的塗敷形狀指定圖像中的“噴出旋轉速度”、“噴出時間”、“吸入速度”以及“吸入時間”等相關的圖像。The operation parameter display unit 282 displays the operation parameters (ejection parameters and suction parameters) derived and set by the operation parameter setting unit 23 based on the coating conditions accepted by the input acceptance unit 21 . This operation parameter display part 282 is, for example, a diagram related to the "discharge rotation speed", "discharge time", "suction speed", "suction time", etc. in the coating shape designation image shown in FIG. 10(a) picture.

校正資訊顯示部283顯示校正資訊受理部27中受理的校正資訊。該校正資訊顯示部283例如是圖11及圖12所示那樣的與“吸入速度”、“吸入時間”、“直徑”以及“高度”等相關的圖像。The correction information display unit 283 displays the correction information accepted by the correction information accepting unit 27 . The correction information display unit 283 is, for example, images related to “inhalation speed”, “inhalation time”, “diameter”, “height” and the like as shown in FIGS. 11 and 12 .

接著,參照圖3至圖12對本實施方式涉及之塗敷系統的塗敷量調整步驟進行說明。Next, the coating amount adjustment procedure of the coating system according to this embodiment will be described with reference to FIGS. 3 to 12 .

如圖4所示,在步驟S1-1中,作為向工件塗敷的塗敷材料的塗敷條件,由用戶輸入(設定)塗敷尺寸、塗敷時間等。此時,例如在顯示裝置51中顯示圖10中(a)所示那樣的塗敷形狀指定圖像(塗敷條件顯示部281和運轉參數顯示部282)。用戶相對於顯示裝置51顯示的塗敷形狀指定圖像而對觸控面板進行操作,從而輸入塗敷尺寸(圖10中(a)所示的“寬度”和“高度”)、塗敷時間(噴出時間)等作為向工件塗敷的塗敷材料的塗敷條件。用戶輸入的資訊(塗敷條件)由分配器控制裝置2的輸入受理部21受理,並由塗敷條件設定部22設定為塗敷條件。另外,當按下圖10中(a)所示的圖像中的“?”按鈕時,顯示圖10中(b)所示那樣的與塗敷材料的塗敷尺寸相關的說明圖。此外,在本實施方式中,圖10中(a)所示的“吸入速度”和“吸入時間”預先顯示作為臨時值的固定值,但也可以形成為用戶能夠輸入其他的值。在用戶輸入了其他值的情況下,既可以控制為不反映於後述步驟S1-2中的“噴出旋轉速度”的計算結果,也可以控制為反映於計算結果。As shown in FIG. 4 , in step S1 - 1 , the user inputs (sets) coating size, coating time, etc. as coating conditions of the coating material to be applied to the workpiece. At this time, for example, a coating shape designation image (coating condition display unit 281 and operation parameter display unit 282 ) as shown in FIG. 10( a ) is displayed on the display device 51 . The user operates the touch panel with respect to the application shape designation image displayed on the display device 51 to input application size ("width" and "height" shown in (a) of FIG. 10 ), application time ( ejection time), etc. as the application conditions of the coating material applied to the workpiece. The information (coating conditions) input by the user is accepted by the input accepting unit 21 of the dispenser control device 2 and set as the application conditions by the application condition setting unit 22 . In addition, when the "?" button in the image shown in (a) of FIG. 10 is pressed, an explanatory diagram related to the application size of the coating material as shown in (b) of FIG. 10 is displayed. In addition, in this embodiment, the "inhalation speed" and "inhalation time" shown in FIG. 10(a) are previously displayed as fixed values as temporary values, but they may be configured so that the user can input other values. When the user inputs other values, it may be controlled so that it is not reflected in the calculation result of the "ejection rotation speed" in step S1-2 described later, or it may be controlled so that it is reflected in the calculation result.

另外,在臨時的吸入時間相對於用戶輸入的噴出時間過長之情況下,也可以自動調整以使吸入時間變短。此外,上述“固定值”是臨時的值,因此能夠適當地設定。除此之外,也可以根據目標塗敷量和/或目標塗敷尺寸等的塗敷條件、或者正轉旋轉速度和/或時間等的噴出參數自動地設定“吸入速度”和“吸入時間”。此外,在本實施方式中,顯示和/或輸入“吸入速度”、“吸入時間”這樣的吸入參數,但也可以取而代之或在此基礎上顯示和/或輸入“吸入量”和/或“臨時吸入量”。該情況下的吸入量、臨時吸入量與吸入速度、吸入時間同樣地能夠設為固定值、用戶輸入的值、或者根據塗敷條件、噴出參數自動計算出的值等各種值。In addition, when the temporary inhalation time is too long relative to the ejection time input by the user, the inhalation time may be automatically adjusted so that the inhalation time is shortened. In addition, since the above-mentioned "fixed value" is a temporary value, it can be set appropriately. In addition, the "suction speed" and "suction time" may be automatically set based on coating conditions such as target coating amount and/or target coating size, or ejection parameters such as forward rotation speed and/or time. . Furthermore, in this embodiment, inhalation parameters such as "inhalation speed" and "inhalation time" are displayed and/or input, but "inhalation amount" and/or "temporary amount" may be displayed and/or input instead of or in addition to these. Inhalation volume”. In this case, the suction amount and the temporary suction amount, like the suction speed and the suction time, can be set to various values such as fixed values, values input by the user, or values automatically calculated based on coating conditions and ejection parameters.

接著,在步驟S1-2中,自動計算出分配器裝置1的正轉旋轉速度。此時,分配器控制裝置2在計算正轉旋轉速度時,在算入了臨時的反轉吸入量(臨時吸入量)的基礎上進行計算。具體而言,運轉參數設定部23在校準動作(初始設定)中將伴隨著回吸運轉的塗敷材料的吸入量臨時設定為臨時吸入量。進而,運轉參數設定部23將對伴隨著噴出運轉的塗敷材料的噴出量加上臨時吸入量而得到的量作為透過塗敷動作向工件噴出的臨時塗敷量,並根據臨時塗敷量臨時設定運轉參數(正轉旋轉速度)。此時,運轉參數設定部23根據由正轉旋轉速度=((噴出量)+臨時的反轉吸入量)/(理論噴出量×正轉時間)表示的計算式進行計算。此外,在上述塗敷形狀指定圖像中顯示和/或輸入了吸入速度、吸入時間這樣的吸入參數之情況下,可以根據該等值來計算臨時吸入量並進行使用。另一方面,在顯示和/或輸入了吸入量、臨時吸入量之情況下,可以將該等值直接作為臨時吸入量使用、以及將根據該等值計算出的其他值作為臨時吸入量使用。Next, in step S1-2, the forward rotation speed of the dispenser device 1 is automatically calculated. At this time, when calculating the forward rotation speed, the distributor control device 2 calculates the temporary reverse suction amount (temporary suction amount). Specifically, the operation parameter setting unit 23 temporarily sets the suction amount of the coating material accompanying the suction back operation as the temporary suction amount in the calibration operation (initial setting). Furthermore, the operation parameter setting unit 23 adds the temporary suction amount to the discharge amount of the coating material accompanying the discharge operation as the temporary coating amount discharged to the workpiece through the coating operation, and temporarily calculates the temporary coating amount based on the temporary coating amount. Set operation parameters (forward rotation speed). At this time, the operation parameter setting unit 23 performs calculation based on the calculation formula represented by forward rotation speed = ((discharge amount) + temporary reverse rotation suction amount) / (theoretical discharge amount × forward rotation time). Furthermore, when inhalation parameters such as inhalation speed and inhalation time are displayed and/or input in the application shape designation image, the temporary inhalation amount can be calculated based on these values and used. On the other hand, when the inhalation amount and the temporary inhalation amount are displayed and/or input, these equivalent values can be directly used as the temporary inhalation amount, and other values calculated based on these equivalent values can be used as the temporary inhalation amount.

在此,使用示意圖對分配器裝置1中的旋轉速度計算方法進行說明。如圖6所示,在將橫軸設為時間t、將縱軸設為旋轉速度V之情況下,區域A是正轉時的噴出量,區域B是反轉時的吸入量,區域C(斜線部)是實際上未塗敷的量。在這樣的情況下,若作為目標的塗敷量=100,則在現有的計算方法中,以A=100之方式進行計算。其結果是,由於未考慮到B的減少量,因此,例如塗敷量成為比設想少的97等。另一方面,在本實施方式涉及之計算方法中,以A-B=100之方式進行計算。在最初的計算階段中,由於吸入參數未定,B的值(吸入量)未確定,因此在計算中使用臨時的值(臨時吸入量)。藉此,與現有的計算方法相比,能夠減少誤差。Here, the rotation speed calculation method in the dispenser device 1 is demonstrated using a schematic diagram. As shown in Fig. 6, when the horizontal axis is time t and the vertical axis is rotation speed V, area A is the discharge amount during forward rotation, area B is the suction amount during reverse rotation, and area C (slanted line) part) is the amount that is not actually applied. In this case, if the target coating amount=100, the conventional calculation method calculates it as A=100. As a result, since the decrease in B is not taken into consideration, the coating amount becomes, for example, 97, which is less than expected. On the other hand, in the calculation method according to this embodiment, calculation is performed so that A-B=100. In the initial calculation stage, since the inhalation parameters are not determined, the value of B (inhalation volume) is not determined, so a temporary value (temporary inhalation volume) is used in the calculation. This can reduce errors compared with existing calculation methods.

接著,在圖4所示之步驟S1-3中,進行按照由運轉參數設定部23臨時設定的運轉參數執行塗敷動作的試驗塗敷(試塗敷)。Next, in step S1 - 3 shown in FIG. 4 , a test coating (trial coating) in which a coating operation is performed in accordance with the operation parameters temporarily set by the operation parameter setting unit 23 is performed.

接著,在步驟S2中,將吸入參數修正為適當的參數。在上述步驟S1-3的試塗敷中,由於滴液或過度吸入的情況較多,因此無法準確地實際測量塗敷量、塗敷尺寸。因此,將吸入參數修正(校正)為適當的參數。用戶觀察塗敷材料的斷液的狀態,並設定吸入時間和吸入速度涉及之吸入參數。例如,用戶在顯示裝置51顯示的圖11中(a)所示那樣的校正1圖像(校正資訊顯示部283)中,作為反轉吸入條件而輸入“吸入速度1”和“吸入時間”等。此時,用戶輸入的資訊(校正資訊)被分配器控制裝置2的校正資訊受理部27的吸入參數校正資訊受理部272受理。此外,在試塗敷時未進行回吸運轉的情況下,不會產生塗敷材料的吸入,因此,在上述步驟S2中的吸入參數的修正(校正)中,可能包括在不實施回吸運轉時新進行條件設定這一情形。Next, in step S2, the inhalation parameters are corrected to appropriate parameters. In the trial coating in step S1-3 described above, since there are many cases of dripping or excessive inhalation, the coating amount and coating size cannot be measured accurately. Therefore, the suction parameters are corrected (corrected) to appropriate parameters. The user observes the liquid-cut state of the coating material and sets the suction parameters related to the suction time and suction speed. For example, the user inputs "inhalation speed 1", "inhalation time", etc. as the reverse inhalation conditions in the correction 1 image shown in FIG. 11(a) displayed on the display device 51 (correction information display unit 283). . At this time, the information (correction information) input by the user is accepted by the inhalation parameter correction information accepting unit 272 of the correction information accepting unit 27 of the dispenser control device 2 . In addition, if the suction operation is not performed during trial coating, the coating material will not be sucked in. Therefore, the correction (correction) of the suction parameters in step S2 may include not performing the suction operation. This is a situation where conditions are newly set.

接著,在步驟S3中,運轉參數設定部23根據上述步驟S1~S2中輸入的塗敷條件和吸入條件導出並設定運轉參數,並進行伴隨反轉吸入的試塗敷。例如,用戶在顯示裝置51顯示的圖11中(b)所示那樣的校正2圖像(校正資訊顯示部283)中,觸控“運轉1”開關而多次噴出液體。Next, in step S3, the operation parameter setting unit 23 derives and sets the operation parameters based on the coating conditions and suction conditions input in steps S1 to S2, and performs trial coating with reverse suction. For example, the user touches the "Operation 1" switch in the correction 2 image (correction information display unit 283 ) shown in FIG. 11( b ) displayed on the display device 51 to eject the liquid multiple times.

接著,在步驟S4中,用戶使用遊標卡尺、規尺等實際測量(實測)塗敷於工件的塗敷材料的塗敷尺寸。用戶在顯示裝置51顯示的圖11中(b)所示那樣的校正2圖像中輸入測定出的塗敷尺寸(“直徑1”和“高度1”)。此時,用戶輸入的資訊(校正資訊)被分配器控制裝置2的校正資訊受理部27受理。此外,也可以在任意的位置設置用於測量塗敷材料的塗敷尺寸的測量設備等,自動地測量塗敷材料的塗敷尺寸。進而,若設置對測量設備的測量結果進行通信的通信裝置,則能夠使塗敷尺寸的測量和參數設定兩者自動化。Next, in step S4, the user actually measures (actually measures) the coating size of the coating material applied to the workpiece using a vernier caliper, a ruler, or the like. The user inputs the measured coating size ("diameter 1" and "height 1") into the correction 2 image shown in FIG. 11(b) displayed on the display device 51 . At this time, the information (correction information) input by the user is accepted by the correction information accepting unit 27 of the dispenser control device 2 . In addition, a measuring device or the like for measuring the coating size of the coating material may be installed at an arbitrary position, and the coating size of the coating material may be measured automatically. Furthermore, if a communication device is provided to communicate the measurement results of the measuring equipment, both measurement of coating dimensions and parameter setting can be automated.

接著,如圖5所示,在步驟S5-1中,分配器控制裝置2根據步驟S4的測定結果預測能夠得到所希望的塗敷尺寸的正轉旋轉速度範圍,並發出指示以利用該範圍內的幾個點的正轉旋轉速度調整吸入參數(顯示於顯示裝置51)。此時,例如觸控圖12中(a)所示那樣的“運轉2”、“運轉3”以及“運轉4”的各個開關而噴出液體,在顯示裝置51顯示設定“吸入速度2”、“吸入速度3”以及“吸入速度4”的各個參數以使斷液變得適當的校正3圖像(校正資訊顯示部283)。此外,顯示控制部28也可以進行控制以在顯示裝置51顯示“請調整正轉旋轉速度×旋轉的反轉吸入”這樣的圖像。此外,關於上述反轉吸入的調整(自動設定),也有可能僅根據一個點的正轉速度與反轉速度的組合進行。該情況下,以步驟S2中設定的參數為基礎,透過AI等人工智慧生成關係,從而能夠省略步驟S5-1和S5-2。Next, as shown in FIG. 5 , in step S5 - 1 , the dispenser control device 2 predicts the forward rotation speed range in which the desired coating size can be obtained based on the measurement result in step S4 , and issues an instruction to use the range. The forward rotation speed of several points is used to adjust the suction parameters (displayed on the display device 51). At this time, for example, each switch of "Operation 2", "Operation 3" and "Operation 4" shown in (a) of FIG. 12 is touched to eject the liquid, and the settings of "Inhalation speed 2", " Each parameter of "inhalation speed 3" and "inhalation speed 4" is a correction 3 image (correction information display unit 283) in which fluid shutoff becomes appropriate. In addition, the display control unit 28 may control the display device 51 to display an image such as "Please adjust the forward rotation speed × the reverse suction of the rotation." In addition, the above-mentioned adjustment (automatic setting) of the reverse rotation suction may be performed based on only the combination of the forward rotation speed and the reverse rotation speed at one point. In this case, steps S5-1 and S5-2 can be omitted by generating a relationship using artificial intelligence such as AI based on the parameters set in step S2.

具體而言,當在步驟S4中,用戶將塗敷尺寸的測定結果輸入圖11中(b)所示的校正2圖像的規定項目時,運轉參數設定部23推測(自動指定)能夠得到所希望的塗敷量的正轉旋轉速度範圍。作為正轉旋轉速度範圍的決定方法,將對上述步驟S4中得到的實測塗敷量(從實測塗敷尺寸計算出的值)與作為目標的塗敷量(從目標塗敷尺寸計算出的值)之比乘以規定的公差率而得到的值設定為範圍的上限或下限。作為更簡單的變形例,也有可能不將實測塗敷量用於計算,而僅以作為目標的塗敷量為基準,透過計算或利用數據庫等指定範圍。另外,並不限於塗敷量,可以將塗敷尺寸、即直徑(寬度)、高度或者面積(既可以基於直徑或高度進行計算,也可以透過圖像處理等獲取)用於計算。Specifically, in step S4, when the user inputs the measurement result of the coating size into the predetermined item of the correction 2 image shown in (b) of FIG. 11, the operation parameter setting unit 23 estimates (automatically specifies) that the desired Forward rotation speed range for desired coating amount. As a method for determining the forward rotation speed range, the actual measured coating amount (the value calculated from the actual measured coating size) obtained in the above step S4 and the target coating amount (the value calculated from the target coating size) are compared. ) multiplied by the specified tolerance rate is set as the upper or lower limit of the range. As a simpler modification, it is possible to not use the actual measured coating amount for calculation, but to specify the range through calculation or using a database or the like based only on the target coating amount. In addition, the coating amount is not limited, and the coating size, that is, diameter (width), height, or area (which can be calculated based on the diameter or height, or can be obtained through image processing, etc.) can be used for calculation.

例如,在圖7所示的例子中,在將橫軸設為正轉旋轉速度[min -1]、將縱軸設為反轉旋轉速度[min -1]之情況下,推測為正轉旋轉速度範圍是10.0~20.9[min -1]的範圍。此外,由於正轉旋轉速度10.0[min -1]下的反轉旋轉速度在步驟S2中已調整並輸入,因此,在圖12中(a)所示的校正3圖像中,指示調整和輸入13.6[min -1]、17.3[min -1]以及20.9[min -1]的各個正轉旋轉速度下的反轉旋轉速度。另外,反轉吸入時間設為固定而不變更。此外,也可以將反轉吸入時間設為能夠變更,將旋轉速度設為固定。 For example, in the example shown in FIG. 7 , when the horizontal axis is the forward rotation speed [min -1 ] and the vertical axis is the reverse rotation speed [min -1 ], it is estimated that the forward rotation is The speed range is 10.0 to 20.9 [min -1 ]. In addition, since the reverse rotation speed at the forward rotation speed 10.0 [min -1 ] has been adjusted and input in step S2, in the correction 3 image shown in (a) in Figure 12, the adjustment and input are indicated The reverse rotation speed at each forward rotation speed of 13.6 [min -1 ], 17.3 [min -1 ], and 20.9 [min -1 ]. In addition, the reverse suction time is fixed and does not change. In addition, the reverse suction time may be changed and the rotation speed may be fixed.

接著,在步驟S5-2中,用戶預先調整與所指示的正轉旋轉速度對應之吸入參數。例如,用戶在顯示裝置51顯示的圖12中(a)所示那樣的校正3圖像中,分別觸控“運轉2”、“運轉3”以及“運轉4”開關而噴出液體。接著,用戶調整“吸入速度2”、“吸入速度3”以及“吸入速度4”各個參數以使斷液變得適當。然後,透過從輸入輸出裝置5(觸控面板)輸入用戶調整後的結果,從而由分配器控制裝置2的校正資訊受理部27的吸入參數校正資訊受理部272受理輸入的結果。這樣,透過設定與多個正轉旋轉速度(噴出參數)對應的適當的反轉旋轉速度(吸入參數)而生成兩者的關係。亦即,參數關係生成部24根據正轉旋轉速度(噴出參數)和反轉旋轉速度(吸入參數)的組合涉及之實際值,生成噴出參數和吸入參數的關係。例如,參數關係生成部24可以透過使用了多個點的近似曲線生成關係。具體而言,在圖7的例子中,透過使用了兩點的線性插值生成關係,但也可以是使用了三點以上的線性插值、或者多項式、指數近似、對數近似、正弦波等。透過這樣生成關係,在變更了正轉旋轉速度時,即使變更後的正轉旋轉速度並非步驟S2或步驟S5-2中吸入參數設定完畢的正轉旋轉速度,也能夠自動計算適當的吸入參數。在步驟S5-2中,若可以確認上述三種旋轉速度下變為適當的斷液,則進入下一步驟。Next, in step S5-2, the user adjusts the inhalation parameter corresponding to the instructed forward rotation speed in advance. For example, the user touches the "operation 2", "operation 3", and "operation 4" switches respectively in the correction 3 image shown in FIG. 12(a) displayed on the display device 51, and ejects the liquid. Next, the user adjusts each parameter of "suction speed 2", "suction speed 3", and "suction speed 4" so that the fluid cutoff becomes appropriate. Then, by inputting the result of the user's adjustment from the input/output device 5 (touch panel), the input result is accepted by the inhalation parameter correction information accepting unit 272 of the correction information accepting unit 27 of the dispenser control device 2 . In this way, a relationship between the two is generated by setting an appropriate reverse rotation speed (suction parameter) corresponding to a plurality of forward rotation speeds (discharge parameters). That is, the parameter relationship generation unit 24 generates a relationship between the discharge parameters and the suction parameters based on actual values related to the combination of the forward rotation speed (discharge parameter) and the reverse rotation speed (suction parameter). For example, the parameter relationship generating unit 24 may generate a relationship using an approximate curve using a plurality of points. Specifically, in the example of FIG. 7 , the relationship is generated by linear interpolation using two points, but it may also be linear interpolation using three or more points, or polynomial, exponential approximation, logarithmic approximation, sine wave, etc. By generating the relationship in this way, when the forward rotation speed is changed, appropriate suction parameters can be automatically calculated even if the changed forward rotation speed is not the forward rotation speed for which the suction parameters are set in step S2 or step S5-2. In step S5-2, if it can be confirmed that the fluid is cut off appropriately at the above three rotation speeds, proceed to the next step.

接著,重複進行步驟S6和步驟S7。在步驟S6中,根據由運轉參數設定部23計算出的正轉和反轉旋轉速度進行塗敷,在步驟S7中,用戶測定塗敷於工件的塗敷材料的塗敷尺寸(直徑和高度),並輸入測定結果。以下,對步驟S6和步驟S7的處理內容詳細進行說明。Next, steps S6 and S7 are repeated. In step S6, coating is performed based on the forward and reverse rotation speeds calculated by the operation parameter setting unit 23. In step S7, the user measures the coating size (diameter and height) of the coating material applied to the workpiece. , and enter the measurement results. The processing contents of steps S6 and S7 will be described in detail below.

在步驟S6中,運轉參數設定部23根據步驟S1-1中設定的設定尺寸計算正轉旋轉速度,並根據步驟S5中求出的正轉旋轉速度與反轉旋轉速度的關係計算反轉旋轉速度。在計算正轉旋轉速度時,例如參照如圖8所示橫軸為正轉旋轉速度、縱軸為塗敷材料的塗敷量(根據試塗敷和實測的尺寸計算出的旋轉橢圓體的半球體積)的圖表。在圖8中,Z(n-2)表示第(n-2)次塗敷的旋轉速度和塗敷量,Z(n-1)表示第(n-1)次塗敷的旋轉速度和塗敷量。Z(0)作為校正後的預測,能夠成為下一次(第n次)的旋轉速度和作為目標的塗敷量。In step S6, the operation parameter setting unit 23 calculates the forward rotation speed based on the setting size set in step S1-1, and calculates the reverse rotation speed based on the relationship between the forward rotation speed and the reverse rotation speed found in step S5. . When calculating the forward rotation speed, for example, as shown in Figure 8, the horizontal axis is the forward rotation speed and the vertical axis is the coating amount of the coating material (the hemisphere of the ellipsoid calculated based on the test coating and actual measured dimensions. volume) chart. In Figure 8, Z(n-2) represents the rotation speed and coating amount of the (n-2)th coating, and Z(n-1) represents the rotation speed and coating amount of the (n-1)th coating. Apply amount. Z(0) can be the next (nth) rotation speed and the target coating amount as a corrected prediction.

參照圖9的示意圖對上述校正後的預測進行說明。在圖9中,與上述圖8同樣地,橫軸為正轉旋轉速度,縱軸表示塗敷材料的塗敷量。在圖9的(a)中,將第一次設為“〇”,將第二次設為“△”。在塗敷量與旋轉速度的關係為線性之情況下,若以計算出的旋轉速度進行塗敷,則推測僅排出“□”的量。實際排出的量為“◇”。接著,在圖9的(b)中,校正中使用過去兩次的數據,因此,將“△”置換為“〇”,並將“◇”置換為“△”進行計算。透過重複進行多次上述計算,如圖9中(c)所示,“〇”和“△”變得接近。The above-mentioned corrected prediction will be described with reference to the schematic diagram of FIG. 9 . In FIG. 9 , similarly to the above-described FIG. 8 , the horizontal axis represents the forward rotation speed, and the vertical axis represents the coating amount of the coating material. In (a) of FIG. 9 , let the first time be “0” and the second time be “△”. When the relationship between the coating amount and the rotational speed is linear, if coating is performed at the calculated rotational speed, it is estimated that only the amount of "□" is discharged. The actual discharged amount is "◇". Next, in (b) of FIG. 9 , since the data from the past two times are used for correction, calculation is performed by replacing “△” with “△” and replacing “◇” with “△”. By repeating the above calculation multiple times, as shown in (c) in Figure 9, "0" and "Δ" become close.

能夠如上所述根據過去兩次的實測值(實際值)的關係(用線將兩點連結)進行校正是在第三次試塗敷及其之後。因此,第一次透過進行步驟S1~S4所示那樣的計算和實測,從而繪製第一點。第二次透過將第一次的實測塗敷尺寸與所希望的塗敷尺寸的差異(比率)乘以第一次的旋轉速度,從而算出第二次的旋轉速度。透過以該旋轉速度進行試塗敷和實測,從而繪製出第二點。第三次透過用線連結第一點和第二點,從而導出與所希望的塗敷尺寸對應的旋轉速度。利用上述這樣的方法反復進行直至變為作為目標的塗敷量。As mentioned above, correction based on the relationship between the past two measured values (actual values) (connecting two points with a line) is possible only after the third trial coating. Therefore, in the first pass, calculations and actual measurements as shown in steps S1 to S4 are performed to draw the first point. In the second pass, the difference (ratio) between the first measured coating size and the desired coating size is multiplied by the first rotation speed to calculate the second rotation speed. The second point is plotted by performing trial coating and actual measurement at this rotation speed. The third time is to connect the first point and the second point with a line to derive the rotation speed corresponding to the desired coating size. The above-mentioned method is repeated until the target coating amount is reached.

接著,在步驟S7中,由用戶測定塗敷於工件的塗敷材料的塗敷尺寸(直徑和高度),並輸入測定結果。例如,若塗敷於工件的塗敷材料有多個,則輸入各塗敷尺寸的平均值即可。此時,例如,用戶在顯示裝置51顯示的圖12中(b)所示那樣的校正4圖像(校正資訊顯示部283)中,作為塗敷尺寸的測定結果而輸入“直徑2”和“高度2”。此時,用戶輸入的資訊(校正資訊)被分配器控制裝置2的校正資訊受理部27的噴出參數校正資訊受理部271受理,透過運轉參數設定部23根據校正資訊對運轉參數進行校正。此外,重複進行步驟S6和步驟S7。此時,在步驟S6中,如上所述,每次運轉參數設定部23根據步驟S4和步驟S7中測定出的實測尺寸與步驟S1-1中設定的設定尺寸的關係計算正轉旋轉速度,並根據步驟S5中求出的正轉旋轉速度與反轉旋轉速度的關係計算反轉旋轉速度。Next, in step S7, the user measures the coating dimensions (diameter and height) of the coating material applied to the workpiece, and inputs the measurement results. For example, if there are multiple coating materials applied to the workpiece, just enter the average value of each coating size. At this time, for example, the user inputs "diameter 2" and "diameter 2" as the measurement result of the coating size in the correction 4 image shown in FIG. 12(b) displayed on the display device 51 (correction information display unit 283). Height 2". At this time, the information (correction information) input by the user is accepted by the ejection parameter correction information accepting unit 271 of the correction information accepting unit 27 of the dispenser control device 2, and the operating parameter setting unit 23 corrects the operating parameters based on the correction information. Furthermore, steps S6 and S7 are repeated. At this time, in step S6, as described above, the each operation parameter setting unit 23 calculates the forward rotation speed based on the relationship between the actual measured size measured in steps S4 and step S7 and the set size set in step S1-1, and The reverse rotation speed is calculated based on the relationship between the forward rotation speed and the reverse rotation speed found in step S5.

根據上述說明的實施方式,可以得到以下的功效(1)~(8)。According to the embodiment described above, the following effects (1) to (8) can be obtained.

(1)在上述實施方式涉及之塗敷系統100中,運轉參數設定部23根據流體之吸入條件自動設定與回吸運轉中的流體之吸入量具有相關關係的吸入參數。根據上述實施方式,根據流體之吸入條件自動設定與回吸運轉中的流體之吸入量具有相關關係的吸入參數。因此,例如用戶不用根據塗敷於工件的流體之狀態進行試誤便可以順利地設定吸入參數。這樣,由於與流體之吸入量有關的吸入參數透過運轉參數設定部23自動設定,因此不需要難的調整技術訣竅。其結果是,由於可以縮短回吸運轉時的流體吸入量之調整時間,因此,也可以縮短相對於工件塗敷的流體的塗敷量的調整時間。(1) In the coating system 100 according to the above embodiment, the operation parameter setting unit 23 automatically sets the suction parameters that are correlated with the suction amount of the fluid in the suction operation based on the suction conditions of the fluid. According to the above-described embodiment, the suction parameter that is correlated with the suction amount of fluid in the suction operation is automatically set based on the suction condition of the fluid. Therefore, for example, the user can smoothly set the suction parameters without making trial and error depending on the state of the fluid applied to the workpiece. In this way, since the suction parameters related to the suction amount of the fluid are automatically set by the operation parameter setting unit 23, difficult adjustment know-how is not required. As a result, the adjustment time for the fluid suction amount during the suction-back operation can be shortened, and therefore the adjustment time for the fluid application amount to be applied to the workpiece can also be shortened.

(2)在上述實施方式涉及之塗敷系統100中,運轉參數設定部23根據與由運轉參數設定部23設定的噴出參數之關係設定吸入參數。藉此,由於吸入參數根據與噴出參數之關係自動設定,因此,例如用戶也可以不用根據塗敷於工件之流體的狀態進行試誤來設定吸入參數。藉此,由於不需要設定吸入參數時的複雜作業,因此,可以縮短流體吸入量之調整所需的時間。(2) In the coating system 100 according to the above embodiment, the operation parameter setting unit 23 sets the suction parameter based on the relationship with the discharge parameter set by the operation parameter setting unit 23 . Accordingly, since the suction parameters are automatically set based on the relationship with the ejection parameters, for example, the user can set the suction parameters without trial and error based on the state of the fluid applied to the workpiece. This eliminates the need for complicated operations in setting the suction parameters, thereby shortening the time required to adjust the fluid suction amount.

(3)在上述實施方式涉及之塗敷系統100中,參數關係生成部24根據與噴出參數和吸入參數之組合有關的實際值生成噴出參數與吸入參數之關係。藉此,透過設定與噴出參數相對應之適當的吸入參數而自動地生成兩者之關係。因此,用戶也可以不用進行試誤而預先設定與噴出參數相對應之適當的吸入參數。(3) In the coating system 100 according to the above embodiment, the parameter relationship generation unit 24 generates the relationship between the ejection parameter and the suction parameter based on the actual value related to the combination of the ejection parameter and the suction parameter. Thereby, the relationship between the two is automatically generated by setting appropriate suction parameters corresponding to the discharge parameters. Therefore, the user can preset appropriate suction parameters corresponding to the ejection parameters without making trial and error.

(4)在上述實施方式涉及之塗敷系統100中,利用使用多個點的線性插值、或者多項式中的至少任意一個,並透過參數關係生成部24生成噴出參數與吸入參數之關係。藉此,透過利用使用多個點的線性插值、或者多項式中的至少任意一個,可以設定與噴出參數相對應之適當的吸入參數。藉此,由於自動生成兩者之關係,因此,用戶不用進行試誤便可以預先設定與噴出參數相對應之適當的吸入參數。(4) In the coating system 100 according to the above embodiment, at least one of linear interpolation using a plurality of points or a polynomial is used to generate the relationship between the ejection parameters and the suction parameters through the parameter relationship generation unit 24 . Thereby, by utilizing at least any one of linear interpolation using a plurality of points or a polynomial, it is possible to set appropriate suction parameters corresponding to the ejection parameters. Thereby, since the relationship between the two is automatically generated, the user can preset appropriate suction parameters corresponding to the ejection parameters without making trial and error.

(5)在上述實施方式涉及之塗敷系統100中,運轉參數設定部23根據噴出運轉時相對於工件噴出的流體之目標噴出量、以及塗敷截面之目標塗敷尺寸中的至少任意一個設定噴出參數。藉此,用於設定對應的吸入參數之噴出參數由運轉參數設定部23根據流體之目標噴出量、以及塗敷截面之目標塗敷尺寸中的至少任意一個自動設定,因此,不需要用戶透過計算等算出噴出參數。(5) In the coating system 100 according to the above embodiment, the operation parameter setting unit 23 sets based on at least one of the target ejection amount of the fluid ejected with respect to the workpiece during the ejection operation and the target coating size of the coating cross section. Spray parameters. Thereby, the ejection parameters used to set the corresponding suction parameters are automatically set by the operation parameter setting unit 23 based on at least one of the target ejection amount of the fluid and the target coating size of the coating cross section. Therefore, there is no need for the user to perform calculations. Wait for the ejection parameters to be calculated.

(6)在上述實施方式涉及之塗敷系統100中,運轉參數設定部23根據噴出運轉時相對於工件噴出的流體之目標噴出量和流體之實測噴出量的差異、以及塗敷截面之目標塗敷尺寸和實測塗敷尺寸的差異中的至少任意一個設定噴出參數。藉此,由於用於設定對應的吸入參數之噴出參數由運轉參數設定部23根據流體之目標噴出量和實測噴出量的差異、以及塗敷截面之目標塗敷尺寸和實測塗敷尺寸的差異中的至少任意一個自動設定,因此,不需要用戶透過計算等算出噴出參數。(6) In the coating system 100 according to the above embodiment, the operation parameter setting unit 23 determines the target coating based on the difference between the target ejection amount of the fluid ejected relative to the workpiece during the ejection operation and the actual measured ejection amount of the fluid, and the target coating of the coating cross section. The ejection parameters are set based on at least any one of the differences between the coating size and the measured coating size. Thereby, the ejection parameter for setting the corresponding suction parameter is determined by the operation parameter setting unit 23 based on the difference between the target ejection amount of the fluid and the actual measured ejection amount, and the difference between the target coating size of the coating cross section and the actual measured coating size. At least one of the parameters is automatically set, so there is no need for the user to calculate the ejection parameters through calculations, etc.

(7)在上述實施方式涉及之塗敷系統100中,吸入參數為分配器裝置1中的回吸運轉時的輸出和/或運轉時間。藉此,可以使分配器裝置1根據由運轉參數設定部23所設定之與吸入參數對應的輸出和/或運轉時間進行回吸運轉。(7) In the coating system 100 according to the above embodiment, the suction parameter is the output and/or the operation time during the suction operation in the dispenser device 1 . Thereby, the distributor device 1 can perform the suction operation based on the output and/or the operation time corresponding to the suction parameters set by the operation parameter setting unit 23 .

(8)在上述實施方式涉及之塗敷系統100中,由單軸偏心螺桿式分配器構成分配器裝置1。藉此,運轉參數與噴出量和吸入量大致成比例,因此,計算值與現實的值容易匹配,調整容易收斂。另外,與空氣式、螺旋式等的分配器裝置相比,噴出量及吸入量與運轉參數之比例度高,調整也變得更簡單。其結果是,可以使用單軸偏心螺桿式的分配器裝置1構成能夠縮短相對於工件塗敷的流體的塗敷量的調整時間的塗敷系統100。(8) In the coating system 100 according to the above embodiment, the distributor device 1 is composed of a uniaxial eccentric screw distributor. Thereby, the operating parameters are roughly proportional to the discharge amount and the suction amount. Therefore, the calculated values and the actual values can be easily matched, and the adjustment can be easily converged. In addition, compared with air-type, spiral-type distributor devices, etc., the ratio between the discharge amount and the suction amount and the operating parameters is high, and the adjustment becomes easier. As a result, the uniaxial eccentric screw type distributor device 1 can be used to configure the coating system 100 that can shorten the adjustment time of the coating amount of the fluid to be coated on the workpiece.

[其他的實施方式] 接著,參照圖13對本發明分配器系統的其他實施方式涉及之填充系統110進行說明。 [Other embodiments] Next, a filling system 110 according to another embodiment of the dispenser system of the present invention will be described with reference to FIG. 13 .

如圖13所示,填充系統110主要具備分配器裝置1、分配器控制裝置2、機器人3以及機器人控制裝置4。該等裝置以能夠單向或雙向地進行資訊通信之方式透過有線通信或無線通信電連接。分配器控制裝置2主要負責分配器裝置1整體的控制。機器人控制裝置4主要負責機器人3整體的控制。機器人3上安裝有分配器裝置1。As shown in FIG. 13 , the filling system 110 mainly includes a dispenser device 1 , a dispenser control device 2 , a robot 3 and a robot control device 4 . These devices are electrically connected through wired communication or wireless communication in a manner that enables one-way or two-way information communication. The dispenser control device 2 is mainly responsible for the overall control of the dispenser device 1 . The robot control device 4 is mainly responsible for the overall control of the robot 3 . The robot 3 is equipped with a dispenser device 1 .

在本實施方式中,填充系統110與上述塗敷系統100的不同點僅在於,將從填充系統110的分配器裝置1噴出的填充材料120填充至容器等的工件130(填充對象物)這一點。因此,塗敷系統100中具備的構成能夠置換成填充系統110。In this embodiment, the filling system 110 differs from the coating system 100 described above only in that the filling material 120 discharged from the dispenser device 1 of the filling system 110 is filled into a workpiece 130 (filling object) such as a container. . Therefore, the configuration provided in the coating system 100 can be replaced by the filling system 110 .

根據上述說明的實施方式,可以得到以下的功效(9)~(16)。According to the embodiment described above, the following effects (9) to (16) can be obtained.

(9)在上述實施方式涉及之填充系統110中,運轉參數設定部23根據填充材料120之吸入條件自動設定與填充材料120之吸入量具有相關關係的吸入參數。根據上述實施方式,根據填充材料120之吸入條件自動設定與回吸運轉中的填充材料120之吸入量具有相關關係的吸入參數。因此,例如用戶不用根據填充於工件130的填充材料120之狀態進行試誤便可以順利地設定吸入參數。這樣,由於與填充材料120之吸入量有關的吸入參數透過運轉參數設定部23自動設定,因此,不需要難的調整技術訣竅。其結果是,由於可以縮短回吸運轉時的填充材料120之吸入量的調整時間,因此,也可以縮短相對於工件130填充的填充材料120之填充量的調整時間。(9) In the filling system 110 according to the above embodiment, the operation parameter setting unit 23 automatically sets the suction parameters that are correlated with the suction amount of the filling material 120 based on the suction conditions of the filling material 120 . According to the above-described embodiment, the suction parameters that are correlated with the suction amount of the filling material 120 in the back suction operation are automatically set based on the suction conditions of the filling material 120 . Therefore, for example, the user can smoothly set the suction parameters without making trial and error depending on the state of the filling material 120 filled in the workpiece 130 . In this way, since the suction parameters related to the suction amount of the filling material 120 are automatically set by the operation parameter setting part 23, no difficult adjustment know-how is required. As a result, since the adjustment time for the suction amount of the filling material 120 during the suction back operation can be shortened, the adjustment time for the filling amount of the filling material 120 to be filled into the workpiece 130 can also be shortened.

(10)在上述實施方式涉及之填充系統110中,運轉參數設定部23根據與透過運轉參數設定部23所設定之噴出參數的關係設定吸入參數。藉此,由於吸入參數根據與噴出參數之關係自動設定,因此,例如用戶也可以不用根據填充於工件130的填充材料120之狀態進行試誤來設定吸入參數。藉此,由於不需要設定吸入參數時的複雜操作,因此能夠縮短填充材料120吸入量之調整所需的時間。(10) In the filling system 110 according to the above embodiment, the operation parameter setting unit 23 sets the suction parameter based on the relationship with the discharge parameter set by the operation parameter setting unit 23 . Accordingly, since the suction parameters are automatically set based on the relationship with the ejection parameters, for example, the user can set the suction parameters without trial and error based on the state of the filling material 120 filled in the workpiece 130 . This eliminates the need for complicated operations when setting the suction parameters, and therefore can shorten the time required to adjust the suction amount of the filling material 120 .

(11)在上述實施方式涉及之填充系統110中,參數關係生成部24根據與噴出參數和吸入參數之組合有關的實際值生成噴出參數與吸入參數之關係。藉此,透過設定與噴出參數相對應之適當的吸入參數而自動地生成兩者的關係。因此,用戶也可以不用進行試誤而預先設定與噴出參數相對應之適當的吸入參數。(11) In the filling system 110 according to the above embodiment, the parameter relationship generating unit 24 generates the relationship between the discharge parameter and the suction parameter based on the actual value related to the combination of the discharge parameter and the suction parameter. Thereby, the relationship between the two is automatically generated by setting appropriate suction parameters corresponding to the discharge parameters. Therefore, the user can preset appropriate suction parameters corresponding to the ejection parameters without making trial and error.

(12)在上述實施方式涉及之填充系統110中,利用使用多個點的線性插值、或者多項式中的至少任意一個,並透過參數關係生成部24生成噴出參數與吸入參數之關係。藉此,透過利用使用多個點的線性插值、或者多項式中的至少任意一個,可以設定與噴出參數相對應之適當的吸入參數。藉此,由於自動生成兩者的關係,因此,用戶不用進行試誤便可以預先設定與噴出參數相對應之適當的吸入參數。(12) In the filling system 110 according to the above embodiment, at least one of linear interpolation using a plurality of points or a polynomial is used to generate the relationship between the ejection parameter and the suction parameter through the parameter relationship generation unit 24 . Thereby, by utilizing at least any one of linear interpolation using a plurality of points or a polynomial, it is possible to set appropriate suction parameters corresponding to the ejection parameters. Thereby, since the relationship between the two is automatically generated, the user can preset appropriate suction parameters corresponding to the ejection parameters without making trial and error.

(13)在上述實施方式涉及之填充系統110中,運轉參數設定部23根據噴出運轉時相對於工件130噴出的填充材料120之目標噴出量設定噴出參數。藉此,由於用於設定對應的吸入參數之噴出參數由運轉參數設定部23根據填充材料120之目標噴出量自動設定,因此,不需要用戶透過計算等算出噴出參數。(13) In the filling system 110 according to the above embodiment, the operation parameter setting unit 23 sets the ejection parameters based on the target ejection amount of the filling material 120 ejected with respect to the workpiece 130 during the ejection operation. Accordingly, since the discharge parameters used to set the corresponding suction parameters are automatically set by the operation parameter setting unit 23 based on the target discharge amount of the filling material 120, the user does not need to calculate the discharge parameters through calculation or the like.

(14)在上述實施方式涉及之填充系統110中,運轉參數設定部23根據噴出運轉時相對於工件130噴出的填充材料120之目標噴出量和填充材料120之實測噴出量的差異設定噴出參數。藉此,由於用於設定對應的吸入參數之噴出參數由運轉參數設定部23根據填充材料120之目標噴出量和實測噴出量的差異自動設定,因此,不需要用戶透過計算等算出噴出參數。(14) In the filling system 110 according to the above embodiment, the operation parameter setting unit 23 sets the ejection parameters based on the difference between the target ejection amount of the filler material 120 ejected with respect to the workpiece 130 during the ejection operation and the actual measured ejection amount of the filler material 120 . Accordingly, since the discharge parameters for setting the corresponding suction parameters are automatically set by the operation parameter setting unit 23 based on the difference between the target discharge amount and the actual measured discharge amount of the filling material 120, there is no need for the user to calculate the discharge parameters through calculation or the like.

(15)在上述實施方式涉及之填充系統110中,吸入參數為分配器裝置1中的回吸運轉時的輸出和/或運轉時間。藉此,可以使分配器裝置1根據由運轉參數設定部23所設定之與吸入參數對應的輸出和/或運轉時間進行回吸運轉。(15) In the filling system 110 according to the above embodiment, the suction parameter is the output and/or the operation time during the suction operation in the dispenser device 1 . Thereby, the distributor device 1 can perform the suction back operation based on the output and/or the operation time corresponding to the suction parameters set by the operation parameter setting unit 23 .

(16)在上述實施方式涉及之填充系統110中,由單軸偏心螺桿式分配器構成分配器裝置1。藉此,運轉參數與噴出量和吸入量大致成比例,因此,計算值與現實的值容易匹配,調整容易收斂。另外,與空氣式、螺旋式等的分配器裝置相比,噴出量和吸入量與運轉參數之比例度高,調整也變得更簡單。其結果是,可以使用單軸偏心螺桿式的分配器裝置1構成可縮短相對於工件130填充的填充材料120之填充量的調整時間的填充系統110。(16) In the filling system 110 according to the above embodiment, the distributor device 1 is composed of a uniaxial eccentric screw distributor. Thereby, the operating parameters are roughly proportional to the discharge amount and the suction amount. Therefore, the calculated value and the actual value can be easily matched, and the adjustment can be easily converged. In addition, compared with air-type, spiral-type distributor devices, etc., the ratio between the discharge amount and the suction amount and the operating parameters is high, and the adjustment becomes easier. As a result, the filling system 110 that can shorten the adjustment time of the filling amount of the filling material 120 to be filled into the workpiece 130 can be configured using the uniaxial eccentric screw type distributor device 1 .

[其他的變形例] 上述實施方式也可以採用如下那樣變更後的構成。 [Other modifications] The above-described embodiment may be modified as follows.

在上述實施方式中,作為分配器裝置的一例,示出了應用單軸偏心螺桿式的例子,但本發明並不限於此。在本發明中,只要是柱塞式(活塞式)、閥式、螺旋式以及空氣式等能夠進行回吸運轉的分配器裝置,便可以使用任意的方式。In the above-described embodiment, an example in which a uniaxial eccentric screw type is applied as an example of the distributor device is shown, but the present invention is not limited to this. In the present invention, any type of distributor device can be used as long as it is a plunger type (piston type), valve type, screw type, air type, etc. distributor device that can perform a suction-back operation.

在上述實施方式中,作為塗敷條件的一例,主要示出了塗敷材料的塗敷直徑、塗敷高度以及塗敷時間,但本發明並不限於此。在本發明中,塗敷條件也可以包含塗敷材料的塗敷直徑、塗敷高度以及塗敷時間以外的條件。In the above-mentioned embodiment, as an example of the coating conditions, the coating diameter, coating height, and coating time of the coating material are mainly shown, but the present invention is not limited thereto. In the present invention, the coating conditions may include conditions other than the coating diameter, coating height, and coating time of the coating material.

在上述實施方式中,對於呈點狀向工件塗敷塗敷材料的點塗敷的情況進行了說明,但本發明並不限於此。在本發明中,在呈線狀向工件塗敷塗敷材料的線塗敷之情況下,塗敷長度(線的長度)所涉及的值能夠成為塗敷條件。例如可能需要計算剖視線狀的塗敷材料時的形狀(半圓柱型)的體積。另外,線塗敷之情況下,作為塗敷條件,可以取代塗敷時間而採用塗敷速度(分配器裝置相對於工件的相對移動速度)。In the above-described embodiment, the case of spot coating in which the coating material is applied to the workpiece in a spot shape has been described, but the present invention is not limited to this. In the present invention, in the case of line coating in which a coating material is applied linearly to a workpiece, a value related to the coating length (length of the line) can serve as the coating condition. For example, it may be necessary to calculate the volume of the shape (semi-cylindrical shape) of a linear cross-section of the coating material. In addition, in the case of line coating, coating speed (relative movement speed of the dispenser device with respect to the workpiece) may be used as the coating condition instead of the coating time.

在上述實施方式中,作為塗敷條件的一例,示出了根據塗敷尺寸進行管理的例子,但也可以根據塗敷量(體積或質量)進行管理。In the above-mentioned embodiment, as an example of the coating conditions, management is performed based on the coating size. However, management may also be performed based on the coating amount (volume or mass).

在上述實施方式中,示出了在透過運轉參數設定部設定吸入參數時,用戶透過塗敷試驗推斷吸入參數並輸入分配器控制裝置的例子,但本發明並不限於此。在本發明中,透過使塗敷的塗敷材料的尺寸等的測量等自動化,用戶無需向控制裝置進行輸入,控制裝置能夠自動設定吸入參數。In the above embodiment, when setting the suction parameters through the operation parameter setting unit, the user estimates the suction parameters through a coating test and inputs the suction parameters into the dispenser control device. However, the present invention is not limited to this. In the present invention, by automating the measurement of the dimensions of the applied coating material, etc., the control device can automatically set the suction parameters without the user having to input the data to the control device.

在上述實施方式中,作為運轉參數(噴出參數和吸入參數)的一例,示出了將噴出參數設為分配器裝置中的正轉運轉時的輸出和/或運轉時間等、將吸入參數設為分配器裝置中的回吸運轉時的輸出和/或運轉時間等的例子,但本發明並不限於此。在本發明中,只要運轉參數與塗敷材料相對於工件的塗敷量具有相關關係即可,例如機器人的移動速度或移動距離等也可包含於運轉參數中。In the above-mentioned embodiment, as an example of the operation parameters (discharge parameters and suction parameters), the discharge parameters are set to the output and/or operation time during the forward rotation operation of the distributor device, and the suction parameters are set to Examples include output and/or operation time during the suction operation of the distributor device, but the present invention is not limited thereto. In the present invention, as long as the operating parameters have a correlation with the coating amount of the coating material relative to the workpiece, for example, the moving speed or moving distance of the robot may also be included in the operating parameters.

在上述實施方式中,示出了顯示裝置和輸入裝置呈一體地構成的輸入輸出裝置(觸控面板),但本發明並不限於此。在本發明中,顯示裝置(例如顯示器、監視器等)和輸入裝置(例如鍵盤、數位鍵以及滑鼠等)也可以分體構成。另外,既可以在控制裝置的殼體設置觸控面板等的輸入輸出裝置,也可以刪除設置於控制裝置的殼體的觸控面板而使用完全不同的(分體的)PC、平板來輸入和顯示數據。In the above-mentioned embodiment, the input-output device (touch panel) in which the display device and the input device are integrated is shown, but the present invention is not limited to this. In the present invention, the display device (such as a display, a monitor, etc.) and the input device (such as a keyboard, numeric keys, mouse, etc.) may also be constructed separately. In addition, an input/output device such as a touch panel may be provided in the casing of the control device, or the touch panel provided in the casing of the control device may be deleted and a completely different (separate) PC or tablet may be used for input and output. Display data.

上述實施方式構成為:在塗敷形狀指定圖像(圖10)中,能夠由用戶輸入塗敷條件等,但除此之外,也可以在用戶輸入塗敷條件等時,使反映了塗敷條件等的圖形顯示於顯示裝置的塗敷形狀指定圖像等。藉此,用戶可以視覺性地確認所塗敷的塗敷材料的塗敷形狀。The above-described embodiment is configured so that the user can input application conditions and the like in the application shape designation image (Fig. 10). Alternatively, when the user inputs the application conditions and the like, the application shape designation image (Fig. 10) may be configured to reflect the application. Graphics of conditions and the like are displayed on the application shape designation image and the like of the display device. Thereby, the user can visually confirm the application shape of the applied coating material.

上述實施方式構成為:在塗敷形狀指定圖像(圖10)中,能夠由用戶輸入塗敷條件等,但除此之外,也可以透過如自選圖形(auto-shape)這樣的繪製方法、即利用滑鼠的拖動、觸控面板上的捏合(pinch in、縮小)及撐開(pinch out、放大)等使拇指與食指接近和遠離的操作,來進行圖形輸入、尺寸變更,並自動地反映於尺寸值。In the above-described embodiment, the application shape designation image (Fig. 10) allows the user to input application conditions, etc., but in addition, it is also possible to use a drawing method such as auto-shape, That is, operations such as dragging the mouse, pinching in (pinch in, zooming out), and spreading (pinch out, zooming in) on the touch panel to bring the thumb and index finger closer and farther away are used to input graphics, change sizes, and automatically reflected in the size value.

上述實施方式中構成為:在塗敷形狀指定圖像(圖10)中,能夠由用戶輸入塗敷條件等,但除此之外,也可以構成為:設置能夠輸入用於使塗敷尺寸放大或縮小的“倍率”的輸入部或者能夠選擇“倍率”的選擇按鈕,從而能夠透過由用戶輸入(選擇)“倍率”來調節塗敷尺寸。In the above-mentioned embodiment, the application shape designation image (Fig. 10) is configured so that the user can input application conditions and the like. However, in addition to this, it may be configured such that a user can input a function for enlarging the application size. Or a reduced "magnification" input unit or a selection button that can select the "magnification", so that the coating size can be adjusted by the user input (selecting) the "magnification".

上述實施方式中構成為:在塗敷形狀指定圖像(圖10)中,能夠由用戶輸入塗敷條件等,但除此之外,也可以構成為:預先顯示用於使塗敷尺寸放大或縮小的“數值”,從而能夠透過由用戶選擇“數值”按鈕(在觸控面板之情況下進行觸控操作)來調節塗敷尺寸。In the above-mentioned embodiment, the application shape designation image (Fig. 10) is configured so that the user can input application conditions and the like. However, in addition to this, it may be configured such that instructions for enlarging the application size or the like are displayed in advance. The reduced "value" allows the user to adjust the coating size by selecting the "value" button (touch operation in the case of a touch panel).

此外,與上述塗敷系統相關的變形例也能夠作為同樣的變形例應用於上述填充系統。In addition, modifications related to the above-mentioned coating system can also be applied to the above-mentioned filling system as similar modifications.

上述實施方式均為本發明的適當的例示,申請專利範圍中記載的範圍內的其他任何實施方式當然也包含在發明的技術範圍內。The above-mentioned embodiments are all appropriate examples of the present invention, and any other embodiments within the scope described in the claims are naturally included in the technical scope of the invention.

1:分配器裝置 11:泵機構部 12:噴出口 2:分配器控制裝置(控制裝置) 21:輸入受理部 22:塗敷條件設定部 23:運轉參數設定部 24:參數關係生成部 25:動作控制部 27:校正資訊受理部 271:噴出參數校正資訊受理部 272:吸入參數校正資訊受理部 28:顯示控制部 281:塗敷條件顯示部(條件顯示部) 282:運轉參數顯示部 283:校正資訊顯示部 51:顯示裝置 100:塗敷系統(分配器系統) 110:填充系統(分配器系統) 120:填充材料 130:工件 1: Distributor device 11: Pump mechanism department 12:Spout 2: Distributor control device (control device) 21: Input acceptance department 22: Coating condition setting part 23: Operation parameter setting part 24: Parameter relationship generation department 25:Motion Control Department 27:Calibration Information Reception Department 271: Ejection parameter calibration information reception department 272: Inhalation Parameter Calibration Information Reception Department 28: Display control part 281: Coating condition display part (condition display part) 282: Operation parameter display part 283: Calibration information display part 51:Display device 100: Coating system (dispenser system) 110: Filling system (dispenser system) 120: Filling material 130:Artifact

圖1中(a)係顯示本發明實施方式涉及之塗敷系統的整體構成之概略圖,(b)係顯示本發明實施方式涉及之塗敷系統的另一整體構成之概略圖。 圖2係顯示本實施方式涉及之塗敷系統中採用的分配器裝置之剖視圖。 圖3係顯示本實施方式涉及之塗敷系統之方塊圖。 圖4係顯示本實施方式涉及之塗敷系統的塗敷量調整步驟之流程圖。 圖5係顯示本實施方式涉及之塗敷系統的塗敷量調整步驟之流程圖。 圖6係用於說明本實施方式涉及之塗敷系統的分配器裝置的旋轉速度計算方法之示意圖。 圖7係顯示用於對本實施方式涉及之塗敷系統的反轉吸入設定進行說明的正轉旋轉速度與反轉旋轉速度的關係之圖表。 圖8係顯示本實施方式涉及之塗敷系統的分配器裝置中的正轉旋轉速度與目標塗敷量的關係之圖表。 圖9係用於說明本實施方式涉及之塗敷系統的運轉參數的校正之示意圖。 圖10係本實施方式涉及之塗敷系統中顯示塗敷條件及運轉參數的塗敷形狀指定圖像圖。 圖11係本實施方式涉及之塗敷系統中校正運轉參數時顯示的校正資訊顯示圖像圖。 圖12係本實施方式涉及之塗敷系統中校正運轉參數時顯示的校正資訊顯示圖像圖。 圖13係顯示本發明另一實施方式涉及之填充系統的整體構成之概略圖。 (a) in FIG. 1 is a schematic diagram showing the overall structure of the coating system according to the embodiment of the present invention, and (b) is a schematic diagram showing another overall structure of the coating system according to the embodiment of the present invention. FIG. 2 is a cross-sectional view showing a dispenser device used in the coating system according to this embodiment. FIG. 3 is a block diagram showing the coating system according to this embodiment. FIG. 4 is a flowchart showing the coating amount adjustment procedure of the coating system according to this embodiment. FIG. 5 is a flowchart showing the coating amount adjustment procedure of the coating system according to this embodiment. FIG. 6 is a schematic diagram for explaining the rotation speed calculation method of the dispenser device of the coating system according to the present embodiment. FIG. 7 is a graph showing the relationship between the forward rotation speed and the reverse rotation speed for explaining the reverse suction setting of the coating system according to the present embodiment. 8 is a graph showing the relationship between the forward rotation speed and the target coating amount in the dispenser device of the coating system according to the present embodiment. FIG. 9 is a schematic diagram for explaining the correction of operating parameters of the coating system according to this embodiment. FIG. 10 is a coating shape designation image showing coating conditions and operation parameters in the coating system according to this embodiment. FIG. 11 is a correction information display image displayed when correcting operating parameters in the coating system according to this embodiment. FIG. 12 is a correction information display image displayed when the operation parameters are corrected in the coating system according to this embodiment. FIG. 13 is a schematic diagram showing the overall structure of a filling system according to another embodiment of the present invention.

1:分配器裝置 1: Distributor device

11:泵機構部 11: Pump mechanism department

12:噴出口 12:Spout

2:分配器控制裝置 2: Distributor control device

21:輸入受理部 21: Input acceptance department

22:塗敷條件設定部 22: Coating condition setting part

23:運轉參數設定部 23: Operation parameter setting part

24:參數關係生成部 24: Parameter relationship generation department

25:動作控制部 25:Motion Control Department

26:存儲部 26:Storage Department

27:校正資訊受理部 27:Calibration Information Reception Department

271:噴出參數校正資訊受理部 271: Ejection parameter calibration information reception department

272:吸入參數校正資訊受理部 272: Inhalation Parameter Calibration Information Reception Department

28:顯示控制部 28: Display control part

281:塗敷條件顯示部 281: Coating condition display part

282:運轉參數顯示部 282: Operation parameter display part

283:校正資訊顯示部 283: Calibration information display part

3:機器人 3:Robot

4:機器人控制裝置 4:Robot control device

41:機器人動作控制部 41:Robot motion control department

5:輸入輸出裝置(觸控面板) 5: Input and output device (touch panel)

51:顯示裝置 51:Display device

52:輸入裝置 52:Input device

100:塗敷系統(分配器系統) 100: Coating system (dispenser system)

Claims (8)

一種分配器系統,其特徵在於,具備:分配器裝置,具有噴出流體的噴出口和使流體相對於所述噴出口移動的泵機構部,且能夠進行噴出運轉和回吸運轉,所述噴出運轉是指以使流體從所述泵機構部朝向所述噴出口移動之方式使所述泵機構部進行工作,所述回吸運轉是指以使流體從所述噴出口朝向所述泵機構部移動之方式使所述泵機構部進行工作,以及控制裝置,進行所述分配器裝置的動作控制;所述分配器系統能夠進行塗敷動作和填充動作的任意一方或雙方,所述塗敷動作是指在透過所述噴出運轉向工件噴出了流體之後進行所述回吸運轉,從而向所述工件塗敷流體,所述填充動作是指在透過所述噴出運轉向所述工件噴出流體之後進行所述回吸運轉,從而向所述工件填充流體,所述控制裝置具有運轉參數設定部,所述運轉參數設定部根據流體之吸入條件自動設定與所述回吸運轉中的流體之吸入量具有相關關係的吸入參數。 A distributor system, characterized in that it is provided with a distributor device having an ejection port for ejecting fluid and a pump mechanism for moving the fluid relative to the ejection port, and is capable of performing a ejection operation and a suction back operation, the ejection operation being The pump mechanism is operated to move the fluid from the pump mechanism toward the discharge port, and the suction back operation is to move the fluid from the discharge port toward the pump mechanism. The pump mechanism is operated in such a way that the control device controls the action of the dispenser device; the dispenser system is capable of performing either or both of a coating action and a filling action, and the coating action is The filling operation refers to performing the suction operation after ejecting the fluid to the workpiece through the ejection operation to apply the fluid to the workpiece. The filling operation refers to performing the suction operation after ejecting the fluid to the workpiece through the ejection operation. The suck-back operation is used to fill the workpiece with fluid, and the control device has an operation parameter setting part. The operation parameter setting part automatically sets the suction amount of the fluid in the suck-back operation according to the suction condition of the fluid. relationship to the inhalation parameters. 根據請求項1所述之分配器系統,其中,所述運轉參數設定部根據流體之噴出條件導出並設定與透過所述泵機構部噴出的流體之噴出量具有相關關係的噴出參數;所述運轉參數設定部根據與透過所述運轉參數設定部所設定之所述噴出參數的關係設定所述吸入參數。 The dispenser system according to claim 1, wherein the operation parameter setting part derives and sets the ejection parameters that are correlated with the ejection amount of the fluid ejected through the pump mechanism part based on the ejection conditions of the fluid; the operation The parameter setting part sets the suction parameter based on the relationship with the discharge parameter set by the operation parameter setting part. 根據請求項2所述之分配器系統,其中,所述控制裝置具有參數關係生成部,所述參數關係生成部根據與所述噴出參數和所述吸入參數之組合有關的實際值生成所述噴出參數與所述吸入參數之關係。 The dispenser system according to claim 2, wherein the control device has a parameter relationship generation unit that generates the ejection based on an actual value related to a combination of the ejection parameter and the suction parameter. The relationship between the parameters and the inhalation parameters. 根據請求項3所述之分配器系統,其中, 所述參數關係生成部利用使用多個點的線性插值或者多項式中的至少任意一個生成所述噴出參數與所述吸入參數之關係。 The dispenser system according to claim 3, wherein, The parameter relationship generation unit generates a relationship between the ejection parameter and the suction parameter using at least one of linear interpolation using a plurality of points or a polynomial. 根據請求項3或4所述之分配器系統,其中,所述運轉參數設定部根據所述噴出運轉時相對於所述工件噴出的流體之目標噴出量和塗敷截面之目標塗敷尺寸中的至少任意一個設定所述噴出參數。 The dispenser system according to claim 3 or 4, wherein the operation parameter setting unit is configured according to the target discharge amount of the fluid discharged relative to the workpiece during the discharge operation and the target coating size of the coating cross section. At least one of them sets the ejection parameters. 根據請求項5所述之分配器系統,其中,所述運轉參數設定部根據所述噴出運轉時相對於所述工件噴出的流體之所述目標噴出量和流體之實測噴出量的差異、以及塗敷截面之目標塗敷尺寸和實測塗敷尺寸的差異中的至少任意一個設定所述噴出參數。 The dispenser system according to claim 5, wherein the operation parameter setting part is based on the difference between the target discharge amount of the fluid discharged with respect to the workpiece and the actual measured discharge amount of the fluid during the discharge operation, and the coating The ejection parameter is set based on at least any one of the differences between the target coating size of the coating cross section and the actual measured coating size. 根據請求項1所述之分配器系統,其中,所述吸入參數為所述分配器裝置中的所述回吸運轉時的輸出和/或運轉時間。 The distributor system according to claim 1, wherein the suction parameter is the output and/or operation time of the suction back operation in the distributor device. 根據請求項1所述之分配器系統,其中,所述分配器裝置是單軸偏心螺桿式分配器。 The distributor system according to claim 1, wherein the distributor device is a single-axis eccentric screw distributor.
TW112106180A 2022-03-10 2023-02-20 Dispenser system TWI830603B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-037636 2022-03-10
JP2022037636A JP2023132371A (en) 2022-03-10 2022-03-10 dispenser system

Publications (2)

Publication Number Publication Date
TW202335750A TW202335750A (en) 2023-09-16
TWI830603B true TWI830603B (en) 2024-01-21

Family

ID=87935127

Family Applications (1)

Application Number Title Priority Date Filing Date
TW112106180A TWI830603B (en) 2022-03-10 2023-02-20 Dispenser system

Country Status (3)

Country Link
JP (1) JP2023132371A (en)
TW (1) TWI830603B (en)
WO (1) WO2023171418A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000127218A (en) * 1998-10-26 2000-05-09 Berumateikku Hanbai Kk Fluid diffusing and emitting apparatus
CN1692991A (en) * 2004-04-30 2005-11-09 诺信公司 Methods for regulating the placement of fluid dispensed from an applicator onto a workpiece
JP4082499B2 (en) * 2002-09-20 2008-04-30 大日本スクリーン製造株式会社 Pattern forming apparatus and pattern forming method
CN105855089A (en) * 2016-05-26 2016-08-17 余斌 Fluid supply device of plunger pump and plunger pump control system
TWM581010U (en) * 2016-10-20 2019-07-21 日商Sat股份有限公司 Coating head and coating device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3307980B2 (en) * 1992-04-15 2002-07-29 株式会社日立製作所 Method for manufacturing semiconductor device
JP2003154301A (en) * 2001-11-21 2003-05-27 Seiko Epson Corp Applicator and application method
JP2009154073A (en) * 2007-12-26 2009-07-16 Heishin Engineering & Equipment Co Ltd Fluid discharger and fluid supply system
JP2013132596A (en) * 2011-12-27 2013-07-08 Dainippon Screen Mfg Co Ltd Pattern formation device and pattern formation method
JP6304617B2 (en) * 2013-09-09 2018-04-04 兵神装備株式会社 Fluid application system and fluid application method
JP6332095B2 (en) * 2015-03-20 2018-05-30 東京エレクトロン株式会社 Method for adjusting chemical supply device, storage medium, and chemical supply device
JP7220446B2 (en) * 2018-06-05 2023-02-10 兵神装備株式会社 discharge system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000127218A (en) * 1998-10-26 2000-05-09 Berumateikku Hanbai Kk Fluid diffusing and emitting apparatus
JP4082499B2 (en) * 2002-09-20 2008-04-30 大日本スクリーン製造株式会社 Pattern forming apparatus and pattern forming method
CN1692991A (en) * 2004-04-30 2005-11-09 诺信公司 Methods for regulating the placement of fluid dispensed from an applicator onto a workpiece
CN105855089A (en) * 2016-05-26 2016-08-17 余斌 Fluid supply device of plunger pump and plunger pump control system
TWM581010U (en) * 2016-10-20 2019-07-21 日商Sat股份有限公司 Coating head and coating device

Also Published As

Publication number Publication date
WO2023171418A1 (en) 2023-09-14
JP2023132371A (en) 2023-09-22
TW202335750A (en) 2023-09-16

Similar Documents

Publication Publication Date Title
JP5154879B2 (en) Liquid material coating apparatus, coating method and program
EP3471895B1 (en) Methods for applying a liquid coating to a substrate
KR102702756B1 (en) Method for calibrating the flow and coating the substrate
US8256645B2 (en) Fluid dispensing system
TWI781066B (en) Liquid material coating device and liquid material coating method
CN110823322B (en) System and method for remote metering station sensor calibration and verification
TWI830603B (en) Dispenser system
TWI830602B (en) Dispenser system
JP7220446B2 (en) discharge system
TW202345976A (en) Dispenser system
TWI498168B (en) Method and device for adjusting cohesive material coating
US11986780B2 (en) Hot melt adhesive foam dispensing system
TW201534403A (en) Method and apparatus for preventing liquid condensation in dispenser
JP7347908B2 (en) High viscosity material coating method and control point automatic generation program for high viscosity material coating equipment
JP4762596B2 (en) Chip bonding apparatus and bonding method
JP2021186692A (en) Resin application control method and resin applicator
JP2016527446A (en) Batch processing / delivery system including at least one remotely actuated positive displacement batch processing pump