TWI826226B - 用於共振裝置之驅動電路、系統及方法 - Google Patents

用於共振裝置之驅動電路、系統及方法 Download PDF

Info

Publication number
TWI826226B
TWI826226B TW112100405A TW112100405A TWI826226B TW I826226 B TWI826226 B TW I826226B TW 112100405 A TW112100405 A TW 112100405A TW 112100405 A TW112100405 A TW 112100405A TW I826226 B TWI826226 B TW I826226B
Authority
TW
Taiwan
Prior art keywords
driving
signal
period
operation period
length
Prior art date
Application number
TW112100405A
Other languages
English (en)
Inventor
譚仁傑
Original Assignee
瑞昱半導體股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 瑞昱半導體股份有限公司 filed Critical 瑞昱半導體股份有限公司
Priority to TW112100405A priority Critical patent/TWI826226B/zh
Application granted granted Critical
Publication of TWI826226B publication Critical patent/TWI826226B/zh

Links

Images

Abstract

一種驅動電路,用來驅動一共振裝置,該驅動電路包含有一電壓感測器、一訊號控制器、一訊號產生器及一驅動器。該電壓感測器耦接於該共振裝置,用來偵測該共振裝置之一反電動勢。該訊號控制器耦接於該電壓感測器,用來根據該反電動勢來控制該驅動電路之一操作期間的長度。該訊號產生器耦接於該訊號控制器,用來產生對應於該操作期間的長度之一驅動訊號。該驅動器耦接於該訊號產生器,用來輸出該驅動訊號至該共振裝置。

Description

用於共振裝置之驅動電路、系統及方法
本發明係指一種驅動電路,尤指一種可用來驅動共振裝置之驅動電路。
近年來,觸覺回饋(haptic)技術已廣泛使用於虛擬實境(Virtual Reality,VR)、遊戲機、手機、穿戴式裝置、觸控面板等各種應用中,可在人機介面上加入觸覺振動的反饋,以提供使用者更真實的觸覺體驗。而線性諧振致動器(Linear Resonant Actuator,LRA)係一種常用於觸覺回饋控制的元件,其具備良好的振動效果,且具有薄型化、省電、反應速度快等優點,因而成為觸覺回饋裝置的主流。
根據LRA之機械特性,當其操作在本身的共振頻率時,可達到最佳化的驅動效率,此時驅動電路能夠在輸出最小能量的情況下使LRA達到最大振度。傳統上可利用判斷一回授訊號過零點的時間來判斷LRA之共振頻率,然而,此方法對於時脈的頻率與回授訊號的品質有一定要求,若時脈頻率太低,可能使時間計算的誤差太大,導致共振頻率判斷錯誤;若回授訊號的雜訊太大,可能出現錯誤的過零點而導致共振頻率判斷錯誤。有鑑於此,習知技術實有改進之必要。
因此,本發明之主要目的即在於提出一種新式的驅動電路,可用來驅動線性諧振致動器(Linear Resonant Actuator,LRA)或相似類型的共振裝置操作在其共振頻率上,以解決上述問題。
本發明之一實施例揭露一種驅動電路,用來驅動一共振裝置,該驅動電路包含有一電壓感測器、一訊號控制器、一訊號產生器及一驅動器。該電壓感測器耦接於該共振裝置,用來偵測該共振裝置之一反電動勢(Back Electromotive Force,Back EMF)。該訊號控制器耦接於該電壓感測器,用來根據該反電動勢來控制該驅動電路之一操作期間的長度。該訊號產生器耦接於該訊號控制器,用來產生對應於該操作期間的長度之一驅動訊號。該驅動器耦接於該訊號產生器,用來輸出該驅動訊號至該共振裝置。
本發明之另一實施例揭露一種驅動系統,其包含有一共振裝置及一驅動電路。該驅動電路用來驅動該共振裝置且包含有一電壓感測器、一訊號控制器、一訊號產生器及一驅動器。該電壓感測器耦接於該共振裝置,用來偵測該共振裝置之一反電動勢。該訊號控制器耦接於該電壓感測器,用來根據該反電動勢來控制該驅動電路之一操作期間的長度。該訊號產生器耦接於該訊號控制器,用來產生對應於該操作期間的長度之一驅動訊號。該驅動器耦接於該訊號產生器,用來輸出該驅動訊號至該共振裝置。
本發明之另一實施例揭露一種用於一驅動電路之驅動方法,用來驅動一共振裝置,該驅動方法包含有下列步驟:偵測該共振裝置之一反電動勢;根據該反電動勢來控制該驅動電路之一操作期間的長度;產生對應於該操作期間的長度之一驅動訊號;以及輸出該驅動訊號至該共振裝置。
第1圖為本發明實施例一驅動系統10之示意圖。驅動系統10包含有一驅動電路100及一共振裝置110,其中,共振裝置110可以是一種具有共振特性的機械裝置,如線性諧振致動器(Linear Resonant Actuator,LRA),但不以此為限。驅動電路100可用來驅動共振裝置110進行共振,在一實施例中,驅動電路100可以是實現於晶片中的積體電路。
詳細來說,驅動電路100包含有一電壓感測器102、一訊號控制器104、一訊號產生器106及一驅動器108。電壓感測器102耦接於共振裝置110,可用來偵測共振裝置110之反電動勢(Back Electromotive Force,Back EMF)VB。反電動勢VB為共振裝置110振盪時產生的感應電動勢,其係以電壓形式呈現,並透過電壓感測器102進行偵測。
訊號控制器104可根據偵測到的反電動勢VB來控制驅動電路100之操作期間的長度。舉例來說,訊號產生器106可在每半個驅動訊號週期控制訊號控制器104進行一次反電動勢VB偵測,因此每一操作期間可以是半個驅動訊號週期。在一實施例中,訊號控制器104可以是一頻率控制器或一週期控制器,用來控制驅動電路100之驅動頻率或驅動週期,以根據驅動頻率或驅動週期來決定操作期間的長度。訊號控制器104的範例包括比例積分控制器(Proportional Integral Controller,PI Controller),但不限於此。
訊號產生器106可用來產生對應於操作期間的長度之驅動訊號DRV,例如,在較長的操作期間之下可產生較長的驅動訊號脈衝,在較短的操作期間之下可產生較短的驅動訊號脈衝。在一實施例中,訊號產生器106可產生週期性的驅動訊號DRV,並根據來自於訊號控制器104的頻率或週期資訊來決定驅動訊號DRV的頻率和週期。訊號產生器106所產生的驅動訊號DRV可以是任意波形,如方波、弦波、三角波等,但不限於此。只要訊號產生器106所產生的驅動訊號DRV可用來驅動共振裝置110之運作,其相關的驅動波形皆屬於本發明之範疇。在一實施例中,訊號產生器106可包含一脈衝寬度調變(Pulse Width Modulation,PWM)產生器,用來產生具有特定脈衝寬度之驅動訊號DRV。
驅動器108可用來輸出驅動訊號DRV至共振裝置110。一般來說,驅動器108可包含一或多個具有足夠驅動能力之輸出電路,用以推動共振裝置110上的負載,並搭配開關器的設置來控制驅動訊號DRV的輸出時序。
第2A及2B圖為本發明實施例共振裝置110之訊號波形圖,其繪示驅動訊號DRV及反電動勢VB在二個連續操作期間之波形。如第2A圖所示,電壓感測器102可在操作期間P1結束的時間點對反電動勢VB進行取樣,訊號控制器104則根據取得的反電動勢VB大小來更新驅動頻率/週期,以改變下一操作期間P2的長度。在此例中,電壓感測器102偵測到操作期間P1結束時的反電動勢VB小於0,訊號控制器104可據以判斷驅動頻率過低或週期過大,進而縮短下一操作期間P2的長度,使其小於操作期間P1的長度。由於反電動勢VB的訊號頻率對應於共振裝置110之共振頻率,因此上述調整可讓驅動電路100之驅動頻率趨近共振裝置110之共振頻率。
第2B圖則繪示另一種情況,其中電壓感測器102偵測到操作期間P3結束時的反電動勢VB大於0,故訊號控制器104判斷驅動頻率過高或週期過小,進而延長下一操作期間P4的長度,使其大於操作期間P3的長度。
請回頭參考第1圖,訊號產生器106除了可根據來自於訊號控制器104之頻率/週期資訊來產生對應的驅動訊號DRV之外,亦控制訊號控制器104的反電動勢VB(即回授訊號FB)取樣時間點,以取得正確反電動勢VB的數值。如第1圖所示,回授訊號FB可以是在取樣點下的反電動勢VB,由訊號產生器106決定取樣點之後,傳送相關資訊至訊號控制器104來控制其在取樣點進行取樣,以取得回授訊號FB。
透過上述方式,驅動電路100可在每一個半週期(即每一操作期間)內進行反電動勢VB的偵測,並根據偵測到的反電動勢VB大小來調整下一操作期間的長度,使得驅動訊號DRV之頻率逐漸趨近共振裝置110之共振頻率。當一操作期間結束時偵測到的反電動勢VB等於0時,當下的驅動訊號DRV頻率即等於共振裝置110之共振頻率。
需注意,第2A及2B圖所示之反電動勢VB偵測方式係以正半週期為例,即反電動勢VB是在驅動訊號為正訊號的半週期結束時進行偵測。在另一實施例中,亦可在驅動訊號為負訊號的負半週期結束時偵測反電動勢VB的大小,並據以調整驅動頻率/週期和操作期間,如第3A及3B圖所示。
詳細來說,在第3A圖中,電壓感測器102偵測到操作期間P5結束時的反電動勢VB大於0,故訊號控制器104判斷驅動頻率過低或週期過大,進而縮短下一操作期間P6的長度,使其小於操作期間P5的長度。在第3B圖中,電壓感測器102偵測到操作期間P7結束時的反電動勢VB小於0,故訊號控制器104判斷驅動頻率過高或週期過小,進而延長下一操作期間P8的長度,使其大於操作期間P7的長度。
由上述可知,無論是正半週期或負半週期,驅動電路100皆可持續偵測反電動勢VB並據以調整驅動頻率,以在多個週期之後逐漸趨近共振裝置110之共振頻率。由於正半週期和負半週期內反電動勢VB振盪的方向相反,因此根據反電動勢VB的大小來調整操作期間長度的調整方向亦相反,惟其目的皆在於控制驅動電路100之驅動頻率(即驅動訊號DRV之頻率)趨近共振裝置110之共振頻率。
值得注意的是,電壓感測器102係耦接於共振裝置110之驅動端點(即共振裝置110接收驅動訊號DRV之端點),以偵測來自於共振裝置110的反電動勢VB。在驅動器108輸出驅動訊號DRV的過程中,電壓感測器102偵測到的訊號為反電動勢VB、驅動訊號DRV、以及共振裝置110內部電阻/電感所產生的壓降等多種訊號的組合,其具有相當複雜的波形且難以解析出單純的反電動勢VB。因此,本發明可藉由高阻抗(High Impedance,Hi-Z)的驅動方式來輸出驅動訊號DRV,使得電壓感測器102能夠取得未包含其它訊號成分的單純反電動勢VB。
在一實施例中,每一操作期間皆可包含一驅動期間及一高阻抗期間,其中,驅動期間為驅動器108輸出驅動訊號DRV之脈衝的期間,而高阻抗期間為驅動器108停止輸出脈衝的期間。如第2A、2B、3A及3B圖所示,每一操作期間均存在驅動訊號DRV之一脈衝,而脈衝的前後則是高阻抗期間,此時驅動訊號DRV之電壓為0,抑或可視為停止輸出驅動訊號DRV。
在一實施例中,可控制驅動器108內部的開關器斷開,或斷開驅動器108與共振裝置110之間的連線,使得驅動器108之輸出端呈現高阻抗的狀態,藉此實現高阻抗期間的運作,此時訊號產生器106可輸出一控制訊號來控制驅動器108實現高阻抗。在另一實施例中,亦可藉由停止或斷開訊號產生器106的輸出來實現高阻抗的狀態。在高阻抗期間內,電壓感測器102偵測到來自於共振裝置110的訊號僅包含反電動勢VB,而未包含驅動訊號DRV和其它不必要的訊號,可準確地取得反電動勢VB的數值。
在一實施例中,可在每一操作期間內,將位於驅動期間之前的高阻抗期間長度,設計為與驅動期間之後的高阻抗期間長度實質上相等。也就是說,在一操作期間內,假設一第一高阻抗期間位於驅動期間之前,而一第二高阻抗期間位於驅動期間之後,訊號產生器106及驅動器108可控制第一高阻抗期間的長度實質上等於第二高阻抗期間的長度。
在本發明中,每一操作期間的長度可根據前一操作期間偵測到的反電動勢VB大小來進行調整,而隨著操作期間長度的變化,其驅動期間和高阻抗期間的時序配置亦可據以進行調整。在一實施例中,可設計驅動訊號的脈衝等於操作期間長度之一特定比例,使得驅動期間及高阻抗期間的長度具有固定的比例,且兩者同時對應操作期間的長度來進行調整。或者,亦可設計高阻抗期間具有固定的時長,在此情形下,僅驅動訊號的脈衝大小隨著操作期間長度的變化而進行調整。此外,位於一操作期間前段和後段(即相對應驅動脈衝之前和之後)的高阻抗期間長度亦可彼此相同或不同,端視系統需求而定。
如上所述,習知技術係藉由判斷回授訊號過零點的時間來判斷共振頻率,其通常是利用計數器來判讀過零點時間,因而需要較高的時脈頻率或取樣率來進行偵測,以避免測得的共振頻率誤差過大,此外,過零點時間的偵測亦需要搭配大量的取樣點才能夠得到偵測結果。相較之下,本發明係在已知的時間點上進行取樣(即操作期間結束的時間點),只需要少數的取樣點和較低的取樣率即可取得準確的反電動勢數值。此外,本發明偵測反電動勢數值的方法在反電動勢數值極小的情況下仍可藉由微調操作期間長度或微調頻率/週期的方式,使得在操作期間結束時反電動勢更接近0,以取得更精準的共振頻率。
值得注意的是,本發明之目的在於提出一種可用來驅動共振裝置之驅動電路及其驅動方法,以透過偵測反電動勢大小的方式來調整驅動頻率使其趨近於共振頻率。本領域具通常知識者當可據以進行修飾或變化,而不限於此。舉例來說,第1圖中驅動電路100之結構僅為本發明之一種示例性實施方式,而在另一實施例中,亦可將訊號控制器104與訊號產生器106整合於相同電路區塊或模組,以透過相同電路來執行驅動訊號的調整及產生,且/或可將訊號產生器106與驅動器108整合於相同電路區塊或模組,以透過相同電路來執行驅動訊號的產生及輸出。另外,根據反電動勢VB的大小來調整驅動頻率/週期的方式可依照任何適當的方式進行。舉例來說,可根據反電動勢VB與0的差距來決定調整的幅度,如差距較大則調整的幅度較大,反之亦然。
上述關於驅動共振裝置以偵測其共振頻率之運作可歸納為一驅動流程40,驅動流程40可用於一驅動電路,如第1圖之驅動電路100,其可藉由驅動一共振裝置來取得該共振裝置之共振頻率。如第4圖所示,驅動流程40包含有下列步驟:
步驟402:  偵測共振裝置之一反電動勢。
步驟404:  根據反電動勢來控制驅動電路之一操作期間的長度。
步驟406:  產生對應於操作期間的長度之一驅動訊號。
步驟408:  輸出驅動訊號至共振裝置。
在驅動流程40中,步驟402~408可持續且重複進行,使得驅動電路之操作期間長度所對應的驅動頻率逐漸趨近共振裝置之共振頻率。關於驅動流程40之詳細運作及變化方式可參考上述段落的說明,在此不贅述。
綜上所述,本發明提出了一種可用來驅動一共振裝置(如LRA)之驅動電路、系統及方法,驅動電路可透過偵測共振裝置之反電動勢,以根據反電動勢的數值來調整驅動電路之操作期間長度,使得驅動電路之驅動頻率逐漸趨近共振裝置之共振頻率。在此情形下,驅動電路得以驅動共振裝置操作在其共振頻率,以達到最佳化的驅動效率。 以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。
10:驅動系統 100:驅動電路 102:電壓感測器 104:訊號控制器 106:訊號產生器 108:驅動器 110:共振裝置 VB:反電動勢 DRV:驅動訊號 FB:回授訊號 P1~P8:操作期間 40:驅動流程 402~408:步驟
第1圖為本發明實施例一驅動系統之示意圖。 第2A圖、第2B圖、第3A圖及第3B圖為本發明實施例共振裝置之訊號波形圖。 第4圖為本發明實施例一驅動流程之流程圖。
10:驅動系統
100:驅動電路
102:電壓感測器
104:訊號控制器
106:訊號產生器
108:驅動器
110:共振裝置
VB:反電動勢
DRV:驅動訊號
FB:回授訊號

Claims (10)

  1. 一種驅動電路,用來驅動一共振裝置,該驅動電路包含有: 一電壓感測器,耦接於該共振裝置,用來偵測該共振裝置之一反電動勢; 一訊號控制器,耦接於該電壓感測器,用來根據該反電動勢來控制該驅動電路之一操作期間的長度; 一訊號產生器,耦接於該訊號控制器,用來產生對應於該操作期間的長度之一驅動訊號;以及 一驅動器,耦接於該訊號產生器,用來輸出該驅動訊號至該共振裝置。
  2. 一種驅動系統,包含有: 一共振裝置;以及 一驅動電路,用來驅動該共振裝置,該驅動電路包含有: 一電壓感測器,耦接於該共振裝置,用來偵測該共振裝置之一反電動勢; 一訊號控制器,耦接於該電壓感測器,用來根據該反電動勢來控制該驅動電路之一操作期間的長度; 一訊號產生器,耦接於該訊號控制器,用來產生對應於該操作期間的長度之一驅動訊號;以及 一驅動器,耦接於該訊號產生器,用來輸出該驅動訊號至該共振裝置。
  3. 如請求項2所述之驅動系統,其中該訊號控制器係一頻率控制器或一週期控制器,用來控制該驅動電路之一驅動頻率或一驅動週期,以根據該驅動頻率或該驅動週期來決定該操作期間的長度。
  4. 如請求項2所述之驅動系統,其中該操作期間包含有一驅動期間及一高阻抗期間,其中,該驅動器在該驅動期間內輸出該驅動訊號之一脈衝,在該高阻抗期間內停止輸出該脈衝。
  5. 如請求項4所述之驅動系統,其中該高阻抗期間包含有位於該驅動期間之前的一第一高阻抗期間以及位於該驅動期間之後的一第二高阻抗期間,且該第一高阻抗期間的長度實質上等於該第二高阻抗期間的長度。
  6. 如請求項2所述之驅動系統,其中該訊號控制器係在該操作期間結束時對該反電動勢進行取樣,以偵測該反電動勢。
  7. 如請求項2所述之驅動系統,其中該驅動訊號在一第一操作期間內為一正訊號,當該電壓感測器偵測到對應於該第一操作期間之該反電動勢小於0時,該訊號控制器控制一第二操作期間的長度使其小於該第一操作期間的長度,或者當該電壓感測器偵測到對應於該第一操作期間之該反電動勢大於0時,該訊號控制器控制該第二操作期間的長度使其大於該第一操作期間的長度。
  8. 如請求項2所述之驅動系統,其中該驅動訊號在一第一操作期間內為一負訊號,當該電壓感測器偵測到對應於該第一操作期間之該反電動勢大於0時,該訊號控制器控制一第二操作期間的長度使其小於該第一操作期間的長度,或者當該電壓感測器偵測到對應於該第一操作期間之該反電動勢小於0時,該訊號控制器控制該第二操作期間的長度使其大於該第一操作期間的長度。
  9. 如請求項2所述之驅動系統,其中該訊號產生器包含有一脈衝寬度調變產生器,用來產生該驅動訊號之一脈衝。
  10. 一種用於一驅動電路之驅動方法,用來驅動一共振裝置,該驅動方法包含有: 偵測該共振裝置之一反電動勢; 根據該反電動勢來控制該驅動電路之一操作期間的長度; 產生對應於該操作期間的長度之一驅動訊號;以及 輸出該驅動訊號至該共振裝置。
TW112100405A 2023-01-05 2023-01-05 用於共振裝置之驅動電路、系統及方法 TWI826226B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW112100405A TWI826226B (zh) 2023-01-05 2023-01-05 用於共振裝置之驅動電路、系統及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW112100405A TWI826226B (zh) 2023-01-05 2023-01-05 用於共振裝置之驅動電路、系統及方法

Publications (1)

Publication Number Publication Date
TWI826226B true TWI826226B (zh) 2023-12-11

Family

ID=90053325

Family Applications (1)

Application Number Title Priority Date Filing Date
TW112100405A TWI826226B (zh) 2023-01-05 2023-01-05 用於共振裝置之驅動電路、系統及方法

Country Status (1)

Country Link
TW (1) TWI826226B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105511514A (zh) * 2015-12-31 2016-04-20 歌尔声学股份有限公司 一种智能终端的触觉振动控制系统和方法
CN108155846A (zh) * 2016-12-06 2018-06-12 对话半导体(英国)有限公司 用于控制触觉致动器的设备和方法
CN108429507A (zh) * 2018-01-15 2018-08-21 上海艾为电子技术股份有限公司 确定线性振动装置谐振频率的方法和装置
TW202010239A (zh) * 2018-08-14 2020-03-01 台睿精工股份有限公司 線性振動馬達的控制系統及振動控制方法
CN114977903A (zh) * 2022-04-01 2022-08-30 上海傅里叶半导体有限公司 一种线性谐振马达驱动装置及方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105511514A (zh) * 2015-12-31 2016-04-20 歌尔声学股份有限公司 一种智能终端的触觉振动控制系统和方法
CN108155846A (zh) * 2016-12-06 2018-06-12 对话半导体(英国)有限公司 用于控制触觉致动器的设备和方法
CN108429507A (zh) * 2018-01-15 2018-08-21 上海艾为电子技术股份有限公司 确定线性振动装置谐振频率的方法和装置
TW202010239A (zh) * 2018-08-14 2020-03-01 台睿精工股份有限公司 線性振動馬達的控制系統及振動控制方法
CN114977903A (zh) * 2022-04-01 2022-08-30 上海傅里叶半导体有限公司 一种线性谐振马达驱动装置及方法

Similar Documents

Publication Publication Date Title
KR101799722B1 (ko) 공진 주파수에 기초한 햅틱 피드백 생성
CN108155846B (zh) 用于控制触觉致动器的设备和方法
CN101309063B (zh) 负载驱动控制装置
CN110165944B (zh) 风扇马达驱动电路、利用其的冷却装置及电子机器
JP5369410B2 (ja) 電動機の駆動回路及びこれを備えた機器
WO2011059742A2 (en) Methods for reducing power consumption of at least partially resonant actuator systems and systems thereof
CA2461820A1 (en) Stepper motor controller
WO2023186182A1 (zh) 一种线性谐振马达驱动装置及方法
US20200389113A1 (en) Closed Loop Resonance Tracking Using Phase Matching
TWI406492B (zh) 無感應元件之直流無刷馬達系統及其馬達轉速與相位偵測方法
TWI826226B (zh) 用於共振裝置之驅動電路、系統及方法
TWI412224B (zh) 具有節能模組之單相馬達驅動裝置
JP2012130191A (ja) 振動型アクチュエータの制御装置
JP2008134604A (ja) ランプドライバ付きの高電圧ゲート駆動ic
CN110429877B (zh) 一种开关磁阻电机非导通相高频脉冲注入方法
KR101936381B1 (ko) 진동모터 IC의 Back EMF 검출 기능 테스트 방법 및 이를 위한 장치
JP2005201245A5 (zh)
Quinones Applying acceleration and deceleration profiles to bipolar stepper motors
CN103124156B (zh) 使用单晶片的风扇控制系统
TWI817538B (zh) 電子裝置及控制方法
JP2013236439A (ja) 周波数調整回路
CN112782487B (zh) 一种占空比检测系统
CN115220431B (zh) 无感无刷电机控制器模拟负载电路及测试方法、设备
TWI683525B (zh) 馬達驅動電路與馬達驅動方法
CN109842374B (zh) 限幅高频振荡电路及振荡信号产生方法