TWI823644B - Optoelectronic semiconductor device - Google Patents

Optoelectronic semiconductor device Download PDF

Info

Publication number
TWI823644B
TWI823644B TW111140517A TW111140517A TWI823644B TW I823644 B TWI823644 B TW I823644B TW 111140517 A TW111140517 A TW 111140517A TW 111140517 A TW111140517 A TW 111140517A TW I823644 B TWI823644 B TW I823644B
Authority
TW
Taiwan
Prior art keywords
layer
semiconductor device
semiconductor
optoelectronic semiconductor
optoelectronic
Prior art date
Application number
TW111140517A
Other languages
Chinese (zh)
Other versions
TW202310451A (en
Inventor
吳凡磊
李世昌
陳怡名
詹燿寧
蔡均富
Original Assignee
晶元光電股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 晶元光電股份有限公司 filed Critical 晶元光電股份有限公司
Priority to TW111140517A priority Critical patent/TWI823644B/en
Publication of TW202310451A publication Critical patent/TW202310451A/en
Application granted granted Critical
Publication of TWI823644B publication Critical patent/TWI823644B/en

Links

Images

Landscapes

  • Light Receiving Elements (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Bipolar Transistors (AREA)

Abstract

An optoelectronic semiconductor device includes a substrate, a semiconductor stack, a semiconductor layer, an insulation layer and a first conductive layer. The semiconductor stack is on the substrate and includes an active structure. The semiconductor layer is between the substrate and the semiconductor stack. The insulation layer is between the substrate and the semiconductor layer. The first conductive layer is between the insulation layer and the semiconductor layer and directly contact the semiconductor layer.

Description

光電半導體裝置Optoelectronic semiconductor device

本發明是有關於一種半導體裝置,且特別是有關於一種光電半導體裝置。 The present invention relates to a semiconductor device, and in particular to an optoelectronic semiconductor device.

半導體裝置包含由Ⅲ-V族元素組成的化合物半導體,例如磷化鎵(GaP)、砷化鎵(GaAs)或氮化鎵(GaN),半導體裝置可以為光電半導體裝置如發光二極體(LED)、雷射二極體、光偵測器、太陽能電池或為功率裝置(Power Device)。發光二極體包含一p型半導體層、一n型半導體層與一活性結構設於p型半導體層與n型半導體層之間,使得在一外加電場作用下,n型半導體層及p型半導體層所分別提供的電子及電洞在活性結構複合,以將電能轉換成光能。如何提升光電半導體裝置的光電轉換效率,實為研發人員研發的重點之一。 The semiconductor device includes a compound semiconductor composed of III-V group elements, such as gallium phosphide (GaP), gallium arsenide (GaAs) or gallium nitride (GaN). The semiconductor device may be an optoelectronic semiconductor device such as a light-emitting diode (LED). ), laser diodes, light detectors, solar cells or power devices. The light-emitting diode includes a p-type semiconductor layer, an n-type semiconductor layer and an active structure located between the p-type semiconductor layer and the n-type semiconductor layer, so that under the action of an external electric field, the n-type semiconductor layer and the p-type semiconductor layer The electrons and holes respectively provided by the layers are recombined in the active structure to convert electrical energy into light energy. How to improve the photoelectric conversion efficiency of optoelectronic semiconductor devices is actually one of the focuses of R&D personnel.

本發明係有關於一種光電半導體裝置。 The present invention relates to an optoelectronic semiconductor device.

根據一實施例,光電半導體裝置包括:一基板、一半導體疊層、一半導體層、一絕緣層及一第一導電層。半導 體疊層位於該基板上且包含一活性結構。半導體層位於該基板與該半導體疊層之間。絕緣層位於該基板與該半導體層之間。第一導電層位於該絕緣層與該半導體層之間且與該半導體層直接接觸。 According to an embodiment, an optoelectronic semiconductor device includes: a substrate, a semiconductor stack, a semiconductor layer, an insulating layer and a first conductive layer. Semiconductor A body stack is located on the substrate and contains an active structure. A semiconductor layer is located between the substrate and the semiconductor stack. An insulating layer is located between the substrate and the semiconductor layer. The first conductive layer is located between the insulating layer and the semiconductor layer and is in direct contact with the semiconductor layer.

為了對本發明之上述及其他方面有更佳的瞭解,下文特舉實施例,並配合所附圖式詳細說明如下: In order to have a better understanding of the above and other aspects of the present invention, examples are given below and are described in detail with reference to the accompanying drawings:

100,100’:光電半導體裝置 100,100’: Optoelectronic semiconductor devices

1:半導體疊層 1: Semiconductor stack

11:第一表面 11: First surface

111:第一半導體層 111: First semiconductor layer

112:第二半導體層 112: Second semiconductor layer

113:活性結構 113:Active structure

2:第一電極結構 2: First electrode structure

30:基板 30:Substrate

31:導電黏結層 31: Conductive adhesive layer

32:反射結構 32: Reflective structure

320:電接觸層 320: Electrical contact layer

322:阻障層 322:Barrier layer

324:反射黏結層 324: Reflective adhesive layer

326:反射層 326: Reflective layer

33:導電結構 33:Conductive structure

331:第一導電層 331: First conductive layer

332:第二導電層 332: Second conductive layer

34:第一窗戶層 34:First window layer

34a:第二表面 34a: Second surface

35:絕緣層 35:Insulation layer

351:孔隙 351:pore

35a:上表面 35a: Upper surface

36:第二電極結構 36: Second electrode structure

X、Z:方向 X, Z: direction

25:接合線 25:Joining wire

26:接觸結構 26:Contact structure

200:封裝結構 200:Package structure

21:封裝基板 21:Package substrate

22:通孔 22:Through hole

23:載體 23: Carrier

23a:第一部分 23a:Part 1

23b:第二部分 23b:Part 2

26a、26b:接觸墊 26a, 26b: Contact pad

28:封裝材料 28:Packaging materials

第1圖繪示根據一實施例之光電半導體裝置的剖面示意圖。 FIG. 1 is a schematic cross-sectional view of an optoelectronic semiconductor device according to an embodiment.

第2圖繪示根據一實施例之光電半導體裝置的上視示意圖。 FIG. 2 shows a schematic top view of an optoelectronic semiconductor device according to an embodiment.

第3圖繪示根據一實施例之光電半導體裝置的剖面示意圖。 FIG. 3 is a schematic cross-sectional view of an optoelectronic semiconductor device according to an embodiment.

第4A-4D圖為光電半導體裝置之發光光譜具有兩個波峰位置之例示。 Figures 4A-4D are examples of the luminescence spectrum of the optoelectronic semiconductor device having two peak positions.

第5圖為一實施例之光電半導體裝置於不同電流下的發光光譜。 Figure 5 shows the luminescence spectrum of an optoelectronic semiconductor device under different currents according to an embodiment.

第6圖為一實施例之光電半導體裝置於不同電流下的發光光譜。 Figure 6 shows the luminescence spectrum of an optoelectronic semiconductor device under different currents according to an embodiment.

第7圖為一實施例之光電半導體裝置於不同電流下的發光光譜。 Figure 7 shows the luminescence spectrum of an optoelectronic semiconductor device under different currents according to an embodiment.

第8圖為一實施例之光電半導體裝置於不同施加電流時間下的發光光譜。 Figure 8 shows the luminescence spectrum of an optoelectronic semiconductor device under different current application times according to an embodiment.

第9圖為一實施例之光電半導體裝置的發光光譜。 Figure 9 shows the luminescence spectrum of an optoelectronic semiconductor device according to an embodiment.

第10圖為一實施例之光電半導體裝置的發光光譜。 Figure 10 shows the luminescence spectrum of an optoelectronic semiconductor device according to an embodiment.

第11圖為一實施例之光電半導體裝置的封裝結構示意圖。 Figure 11 is a schematic diagram of the packaging structure of an optoelectronic semiconductor device according to an embodiment.

為讓本揭露之上述目的、特徵、和優點能更明顯易懂,下文特舉較佳實施例,並配合所附圖式,作詳細說明如下:第1圖繪示根據一實施例概念之光電半導體裝置100的剖面示意圖。第2圖是根據一實施例繪示本揭露之半導體光電半導體裝置100的上視圖,第1圖對應為第2圖AA'線之剖面示意圖。光電半導體裝置100具有一半導體疊層1及一基板30。在本實施例中,基板30上方可依序設置導電黏結層31、反射結構32、導電結構33、絕緣層35、第一窗戶層34、半導體疊層1。第一電極結構2與第二電極結構36配置在半導體疊層1的相反側。 In order to make the above objects, features, and advantages of the present disclosure more obvious and understandable, preferred embodiments are cited below and described in detail with the accompanying drawings: Figure 1 illustrates an optoelectronic device according to the concept of an embodiment. Schematic cross-sectional view of semiconductor device 100 . Figure 2 is a top view of the semiconductor optoelectronic semiconductor device 100 of the present disclosure according to an embodiment. Figure 1 corresponds to the cross-sectional schematic diagram of line AA' in Figure 2. The optoelectronic semiconductor device 100 has a semiconductor stack 1 and a substrate 30 . In this embodiment, a conductive adhesive layer 31 , a reflective structure 32 , a conductive structure 33 , an insulating layer 35 , a first window layer 34 , and a semiconductor stack 1 can be disposed in sequence on the substrate 30 . The first electrode structure 2 and the second electrode structure 36 are arranged on opposite sides of the semiconductor stack 1 .

半導體疊層1包含一第一半導體層111、一第二半導體層112及一活性結構113位於第一半導體層111及第二半導體層112之間,換言之,活性結構113與第二半導體 層112依一堆疊方向(即圖示中Z方向,其可實質上垂直於X方向)依序位於第一半導體層111上。一實施例中,光電半導體裝置100為一發光裝置,半導體疊層1為發光疊層,第一半導體層111及第二半導體層112例如為包覆層(cladding layer)及/或限制層(confinement layer),且具有一大於活性結構之能隙,藉此提高電子、電洞於活性結構113中結合以發光的機率。活性結構113可以發出一發射光,該發射光具有一峰值波長(peak wavelength)約為200nm~1800nm;在一實施例中,半導體疊層1之發射光為紅外光,且該發射光之峰值波長約為750nm~1700nm。 The semiconductor stack 1 includes a first semiconductor layer 111, a second semiconductor layer 112 and an active structure 113 located between the first semiconductor layer 111 and the second semiconductor layer 112. In other words, the active structure 113 and the second semiconductor layer 113 are located between the first semiconductor layer 111 and the second semiconductor layer 112. The layers 112 are sequentially located on the first semiconductor layer 111 in a stacking direction (ie, the Z direction in the figure, which may be substantially perpendicular to the X direction). In one embodiment, the optoelectronic semiconductor device 100 is a light-emitting device, the semiconductor stack 1 is a light-emitting stack, and the first semiconductor layer 111 and the second semiconductor layer 112 are, for example, cladding layers and/or confinement layers. layer), and has an energy gap larger than that of the active structure, thereby increasing the probability that electrons and holes are combined in the active structure 113 to emit light. The active structure 113 can emit emitted light, and the emitted light has a peak wavelength (peak wavelength) of about 200 nm to 1800 nm; in one embodiment, the emitted light of the semiconductor stack 1 is infrared light, and the peak wavelength of the emitted light About 750nm~1700nm.

半導體疊層1具有一第一表面11,第一電極結構2位於該第一表面11上,在本實施例中,第一表面11為一粗糙面,以增加光電半導體裝置100的光取出效率。第一窗戶層34設在第一半導體層111上且具有一第二表面34a遠離半導體疊層1的第一表面11。 The semiconductor stack 1 has a first surface 11, and the first electrode structure 2 is located on the first surface 11. In this embodiment, the first surface 11 is a rough surface to increase the light extraction efficiency of the optoelectronic semiconductor device 100. The first window layer 34 is disposed on the first semiconductor layer 111 and has a second surface 34a away from the first surface 11 of the semiconductor stack 1 .

第一半導體層111及第二半導體層112分別具有不同之一第一導電性及一第二導電性,以分別提供電子與電洞,或者分別提供電洞與電子。活性結構113可以包含單異質結構(single heterostructure)、雙異質結構(double heterostructure)或多層量子井(multiple quantum wells)。第一半導體層111、第二半導體層112及活性結構113之材料為三五族化合物半導體,例如可以為:GaAs、InGaAs、AlGaAs、 AlInGaAs、GaP、InGaP、AlInP、AlGaInP、GaN、InGaN、AlGaN、AlInGaN、AlAsSb、InGaAsP、InGaAsN、AlGaAsP等。在本發明實施例中,若無特別說明,上述化學表示式包含「符合化學劑量之化合物」及「非符合化學劑量之化合物」,其中,「符合化學劑量之化合物」例如為三族元素的總元素劑量與五族元素的總元素劑量相同,反之,「非符合化學劑量之化合物」例如為三族元素的總元素劑量與五族元素的總元素劑量不同。舉例而言,化學表示式為AlGaAs即代表包含三族元素鋁(Al)及鎵(Ga),以及包含五族元素砷(As),其中三族元素(鋁及鎵)的總元素劑量可以與五族元素(砷)的總元素劑量相同或相異。另外,若上述由化學表示式表示的各化合物為符合化學劑量之化合物時,AlGaAs即代表Alx1Ga1-x1As,其中,鋁含量x可符合0<x1<1;AlInP代表Alx2In1-x2P,其中,鋁含量x可符合0<x2<1;AlGaInP代表(Al1yGa1-y1)1-x3Inx3P,其中,0<x3<1;AlGaN代表Alx4Ga1-x4N,其中,鋁含量x4可符合0<x4<1;AlAsSb代表AlAsx5Sb1-x5,其中,0<x5<1;InGaP代表Inx5Ga1-x5P,其中,0<x5<1;InGaAsP代表Inx6Ga1-x6As(1-y2)Py2,其中,0<x6<1,0<y2<1;InGaAsN代表Inx7Ga1-x7As1-y3Ny3,其中,0<x7<1,0<y3<1;AlGaAsP代表Alx8Ga1-x8As1-y4Py4,其中,鋁含量x可符合0<x8<1,0<y4<1;InGaAs代表Inx9Ga1-x9As,其中,0<x9<1。 The first semiconductor layer 111 and the second semiconductor layer 112 respectively have a different first conductivity and a second conductivity to respectively provide electrons and holes, or provide holes and electrons respectively. The active structure 113 may include a single heterostructure, a double heterostructure, or multiple quantum wells. The materials of the first semiconductor layer 111, the second semiconductor layer 112 and the active structure 113 are Group III and V compound semiconductors, for example, they can be: GaAs, InGaAs, AlGaAs, AlInGaAs, GaP, InGaP, AlInP, AlGaInP, GaN, InGaN, AlGaN, AlInGaN, AlAsSb, InGaAsP, InGaAsN, AlGaAsP, etc. In the embodiments of the present invention, unless otherwise specified, the above chemical expressions include "compounds that meet chemical dosages" and "compounds that do not meet chemical dosages", where "compounds that meet chemical dosages" are, for example, the sum of three group elements. The element dose is the same as the total element dose of Group 5 elements. On the contrary, "compounds that do not meet the chemical dose", for example, the total element dose of Group 3 elements is different from the total element dose of Group 5 elements. For example, the chemical expression AlGaAs means that it contains the three group elements aluminum (Al) and gallium (Ga), and the five group elements arsenic (As). The total element dose of the three group elements (aluminum and gallium) can be calculated as The total elemental doses of Group 5 elements (arsenic) are the same or different. In addition, if the above-mentioned compounds represented by chemical expressions are compounds that meet the chemical dosage, AlGaAs represents Al x1 Ga 1-x1 As, where the aluminum content x can comply with 0<x1<1; AlInP represents Al x2 In 1 -x2 P , where the aluminum content N, where the aluminum content x4 can comply with 0<x4<1; AlAsSb represents AlAs x5 Sb 1-x5 , where 0<x5<1; InGaP represents In x5 Ga 1-x5 P, where 0<x5<1; InGaAsP represents In x6 Ga 1-x6 As (1-y2) P y2 , where 0<x6<1,0<y2<1; InGaAsN represents In x7 Ga 1-x7 As 1-y3 N y3 , where 0<x7<1,0<y3<1; AlGaAsP represents Al x8 Ga 1-x8 As 1-y4 P y4 , where the aluminum content x can comply with 0<x8<1, 0<y4<1; InGaAs represents In x9 Ga 1 -x9 As, where 0<x9<1.

一實施例中,第一半導體層111與第二半導體 層112的組成均包含鋁,且具有相同的鋁含量。在本實施例中,光電半導體裝置100另包含一第二窗戶層(圖未示)位於第二半導體層112上,且第二窗戶層的厚度大於第二半導體層112,藉此增加光取出效率。第二窗戶層的鋁含量小於第二半導體層的鋁含量且材料為Al0.2Ga0.8As。第二窗戶層的厚度為9μm。 In one embodiment, the compositions of the first semiconductor layer 111 and the second semiconductor layer 112 both include aluminum and have the same aluminum content. In this embodiment, the optoelectronic semiconductor device 100 further includes a second window layer (not shown) located on the second semiconductor layer 112, and the thickness of the second window layer is greater than the second semiconductor layer 112, thereby increasing the light extraction efficiency. . The aluminum content of the second window layer is less than that of the second semiconductor layer and the material is Al 0.2 Ga 0.8 As. The thickness of the second window layer is 9 μm.

一實施例中,活性結構113具有多層量子井(multiple quantum wells)結構,包含在堆疊方向(如第1圖的Z方向)上交替堆疊的複數個量子井層(quantum well layer)與複數個阻障層(barrier layer),且阻障層的能障大於量子井層,藉此限制載子分布。此外,複數個量子井層彼此之間可以具有相同或不同的材料組成及能障,在此係不多做限制。一實施例中,複數阻障層的其中之一具有鋁元素,且其鋁含量與第一半導體層111的鋁含量不同,具體而言,複數阻障層的其中之一的鋁含量小於第一半導體層111的鋁含量。一實施例中,第一半導體層111具有鋁元素,阻障層的其中之一具有鋁元素。在一實施例中,第一半導體層111的鋁含量與阻障層的其中之一的鋁含量之差異至少為8%,較佳為10~25%,更佳為12~20%。或者,複數阻障層中每一層皆具有鋁元素,且每一層中的鋁含量皆小於第一半導體層111的鋁含量。一實施例中,每一阻障層中的鋁含量與第一半導體層111的鋁含量之差異至少為8%,較佳為10~25%,更佳為12~20%。 In one embodiment, the active structure 113 has a multi-layer quantum wells structure, including a plurality of quantum well layers and a plurality of resistors stacked alternately in the stacking direction (such as the Z direction in Figure 1). Barrier layer (barrier layer), and the energy barrier of the barrier layer is larger than the quantum well layer, thereby limiting the carrier distribution. In addition, the plurality of quantum well layers may have the same or different material compositions and energy barriers, and there are no restrictions here. In one embodiment, one of the plurality of barrier layers has an aluminum element, and its aluminum content is different from the aluminum content of the first semiconductor layer 111. Specifically, one of the plurality of barrier layers has an aluminum content less than that of the first semiconductor layer 111. Aluminum content of semiconductor layer 111 . In one embodiment, the first semiconductor layer 111 includes aluminum element, and one of the barrier layers includes aluminum element. In one embodiment, the difference between the aluminum content of the first semiconductor layer 111 and the aluminum content of one of the barrier layers is at least 8%, preferably 10~25%, and more preferably 12~20%. Alternatively, each layer of the plurality of barrier layers contains aluminum elements, and the aluminum content in each layer is less than the aluminum content of the first semiconductor layer 111 . In one embodiment, the difference between the aluminum content in each barrier layer and the aluminum content in the first semiconductor layer 111 is at least 8%, preferably 10~25%, and more preferably 12~20%.

第一半導體層111、第二半導體層112及活性結構113的折射率(refractive index)可依其材料的元素組成改變。在本實施例中,第一半導體層111、第二半導體層112及活性結構113的材料為AlGaAs,且當鋁含量越高,其折射率越低,兩者大致呈線性關係,例如:折射率n與鋁含量x的關係為n=3.3-0.53x+0.09x2。一實施例中,第一半導體層111具有第一折射率,活性結構113之阻障層的其中之一具有第二折射率。第一折射率與第二折射率的差異至少為0.04。 The refractive index of the first semiconductor layer 111, the second semiconductor layer 112 and the active structure 113 can be changed according to the elemental composition of their materials. In this embodiment, the material of the first semiconductor layer 111, the second semiconductor layer 112 and the active structure 113 is AlGaAs, and when the aluminum content is higher, the refractive index is lower, and there is a roughly linear relationship between the two, for example: the refractive index The relationship between n and aluminum content x is n=3.3-0.53x+0.09x 2 . In one embodiment, the first semiconductor layer 111 has a first refractive index, and one of the barrier layers of the active structure 113 has a second refractive index. The difference between the first refractive index and the second refractive index is at least 0.04.

本揭露並不限於如第1圖所示之單一半導體疊層1的結構。其它實施例中,光電半導體裝置100可具有多個半導體疊層配置在第一電極結構2及第二電極結構36之間,例如配置在第一電極結構2及第一窗戶層34之間。所述多個半導體疊層可具有相同或不同的結構及/或性質。一實施例中,半導體裝置具有兩個半導體疊層的結構,例如在第1圖所示之半導體疊層1的上方或下方可配置另一半導體疊層,此設計優點之一係可以增加半導體裝置的發光效率。所述另一半導體疊層可類似半導體疊層1,例如具有一第三半導體層位於半導體疊層1的第二半導體層112上、一第四半導體層位於第三半導體層上、及位在第三半導體層與第四半導體層之間的一活性結構。半導體疊層1的活性結構113(第一活性結構)與所述另一半導體疊層的活性結構(第二活性結構)可具有相同或相異的能隙以發出相同或相異波長的光。一實施例 中,可在兩個半導體疊層之間配置穿隧結構。穿隧結構可為單層或多層,且每一層的摻雜濃度大於5×1018/cm3,可讓電子藉由穿隧效應通過,穿隧結構的材料可以為三五族半導體,例如包含鎵(Ga)、鋁(Al)、銦(In)、磷(P)、氮(N)、鋅(Zn)、鎘(Cd)或硒(Se)之化合物。另一實施例中,穿隧結構可置換為黏結結構,用以接合其上、下方的半導體疊層。黏結結構可為單層或多層,且材料包含導電材料如金屬氧化物材料或三五族半導體材料。金屬氧化材料例如為氧化銦錫(ITO)、氧化銦(InO)、氧化錫(SnO)、氧化鎘錫(CTO)、氧化銻錫(ATO)、氧化鋅(ZnO)、氧化鎂(MgO)、氧化鋁鋅(AZO)、氧化鋅錫(ZTO)、氧化鎵鋅(GZO)、氧化銦鎢(IWO)、氧化銦鋅(IZO)或氧化鉭(Ta2O5);三五族半導體材料例如為砷化鋁鎵(AlGaAs)、氮化鎵(GaN)或磷化鎵(GaP)。在另一實施例中,黏結結構包含絕緣材料,例如Su8、苯并環丁烯(BCB)、過氟環丁烷(PFCB)、環氧樹脂(Epoxy)、丙烯酸樹脂(Acrylic Resin)、環烯烴聚合物(COC)、聚甲基丙烯酸甲酯(PMMA)、聚對苯二甲酸乙二酯(PET)、聚亞醯胺(PI)、聚碳酸酯(PC)、聚醚醯亞胺(Polyetherimide)、氟碳聚合物(Fluorocarbon Polymer)、玻璃(Glass)、氧化鋁(Al2O3)、氧化矽(SiO2)、氧化鈦(TiO2)、氮化矽(SiNx)、旋塗玻璃(SOG)或四乙氧基矽烷(TEOS)。 The present disclosure is not limited to the structure of a single semiconductor stack 1 as shown in FIG. 1 . In other embodiments, the optoelectronic semiconductor device 100 may have a plurality of semiconductor stacks disposed between the first electrode structure 2 and the second electrode structure 36 , for example, between the first electrode structure 2 and the first window layer 34 . The plurality of semiconductor stacks may have the same or different structures and/or properties. In one embodiment, the semiconductor device has a structure of two semiconductor stacks. For example, another semiconductor stack can be disposed above or below the semiconductor stack 1 shown in Figure 1. One of the advantages of this design is that it can increase the number of semiconductor devices. luminous efficiency. The other semiconductor stack may be similar to the semiconductor stack 1, for example, having a third semiconductor layer located on the second semiconductor layer 112 of the semiconductor stack 1, a fourth semiconductor layer located on the third semiconductor layer, and a third semiconductor layer located on the second semiconductor layer 112 of the semiconductor stack 1. An active structure between the third semiconductor layer and the fourth semiconductor layer. The active structure 113 (first active structure) of the semiconductor stack 1 and the active structure (second active structure) of the other semiconductor stack may have the same or different energy gaps to emit light of the same or different wavelengths. In one embodiment, a tunnel structure may be configured between two semiconductor stacks. The tunneling structure can be a single layer or multiple layers, and the doping concentration of each layer is greater than 5×10 18 /cm 3 , which allows electrons to pass through the tunneling effect. The material of the tunneling structure can be a III-V semiconductor, such as Compounds of gallium (Ga), aluminum (Al), indium (In), phosphorus (P), nitrogen (N), zinc (Zn), cadmium (Cd) or selenium (Se). In another embodiment, the tunnel structure can be replaced by a bonding structure for joining the semiconductor stacks above and below it. The bonding structure can be a single layer or multiple layers, and the material includes conductive materials such as metal oxide materials or III-V semiconductor materials. Metal oxide materials include indium tin oxide (ITO), indium oxide (InO), tin oxide (SnO), cadmium tin oxide (CTO), antimony tin oxide (ATO), zinc oxide (ZnO), magnesium oxide (MgO), Aluminum zinc oxide (AZO), zinc tin oxide (ZTO), gallium zinc oxide (GZO), indium tungsten oxide (IWO), indium zinc oxide (IZO) or tantalum oxide (Ta 2 O 5 ); Group III and V semiconductor materials such as It is aluminum gallium arsenide (AlGaAs), gallium nitride (GaN) or gallium phosphide (GaP). In another embodiment, the bonding structure includes insulating materials, such as Su8, benzocyclobutene (BCB), perfluorocyclobutane (PFCB), epoxy resin (Epoxy), acrylic resin (Acrylic Resin), cyclic olefin Polymer (COC), polymethyl methacrylate (PMMA), polyethylene terephthalate (PET), polyimide (PI), polycarbonate (PC), polyetherimide (Polyetherimide) ), Fluorocarbon Polymer, Glass, Aluminum Oxide (Al 2 O 3 ), Silicon Oxide (SiO 2 ), Titanium Oxide (TiO 2 ), Silicon Nitride (SiNx), Spin-on Glass ( SOG) or tetraethoxysilane (TEOS).

第一電極結構2可位於半導體疊層1之上。第二電極結構36可位於基板30之下,但本揭露不以此為限。 The first electrode structure 2 may be located above the semiconductor stack 1 . The second electrode structure 36 may be located under the substrate 30, but the present disclosure is not limited thereto.

基板30可用以支持位於其上之半導體疊層1與其它層或結構。半導體疊層1可以透過有機金屬化學氣相沉積法(MOCVD)、分子束磊晶法(MBE)或氫化物氣相磊晶法(HVPE)等磊晶方法成長於基板30或另一成長基板上,若是在成長基板上生成的半導體疊層1則可藉由基板轉移技術,將半導體疊層1接合至基板30並可選擇性地移除成長基板。在一實施例中,半導體疊層1係生長於成長基板後,再透過基板轉移技術,透過導電黏結層31接合於基板30。具體而言,基板30對於活性結構113所發射的光可為透明、半透明或不透明,亦可以為導電、半導體或絕緣。在本實施例中,光電半導體裝置100為一垂直式型態,因此,基板30係為一導電材料,且包含金屬材料、金屬合金材料、金屬氧化物材料、半導體材料或含碳材料。金屬材料包含銅(Cu)、鋁(Al)、鉻(Cr)、錫(Sn)、金(Au)、鎳(Ni)、鈦(Ti)、鉑(Pt)、鉛(Pb)、鋅(Zn)、鎘(Cd)、銻(Sb)、鉬(Mo)、鎢(W)或鈷(Co);金屬合金材料為包含上述金屬材料之合金;金屬氧化物材料可以包含但不限於氧化銦錫(ITO)、氧化銦(InO)、氧化錫(SnO)、氧化鎘錫(CTO)、氧化銻錫(ATO)、氧化鋁鋅(AZO)、氧化鋅錫(ZTO)、氧化鎵鋅(GZO)、氧化銦鎢(IWO)、氧化鋅(ZnO)、氧化銦鋅(IZO)、氧化鎵(Ga2O3)、鎵酸鋰(LiGaO2)、鋁酸鋰(LiAlO2)或鋁酸鎂(MgAl2O4);半導 體材料可以包含但不限於IV族半導體或III-V族半導體,例如:矽(Si)、鍺(Ge)、碳化矽(SiC)、氮化鎵(GaN)、氮化鋁(AlN)、磷化鎵(GaP)、砷化鎵(GaAs)、磷砷化鎵(AsGaP)、硒化鋅(ZnSe)、硒化鋅(ZnSe)或磷化銦(InP)等;含碳材料可以包含但不限於類鑽碳薄膜(Diamond-Like carbon,DLC)或石墨烯。 The substrate 30 may be used to support the semiconductor stack 1 and other layers or structures located thereon. The semiconductor stack 1 can be grown on the substrate 30 or another growth substrate through an epitaxial method such as metal-organic chemical vapor deposition (MOCVD), molecular beam epitaxy (MBE) or hydride vapor phase epitaxy (HVPE). , if the semiconductor stack 1 is grown on a growth substrate, the semiconductor stack 1 can be bonded to the substrate 30 through substrate transfer technology and the growth substrate can be selectively removed. In one embodiment, the semiconductor stack 1 is grown on the growth substrate and then bonded to the substrate 30 through the conductive adhesive layer 31 through substrate transfer technology. Specifically, the substrate 30 may be transparent, translucent or opaque to the light emitted by the active structure 113, or may be conductive, semiconductor or insulating. In this embodiment, the optoelectronic semiconductor device 100 is of a vertical type. Therefore, the substrate 30 is a conductive material and includes metal materials, metal alloy materials, metal oxide materials, semiconductor materials or carbon-containing materials. Metal materials include copper (Cu), aluminum (Al), chromium (Cr), tin (Sn), gold (Au), nickel (Ni), titanium (Ti), platinum (Pt), lead (Pb), zinc ( Zn), cadmium (Cd), antimony (Sb), molybdenum (Mo), tungsten (W) or cobalt (Co); the metal alloy material is an alloy containing the above metal materials; the metal oxide material may include but is not limited to indium oxide Tin (ITO), indium oxide (InO), tin oxide (SnO), cadmium tin oxide (CTO), antimony tin oxide (ATO), aluminum zinc oxide (AZO), zinc tin oxide (ZTO), gallium zinc oxide (GZO) ), indium tungsten oxide (IWO), zinc oxide (ZnO), indium zinc oxide (IZO), gallium oxide (Ga 2 O 3 ), lithium gallate (LiGaO 2 ), lithium aluminate (LiAlO 2 ) or magnesium aluminate (MgAl 2 O 4 ); semiconductor materials may include but are not limited to Group IV semiconductors or Group III-V semiconductors, such as: silicon (Si), germanium (Ge), silicon carbide (SiC), gallium nitride (GaN), nitrogen Aluminum (AlN), gallium phosphide (GaP), gallium arsenide (GaAs), gallium arsenide phosphorus (AsGaP), zinc selenide (ZnSe), zinc selenide (ZnSe) or indium phosphide (InP), etc.; The carbonaceous material may include, but is not limited to, diamond-like carbon (DLC) films or graphene.

在另一實施例中,當光電半導體裝置100為非垂直式型態時,例如:第一電極結構2及第二電極結構36位於半導體疊層1的同一側之水平式型態,基板30可包含絕緣材料,例如藍寶石(sapphire)、玻璃(glass)、石英(Quartz)、壓克力(Acryl)、環氧樹脂(Epoxy)、絕緣氮化物(如:SiN)或絕緣氧化物(如SiO2)等。在本實施例中,光電半導體裝置為近場紅外線發光元件,且基板30的材料包含磷化銦(InP)或砷化鎵(GaAs),例如基板30的材料為InP或GaAs或者實質上由InP或GaAs所組成。 In another embodiment, when the optoelectronic semiconductor device 100 is of a non-vertical type, such as a horizontal type in which the first electrode structure 2 and the second electrode structure 36 are located on the same side of the semiconductor stack 1 , the substrate 30 can be Contains insulating materials, such as sapphire, glass, quartz, acrylic, epoxy, insulating nitrides (such as SiN) or insulating oxides (such as SiO 2 )wait. In this embodiment, the optoelectronic semiconductor device is a near-field infrared light-emitting element, and the material of the substrate 30 includes indium phosphide (InP) or gallium arsenide (GaAs). For example, the material of the substrate 30 is InP or GaAs or is substantially made of InP. Or composed of GaAs.

導電黏結層31之材料可包含導電材料,例如金屬氧化物材料、半導體材料、金屬材料、金屬合金材料或含碳材料。舉例來說,金屬氧化物材料可以包含但不限於氧化銦錫(ITO)、氧化銦(InO)、氧化錫(SnO)、氧化鎘錫(CTO)、氧化銻錫(ATO)、氧化鋁鋅(AZO)、氧化鋅錫(ZTO)、氧化鎵鋅(GZO)、氧化鋅 (ZnO)、氧化銦鈰(indium cerium oxide,ICO)、氧化銦鎢(IWO)、氧化銦鈦(indium titanium oxide,ITiO)、氧化銦鋅(IZO)、氧化銦鎵(indium gallium oxide,IGO)、氧化鎵鋁鋅(gallium and aluminum codoped zinc oxide,GAZO)。半導體材料可以包含但不限於磷化鎵(GaP)。金屬材料可以包含但不限於銅(Cu)、鋁(Al)、錫(Sn)、金(Au)、銀(Ag)、鉛(Pb)、鈦(Ti)、鎳(Ni)、銦(In)、鉑(Pt)或鎢(W)。金屬合金材料為包含上述金屬材料之合金。含碳材料可以包含但不限於石墨烯(Graphene)。導電黏結層31可將連接基板30連接至反射結構32,且可具有複數個從屬層(未顯示)。 The material of the conductive adhesive layer 31 may include conductive materials, such as metal oxide materials, semiconductor materials, metal materials, metal alloy materials or carbon-containing materials. For example, metal oxide materials may include, but are not limited to, indium tin oxide (ITO), indium oxide (InO), tin oxide (SnO), cadmium tin oxide (CTO), antimony tin oxide (ATO), aluminum zinc oxide ( AZO), zinc tin oxide (ZTO), gallium zinc oxide (GZO), zinc oxide (ZnO), indium cerium oxide (ICO), indium tungsten oxide (IWO), indium titanium oxide (ITiO), indium zinc oxide (IZO), indium gallium oxide (IGO) , gallium and aluminum codoped zinc oxide (GAZO). The semiconductor material may include, but is not limited to, gallium phosphide (GaP). Metal materials may include, but are not limited to, copper (Cu), aluminum (Al), tin (Sn), gold (Au), silver (Ag), lead (Pb), titanium (Ti), nickel (Ni), indium (In ), platinum (Pt) or tungsten (W). The metal alloy material is an alloy including the above metal materials. Carbonaceous materials may include, but are not limited to, graphene. The conductive adhesive layer 31 can connect the connection substrate 30 to the reflective structure 32 and can have a plurality of slave layers (not shown).

在一實施例中,反射結構32可用以反射來自半導體疊層1之發射光,以增加光電半導體裝置100的光取出效率。反射結構32的材料可包含但不限於金屬材料或金屬合金材料,例如:銅(Cu)、鋁(Al)、錫(Sn)、金(Au)、銀(Ag)、鉛(Pb)、鈦(Ti)、鎳(Ni)、鉑(Pt)、鎢(W);金屬合金材料為包含上述材料之合金。如第1圖所示,本實施例中,反射結構32包含一反射層326、一反射黏結層324位於反射層326之下、一阻障層322位於反射黏結層324之下、以及一電接觸層320位於阻障層322之下。反射層326可反射來自半導體疊層1之發射光。反射黏結層324可用以連接反射層326與阻障層322。阻障層322可用以防止導電黏結層31之材料於製程中 擴散至反射層326而破壞反射層326的結構,藉此維持反射層326的反射率,且電接觸層320可以與下方的導電黏結層31形成低電阻的接觸。 In one embodiment, the reflective structure 32 can be used to reflect the emitted light from the semiconductor stack 1 to increase the light extraction efficiency of the optoelectronic semiconductor device 100 . The material of the reflective structure 32 may include but is not limited to metal materials or metal alloy materials, such as: copper (Cu), aluminum (Al), tin (Sn), gold (Au), silver (Ag), lead (Pb), titanium (Ti), nickel (Ni), platinum (Pt), tungsten (W); metal alloy materials are alloys containing the above materials. As shown in Figure 1, in this embodiment, the reflective structure 32 includes a reflective layer 326, a reflective adhesive layer 324 located under the reflective layer 326, a barrier layer 322 located under the reflective adhesive layer 324, and an electrical contact. Layer 320 is located below barrier layer 322. The reflective layer 326 can reflect the emitted light from the semiconductor stack 1 . The reflective adhesive layer 324 can be used to connect the reflective layer 326 and the barrier layer 322 . The barrier layer 322 can be used to prevent the material of the conductive adhesive layer 31 from being Diffusion to the reflective layer 326 destroys the structure of the reflective layer 326, thereby maintaining the reflectivity of the reflective layer 326, and the electrical contact layer 320 can form a low-resistance contact with the underlying conductive adhesive layer 31.

導電結構33位於第一半導體層111下方,並可對於半導體疊層1所發之發射光為透明,用以增加第一窗戶層34與反射結構32之間的電流傳導與擴散,在一些實施例中,導電結構33可與反射結構32共同形成全方位反射鏡(Omni-Directional Reflector,ODR)。導電結構33的材料可包含金屬氧化物材料、金屬材料、金屬合金材料、含碳材料或上述材料之組合。金屬氧化材料如氧化銦錫(ITO)、氧化銦(InO)、氧化錫(SnO)、氧化鎘錫(CTO)、氧化銻錫(ATO)、氧化鋁鋅(AZO)、氧化鋅錫(ZTO)、氧化鎵鋅(GZO)、氧化銦鎢(IWO)、氧化鋅(ZnO)、磷化鎵(GaP)、氧化銦鈰(ICO)、氧化銦鎢(IWO)、氧化銦鈦(ITiO)、氧化銦鋅(IZO)、氧化銦鎵(IGO)、氧化鎵鋁鋅(GAZO)。金屬材料如金(Au)、鍺(Ge)、鈹(Be)。金屬合金材料則為包含上述金屬材料之合金。含碳材料可以包含但不限於石墨烯。 The conductive structure 33 is located under the first semiconductor layer 111 and can be transparent to the emitted light from the semiconductor stack 1 to increase current conduction and diffusion between the first window layer 34 and the reflective structure 32. In some embodiments , the conductive structure 33 and the reflective structure 32 may jointly form an Omni-Directional Reflector (ODR). The material of the conductive structure 33 may include metal oxide materials, metal materials, metal alloy materials, carbon-containing materials, or combinations of the above materials. Metal oxide materials such as indium tin oxide (ITO), indium oxide (InO), tin oxide (SnO), cadmium tin oxide (CTO), antimony tin oxide (ATO), aluminum zinc oxide (AZO), zinc tin oxide (ZTO) , Gallium zinc oxide (GZO), indium tungsten oxide (IWO), zinc oxide (ZnO), gallium phosphide (GaP), indium cerium oxide (ICO), indium tungsten oxide (IWO), indium titanium oxide (ITiO), oxide Indium zinc oxide (IZO), indium gallium oxide (IGO), gallium aluminum zinc oxide (GAZO). Metal materials such as gold (Au), germanium (Ge), and beryllium (Be). Metal alloy materials are alloys containing the above metal materials. Carbonaceous materials may include, but are not limited to, graphene.

如第1圖所示,在一實施例中,導電結構33具有一第一導電層331,位於反射結構32上方,以及一第二導電層332位於半導體疊層1與第一導電層331之間。第一導電層331與第二導電層332的材料可以不同,例如第一導電層331之材料為氧化銦鋅(IZO),第二導電層332之材料為氧 化銦錫(ITO),但不以此為限。 As shown in FIG. 1 , in one embodiment, the conductive structure 33 has a first conductive layer 331 located above the reflective structure 32 , and a second conductive layer 332 located between the semiconductor stack 1 and the first conductive layer 331 . The materials of the first conductive layer 331 and the second conductive layer 332 may be different. For example, the material of the first conductive layer 331 is indium zinc oxide (IZO), and the material of the second conductive layer 332 is oxygen. Indium tin (ITO), but not limited to this.

第二導電層332可與絕緣層35及/或第一窗戶層34直接接觸,且覆蓋絕緣層35至少一表面。一實施例中,第一窗戶層34之第二表面34a面向絕緣層35並朝向基板30的方向,且絕緣層35具有一上表面35a面向第一窗戶層34。在一實施例中,由光電半導體裝置100的上視觀之,上表面35a的表面積相對於第二表面34a之表面積之百分比為1.5%~50%,較佳為2%~30%,如此可使光電半導體裝置100具有較佳之發光效率。另一實施例中,絕緣層35的上表面35a可為一粗糙表面,以散射半導體疊層1所發之光而提升光電半導體裝置100之出光效率。 The second conductive layer 332 may be in direct contact with the insulating layer 35 and/or the first window layer 34 and cover at least one surface of the insulating layer 35 . In one embodiment, the second surface 34 a of the first window layer 34 faces the insulating layer 35 and toward the direction of the substrate 30 , and the insulating layer 35 has an upper surface 35 a facing the first window layer 34 . In one embodiment, when viewed from the top of the optoelectronic semiconductor device 100, the percentage of the surface area of the upper surface 35a relative to the surface area of the second surface 34a is 1.5%~50%, preferably 2%~30%, so that The optoelectronic semiconductor device 100 has better luminous efficiency. In another embodiment, the upper surface 35a of the insulating layer 35 can be a rough surface to scatter the light emitted by the semiconductor stack 1 to improve the light extraction efficiency of the optoelectronic semiconductor device 100.

如第1圖所示,在一實施例中,絕緣層35可具有圖案化分佈,例如絕緣層35的分布由俯視觀之可以呈現具規則性或非規則性。絕緣層35可設置對應於第一電極結構2下,以減少電流流經第一電極結構2下的半導體疊層1,並避免第一電極結構2下的半導體疊層1所發出的光被第一電極結構2吸收。此外,藉由絕緣層35的設置,可促使電流擴散至非第一電極結構2下半導體疊層1的位置。絕緣層35的材料可以選擇為對於半導體疊層1所發之發射光之穿透率大於90%,絕緣層35之材料可以選擇包含氧化物絕緣材料或非氧化物絕緣材料,氧化物絕緣材料例如為氧化矽(SiOx),非氧化物絕緣材料例如為苯并環丁烯(BCB)、環烯烴聚合物(COC)、 氟碳聚合物(Fluorocarbon Polymer)氟化鈣(CaF2)、氟化鎂(MgF2)或氮化矽(SiNx)。 As shown in FIG. 1 , in one embodiment, the insulating layer 35 may have a patterned distribution. For example, the distribution of the insulating layer 35 may appear regular or irregular when viewed from above. The insulating layer 35 can be disposed corresponding to the underside of the first electrode structure 2 to reduce current flow through the semiconductor stack 1 under the first electrode structure 2 and prevent the light emitted by the semiconductor stack 1 under the first electrode structure 2 from being transmitted by the second electrode structure 2 . One electrode structure 2 absorbs. In addition, the provision of the insulating layer 35 can promote current diffusion to positions other than the semiconductor stack 1 under the first electrode structure 2 . The material of the insulating layer 35 can be selected to have a transmittance of greater than 90% for the emitted light emitted by the semiconductor stack 1. The material of the insulating layer 35 can be selected to include an oxide insulating material or a non-oxide insulating material. The oxide insulating material is, for example, It is silicon oxide ( SiO Magnesium (MgF 2 ) or silicon nitride (SiNx).

在一實施例中,絕緣層35之折射率小於第一窗戶層34之折射率,且第一窗戶層34與絕緣層35間介面之臨界角小於第一窗戶層34與導電結構33間介面的臨界角,使半導體疊層1所發之發射光射向絕緣層35後,在第一窗戶層34與絕緣層35之間的介面形成全反射的機率增加。此外,穿過第一窗戶層34與導電結構33之間的介面而進入導電結構33之光因絕緣層35具有低折射率,故在導電結構33與絕緣層35之間的介面亦可能產生全反射,因而提升光電半導體裝置100的出光效率,舉例來說,絕緣層35的折射率可以選擇小於1.7,較佳為1.3~1.6。在一實施例中,絕緣層35之厚度小於導電結構33之一半厚度。另一實施例中,絕緣層35之厚度小於導電結構33之1/5厚度,如此可避免或減少導電結構33形成後的表面平坦化製程破壞絕緣層35之結構。在一實施例中,絕緣層35至少一表面被導電結構33覆蓋,如此可增加導電結構33的接合面積,而強化絕緣層35與第一窗戶層34之間的接合,提升結構的機械強度。在一實施例中,複數個孔隙351形成於絕緣層35之中,且導電結構33填入複數個孔隙351中,並與第一窗戶層34直接接觸以形成電性連接。 In one embodiment, the refractive index of the insulating layer 35 is smaller than the refractive index of the first window layer 34 , and the critical angle of the interface between the first window layer 34 and the insulating layer 35 is smaller than the critical angle of the interface between the first window layer 34 and the conductive structure 33 The critical angle increases the probability of total reflection at the interface between the first window layer 34 and the insulating layer 35 after the emitted light from the semiconductor stack 1 is directed toward the insulating layer 35 . In addition, since the insulating layer 35 has a low refractive index, the light that passes through the interface between the first window layer 34 and the conductive structure 33 and enters the conductive structure 33 may also generate a full range of light at the interface between the conductive structure 33 and the insulating layer 35 . Reflection, thereby improving the light extraction efficiency of the optoelectronic semiconductor device 100. For example, the refractive index of the insulating layer 35 can be selected to be less than 1.7, preferably 1.3~1.6. In one embodiment, the thickness of the insulating layer 35 is less than half the thickness of the conductive structure 33 . In another embodiment, the thickness of the insulating layer 35 is less than 1/5 of the thickness of the conductive structure 33 . This can avoid or reduce the damage to the structure of the insulating layer 35 during the surface planarization process after the conductive structure 33 is formed. In one embodiment, at least one surface of the insulating layer 35 is covered by the conductive structure 33, which can increase the joint area of the conductive structure 33, strengthen the joint between the insulating layer 35 and the first window layer 34, and improve the mechanical strength of the structure. In one embodiment, a plurality of pores 351 are formed in the insulating layer 35 , and the conductive structure 33 is filled in the plurality of pores 351 and directly contacts the first window layer 34 to form an electrical connection.

第一窗戶層34之導電性可與第一半導體層111 之導電性相同,例如同為n型或p型,第一窗戶層34對於半導體疊層1所發之發射光為透明,其材料可包含金屬氧化物材料或半導體材料,金屬氧化物材料如氧化銦錫(ITO)、氧化銦(InO)、氧化錫(SnO)、氧化鎘錫(CTO)、氧化銻錫(ATO)、氧化鋁鋅(AZO)、氧化鋅錫(ZTO)、氧化鎵鋅(GZO)、氧化銦鎢(IWO)、氧化鋅(ZnO)、氧化鎂(MgO)、或氧化銦鋅(IZO);半導體材料例如為砷化鎵(GaAs)、砷化鋁鎵(AlGaAs)、氮化鎵(GaN)、磷化鎵(GaP)。 The conductivity of the first window layer 34 can be the same as that of the first semiconductor layer 111 The conductivity of the first window layer 34 is the same, for example, n-type or p-type. The first window layer 34 is transparent to the emitted light from the semiconductor stack 1, and its material may include a metal oxide material or a semiconductor material. The metal oxide material such as oxide Indium tin (ITO), indium oxide (InO), tin oxide (SnO), cadmium tin oxide (CTO), antimony tin oxide (ATO), aluminum zinc oxide (AZO), zinc tin oxide (ZTO), gallium zinc oxide ( GZO), indium tungsten oxide (IWO), zinc oxide (ZnO), magnesium oxide (MgO), or indium zinc oxide (IZO); semiconductor materials such as gallium arsenide (GaAs), aluminum gallium arsenide (AlGaAs), nitrogen Gallium (GaN), gallium phosphide (GaP).

第一電極結構2及第二電極結構36位於半導體疊層1的相對兩側,以形成一垂直型的光電半導體裝置100。如圖所示之光電半導體裝置100之結構僅為例示,並非用以限制,例如在本揭露內容的一些實施例中,第一電極結構2與第二電極結構36亦可位於半導體疊層1的同一側,以形成一水平式的半導體裝置。第一電極結構2與第二電極結構36均可用以連接外部電源並提供電流使半導體疊層1發光。一實施例中,第二電極結構36係形成於基板30的背面,第二電極結構36的材料可以與第一電極結構2的材料相同或不同,第一電極結構2與第二電極結構36的材料可包含金屬材料、合金材料、金屬氧化物材料、或含碳材料。舉例來說,金屬材料可以包含但不限於鋁(Al)、鉻(Cr)、銅(Cu)、錫(Sn)、金(Au)、鎳(Ni)、鈦(Ti)、鉑(Pt)、鉛(Pb)、鋅(Zn)、鎘(Cd)、銻(Sb)或鈷(Co),合金材料包含上 述金屬組合的合金,且金屬氧化物材料可以包含但不限於氧化銦錫(ITO)、氧化銦(InO)、氧化錫(SnO)、氧化鎘錫(CTO)、氧化銻錫(ATO)、氧化鋁鋅(AZO)、氧化鋅錫(ZTO)、氧化鎵鋅(GZO)、氧化銦鎢(IWO)、氧化鋅(ZnO)、或氧化銦鋅(IZO)。含碳材料可以包含但不限於類鑽碳薄膜(DLC)或石墨烯。 The first electrode structure 2 and the second electrode structure 36 are located on opposite sides of the semiconductor stack 1 to form a vertical optoelectronic semiconductor device 100 . The structure of the optoelectronic semiconductor device 100 shown in the figure is only for illustration and is not intended to be limiting. For example, in some embodiments of the present disclosure, the first electrode structure 2 and the second electrode structure 36 may also be located on the semiconductor stack 1 on the same side to form a horizontal semiconductor device. Both the first electrode structure 2 and the second electrode structure 36 can be used to connect an external power source and provide current to cause the semiconductor stack 1 to emit light. In one embodiment, the second electrode structure 36 is formed on the back side of the substrate 30. The material of the second electrode structure 36 may be the same as or different from the material of the first electrode structure 2. The materials of the first electrode structure 2 and the second electrode structure 36 are Materials may include metallic materials, alloy materials, metal oxide materials, or carbonaceous materials. For example, metal materials may include, but are not limited to, aluminum (Al), chromium (Cr), copper (Cu), tin (Sn), gold (Au), nickel (Ni), titanium (Ti), platinum (Pt) , lead (Pb), zinc (Zn), cadmium (Cd), antimony (Sb) or cobalt (Co), alloy materials include the above An alloy of the above metal combinations, and the metal oxide material may include but is not limited to indium tin oxide (ITO), indium oxide (InO), tin oxide (SnO), cadmium tin oxide (CTO), antimony tin oxide (ATO), oxide Aluminum zinc (AZO), zinc tin oxide (ZTO), gallium zinc oxide (GZO), indium tungsten oxide (IWO), zinc oxide (ZnO), or indium zinc oxide (IZO). The carbonaceous material may include, but is not limited to, diamond-like carbon films (DLC) or graphene.

如第3圖所示,光電半導體裝置100’與光電半導體裝置100具有類似的結構,相關描述可參考前面段落,於此將不再撰述。第二導電層332係位於第一窗戶層34及絕緣層35之間。第二導電層332直接接觸第一窗戶層34,絕緣層35直接接觸第二導電層332而無直接接觸第一窗戶層34。第一導電層331填入孔隙351中,且透過第二導電層332與第一窗戶層34電性連接。絕緣層35圖案化分布於第二導電層332下方,上表面35a的表面積為第二表面34a的表面積之1.5%~50%,較佳為2%~30%,如此可使光電半導體裝置100具有較佳之發光效率。 As shown in Figure 3, the optoelectronic semiconductor device 100' has a similar structure to the optoelectronic semiconductor device 100. For related descriptions, please refer to the previous paragraphs and will not be described again. The second conductive layer 332 is located between the first window layer 34 and the insulating layer 35 . The second conductive layer 332 directly contacts the first window layer 34 , and the insulating layer 35 directly contacts the second conductive layer 332 without directly contacting the first window layer 34 . The first conductive layer 331 is filled in the pore 351 and is electrically connected to the first window layer 34 through the second conductive layer 332 . The insulating layer 35 is patterned and distributed under the second conductive layer 332. The surface area of the upper surface 35a is 1.5%~50% of the surface area of the second surface 34a, preferably 2%~30%. This allows the optoelectronic semiconductor device 100 to have Better luminous efficiency.

一實施例中,當提供一電流至光電半導體裝置100中,該電流大於3.5A或半導體疊層1的電流密度大於3.5A/mm2時,半導體疊層1放射出之發射光的發光光譜具有兩個波峰位置(峰值波長),即第一波峰位置w1與第二波峰位置w2,於一實施例中,第一波峰位置w1與第二波峰位置w2皆大於900nm或者大於930nm。第二波峰位置w2大於第一波 峰位置w1(即:w2>w1),且第一波峰位置w1及第二波峰位置w2之間彼此分開一距離且具有分離率為0.5%~10%,較佳為1%~6%。分離率係符合以下公式(一):

Figure 111140517-A0305-02-0019-1
In one embodiment, when a current is provided to the optoelectronic semiconductor device 100 and the current is greater than 3.5 A or the current density of the semiconductor stack 1 is greater than 3.5 A/mm 2 , the luminescence spectrum of the emitted light emitted by the semiconductor stack 1 has The two peak positions (peak wavelengths), namely the first peak position w1 and the second peak position w2, in one embodiment, the first peak position w1 and the second peak position w2 are both greater than 900 nm or greater than 930 nm. The second wave peak position w2 is greater than the first wave peak position w1 (ie: w2>w1), and the first wave peak position w1 and the second wave peak position w2 are separated from each other by a distance and have a separation rate of 0.5%~10%, preferably It is 1%~6%. The separation rate is consistent with the following formula (1):
Figure 111140517-A0305-02-0019-1

或者,光電半導體裝置100係可以透過前述之鋁含量差異、折射率差異,於通電後,放射出之發射光的發光光譜具有兩個波峰位置,即第一波峰位置w1與第二波峰位置w2。兩個峰值位置之分離率為0.5%至10%之間,較佳為1%~6%。 Alternatively, the optoelectronic semiconductor device 100 can, through the aforementioned difference in aluminum content and refractive index, emit light having two peak positions in the luminescence spectrum after being energized, namely the first peak position w1 and the second peak position w2. The separation rate of the two peak positions is between 0.5% and 10%, preferably between 1% and 6%.

第4A-4D圖係為光電半導體裝置之發光光譜具有兩個波峰位置之例示。 Figures 4A-4D are examples of the luminescence spectrum of the optoelectronic semiconductor device having two peak positions.

如第4A圖所示,發光光譜包含一第一波峰P1及一第二波峰P2。第一波峰P1具有第一波峰位置w1及第二波峰P2具有第二波峰位置w2。第一波峰P1更具有第一發光強度I1,且第一發光強度I1為第一波峰位置w1在一範圍內(例如:第一波峰位置w1±3nm)具有相對的最大強度。類似地,第二波峰P2更具有第二發光強度I2,且第二發光強度I2為第二波峰位置w2在一範圍內(例如:第二波峰位置w2±3nm)具有相對的最大強度。第二波峰位置w2大於第一波峰位置w1。第一發光強度I1與第二發光強度I2可相同或不同。在一實施例中,第一發光強度I1大於第二發光強度I2。於本實施例中,第二發光強度I2大於第一發光強度I1,且第二發光強 度對於第一發光強度的較佳具有一比值為0.2~2,且上述比值更佳為1.1~1.5。第一波峰位置w1與第二波峰位置w2皆大於900nm,詳言之,第一波峰位置w1為946nm,第二波峰位置w2為956nm,分離率約為1.06%。 As shown in Figure 4A, the luminescence spectrum includes a first peak P1 and a second peak P2. The first wave peak P1 has a first wave peak position w1 and the second wave peak P2 has a second wave peak position w2. The first wave peak P1 further has a first luminescence intensity I1, and the first luminescence intensity I1 is the relative maximum intensity of the first wave peak position w1 within a range (for example: the first wave peak position w1±3nm). Similarly, the second wave peak P2 further has a second luminescence intensity I2, and the second luminescence intensity I2 is the relative maximum intensity of the second wave peak position w2 within a range (for example: the second wave peak position w2±3nm). The second wave peak position w2 is greater than the first wave peak position w1. The first luminous intensity I1 and the second luminous intensity I2 may be the same or different. In an embodiment, the first luminous intensity I1 is greater than the second luminous intensity I2. In this embodiment, the second luminous intensity I2 is greater than the first luminous intensity I1, and the second luminous intensity A preferred ratio of the intensity to the first luminous intensity is 0.2~2, and the ratio is more preferably 1.1~1.5. The first wave peak position w1 and the second wave peak position w2 are both greater than 900nm. Specifically, the first wave peak position w1 is 946nm, the second wave peak position w2 is 956nm, and the separation rate is about 1.06%.

第4B圖所示之發光光譜,其第一波峰位置w1為948nm,第二波峰位置w2為974nm,分離率約為2.74%。 In the luminescence spectrum shown in Figure 4B, the first peak position w1 is 948nm, the second peak position w2 is 974nm, and the separation rate is approximately 2.74%.

第4C圖所示之發光光譜,第一波峰位置w1為908nm,第二波峰位置w2為959nm,分離率約為5.62%。 In the luminescence spectrum shown in Figure 4C, the first peak position w1 is 908nm, the second peak position w2 is 959nm, and the separation rate is approximately 5.62%.

第4D圖所示之發光光譜,第一波峰位置w1為919nm,第二波峰位置w2為949nm,分離率為3.26%。 In the luminescence spectrum shown in Figure 4D, the first peak position w1 is 919nm, the second peak position w2 is 949nm, and the separation rate is 3.26%.

上述第一波峰位置w1及第二波峰位置w2的定義將於後說明。 The definitions of the above-mentioned first wave peak position w1 and second wave peak position w2 will be explained later.

第5圖為一實施例之光電半導體裝置於不同電流下的發光光譜。光電半導體裝置之結構可參考第1圖,第一半導體層111、第二半導體層112及活性結構113的阻障層材料皆為AlGaAs。第一半導體層111及第二半導體層112之主體材料相同且第一半導體層111及第二半導體層112具有不同的摻雜物以使其具有不同的導電性。第一半導體層111與第二半導體層112的鋁含量為36%(x1=0.36)。阻障層的數量為三層,每一阻障層的鋁含量為20%(x1=0.2)。此實施例中,第一半導體層111的鋁含量與阻障層的鋁含量的差異為16%,第二半導體層112的鋁含量與阻障層的鋁含量的差異亦為 16%,且光電半導體裝置100的半導體疊層1具有一面積約為1.138mm2(即42mil2)。 Figure 5 shows the luminescence spectrum of an optoelectronic semiconductor device under different currents according to an embodiment. The structure of the optoelectronic semiconductor device can be referred to Figure 1. The barrier layer materials of the first semiconductor layer 111, the second semiconductor layer 112 and the active structure 113 are all AlGaAs. The main materials of the first semiconductor layer 111 and the second semiconductor layer 112 are the same, and the first semiconductor layer 111 and the second semiconductor layer 112 have different dopants so that they have different conductivities. The aluminum content of the first semiconductor layer 111 and the second semiconductor layer 112 is 36% (x1=0.36). The number of barrier layers is three, and the aluminum content of each barrier layer is 20% (x1=0.2). In this embodiment, the difference between the aluminum content of the first semiconductor layer 111 and the aluminum content of the barrier layer is 16%, the difference between the aluminum content of the second semiconductor layer 112 and the aluminum content of the barrier layer is also 16%, and the optoelectronic The semiconductor stack 1 of the semiconductor device 100 has an area of approximately 1.138 mm 2 (ie, 42 mil 2 ).

第5圖係對上述光電半導體裝置100分別施加電流為1A、2A、3A、3.5A、4A、4.5A、4.75A、5A而得之發光光譜。在上述電流下,半導體疊層中的電流密度分別約為0.9A/mm2、1.8A/mm2、2.6A/mm2、3.0A/mm2、3.5A/mm2、4.0A/mm2、4.2A/mm2、4.4A/mm2,而施加電流的時間則一致為666μs。當施加電流為1~4A時,光電半導體裝置100的發光光譜僅具有一個波峰,然而,當繼續施加電流至大於4A(即半導體疊層中的電流密度大於3.5A/mm2時),例如電流達4.5A時,光電半導體裝置100之發射光譜具有兩個波峰,分別為第一波峰位置在946nm的第一波峰及第二波峰位置在956nm的第二波峰,第一波峰位置及第二波峰位置的分離率為1.06%。當施加電流為4.75A時,波峰分離的狀況更加明顯,第一波峰位置在946nm,第二波峰位置在960nm,分離率為1.48%,且第一發光強度小於第二發光強度。當施加電流為5A時,第一波峰位置為947nm,第二波峰位置為960nm,分離率為1.37%,且第二發光強度I2大於第一發光強度I1。第一波峰位置及第二波峰位置會隨著電流不同而改變。 Figure 5 shows the luminescence spectra obtained by applying currents of 1A, 2A, 3A, 3.5A, 4A, 4.5A, 4.75A, and 5A to the above-mentioned optoelectronic semiconductor device 100. Under the above currents, the current densities in the semiconductor stack are approximately 0.9A/mm 2 , 1.8A/mm 2 , 2.6A/mm 2 , 3.0A/mm 2 , 3.5A/mm 2 , and 4.0A/mm 2 respectively. , 4.2A/mm 2 , 4.4A/mm 2 , and the time of applying current is consistently 666μs. When the applied current is 1~4A, the luminescence spectrum of the optoelectronic semiconductor device 100 has only one peak. However, when the current is continued to be applied to greater than 4A (that is, when the current density in the semiconductor stack is greater than 3.5A/mm 2 ), for example, the current When reaching 4.5A, the emission spectrum of the optoelectronic semiconductor device 100 has two peaks, namely the first peak at 946nm and the second peak at 956nm. The first peak and the second peak are The separation rate is 1.06%. When the applied current is 4.75A, the wave peak separation is more obvious. The first wave peak position is at 946nm and the second wave peak position is at 960nm. The separation rate is 1.48%, and the first luminescence intensity is smaller than the second luminescence intensity. When the applied current is 5A, the first wave peak position is 947nm, the second wave peak position is 960nm, the separation rate is 1.37%, and the second luminescence intensity I2 is greater than the first luminescence intensity I1. The first wave peak position and the second wave peak position will change with different currents.

參照第5圖所述的結果可知,當提供至半導體疊層1的電流密度大於3.5A/mm2時,半導體疊層1之發光光譜中可具有兩個波峰位置。 Referring to the results described in Figure 5, it can be seen that when the current density provided to the semiconductor stack 1 is greater than 3.5A/ mm2 , the luminescence spectrum of the semiconductor stack 1 may have two peak positions.

表1列示一實施例之半導體裝置的第一半導體層112具有不同鋁含量(A-D)、鋁含量差異、折射率差異及相關光譜性質(波峰數量及波峰位置)。光譜性質係施加4.5A的電流至半導體疊層1後量測而得,半導體疊層1的電流密度約為4.0A/mm2。半導體裝置具有如第1圖之結構。阻障層與第一半導體層的主體材料皆為AlGaAs且阻障層的鋁含量皆為20%(即x1=0.2)。由表1可知第一半導體層112的鋁含量具有36%及32%(A、B),半導體疊層之發射光可具有兩個波峰位置;第一半導體層112的鋁含量具有28%及24%(C、D),半導體疊層之發光光譜中只具有一個波峰位置。由此可知,當第一半導體層與阻障層之間的鋁含量差異大於8%時,及/或當第一半導體層與阻障層之間的折射率差異大於0.04時,半導體疊層之發光光譜中可具有兩個波峰位置,且兩個波峰位置的分離率為0.5%~10%。 Table 1 shows that the first semiconductor layer 112 of the semiconductor device according to an embodiment has different aluminum contents (AD), aluminum content differences, refractive index differences and related spectral properties (peak number and peak position). The spectral properties are measured after applying a current of 4.5 A to the semiconductor stack 1. The current density of the semiconductor stack 1 is approximately 4.0 A/mm 2 . The semiconductor device has a structure as shown in Figure 1. The main material of the barrier layer and the first semiconductor layer is AlGaAs, and the aluminum content of the barrier layer is 20% (that is, x1=0.2). It can be seen from Table 1 that the aluminum content of the first semiconductor layer 112 is 36% and 32% (A, B), and the emitted light of the semiconductor stack can have two peak positions; the aluminum content of the first semiconductor layer 112 is 28% and 24 % (C, D), the luminescence spectrum of the semiconductor stack has only one peak position. It can be seen from this that when the difference in aluminum content between the first semiconductor layer and the barrier layer is greater than 8%, and/or when the difference in refractive index between the first semiconductor layer and the barrier layer is greater than 0.04, the semiconductor stack There can be two peak positions in the luminescence spectrum, and the separation rate of the two peak positions is 0.5%~10%.

Figure 111140517-A0305-02-0022-3
Figure 111140517-A0305-02-0022-3

第6圖為一實施例之光電半導體裝置於不同電流下的發光光譜。光電半導體裝置之結構可參考第1圖,然第二窗戶層的厚度為7μm。 Figure 6 shows the luminescence spectrum of an optoelectronic semiconductor device under different currents according to an embodiment. The structure of the optoelectronic semiconductor device can be referred to Figure 1, but the thickness of the second window layer is 7 μm.

第7圖為另一實施例之光電半導體於不同電流下裝置的發光光譜。光電半導體裝置之結構可參考第1圖,然,光電半導體裝置包含兩個半導體疊層,且包含一穿隧結構位於兩個半導體疊層之間。 Figure 7 shows the luminescence spectrum of another embodiment of the optoelectronic semiconductor device under different currents. The structure of the optoelectronic semiconductor device can be referred to Figure 1. However, the optoelectronic semiconductor device includes two semiconductor stacks and includes a tunnel structure located between the two semiconductor stacks.

從第6圖及第7圖的結果可發現,跟單一半導體疊層結構相比,在提供相同的電流下,具有兩個半導體疊層的光電半導體裝置之發光光譜更容易具有兩個波峰位置。例如:施加電流達到5A(即電流密度為4.4A/mm2)時,具有一個半導體疊層的的光電半導體裝置才具有兩個波峰位置,然而,具有兩個半導體疊層的的光電半導體裝置在施加4A的電流(即電流密度為3.5A/mm2)時,即具有明顯的兩個波峰位置。當施加的電流達到5A(即電流密度為4.4A/mm2)時,具有兩個半導體疊層的光電半導體裝置之發光光譜具有兩個波峰的現象更加明顯。 From the results in Figures 6 and 7, it can be found that compared with a single semiconductor stack structure, when the same current is supplied, the luminescence spectrum of an optoelectronic semiconductor device with two semiconductor stacks is more likely to have two peak positions. For example: when the applied current reaches 5A (that is, the current density is 4.4A/mm 2 ), an optoelectronic semiconductor device with one semiconductor stack has two peak positions. However, an optoelectronic semiconductor device with two semiconductor stacks has When a current of 4A is applied (that is, the current density is 3.5A/mm 2 ), there are two obvious peak positions. When the applied current reaches 5A (that is, the current density is 4.4A/mm 2 ), the phenomenon that the luminescence spectrum of the optoelectronic semiconductor device having two semiconductor stacks has two peaks becomes more obvious.

第8圖為一實施例之光電半導體裝置於不同施加電流時間下的發光光譜。光電半導體裝置之結構可參考第1圖,且施加電流為5A,且施加電流的時間,如:5μs、10μs、25μs、50μs、100μs、500μs、1ms、2ms。從第8圖顯示的趨勢可知,當施加電流的時間越長時,半導體疊層之發光光譜更容易具有兩個波峰位置。如第8圖所示,當施加電流的時間為 500μs時,半導體疊層的發光光譜出現了兩個波峰位置,而在增加施加電流的時間至1ms及2ms時,發光光譜具有兩個波峰的情況更為明顯。 Figure 8 shows the luminescence spectrum of an optoelectronic semiconductor device under different current application times according to an embodiment. The structure of the optoelectronic semiconductor device can be referred to Figure 1, and the applied current is 5A, and the time of applying the current is: 5μs, 10μs, 25μs, 50μs, 100μs, 500μs, 1ms, 2ms. From the trend shown in Figure 8, it can be seen that when the current is applied for a longer time, the luminescence spectrum of the semiconductor stack is more likely to have two peak positions. As shown in Figure 8, when the current is applied for At 500μs, the luminescence spectrum of the semiconductor stack appears at two peak positions. When the time of applying current is increased to 1ms and 2ms, the luminescence spectrum has two peaks more obviously.

第9圖為另一實施例之光電半導體裝置的發光光譜。光電半導體裝置之結構可參考第1圖,然,光電半導體裝置不具有絕緣層,即絕緣層的上表面的表面積相對於第一窗戶層的第二表面的表面積之百分比為0%,因此導電結構完全與第一窗戶層接觸。 Figure 9 shows the luminescence spectrum of an optoelectronic semiconductor device according to another embodiment. The structure of the optoelectronic semiconductor device can be referred to Figure 1. However, the optoelectronic semiconductor device does not have an insulating layer, that is, the percentage of the surface area of the upper surface of the insulating layer relative to the surface area of the second surface of the first window layer is 0%, so the conductive structure Complete contact with the first window layer.

第10圖為第1A圖之光電半導體裝置的發光光譜,此光電半導體裝置具有圖形化的絕緣層。 Figure 10 shows the luminescence spectrum of the optoelectronic semiconductor device in Figure 1A. The optoelectronic semiconductor device has a patterned insulating layer.

第9、10圖皆為施加5A的電流(即電流密度為4.4A/mm2)、施加電流的時間為100μs於光電半導體裝置時所獲得之發光光譜。從第9、10圖顯示的結果可知,當絕緣層的上表面的表面積相對於第一窗戶層的第二表面的表面積之百分比越大時,半導體疊層之發光光譜更容易具有兩個波峰位置。 Figures 9 and 10 both show the luminescence spectra obtained when applying a current of 5A (that is, the current density is 4.4A/mm 2 ) and the current application time is 100 μs to the optoelectronic semiconductor device. It can be seen from the results shown in Figures 9 and 10 that when the percentage of the surface area of the upper surface of the insulating layer relative to the surface area of the second surface of the first window layer is larger, the luminescence spectrum of the semiconductor stack is more likely to have two peak positions. .

上述第一波峰位置w1及第二波峰位置w2可由直接數值判讀或透過數據處理軟體分析等方式而得。如第4A或4B圖所示,當發光光譜具有兩個相對高強度的明顯波峰位置時,第一波峰位置w1及第二波峰位置w2可直接由數值判讀,即具有相對高強度的強度數值所對應的波長定義為第一波峰位置w1及第二波峰位置w2。當第一波峰位置w1及第二 波峰位置w2無法用直接數值判讀方式判定時,可使用數據處理軟體(例如:originLab)方式而得到第一波峰位置w1及第二波峰位置w2,如第4C或4D圖所示。簡言之,將發光光譜的數值匯入originLab並藉由curve fitting功能得到一回歸曲線。此回歸曲線相對於發光光譜的數值具有一決定係數(Coefficient of determination,R2),當該決定係數大於或等於0.95時,即可定義出第一波峰位置w1及第二波峰位置w2。 The above-mentioned first wave peak position w1 and second wave peak position w2 can be obtained by direct numerical interpretation or analysis by data processing software. As shown in Figure 4A or 4B, when the luminescence spectrum has two obvious peak positions with relatively high intensity, the first peak position w1 and the second peak position w2 can be directly interpreted numerically, that is, the intensity value with relatively high intensity is determined by the numerical value. The corresponding wavelengths are defined as the first wave peak position w1 and the second wave peak position w2. When the first wave peak position w1 and the second wave peak position w2 cannot be determined by direct numerical interpretation, data processing software (for example: originLab) can be used to obtain the first wave peak position w1 and the second wave peak position w2, such as 4C or Shown in 4D diagram. Briefly, import the luminescence spectrum values into originLab and obtain a regression curve through the curve fitting function. This regression curve has a coefficient of determination (R 2 ) relative to the value of the luminescence spectrum. When the coefficient of determination is greater than or equal to 0.95, the first peak position w1 and the second peak position w2 can be defined.

具體而言,首先,當將光電半導體裝置的發光光譜以OriginLab 2017版本進行分析時,發光光譜中具有最高強度所對應的波長位置定義為預設值(Wx)。接著,依次序選取下列的選項:analysis→fitting→nonlinear curve fitting。在setting標籤的function selection中的Function下拉選擇Gauss,並至Advanced中的Number of Replicas下拉選擇1,以模擬出兩個高斯分布曲線。兩個高斯分布曲線分別具有兩個預設波峰位置(xc及xc_2,且xc>xc_2)。 Specifically, first, when the luminescence spectrum of the optoelectronic semiconductor device is analyzed with the OriginLab 2017 version, the wavelength position corresponding to the highest intensity in the luminescence spectrum is defined as the preset value (Wx). Next, select the following options in order: analysis→fitting→nonlinear curve fitting. In the function selection of the setting tag, select Gauss from the Function drop-down, and select 1 from the Number of Replicas drop-down in Advanced to simulate two Gaussian distribution curves. The two Gaussian distribution curves respectively have two preset peak positions (xc and xc_2, and xc>xc_2).

接著,若前述之最高強度所對應的波長位置較接近xc,則至Parameters標籤中,將Wx輸入xc的欄位中。若前述之最高強度所對應的波長位置較接近xc_2,將Wx輸入xc_2的欄位中,並將該欄位的Fixed打勾,接著按下代表"Fit until converged"的按鈕進行運算。然後,將Fixed欄位的打勾取消,再按下代表"Fit until converged"的按鈕進行運算。若運算結果的決定係數大於或等於0.95即完成運算。此時, 在xc欄位的數值即代表第一波峰位置(w1),在xc_2的波長即代表第二波峰位置(w2)。若運算結果的決定係數小於0.95,則調整在"Param"中的參數(例如:y0、xc、w、A、xc_2、w_2、A_2),直到決定係數不小於0.95即完成運算。在調整參數的過程中,實際上可以一次選擇一個參數,輸入數值至相對應的欄位中,並將該欄位的Fixed打勾,接著按下代表"Fit until converged"的按鈕進行運算。然後,將Fixed欄位的打勾取消,再按下代表"Fit until converged"的按鈕進行運算。 Next, if the wavelength position corresponding to the aforementioned highest intensity is closer to xc, go to the Parameters tab and enter Wx into the field of xc. If the wavelength position corresponding to the aforementioned highest intensity is closer to xc_2, enter Wx into the field of xc_2, check the Fixed box in this field, and then press the button representing "Fit until converged" to perform the calculation. Then, uncheck the Fixed field and click the button representing "Fit until converged" to perform the calculation. If the coefficient of determination of the operation result is greater than or equal to 0.95, the operation is completed. At this time, The value in the xc field represents the first wave peak position (w1), and the wavelength in xc_2 represents the second wave peak position (w2). If the coefficient of determination of the operation result is less than 0.95, adjust the parameters in "Param" (for example: y0, xc, w, A, xc_2, w_2, A_2) until the coefficient of determination is not less than 0.95 and the operation is completed. In the process of adjusting parameters, you can actually select one parameter at a time, enter the value into the corresponding field, check the Fixed box in the field, and then press the button representing "Fit until converged" to perform the calculation. Then, uncheck the Fixed field and click the button representing "Fit until converged" to perform the calculation.

第11圖為本揭露內容一實施例之光電半導體裝置的封裝結構示意圖。請參照第11圖,封裝結構200包含光電半導體裝置100、封裝基板21、載體23、接合線25、接觸結構26以及封裝材料28。封裝基板21可包含陶瓷或玻璃材料。封裝基板21中具有多個通孔22。通孔22中可填充有導電性材料如金屬等而有助於導電或/且散熱。載體23位於封裝基板21一側的表面上,且亦包含導電性材料,如金屬。接觸結構26位於封裝基板21另一側的表面上。在本實施例中,接觸結構26包含接觸墊26a以及接觸墊26b,且接觸墊26a以及接觸墊26b可藉由通孔22而與載體23電性連接。在一實施例中,接觸結構26可進一步包含散熱墊(thermal pad)(未繪示),例如位於接觸墊26a與接觸墊26b之間。光電半導體裝置100位於載體23上,且 可為本揭露內容任一實施例所述的光電半導體裝置。在本實施例中,載體23包含第一部分23a及第二部分23b,光電半導體裝置100藉由接合線25而與載體23的第二部分23b電性連接。接合線25的材質可包含金屬,例如金、銀、銅、鋁或至少包含上述任一元素之合金。封裝材料28覆蓋於光電半導體裝置100上,具有保護光電半導體裝置100之效果。具體來說,封裝材料28可包含樹脂材料如環氧樹脂(epoxy)、矽氧烷樹脂(silicone)等。封裝材料28更可包含複數個波長轉換粒子(圖未示)以轉換光電半導體裝置100所發出的第一光為一第二光。第二光的波長大於第一光的波長。在其他實施例中,上述封裝結構200中的光電半導體裝置100可以為光電半導體裝置100’,或者,在一些實施例中,封裝結構200包含多個光電半導體裝置100及/或100’,且該些多個光電半導體裝置100及/或100’可以串聯、並聯或串並連接。 FIG. 11 is a schematic diagram of the packaging structure of an optoelectronic semiconductor device according to an embodiment of the present disclosure. Referring to FIG. 11 , the packaging structure 200 includes the optoelectronic semiconductor device 100 , a packaging substrate 21 , a carrier 23 , bonding wires 25 , contact structures 26 and packaging materials 28 . The packaging substrate 21 may include ceramic or glass materials. The package substrate 21 has a plurality of through holes 22 therein. The through hole 22 may be filled with conductive material such as metal to facilitate conduction and/or heat dissipation. The carrier 23 is located on the surface of one side of the packaging substrate 21 and also includes conductive material, such as metal. Contact structure 26 is located on the surface of the other side of package substrate 21 . In this embodiment, the contact structure 26 includes a contact pad 26 a and a contact pad 26 b, and the contact pad 26 a and the contact pad 26 b can be electrically connected to the carrier 23 through the through hole 22 . In one embodiment, the contact structure 26 may further include a thermal pad (not shown), for example, located between the contact pad 26a and the contact pad 26b. The optoelectronic semiconductor device 100 is located on the carrier 23, and It may be the optoelectronic semiconductor device described in any embodiment of the present disclosure. In this embodiment, the carrier 23 includes a first part 23 a and a second part 23 b, and the optoelectronic semiconductor device 100 is electrically connected to the second part 23 b of the carrier 23 through the bonding wire 25 . The material of the bonding wire 25 may include metal, such as gold, silver, copper, aluminum or an alloy containing at least any of the above elements. The packaging material 28 covers the optoelectronic semiconductor device 100 and has the effect of protecting the optoelectronic semiconductor device 100 . Specifically, the encapsulating material 28 may include resin materials such as epoxy, silicone, etc. The encapsulation material 28 may further include a plurality of wavelength conversion particles (not shown) to convert the first light emitted by the optoelectronic semiconductor device 100 into a second light. The wavelength of the second light is greater than the wavelength of the first light. In other embodiments, the optoelectronic semiconductor device 100 in the above package structure 200 may be an optoelectronic semiconductor device 100', or, in some embodiments, the package structure 200 includes a plurality of optoelectronic semiconductor devices 100 and/or 100', and the The plurality of optoelectronic semiconductor devices 100 and/or 100' may be connected in series, in parallel, or in series and parallel.

綜上所述,雖然本發明已以實施例揭露如上,然其並非用以限定本發明。本發明所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾。因此,本發明之保護範圍當視後附之申請專利範圍所界定者為準。 In summary, although the present invention has been disclosed above through embodiments, they are not intended to limit the present invention. Those with ordinary knowledge in the technical field to which the present invention belongs can make various modifications and modifications without departing from the spirit and scope of the present invention. Therefore, the protection scope of the present invention shall be determined by the appended patent application scope.

100’:光電半導體裝置 100’: Optoelectronic semiconductor device

1:半導體疊層 1: Semiconductor stack

111:第一半導體層 111: First semiconductor layer

112:第二半導體層 112: Second semiconductor layer

113:活性結構 113:Active structure

2:第一電極結構 2: First electrode structure

30:基板 30:Substrate

31:導電黏結層 31: Conductive adhesive layer

32:反射結構 32: Reflective structure

320:電接觸層 320: Electrical contact layer

322:阻障層 322:Barrier layer

324:反射黏結層 324: Reflective adhesive layer

326:反射層 326: Reflective layer

33:導電結構 33:Conductive structure

331:第一導電層 331: First conductive layer

332:第二導電層 332: Second conductive layer

34:第一窗戶層 34:First window layer

35:絕緣層 35:Insulation layer

351:孔隙 351:pore

35a:上表面 35a: Upper surface

36:第二電極結構 36: Second electrode structure

X、Z:方向 X, Z: direction

11:第一表面 11: First surface

34a:第二表面 34a: Second surface

Claims (10)

一種光電半導體裝置,包括:一基板;一半導體疊層,位於該基板上且包含一活性結構;一半導體層,位於該基板與該半導體疊層之間;一絕緣層,位於該基板與該半導體層之間且包含複數個孔隙;一第一導電層,位於該絕緣層與該半導體層之間,且與該半導體層直接接觸;以及一第二導電層,位於該第一導電層與該基板之間且填入該些孔隙以接觸該第一導電層。 An optoelectronic semiconductor device includes: a substrate; a semiconductor stack located on the substrate and including an active structure; a semiconductor layer located between the substrate and the semiconductor stack; an insulating layer located between the substrate and the semiconductor and a plurality of pores between the layers; a first conductive layer located between the insulating layer and the semiconductor layer and in direct contact with the semiconductor layer; and a second conductive layer located between the first conductive layer and the substrate and fill the pores to contact the first conductive layer. 如申請專利範圍第1項所述之光電半導體裝置,其中第一導電層直接接觸該絕緣層。 In the optoelectronic semiconductor device described in claim 1 of the patent application, the first conductive layer directly contacts the insulating layer. 如申請專利範圍第1項所述之光電半導體裝置,其中,該半導體疊層具有一第一表面,該第一表面為粗糙面。 In the optoelectronic semiconductor device described in claim 1 of the patent application, the semiconductor stack has a first surface, and the first surface is a rough surface. 如申請專利範圍第1項所述之光電半導體裝置,其中,該第一導電層與該第二導電層具有不同的材料。 The optoelectronic semiconductor device as claimed in claim 1, wherein the first conductive layer and the second conductive layer are made of different materials. 如申請專利範圍第4項所述之光電半導體裝置,其中該第一導電層包含金屬氧化物,且該第二導電層包含金屬。 The optoelectronic semiconductor device as claimed in claim 4, wherein the first conductive layer includes metal oxide, and the second conductive layer includes metal. 如申請專利範圍第1項所述之光電半導體裝置,其中,該半導體疊層具有一第一側面及一第二側面,該第二導電層向外延伸超出該第一側面及該第二側面。 In the optoelectronic semiconductor device described in claim 1, the semiconductor stack has a first side and a second side, and the second conductive layer extends outward beyond the first side and the second side. 如申請專利範圍第1項所述之光電半導體裝置,其中,該第二導電層的厚度大於該第一導電層的厚度。 The optoelectronic semiconductor device as claimed in claim 1, wherein the thickness of the second conductive layer is greater than the thickness of the first conductive layer. 如申請專利範圍第1項所述之光電半導體裝置,其中,該絕緣層具有一上表面面向該半導體疊層,該上表面為一粗糙面。 In the optoelectronic semiconductor device described in claim 1, the insulating layer has an upper surface facing the semiconductor stack, and the upper surface is a rough surface. 如申請專利範圍第1項所述之光電半導體裝置,其中,該半導體疊層具有一第一側面及一第二側面,該絕緣層向外延伸超出該第一側面及該第二側面。 In the optoelectronic semiconductor device described in claim 1, the semiconductor stack has a first side and a second side, and the insulating layer extends outward beyond the first side and the second side. 如申請專利範圍第1項所述之光電半導體裝置,更包含一第一電極結構與一第二電極結構,該第一電極結構與該第二電極結構配置於該半導體疊層的相反側。 The optoelectronic semiconductor device as described in claim 1 of the patent application further includes a first electrode structure and a second electrode structure, and the first electrode structure and the second electrode structure are arranged on opposite sides of the semiconductor stack.
TW111140517A 2019-01-25 2019-01-25 Optoelectronic semiconductor device TWI823644B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW111140517A TWI823644B (en) 2019-01-25 2019-01-25 Optoelectronic semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW111140517A TWI823644B (en) 2019-01-25 2019-01-25 Optoelectronic semiconductor device

Publications (2)

Publication Number Publication Date
TW202310451A TW202310451A (en) 2023-03-01
TWI823644B true TWI823644B (en) 2023-11-21

Family

ID=86690815

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111140517A TWI823644B (en) 2019-01-25 2019-01-25 Optoelectronic semiconductor device

Country Status (1)

Country Link
TW (1) TWI823644B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200828612A (en) * 2006-12-18 2008-07-01 Delta Electronics Inc Electroluminescence device and manufacturing method thereof
US20130119427A1 (en) * 2010-05-29 2013-05-16 Byd Company Limited Led substrate, led chip and method for manufacturing the same
TW201703278A (en) * 2015-02-17 2017-01-16 Genesis Photonics Inc Light emitting diode having distributed bragg reflectors (dbr) and manufacturing method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200828612A (en) * 2006-12-18 2008-07-01 Delta Electronics Inc Electroluminescence device and manufacturing method thereof
US20130119427A1 (en) * 2010-05-29 2013-05-16 Byd Company Limited Led substrate, led chip and method for manufacturing the same
TW201703278A (en) * 2015-02-17 2017-01-16 Genesis Photonics Inc Light emitting diode having distributed bragg reflectors (dbr) and manufacturing method thereof

Also Published As

Publication number Publication date
TW202310451A (en) 2023-03-01

Similar Documents

Publication Publication Date Title
US20230014825A1 (en) Light-emitting device
CN109494286B (en) Semiconductor device with a plurality of semiconductor chips
TWI628808B (en) Light-emitting device
US20230135799A1 (en) Light-emitting device
TWI785930B (en) Optoelectronic semiconductor device
TWI823644B (en) Optoelectronic semiconductor device
TWI752295B (en) Optoelectronic semiconductor device
US11588072B2 (en) Semiconductor device and semiconductor component including ihe same
TW202038482A (en) Semiconductor device
TWI838392B (en) Optoelectronic semiconductor device
CN220569701U (en) Semiconductor element and semiconductor assembly
TWI823136B (en) Semiconductor device
US20230058195A1 (en) Semiconductor device
TWI840665B (en) Semiconductor device and semiconductor component including the same
US20220302360A1 (en) Semiconductor device and semiconductor component including the same
TWI705532B (en) Semiconductor device and method of manufacturing thereof
US20240079524A1 (en) Semiconductor device
TWI757187B (en) Semiconductor device
TWI789617B (en) Semiconductor device and method of manufacturing thereof
TW202318687A (en) Semiconductor device and semiconductor component including the same
TW202337043A (en) Optoelectronic semiconductor device
TW202245296A (en) Semiconductor device and semiconductor component including the same
CN115602770A (en) Semiconductor device with a plurality of semiconductor chips
TW202406173A (en) Semiconductor device
TW202315162A (en) Semiconductor device