TWI757187B - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
TWI757187B
TWI757187B TW110118446A TW110118446A TWI757187B TW I757187 B TWI757187 B TW I757187B TW 110118446 A TW110118446 A TW 110118446A TW 110118446 A TW110118446 A TW 110118446A TW I757187 B TWI757187 B TW I757187B
Authority
TW
Taiwan
Prior art keywords
electrode
extension electrode
extension
corner
angle
Prior art date
Application number
TW110118446A
Other languages
Chinese (zh)
Other versions
TW202135329A (en
Inventor
張永富
鍾昕展
鄭鴻達
廖文祿
李世昌
呂志強
陳怡名
詹燿寧
蔡均富
Original Assignee
晶元光電股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 晶元光電股份有限公司 filed Critical 晶元光電股份有限公司
Priority to TW110118446A priority Critical patent/TWI757187B/en
Publication of TW202135329A publication Critical patent/TW202135329A/en
Application granted granted Critical
Publication of TWI757187B publication Critical patent/TWI757187B/en

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Led Devices (AREA)

Abstract

A semiconductor device includes a semiconductor stack and an electrode structure. The semiconductor stack includes a surface with a center, a first margin, and a side margin connecting to the first margin and forming a corner; a virtual line is between the nook and the center. The electrode structure includes an electrode pad on the surface, a first extending electrode, and a second extending electrode; the first extending electrode is closer to the side margin than the second extending electrode, and each of the extending electrodes has a first portion and a second portion; the first portion of the first extending electrode is parallel to the first margin, and the first extending electrode and the second extending electrode respectively have a first curve having a first angle θ1 and a second curve having a second angle θ2; wherein, a first distance is between the first curve and the virtual line, and a second distance is between the second curve and the virtual line, the second distance is greater than the first distance, and θ2>θ1.

Description

半導體元件 semiconductor element

本揭露內容係關於一種半導體元件,特別是具有延伸電極的一種半導體元件。 The present disclosure relates to a semiconductor device, especially a semiconductor device with extended electrodes.

半導體元件包含由Ⅲ-V族元素組成的化合物半導體,例如磷化鎵(GaP)、砷化鎵(GaAs)或氮化鎵(GaN),半導體元件可以為光電半導體元件如發光二極體(LED)、雷射、光偵測器、太陽能電池或為功率裝置(Power Device)。其中,發光二極體的結構包含一p型半導體層、一n型半導體層與一活性層,活性層設於p型半導體層與n型半導體層之間,使得在一外加電場作用下,n型半導體層及p型半導體層所分別提供的電子及電洞在活性層複合,以將電能轉換成光能。如何提升光電半導體元件的光電轉換效率,實為研發人員研發的重點之一。 The semiconductor element includes compound semiconductors composed of III-V group elements, such as gallium phosphide (GaP), gallium arsenide (GaAs) or gallium nitride (GaN), and the semiconductor element can be an optoelectronic semiconductor element such as a light emitting diode (LED). ), lasers, photodetectors, solar cells, or Power Devices. The structure of the light-emitting diode includes a p-type semiconductor layer, an n-type semiconductor layer and an active layer, and the active layer is arranged between the p-type semiconductor layer and the n-type semiconductor layer, so that under the action of an external electric field, n The electrons and holes provided by the p-type semiconductor layer and the p-type semiconductor layer respectively recombine in the active layer to convert electrical energy into light energy. How to improve the photoelectric conversion efficiency of optoelectronic semiconductor components is actually one of the focuses of R&D personnel.

本揭露內容提供一種半導體元件,包含:一半導體疊層以及一電極結構;半導體疊層具有一表面,且表面具有一中心、一第一邊及一側邊,側邊連接第一邊並形成一角落,角落與中心間具有一虛擬連線;電極結構包含一電極墊形成於表面上、一第一延伸電極及一第二延伸電極,第一延伸電極較第 二延伸電極靠近側邊,且各延伸電極皆具有第一部分及第二部分;第一延伸電極的第一部分與第一延伸電極的第二部分連接並具有一第一角度θ1的一第一轉角,第二延伸電極的第一部分與第二延伸電極的第二部分連接並具有一第二角度θ2的一第二轉角,第一轉角與虛擬連線之間具有一第一距離,第二轉角與虛擬連線之間具有一第二距離;其中,第一延伸電極的第一部分平行於第一邊,第二距離大於第一距離,且θ2>θ1。 The present disclosure provides a semiconductor device, comprising: a semiconductor stack and an electrode structure; the semiconductor stack has a surface, and the surface has a center, a first side and a side, the side is connected to the first side and forms a The corners have a virtual connection between the corners and the center; the electrode structure includes an electrode pad formed on the surface, a first extension electrode and a second extension electrode, and the first extension electrode is higher than the first extension electrode. The two extension electrodes are close to the sides, and each extension electrode has a first part and a second part; the first part of the first extension electrode is connected to the second part of the first extension electrode and has a first corner with a first angle θ1, The first part of the second extension electrode is connected to the second part of the second extension electrode and has a second corner with a second angle θ2, there is a first distance between the first corner and the virtual connection line, and the second corner and the virtual connection There is a second distance between the connecting lines; wherein, the first part of the first extending electrode is parallel to the first side, the second distance is greater than the first distance, and θ2>θ1.

本揭露內容提供一種半導體元件,包含:一半導體疊層及一電極結構;半導體疊層具有一表面,且表面具有一中心、一第一邊、相對於第一邊之一第二邊以及一側邊,側邊連接第一邊及第二邊,且側邊與第一邊間具有一角落;電極結構形成於表面上,電極結構包含一電極墊、一第一延伸電極及一第二延伸電極,第一延伸電極較第二延伸電極靠近側邊,且第一延伸電極及第二延伸電極各具有一第一部分、一第二部分,第一延伸電極的第一部分與第一延伸電極的第二部分連接並具有一第一角度θ1的一第一轉角,第二延伸電極的第一部分與第二延伸電極的第二部分連接並具有一第二角度θ1的一第二轉角;由俯視觀之,第一延伸電極具有遠離電極墊的一第一端,中心與角落之間具有一第一虛擬連線,且中心與第一端之間具有一第二虛擬連線;其中,第一虛擬連線與第二虛擬連線的夾角小於120度,且θ2>θ1。 The present disclosure provides a semiconductor device, comprising: a semiconductor stack and an electrode structure; the semiconductor stack has a surface, and the surface has a center, a first side, a second side opposite to the first side, and one side side, the side is connected to the first side and the second side, and there is a corner between the side and the first side; the electrode structure is formed on the surface, and the electrode structure includes an electrode pad, a first extension electrode and a second extension electrode , the first extension electrode is closer to the side than the second extension electrode, and the first extension electrode and the second extension electrode each have a first part and a second part, the first part of the first extension electrode and the second part of the first extension electrode The part is connected and has a first corner with a first angle θ1, the first part of the second extension electrode is connected with the second part of the second extension electrode and has a second corner with a second angle θ1; from a top view, The first extension electrode has a first end away from the electrode pad, a first virtual connection between the center and the corner, and a second virtual connection between the center and the first end; wherein the first virtual connection The included angle with the second virtual connection line is less than 120 degrees, and θ2>θ1.

100,200,300:半導體元件 100,200,300: Semiconductor components

1:半導體疊層 1: Semiconductor stack

11:表面 11: Surface

111:第一半導體層 111: the first semiconductor layer

112:第二半導體層 112: the second semiconductor layer

113:主動結構 113: Active Structures

12:第一邊 12: First side

13:第二邊 13: Second side

14:側邊 14: Side

15:中心 15: Center

16:角落 16: Corner

2:電極結構 2: Electrode structure

2a:延伸電極組 2a: Extended electrode set

21:電極墊 21: Electrode pads

22:第一延伸電極 22: The first extension electrode

221:第一轉角 221: The first corner

222:第一端 222: First End

22a,23a,24a:第一部分 22a, 23a, 24a: Part 1

22b,23b,24b:第二部分 22b, 23b, 24b: Part II

23:第二延伸電極 23: The second extension electrode

231:第二轉角 231: Second Corner

232:第二端 232: Second End

233:交會點 233: Rendezvous Point

24:第三延伸電極 24: The third extension electrode

241:第三轉角 241: The third corner

242:第三端 242: Third End

25:第四延伸電極 25: Fourth extension electrode

26:第五延伸電極 26: Fifth extension electrode

27:第六延伸電極 27: Sixth extension electrode

28:中間延伸電極 28: Intermediate extension electrode

30:基板 30: Substrate

31:導電黏結層 31: Conductive bonding layer

32:反射結構 32: Reflective Structure

320:歐姆接觸層 320: Ohmic Contact Layer

322:阻障層 322: Barrier Layer

324:反射黏結層 324: Reflective bonding layer

326:反射層 326: Reflective layer

33:透明導電結構 33: Transparent conductive structure

33a:第一接觸上表面 33a: first contact upper surface

331:第一透明導電層 331: the first transparent conductive layer

332:第二透明導電層 332: the second transparent conductive layer

34:窗戶層 34: Window Layer

35:絕緣層 35: Insulation layer

35a:第二接觸上表面 35a: Second contact upper surface

351:孔隙 351: Pore

36:第二電極結構 36: Second electrode structure

θ1:第一角度 θ1: first angle

θ2:第二角度 θ2: second angle

θ3:第三角度 θ3: The third angle

θ4:夾角 θ4: included angle

d1:第一距離 d1: first distance

d2:第二距離 d2: second distance

d3:第三距離 d3: the third distance

d4:第四距離 d4: fourth distance

d5:第五距離 d5: fifth distance

A1:虛擬中央線 A1: Virtual central line

P:輪廓 P: outline

L1:第一虛擬連線 L1: The first virtual link

L2:第二虛擬連線 L2: Second virtual link

D1:第一延伸方向 D1: The first extension direction

D2:第二延伸方向 D2: The second extension direction

D3:第三延伸方向 D3: The third extension direction

D4:第四延伸方向 D4: Fourth extension direction

P1:第一間距 P1: first pitch

P2:第二間距 P2: Second pitch

W1:第一寬度 W1: first width

W3:第三寬度 W3: third width

W5:第五寬度 W5: Fifth width

W7:第七寬度 W7: seventh width

第1圖是本揭露內容的第一實施例之半導體元件的俯視示意圖。 FIG. 1 is a schematic top view of a semiconductor device according to a first embodiment of the present disclosure.

第2圖是本揭露內容的第一實施例之半導體元件的剖面示意圖。 FIG. 2 is a schematic cross-sectional view of the semiconductor device according to the first embodiment of the present disclosure.

第3圖是本揭露內容的第二實施例之半導體元件的俯視示意圖。 FIG. 3 is a schematic top view of a semiconductor device according to a second embodiment of the present disclosure.

第4圖是本揭露內容的第三實施例之半導體元件的俯視示意圖。 FIG. 4 is a schematic top view of a semiconductor device according to a third embodiment of the present disclosure.

請參照第1、2圖所示,此分別為本揭露內容第一實施例的半導體元件之俯視示意圖與剖面示意圖。半導體元件100包含一半導體疊層1及一電極結構2,半導體疊層1具有一表面11,且電極結構2位於表面11上。詳言之,由俯視觀之,半導體疊層1的表面11具有一輪廓P,輪廓P包含一第一邊12、一第二邊13及一側邊14連接第一邊12及第二邊13,第一邊12與第二邊13相對,電極結構2包含一電極墊21設置於鄰近第一邊12的位置、以及一延伸電極組2a大致由第一邊12朝向第二邊13的方向延伸。延伸電極組2a包含一第一延伸電極22、第二延伸電極23及一第三延伸電極24分別連接於電極墊21。電極結構2電性連接半導體疊層1,且電極墊21係可透過金屬導線或導電黏結層(例如:焊料或導電膠)與一外部電路電性連接,而可用以連接外界電源並將電流引入半導體疊層1,上述延伸電極22、23、24則將由電極墊21引入的電流分散至半導體疊層1的不同區域中。在本實施例中,第一延伸電極22較第三延伸電極24靠近半導體疊層1的輪廓P,第二延伸電極23則位於第一延伸電極22及第三延伸電極24之間,詳言之,即第一延伸電極22較第二與第三延伸電極23、24靠近半導體疊層1的第一邊12及側邊14。此外,第一延伸電極22包含一第一轉角221具有一第一角度θ1,第二延伸電極23包含一第二轉角231具有一第二角度θ2,第三延伸電極24包含一第三轉角241具有一第三角度θ3,其中θ3>θ2>θ1。透過本實施例中的電極結構2設計,可使由電極墊21注入的電流能被均勻地擴散至半導體疊層1中,使半導體元件100較一般半導體元件具有更好的電流散布效率。另外,在本實施例中,第二角度θ2及第三角度θ3為大於90度的鈍角,較佳的,第一角度θ1約為80度~110度,第二 角度θ2約為90度~125度,第三角度θ3約為110度~145度。此外,本實施例的第一轉角221到電極墊21的距離大於第二轉角231到電極墊21的距離,且第三轉角241到電極墊21的距離小於第二轉角231到電極墊21的距離。 Please refer to FIGS. 1 and 2 , which are a schematic top view and a schematic cross-sectional view of the semiconductor device according to the first embodiment of the present disclosure, respectively. The semiconductor device 100 includes a semiconductor stack 1 and an electrode structure 2 . The semiconductor stack 1 has a surface 11 , and the electrode structure 2 is located on the surface 11 . Specifically, from a top view, the surface 11 of the semiconductor stack 1 has an outline P, and the outline P includes a first side 12 , a second side 13 and a side side 14 connecting the first side 12 and the second side 13 , the first side 12 is opposite to the second side 13 , and the electrode structure 2 includes an electrode pad 21 disposed adjacent to the first side 12 , and an extended electrode group 2 a generally extending from the first side 12 toward the second side 13 . . The extension electrode group 2 a includes a first extension electrode 22 , a second extension electrode 23 and a third extension electrode 24 respectively connected to the electrode pads 21 . The electrode structure 2 is electrically connected to the semiconductor stack 1, and the electrode pad 21 can be electrically connected to an external circuit through a metal wire or a conductive adhesive layer (eg, solder or conductive glue), and can be used to connect an external power source and introduce current into it In the semiconductor stack 1 , the above-mentioned extension electrodes 22 , 23 , 24 distribute the current introduced by the electrode pads 21 into different regions of the semiconductor stack 1 . In this embodiment, the first extension electrode 22 is closer to the outline P of the semiconductor stack 1 than the third extension electrode 24 , and the second extension electrode 23 is located between the first extension electrode 22 and the third extension electrode 24 . That is, the first extension electrode 22 is closer to the first side 12 and the side side 14 of the semiconductor stack 1 than the second and third extension electrodes 23 and 24 . In addition, the first extension electrode 22 includes a first corner 221 having a first angle θ1, the second extension electrode 23 includes a second corner 231 having a second angle θ2, and the third extension electrode 24 includes a third corner 241 having a second angle θ2. A third angle θ3, where θ3>θ2>θ1. Through the design of the electrode structure 2 in this embodiment, the current injected by the electrode pad 21 can be uniformly diffused into the semiconductor stack 1 , so that the semiconductor device 100 has better current spreading efficiency than general semiconductor devices. In addition, in this embodiment, the second angle θ2 and the third angle θ3 are obtuse angles greater than 90 degrees. Preferably, the first angle θ1 is about 80 degrees to 110 degrees, and the second angle θ1 The angle θ2 is about 90 degrees to 125 degrees, and the third angle θ3 is about 110 degrees to 145 degrees. In addition, in this embodiment, the distance from the first corner 221 to the electrode pad 21 is greater than the distance from the second corner 231 to the electrode pad 21 , and the distance from the third corner 241 to the electrode pad 21 is smaller than the distance from the second corner 231 to the electrode pad 21 .

請續參照第1圖,在本實施例中的第一延伸電極22、第二延伸電極23及第三延伸電極24分別具有一第一端222、一第二端232及一第三端242遠離電極墊21,且第一端222、第二端232及第三端242彼此對齊,但本揭露內容並不以此為限。此外,第一延伸電極22具有一第一部分22a位於電極墊21與第一轉角221之間,及一第二部分22b位於第一轉角221與第一端222之間;第二延伸電極23具有一第一部分23a位於電極墊21與第二轉角231之間,及一第二部分23b位於第二轉角231與第二端232之間;第三延伸電極24具有一第一部分24a位於電極墊21與第三轉角241之間,及一第二部分24b位於第三轉角241與第三端242之間。如第1圖所示,第一延伸電極22的第二部份22b、第二延伸電極23的第二部分23b及第三延伸電極24的第二部分24b具有大致相同的一第一延伸方向D1,第一延伸方向D1係大致平行於側邊14,且第一延伸方向D1大致與第1圖的Y-軸方向平行。除此之外,在本實施例中,第一延伸電極22的第一部份22a具有一第二延伸方向D2,第二延伸電極23的第一部份23a具有一第三延伸方向D3,第三延伸電極24的第一部份24a具有一第四延伸方向D4,且第二、三、四延伸方向D2、D3、D4大致不互相平行,其中第二延伸方向D2大致與第1圖的X-軸方向平行,且第一延伸方向D1大致與第二延伸方向D2垂直。此外,相鄰的延伸電極22、23、24的第二部分22b、23b、24b具有大致相等的間距,詳言之,第一延伸電極22的第二部分22b與第二延伸電極23的第二部分23b之間具有一第一間距P1,第二延伸電極23的第二部分23b與第三延伸電極24的第二部分24b之間具有一第二間距 P2,且P2大致與P1相等,透過上述的等距設計可增加本揭露之半導體元件100電流擴散的均勻性。此外,相鄰的延伸電極22、23、24的第一部分22a、23a、24a的間距係大致不相等,例如一實施例中,至少一相鄰的延伸電極22、23、24的第一部分22a、23a、24a的間距往遠離電極墊21的方向增加或減少,增加或減少的方式可包含以等差方式、等比方式、階梯方式或連續漸變方式,但本揭露內容並不以此為限。 Please continue to refer to FIG. 1 , in this embodiment, the first extension electrode 22 , the second extension electrode 23 and the third extension electrode 24 respectively have a first end 222 , a second end 232 and a third end 242 away from The electrode pad 21, and the first end 222, the second end 232 and the third end 242 are aligned with each other, but the present disclosure is not limited thereto. In addition, the first extension electrode 22 has a first portion 22a located between the electrode pad 21 and the first corner 221, and a second portion 22b located between the first corner 221 and the first end 222; the second extension electrode 23 has a The first part 23a is located between the electrode pad 21 and the second corner 231, and a second part 23b is located between the second corner 231 and the second end 232; the third extension electrode 24 has a first part 24a located between the electrode pad 21 and the second end 232; Between the three corners 241 , and a second portion 24 b is located between the third corner 241 and the third end 242 . As shown in FIG. 1, the second portion 22b of the first extension electrode 22, the second portion 23b of the second extension electrode 23 and the second portion 24b of the third extension electrode 24 have substantially the same first extension direction D1 , the first extending direction D1 is substantially parallel to the side 14 , and the first extending direction D1 is substantially parallel to the Y-axis direction in FIG. 1 . In addition, in this embodiment, the first portion 22a of the first extension electrode 22 has a second extension direction D2, the first portion 23a of the second extension electrode 23 has a third extension direction D3, and the first portion 23a of the second extension electrode 23 has a third extension direction D3. The first portion 24a of the three extending electrodes 24 has a fourth extending direction D4, and the second, third, and fourth extending directions D2, D3, and D4 are not substantially parallel to each other, wherein the second extending direction D2 is substantially the same as X in FIG. 1 - The axis directions are parallel, and the first extension direction D1 is substantially perpendicular to the second extension direction D2. In addition, the second portions 22b, 23b, and 24b of the adjacent extension electrodes 22, 23, and 24 have approximately equal intervals. There is a first distance P1 between the parts 23b, and a second distance between the second part 23b of the second extension electrode 23 and the second part 24b of the third extension electrode 24 P2, and P2 is approximately equal to P1, the uniformity of the current spreading of the semiconductor device 100 of the present disclosure can be increased through the above-mentioned equidistant design. In addition, the spacings of the first portions 22a, 23a, 24a of adjacent extension electrodes 22, 23, 24 are substantially unequal. The distance between 23a and 24a increases or decreases in the direction away from the electrode pad 21. The increase or decrease method may include an equal difference method, a proportional method, a stepwise method or a continuous gradient method, but the present disclosure is not limited thereto.

此外,如第1圖所示,由俯視觀之,半導體疊層1的表面11具有一中心15與一角落16,角落16係遠離中心15且鄰近電極墊21,第一轉角221與中心15間的距離較第二轉角231與中心15間的距離大,且第三轉角241較第二轉角231靠近中心15。角落16與中心15之間具有一第一虛擬連線L1,在沿著第一延伸方向D1上,第一延伸電極22的第一轉角221與第一虛擬連線L1之間具有一第一距離d1、第二延伸電極23的第二轉角231與第一虛擬連線L1之間具有一第二距離d2、第三延伸電極24的第三轉角241與虛擬連線L1之間具有一第三距離d3,其中,第二距離d2大於第一距離d1,且較佳地,第三距離d3大於第二距離d2。本實施例的第三距離d3與第二距離d2的比值約為3~6之間,或者約為4.3~5.2,但不以此為限;在一實施例中,第一虛擬連線L1恰通過第一轉角221,第一距離d1大致為零。由俯視觀之,第一實施例的半導體疊層15之表面11具有四個角落,其中角落16為最靠近電極墊21的角落並位於第一邊12及側邊14的交錯處。此外,第二延伸電極23與第一虛擬連線L1具有一交會點233,交會點233與中心15間的距離不小於交會點233至角落16間的距離。本揭露內容中各實施例的半導體疊層1表面11之中心15可以與表面11的幾何中心重合,或是位於靠近幾何中心之處,例如中心15距離表面11的幾何中心約0.5%~8%的第一邊12長度。 In addition, as shown in FIG. 1 , from a top view, the surface 11 of the semiconductor stack 1 has a center 15 and a corner 16 , the corner 16 is far from the center 15 and is adjacent to the electrode pad 21 , and the first corner 221 is between the center 15 . The distance is greater than the distance between the second corner 231 and the center 15 , and the third corner 241 is closer to the center 15 than the second corner 231 . There is a first dummy connection line L1 between the corner 16 and the center 15, and along the first extending direction D1, there is a first distance between the first corner 221 of the first extension electrode 22 and the first dummy connection line L1 d1, a second distance d2 between the second corner 231 of the second extension electrode 23 and the first dummy connection line L1, a third distance between the third corner 241 of the third extension electrode 24 and the dummy connection line L1 d3, wherein the second distance d2 is greater than the first distance d1, and preferably, the third distance d3 is greater than the second distance d2. The ratio of the third distance d3 to the second distance d2 in this embodiment is about 3 to 6, or about 4.3 to 5.2, but not limited to this; in one embodiment, the first virtual connection L1 is just Through the first corner 221, the first distance d1 is substantially zero. From a top view, the surface 11 of the semiconductor stack 15 of the first embodiment has four corners, wherein the corner 16 is the corner closest to the electrode pad 21 and is located at the intersection of the first side 12 and the side 14 . In addition, the second extension electrode 23 and the first virtual connection line L1 have an intersection point 233 , and the distance between the intersection point 233 and the center 15 is not less than the distance between the intersection point 233 and the corner 16 . The center 15 of the surface 11 of the semiconductor stack 1 in each embodiment of the present disclosure may coincide with the geometric center of the surface 11 or be located close to the geometric center, for example, the center 15 is about 0.5%~8% away from the geometric center of the surface 11 The length of the first side is 12.

如第1圖所示,在第一實施例中,第一延伸電極22的第一端222與中心15之間具有一第二虛擬連線L2,第二虛擬連線L2與第一虛擬連線L1之間具有一夾角θ4,其中較佳地,夾角θ4約小於120度,或者約小於105度,且不小於90度。此外,第一延伸電極22大致由第一邊12朝向第二邊13的方向延伸,且第一延伸電極22的第一部分22a與第一邊12之間具有一最短距離,為一第四距離d4,且第一端222與第二邊13之間具有一最短距離,為一第五距離d5,其中,第五距離d5小於第四距離d4。在第一實施例中,表面11包含一虛擬中央線A1平行第一延伸方向D1且通過中心15,而延伸電極組2a另包含一第四延伸電極25、一第五延伸電極26及一第六延伸電極27分別連接於電極墊21,其中若以虛擬中央線A1為軸,第四延伸電極25、第五延伸電極26及第六延伸電極27為分別鏡像對稱於第一延伸電極22、第二延伸電極23及第三延伸電極24,但本揭露內容之電極結構2之分布圖案並不以此鏡像對稱為限,例如亦可為非對稱或其他對稱方式。當半導體元件100為一光電半導體元件或發光元件時,表面11為其一出光面,較佳地,由俯視觀之,電極墊21的上表面積與表面11的上表面積具有一百分比不超過5%,或者,上述百分比為1%~3%,以減少電極墊21對半導體疊層1所發射光的遮蔽情形,在第一實施例中,電極墊21的上表面積與表面11的上表面積之間的百分比為1.5%~2.6%。上述之虛擬中央線A1平行第一延伸方向D1且通過中心15,然而,在其他實施例中,虛擬中央線A1亦可以為將半導體疊層1的表面11劃分為兩個具有相等表面積區域的一虛擬線。此外,延伸電極組2a中的延伸電極數量並不限於上述的6個,例如當半導體疊層1具有較大的表面11時,延伸電極組2a可以包含較多數量的延伸電極,以使電流均勻的擴散至半導體疊層1中,在一些實施例中,延伸電極組2a可以包含3~15個延伸電極。此外, 為使半導體元件100在遮蔽光線與電流擴散之間有一較佳的平衡,電極結構2可進一步優化,其中電極結構2的上表面積與半導體疊層1的表面11之上表面積具有一百分比為6%~15%。半導體元件100係透過電極墊21與外界電路相接,例如以金屬打線式接合或倒裝式接合使電極墊21與外部電路之間形成電性連接,另外相同電性的電極墊數量可根據半導體元件100的表面11的大小與電流分佈需要選擇為一個或多個,而較佳地,於本揭露內容的第一實施例,電極結構2中在表面11僅設有單一電極墊21,如此可進一步防止打線後而橫跨於表面11上的金屬線對半導體疊層1射出的光線造成遮蔽,藉此優化半導體元件100形成封裝體後的光電轉換效率。 As shown in FIG. 1, in the first embodiment, there is a second dummy line L2 between the first end 222 of the first extension electrode 22 and the center 15, and the second dummy line L2 and the first dummy line There is an included angle θ4 between L1, wherein preferably, the included angle θ4 is less than about 120 degrees, or less than about 105 degrees, and not less than 90 degrees. In addition, the first extension electrode 22 generally extends from the first side 12 toward the second side 13 , and there is a shortest distance between the first portion 22 a of the first extension electrode 22 and the first side 12 , which is a fourth distance d4 , and a shortest distance between the first end 222 and the second side 13 is a fifth distance d5, wherein the fifth distance d5 is smaller than the fourth distance d4. In the first embodiment, the surface 11 includes a virtual center line A1 parallel to the first extension direction D1 and passing through the center 15 , and the extension electrode group 2 a further includes a fourth extension electrode 25 , a fifth extension electrode 26 and a sixth extension electrode 26 The extension electrodes 27 are respectively connected to the electrode pads 21 , wherein if the virtual center line A1 is taken as the axis, the fourth extension electrode 25 , the fifth extension electrode 26 and the sixth extension electrode 27 are respectively mirror-symmetrical to the first extension electrode 22 and the second extension electrode 22 . The extension electrode 23 and the third extension electrode 24, but the distribution pattern of the electrode structure 2 of the present disclosure is not limited to this mirror symmetry, for example, it can also be asymmetric or other symmetry. When the semiconductor element 100 is an optoelectronic semiconductor element or a light-emitting element, the surface 11 is a light-emitting surface. Preferably, from a top view, the upper surface area of the electrode pad 21 and the upper surface area of the surface 11 have a percentage not exceeding 5% , or, the above percentage is 1% to 3% to reduce the shielding of the light emitted by the semiconductor stack 1 by the electrode pad 21 . In the first embodiment, between the upper surface area of the electrode pad 21 and the upper surface area of the surface 11 The percentage is 1.5%~2.6%. The above-mentioned virtual center line A1 is parallel to the first extending direction D1 and passes through the center 15. However, in other embodiments, the virtual center line A1 can also be a surface 11 that divides the surface 11 of the semiconductor stack 1 into two regions with equal surface areas. virtual line. In addition, the number of extension electrodes in the extension electrode group 2a is not limited to the above-mentioned 6. For example, when the semiconductor stack 1 has a larger surface 11, the extension electrode group 2a may include a larger number of extension electrodes to make the current flow uniform. diffusion into the semiconductor stack 1, in some embodiments, the extension electrode group 2a may include 3-15 extension electrodes. also, In order to make the semiconductor device 100 have a better balance between light shielding and current spreading, the electrode structure 2 can be further optimized, wherein the upper surface area of the electrode structure 2 and the upper surface area of the surface 11 of the semiconductor stack 1 have a percentage of 6%. ~15%. The semiconductor device 100 is connected to the external circuit through the electrode pads 21, for example, metal wire bonding or flip-chip bonding is used to form an electrical connection between the electrode pads 21 and the external circuit. The size and current distribution of the surface 11 of the device 100 need to be selected as one or more. Preferably, in the first embodiment of the present disclosure, only a single electrode pad 21 is provided on the surface 11 of the electrode structure 2, so that the It is further prevented that the metal wires straddle the surface 11 after wire bonding will shield the light emitted from the semiconductor stack 1 , thereby optimizing the photoelectric conversion efficiency of the semiconductor element 100 after the package is formed.

請參照第2圖所示,此為本揭露內容第一實施例的半導體元件沿第1圖A-A’線的剖面示意圖。半導體元件100除具有上述半導體疊層1以及電極結構2位於半導體疊層1之上外,在本實施例中還可包括一基板30、一導電黏結層31位於基板30與半導體疊層1之間、一反射結構32位於導電黏結層31與半導體疊層1之間、一透明導電結構33位於反射結構32與半導體疊層1之間、一窗戶層34位於透明導電結構33與半導體疊層1之間、以及一絕緣層35位於透明導電結構33與窗戶層34之間,但本揭露不以此為限,例如在另一實施中半導體元件100除具有基板30、半導體疊層1位於基板30之上、以及電極結構2位於半導體疊層1之上外,可選擇性的包括一個或多個第一實施例中所述的其他元件。半導體元件100另包含一第二電極結構36位於基板30上且遠離半導體疊層1,其中電極結構2及第二電極結構36位於半導體疊層1的相對兩側,且電極結構2與第二電極結構36的電性不同,以形成一垂直型的半導體元件100。第一實施例的半導體元件100之結構僅為例示,並非用以限制,例如在本揭露內容的一些實施例中,電極結 構2與第二電極結構36亦可位於半導體疊層1的同一側,以形成一水平式的半導體元件100。 Please refer to FIG. 2 , which is a schematic cross-sectional view of the semiconductor device according to the first embodiment of the disclosure along the line A-A' of FIG. 1 . In addition to the above-mentioned semiconductor stack 1 and the electrode structure 2 located on the semiconductor stack 1 , the semiconductor device 100 may further include a substrate 30 and a conductive adhesive layer 31 between the substrate 30 and the semiconductor stack 1 in this embodiment. , a reflective structure 32 is located between the conductive adhesive layer 31 and the semiconductor stack 1, a transparent conductive structure 33 is located between the reflective structure 32 and the semiconductor stack 1, a window layer 34 is located between the transparent conductive structure 33 and the semiconductor stack 1 and an insulating layer 35 is located between the transparent conductive structure 33 and the window layer 34, but the present disclosure is not limited to this. For example, in another implementation, the semiconductor device 100 has the substrate 30 and the semiconductor stack 1 is located between the substrate 30. and the electrode structure 2 is positioned over the semiconductor stack 1 and may optionally include one or more of the other elements described in the first embodiment. The semiconductor device 100 further includes a second electrode structure 36 located on the substrate 30 and away from the semiconductor stack 1 , wherein the electrode structure 2 and the second electrode structure 36 are located on opposite sides of the semiconductor stack 1 , and the electrode structure 2 and the second electrode The electrical properties of the structures 36 are different to form a vertical semiconductor device 100 . The structure of the semiconductor device 100 of the first embodiment is only an example and not intended to be limiting. For example, in some embodiments of the present disclosure, the electrode junction The structure 2 and the second electrode structure 36 can also be located on the same side of the semiconductor stack 1 to form a horizontal semiconductor device 100 .

電極結構2與第二電極結構36均可用以連接外部電源並將電流均勻擴散至半導體疊層1中。在第一實施例中,第二電極結構36係形成於基板30的背面的一導電膜層,第二電極結構36的材料可以與電極結構2的材料相同或不同,電極結構2與第二電極結構36的材料可包含金屬材料或透明導電材料,在第一實施例中,電極結構2與第二電極結構36的材料包含金屬,金屬材料可以包含但不限於如鋁(Al)、鉻(Cr)、銅(Cu)、錫(Sn)、金(Au)、鎳(Ni)、鈦(Ti)、鉑(Pt)、鉛(Pb)、鋅(Zn)、鎘(Cd)、銻(Sb)、鈷(Co)或上述材料之合金等;透明導電材料可以包含但不限於如氧化銦錫(ITO)、氧化銦(InO)、氧化錫(SnO)、氧化鎘錫(CTO)、氧化銻錫(ATO)、氧化鋁鋅(AZO)、氧化鋅錫(ZTO)、氧化鎵鋅(GZO)、氧化銦鎢(IWO)、氧化鋅(ZnO)、砷化鋁鎵(AlGaAs)、氮化鎵(GaN)、磷化鎵(GaP)、砷化鎵(GaAs)、磷砷化鎵(GaAsP)、氧化銦鋅(IZO)、類鑽碳薄膜(DLC)或石墨烯。 Both the electrode structure 2 and the second electrode structure 36 can be used to connect an external power source and spread the current evenly into the semiconductor stack 1 . In the first embodiment, the second electrode structure 36 is a conductive film layer formed on the backside of the substrate 30 . The material of the second electrode structure 36 can be the same or different from that of the electrode structure 2 . The electrode structure 2 and the second electrode The material of the structure 36 may include metal material or transparent conductive material. In the first embodiment, the material of the electrode structure 2 and the second electrode structure 36 may include metal, and the metal material may include but not limited to aluminum (Al), chromium (Cr) ), copper (Cu), tin (Sn), gold (Au), nickel (Ni), titanium (Ti), platinum (Pt), lead (Pb), zinc (Zn), cadmium (Cd), antimony (Sb) ), cobalt (Co) or alloys of the above materials, etc.; transparent conductive materials may include, but are not limited to, such as indium tin oxide (ITO), indium oxide (InO), tin oxide (SnO), cadmium tin oxide (CTO), antimony oxide Tin (ATO), Aluminum Zinc Oxide (AZO), Zinc Tin Oxide (ZTO), Gallium Zinc Oxide (GZO), Indium Tungsten Oxide (IWO), Zinc Oxide (ZnO), Aluminum Gallium Arsenide (AlGaAs), Gallium Nitride (GaN), gallium phosphide (GaP), gallium arsenide (GaAs), gallium arsenide phosphide (GaAsP), indium zinc oxide (IZO), diamond-like carbon film (DLC) or graphene.

半導體疊層1包含一第一半導體層111、一主動結構113及一第二半導體層112依序形成於第一半導體層111上。第一半導體層111及第二半導體層112分別具有不同之一第一導電性及一第二導電性,以分別提供電子與電洞,或者分別提供電洞與電子;主動結構113可以包含單異質結構(single heterostructure)、雙異質結構(double heterostructure)或多層量子井(multiple quantum wells)。第一半導體層111、第二半導體層112及主動結構113之材料為三五族化合物半導體,例如可以為:GaAs、InGaAs、AlGaAs、AlInGaAs、GaP、InGaP、AlInP、AlGaInP、GaN、InGaN、AlGaN、AlInGaN、AlAsSb、InGaAsP、InGaAsN、AlGaAsP等。在本發明實施例中,若無特別說明,上述化學表示式包含「符合化學劑量之化合物」及「非符合化學劑量之化合物」,其中,「符合 化學劑量之化合物」例如為三族元素的總元素劑量與五族元素的總元素劑量相同,反之,「非符合化學劑量之化合物」例如為三族元素的總元素劑量與五族元素的總元素劑量不同。舉例而言,化學表示式為AlGaAs即代表包含三族元素鋁(Al)及/或鎵(Ga),以及包含五族元素砷(As),其中三族元素(鋁及/或鎵)的總元素劑量可以與五族元素(砷)的總元素劑量相同或相異。另外,若上述由化學表示式表示的各化合物為符合化學劑量之化合物時,AlGaAs即代表AlxGa(1-x)As,其中,0≦x≦1;AlInP代表AlxIn(1-x)P,其中,0≦x≦1;AlGaInP代表(AlyGa(1-y))1-xInxP,其中,0≦x≦1,0≦y≦1;AlGaN代表AlxGa(1-x)N,其中,0≦x≦1;AlAsSb代表AlAsxSb(1-x),其中,0≦x≦1;InGaP代表InxGa1-xP,其中,0≦x≦1;InGaAsP代表InxGa1-xAs1-yPy,其中,0≦x≦1,0≦y≦1;InGaAsN代表InxGa1-xAs1-yNy,其中,0≦x≦1,0≦y≦1;AlGaAsP代表AlxGa1-xAs1-yPy,其中,0≦x≦1,0≦y≦1;InGaAs代表InxGa1-xAs,其中,0≦x≦1。當本揭露之半導體元件為一發光元件時,半導體疊層1可以放射一光線,該光線具有一主波長(dominant wavelength)約為200nm~1800nm;在第一實施例中,半導體疊層1可以放射之光線為紅外光,且該光線之主波長約為750nm~1500nm。此外,窗戶層34之導電性可與第一半導體層111之導電性相同,例如同為n型或p型,窗戶層34對於半導體疊層1所發之光為透明,其材料可包含透明導電材料如氧化銦錫(ITO)、氧化銦(InO)、氧化錫(SnO)、氧化鎘錫(CTO)、氧化銻錫(ATO)、氧化鋁鋅(AZO)、氧化鋅錫(ZTO)、氧化鎵鋅(GZO)、氧化銦鎢(IWO)、氧化鋅(ZnO)、氧化鎂(MgO)、砷化鎵(GaAs)、砷化鋁鎵(AlGaAs)、氮化鎵(GaN)、磷化鎵(GaP)或氧化銦鋅(IZO)。 The semiconductor stack 1 includes a first semiconductor layer 111 , an active structure 113 and a second semiconductor layer 112 sequentially formed on the first semiconductor layer 111 . The first semiconductor layer 111 and the second semiconductor layer 112 have a different first conductivity and a second conductivity respectively, so as to provide electrons and holes, or respectively provide holes and electrons; the active structure 113 may include a single heterogeneity single heterostructure, double heterostructure or multiple quantum wells. The materials of the first semiconductor layer 111, the second semiconductor layer 112 and the active structure 113 are group III and V compound semiconductors, such as: GaAs, InGaAs, AlGaAs, AlInGaAs, GaP, InGaP, AlInP, AlGaInP, GaN, InGaN, AlGaN, AlInGaN, AlAsSb, InGaAsP, InGaAsN, AlGaAsP, etc. In the embodiments of the present invention, unless otherwise specified, the above chemical expressions include “compounds that meet stoichiometric doses” and “compounds that do not meet stoichiometric doses”, wherein, “compounds that meet stoichiometric doses” are, for example, the total of the three groups of elements. The element dosage is the same as the total element dosage of the Group V elements. On the contrary, the "non-stoichiometric compound" is, for example, the total element dosage of the Group III element is different from the total element dosage of the Group V element. For example, the chemical expression is AlGaAs, which means that the group 3 elements include aluminum (Al) and/or gallium (Ga), and the group 5 element arsenic (As), wherein the total of the group 3 elements (aluminum and/or gallium) The elemental dose may be the same or different from the total elemental dose of the Group V element (arsenic). In addition, if each compound represented by the above chemical formula is a compound that meets the chemical dose, AlGaAs represents Al x Ga (1-x) As, where 0≦x≦1; AlInP represents Al x In (1-x ) P, where 0≦x≦1; AlGaInP represents (Aly Ga (1-y) ) 1-x In x P, where 0≦x≦1, 0≦y≦1; AlGaN represents Al x Ga ( 1-x) N, where 0≦x≦1; AlAsSb represents AlAs x Sb (1-x) , where 0≦x≦1; InGaP represents In x Ga 1-x P, where 0≦x≦1 ; InGaAsP represents In x Ga 1-x As 1-y P y , where 0≦x≦1, 0≦y≦1; InGaAsN represents In x Ga 1-x As 1-y N y , where 0≦x ≦1, 0≦y≦1; AlGaAsP represents Al x Ga 1-x As 1-y P y , where 0≦x≦1, 0≦y≦1; InGaAs represents In x Ga 1-x As, where, 0≦x≦1. When the semiconductor device of the present disclosure is a light-emitting device, the semiconductor stack 1 can emit a light having a dominant wavelength of about 200 nm to 1800 nm; in the first embodiment, the semiconductor stack 1 can emit light The light is infrared light, and the dominant wavelength of the light is about 750nm~1500nm. In addition, the conductivity of the window layer 34 can be the same as the conductivity of the first semiconductor layer 111 , such as n-type or p-type. The window layer 34 is transparent to the light emitted by the semiconductor stack 1 , and its material can include transparent conductive materials. Materials such as Indium Tin Oxide (ITO), Indium Oxide (InO), Tin Oxide (SnO), Cadmium Tin Oxide (CTO), Antimony Tin Oxide (ATO), Aluminum Zinc Oxide (AZO), Zinc Tin Oxide (ZTO), Oxide Gallium Zinc Oxide (GZO), Indium Tungsten Oxide (IWO), Zinc Oxide (ZnO), Magnesium Oxide (MgO), Gallium Arsenide (GaAs), Aluminum Gallium Arsenide (AlGaAs), Gallium Nitride (GaN), Gallium Phosphide (GaP) or indium zinc oxide (IZO).

透明導電結構33對於半導體疊層1所發之光為透明,用以增加窗戶層34與反射結構32之間的歐姆接觸以及電流傳導與擴散,在一些實施例中,透明導電結構33還可與反射結構32共同形成全方位反射鏡(Omni-Directional Reflector,ODR)。透明導電結構33的材料可包含透明導電材料如氧化銦錫(ITO)、氧化銦(InO)、氧化錫(SnO)、氧化鎘錫(CTO)、氧化銻錫(ATO)、氧化鋁鋅(AZO)、氧化鋅錫(ZTO)、氧化鎵鋅(GZO)、氧化銦鎢(IWO)、氧化鋅(ZnO)、磷化鎵(GaP)、氧化銦鈰(ICO)、氧化銦鎢(IWO)、氧化銦鈦(ITiO)、氧化銦鋅(IZO)、氧化銦鎵(IGO)、氧化鎵鋁鋅(GAZO)、石墨烯或上述材料之組合。如第2圖所示,在第一實施例中,透明導電結構33具有一第一透明導電層331,位於絕緣層35之下,以及一第二透明導電層332位於半導體疊層1與第一透明導電層331之間。其中,第一透明導電層331與第二透明導電層332的材料不同。另一實施例中,第一透明導電層331與第二透明導電層332之材料相較至少一組成元素相異,例如第一透明導電層331之材料為氧化銦鋅(IZO),第二透明導電層332之材料為氧化銦錫(ITO)。第二透明導電層332可與絕緣層35及窗戶層34直接接觸,且覆蓋絕緣層35至少一表面。 The transparent conductive structure 33 is transparent to the light emitted by the semiconductor stack 1 to increase the ohmic contact between the window layer 34 and the reflective structure 32 as well as current conduction and diffusion. In some embodiments, the transparent conductive structure 33 can also be combined with The reflective structures 32 together form an omni-directional mirror (Omni-Directional Mirror) Reflector, ODR). The material of the transparent conductive structure 33 may include transparent conductive materials such as indium tin oxide (ITO), indium oxide (InO), tin oxide (SnO), cadmium tin oxide (CTO), antimony tin oxide (ATO), aluminum oxide zinc (AZO) ), zinc tin oxide (ZTO), gallium zinc oxide (GZO), indium tungsten oxide (IWO), zinc oxide (ZnO), gallium phosphide (GaP), indium cerium oxide (ICO), indium tungsten oxide (IWO), Indium titanium oxide (ITIO), indium zinc oxide (IZO), indium gallium oxide (IGO), gallium aluminum zinc oxide (GAZO), graphene or a combination of the above materials. As shown in FIG. 2, in the first embodiment, the transparent conductive structure 33 has a first transparent conductive layer 331 located under the insulating layer 35, and a second transparent conductive layer 332 located between the semiconductor stack 1 and the first transparent conductive layer 332. between the transparent conductive layers 331 . The materials of the first transparent conductive layer 331 and the second transparent conductive layer 332 are different. In another embodiment, the materials of the first transparent conductive layer 331 and the second transparent conductive layer 332 are different in at least one element. For example, the material of the first transparent conductive layer 331 is indium zinc oxide (IZO), the second transparent conductive layer is The material of the conductive layer 332 is indium tin oxide (ITO). The second transparent conductive layer 332 can be in direct contact with the insulating layer 35 and the window layer 34 and cover at least one surface of the insulating layer 35 .

如第2圖所示,在第一實施例中,絕緣層35設在相對於半導體疊層1的表面11的另一表面,絕緣層35的材料可以選擇為對於半導體疊層1所發之光之穿透率大於90%,絕緣層35之材料可以選擇包含氧化物絕緣材料或非氧化物絕緣材料,氧化物絕緣材料例如為氧化矽(SiOx),非氧化物絕緣材料例如為苯并環丁烯(BCB)、環烯烴聚合物(COC)、氟碳聚合物(Fluorocarbon Polymer)或氮化矽(SiNx)。另一實施例中,絕緣層35之材料可包含鹵化物或IIA族及VII族之化合物,例如氟化鈣(CaF2)或氟化鎂(MgF2)。在第一實施例中,絕緣層35之折射率小於窗戶層34與透明導電結構33之折射率,且窗戶層34與絕緣層35間介面之臨界角小於窗戶層34與透明導電結構33間介面的臨界角,使半導體疊層1所發之光射向絕緣層35後,在窗戶層34與絕緣層35之間的介面形成全反射的機率增加,以及在窗戶層34與透明導電結構33之間的介面未形成全反射而進入透明導電結構33之光,因絕緣層35具有低折射率,故在透明導電結構33與絕緣層35之 間的介面亦可能產生全反射,因而提升半導體元件100的出光效率,舉例來說,絕緣層35的折射率可以選擇小於1.4,較佳為1.3~1.4。透明導電結構33具有一第一接觸上表面33a與窗戶層34接觸,絕緣層35具有一第二接觸上表面35a與窗戶層34接觸,第一接觸上表面33a與第二接觸上表面35a大致位於同一水平面。在一實施例中,第一接觸上表面33a的表面積相對於第一接觸上表面33a和第二接觸上表面35a之表面積總和之百分比約為10%~50%,如此可使半導體元件100具有較佳之發光效率。另一實施例中,第二接觸上表面35a可為一粗糙表面,以散射半導體疊層1所發之光而提升半導體元件100之出光效率。絕緣層35可具有圖案化分佈,例如絕緣層35的分布由俯視觀之可以呈現具規則性或非規則性,藉此可增進半導體元件100電流的擴散。第一實施例的絕緣層35是大致對應於延伸電極組2a,一方面使電流在半導體疊層1中均勻擴散,另一方面可以透過全反射將延伸電極組2a下方的光取出。在一實施例中,絕緣層35之厚度小於透明導電結構33之一半厚度;另一實施例中,絕緣層35之厚度小於透明導電結構33之1/5厚度,如此可避免或減少透明導電結構33形成後的表面平坦化製程破壞絕緣層35之結構。在第一實施例中,絕緣層35至少一表面被透明導電結構33覆蓋,如此可增加透明導電結構33的接合面積,而強化絕緣層35與窗戶層34之間的接合,提升結構的機械強度。在第一實施例中,絕緣層35更包含複數個孔隙351穿過絕緣層35,其中透明導電結構33填入複數個孔隙351中,與窗戶層34形成歐姆接觸。 As shown in FIG. 2 , in the first embodiment, the insulating layer 35 is provided on the other surface with respect to the surface 11 of the semiconductor stack 1 , and the material of the insulating layer 35 can be selected to be suitable for the light emitted by the semiconductor stack 1 . The penetration rate is greater than 90%, the material of the insulating layer 35 can be selected to include oxide insulating material or non-oxide insulating material, the oxide insulating material is silicon oxide (SiO x ), for example, the non-oxide insulating material is benzo ring Butene (BCB), Cyclic Olefin Polymer (COC), Fluorocarbon Polymer or Silicon Nitride (SiN x ). In another embodiment, the material of the insulating layer 35 may include halides or compounds of groups IIA and VII, such as calcium fluoride (CaF 2 ) or magnesium fluoride (MgF 2 ). In the first embodiment, the refractive index of the insulating layer 35 is smaller than the refractive index of the window layer 34 and the transparent conductive structure 33 , and the critical angle of the interface between the window layer 34 and the insulating layer 35 is smaller than the interface between the window layer 34 and the transparent conductive structure 33 The critical angle of , after the light emitted from the semiconductor stack 1 is directed to the insulating layer 35 , the probability of forming total reflection at the interface between the window layer 34 and the insulating layer 35 increases, and between the window layer 34 and the transparent conductive structure 33 The interface between the transparent conductive structures 33 and the light entering the transparent conductive structure 33 does not form total reflection. Since the insulating layer 35 has a low refractive index, total reflection may also occur at the interface between the transparent conductive structure 33 and the insulating layer 35, thereby improving the semiconductor device 100. For example, the refractive index of the insulating layer 35 can be selected to be less than 1.4, preferably 1.3 to 1.4. The transparent conductive structure 33 has a first contact upper surface 33a in contact with the window layer 34, the insulating layer 35 has a second contact upper surface 35a in contact with the window layer 34, and the first contact upper surface 33a and the second contact upper surface 35a are approximately located at the same level. In one embodiment, the percentage of the surface area of the first contact upper surface 33a relative to the sum of the surface areas of the first contact upper surface 33a and the second contact upper surface 35a is about 10%˜50%, so that the semiconductor device 100 has a higher surface area. Excellent luminous efficiency. In another embodiment, the second contact upper surface 35 a can be a rough surface, so as to scatter the light emitted by the semiconductor stack 1 and improve the light extraction efficiency of the semiconductor device 100 . The insulating layer 35 may have a patterned distribution, for example, the distribution of the insulating layer 35 may exhibit regularity or irregularity in a plan view, thereby improving the current diffusion of the semiconductor device 100 . The insulating layer 35 of the first embodiment roughly corresponds to the extension electrode group 2a. On the one hand, the current is uniformly diffused in the semiconductor stack 1, and on the other hand, the light under the extension electrode group 2a can be extracted through total reflection. In one embodiment, the thickness of the insulating layer 35 is less than a half thickness of the transparent conductive structure 33; in another embodiment, the thickness of the insulating layer 35 is less than 1/5 of the thickness of the transparent conductive structure 33, so that the transparent conductive structure can be avoided or reduced The surface planarization process after the formation of 33 destroys the structure of the insulating layer 35 . In the first embodiment, at least one surface of the insulating layer 35 is covered by the transparent conductive structure 33, which can increase the bonding area of the transparent conductive structure 33, strengthen the bonding between the insulating layer 35 and the window layer 34, and improve the mechanical strength of the structure . In the first embodiment, the insulating layer 35 further includes a plurality of pores 351 passing through the insulating layer 35 , wherein the transparent conductive structure 33 is filled in the plurality of pores 351 to form ohmic contact with the window layer 34 .

在第一實施例中,反射結構32可用以反射來自半導體疊層1之光,以增加半導體元件100的光取出效率。反射結構32的材料可包含但不限於金屬材料,例如:銅(Cu)、鋁(Al)、錫(Sn)、金(Au)、銀(Ag)、鉛(Pb)、鈦(Ti)、鎳(Ni)、鉑(Pt)、鎢(W)或上述材料之合金等。如第2圖所示,本實施例中,反射結構32包含一反射層326、一反射黏結層324位於反射層326之下、一阻障層322位於反射黏結層324之下、以及一歐姆接觸層320位於阻障層322之下。反射層326 可反射來自半導體疊層1之光;反射黏結層324可用以連接反射層326與阻障層322;阻障層322可用以防止導電黏結層31之材料於製程中擴散至反射層326而破壞反射層326的結構,藉此維持反射層326的反射率;歐姆接觸層320與下方導電黏結層31形成歐姆接觸。導電黏結層31可將連接基板20連接至反射結構32,且可具有複數個從屬層(未顯示)。導電黏結層31之材料可包含透明導電材料或金屬材料,透明導電材料包含但不限於氧化銦錫(ITO)、氧化銦(InO)、氧化錫(SnO)、氧化鎘錫(CTO)、氧化銻錫(ATO)、氧化鋁鋅(AZO)、氧化鋅錫(ZTO)、氧化鎵鋅(GZO)、氧化鋅(ZnO)、磷化鎵(GaP)、氧化銦鈰(ICO)、氧化銦鎢(IWO)、氧化銦鈦(ITiO)、氧化銦鋅(IZO)、氧化銦鎵(IGO)、氧化鎵鋁鋅(GAZO)、石墨烯或上述材料之組合。金屬材料包含但不限於銅(Cu)、鋁(Al)、錫(Sn)、金(Au)、銀(Ag)、鉛(Pb)、鈦(Ti)、鎳(Ni)、鉑(Pt)、鎢(W)或上述材料之合金等。 In the first embodiment, the reflective structure 32 can be used to reflect the light from the semiconductor stack 1 to increase the light extraction efficiency of the semiconductor device 100 . The material of the reflective structure 32 may include, but is not limited to, metal materials, such as copper (Cu), aluminum (Al), tin (Sn), gold (Au), silver (Ag), lead (Pb), titanium (Ti), Nickel (Ni), platinum (Pt), tungsten (W) or alloys of the above materials, etc. As shown in FIG. 2, in this embodiment, the reflective structure 32 includes a reflective layer 326, a reflective adhesive layer 324 under the reflective layer 326, a barrier layer 322 under the reflective adhesive layer 324, and an ohmic contact Layer 320 is below barrier layer 322 . Reflective layer 326 The light from the semiconductor stack 1 can be reflected; the reflective adhesive layer 324 can be used to connect the reflective layer 326 and the barrier layer 322; the barrier layer 322 can be used to prevent the material of the conductive adhesive layer 31 from diffusing to the reflective layer 326 during the process to destroy the reflection The structure of the layer 326 maintains the reflectivity of the reflective layer 326 ; the ohmic contact layer 320 forms an ohmic contact with the underlying conductive adhesive layer 31 . The conductive adhesive layer 31 can connect the connection substrate 20 to the reflective structure 32 and can have a plurality of subordinate layers (not shown). The material of the conductive bonding layer 31 may include transparent conductive materials or metal materials, and the transparent conductive materials include but are not limited to indium tin oxide (ITO), indium oxide (InO), tin oxide (SnO), cadmium tin oxide (CTO), antimony oxide Tin (ATO), Aluminum Zinc Oxide (AZO), Zinc Tin Oxide (ZTO), Gallium Zinc Oxide (GZO), Zinc Oxide (ZnO), Gallium Phosphide (GaP), Indium Cerium Oxide (ICO), Indium Tungsten Oxide ( IWO), indium titanium oxide (ITiO), indium zinc oxide (IZO), indium gallium oxide (IGO), gallium aluminum zinc oxide (GAZO), graphene, or a combination thereof. Metal materials include but are not limited to copper (Cu), aluminum (Al), tin (Sn), gold (Au), silver (Ag), lead (Pb), titanium (Ti), nickel (Ni), platinum (Pt) , Tungsten (W) or alloys of the above materials, etc.

基板30可用以支持位於其上之半導體疊層1與其它層或結構,其可為透明、導電、半導體或絕緣。半導體疊層1可以透過有機金屬化學氣相沉積法(MOCVD)、分子束磊晶法(MBE)或氫化物氣相磊晶法(HVPE)等磊晶方法成長於基板30或另一成長基板上,若是在成長基板上生成的半導體疊層1則可藉由基板轉移技術,將半導體疊層1接合至基板30並可選擇性地移除成長基板或予以保留。在第一實施例中,半導體疊層1係生長於成長基板後,再透過基板轉移技術,透過導電黏結層31接合於基板30。具體而言,基板30的材料可包含但並不限於透明絕緣材料如藍寶石(Sapphire)、鑽石(Diamond)、玻璃(Glass)、石英(Quartz)、壓克力(Acryl)、環氧樹脂(Epoxy)、氮化鋁(AlN)、或者可以包含但不限於透明導電氧化物(TCO)如氧化鋅(ZnO)、氧化銦錫(ITO)、氧化銦鋅(IZO)、氧化鎵(Ga2O3)、鎵酸鋰(LiGaO2)、鋁酸鋰(LiAlO2)或鋁酸鎂(MgAl2O4)等,或者可以包含但不限於半導體材料如碳化矽(SiC)、砷化鎵(GaAs)、磷化鎵(GaP)、磷 砷化鎵(GaAsP)、硒化鋅(ZnSe)或磷化銦(InP)、或者可以包含但不限於金屬材料如鋁(Al)、銅(Cu)、鉬(Mo)或鎢(W)等元素或上述元素的組合。 The substrate 30 may be used to support the semiconductor stack 1 and other layers or structures located thereon, which may be transparent, conductive, semiconducting or insulating. The semiconductor stack 1 can be grown on the substrate 30 or another growth substrate by epitaxial methods such as metal-organic chemical vapor deposition (MOCVD), molecular beam epitaxy (MBE), or hydride vapor phase epitaxy (HVPE). If the semiconductor stack 1 is formed on the growth substrate, the semiconductor stack 1 can be bonded to the substrate 30 by the substrate transfer technique, and the growth substrate can be selectively removed or retained. In the first embodiment, the semiconductor stack 1 is grown on the growth substrate, and then bonded to the substrate 30 through the conductive adhesive layer 31 through the substrate transfer technique. Specifically, the material of the substrate 30 may include, but is not limited to, transparent insulating materials such as sapphire, diamond, glass, quartz, acrylic, epoxy ), Aluminum Nitride (AlN), or may include, but are not limited to, Transparent Conductive Oxides (TCO) such as Zinc Oxide (ZnO), Indium Tin Oxide (ITO), Indium Zinc Oxide (IZO), Gallium Oxide (Ga 2 O 3 ) ), lithium gallate (LiGaO 2 ), lithium aluminate (LiAlO 2 ) or magnesium aluminate (MgAl 2 O 4 ), etc., or may include but not limited to semiconductor materials such as silicon carbide (SiC), gallium arsenide (GaAs) , gallium phosphide (GaP), gallium arsenide phosphide (GaAsP), zinc selenide (ZnSe) or indium phosphide (InP), or may include but not limited to metallic materials such as aluminum (Al), copper (Cu), molybdenum Elements such as (Mo) or tungsten (W) or a combination of the above elements.

請參照第3圖所示,此為本揭露內容第二實施例的半導體元件200的俯視示意圖,其中第二實施例之半導體元件200的各構件與構件間的連接關係與第一實施例大致相同或相似。在第二實施例中,電極結構2另包含一中間延伸電極28連接於電極墊21,由俯視觀之,中間延伸電極28較第三延伸電極24遠離半導體疊層1的輪廓P的側邊14,且中間延伸電極28位於第三延伸電極24與第六延伸電極27之間。詳言之,中間延伸電極28係大致平行於表面11的虛擬中央線A1,或者,中間延伸電極28大致與虛擬中央線A1重合,且自連接電極墊21之處沿著第一延伸方向D1朝向第二邊13延伸。在本實施例中,中間延伸電極28的形狀與第一、二、三延伸電極22、23、24不同或不相似,例如:中間延伸電極28不具有轉角。第二實施例的中間延伸電極28的數量為一個,但在一些實施例中,中間延伸電極28的數量亦可以為多個,如此可增加對電流的散布能力,在此並不多加限制。 Please refer to FIG. 3 , which is a schematic top view of the semiconductor device 200 according to the second embodiment of the disclosure, wherein the connection relationship between the components of the semiconductor device 200 of the second embodiment is substantially the same as that of the first embodiment. or similar. In the second embodiment, the electrode structure 2 further includes a middle extension electrode 28 connected to the electrode pad 21 . From a plan view, the middle extension electrode 28 is farther from the side 14 of the outline P of the semiconductor stack 1 than the third extension electrode 24 is. , and the middle extension electrode 28 is located between the third extension electrode 24 and the sixth extension electrode 27 . Specifically, the middle extension electrode 28 is substantially parallel to the virtual center line A1 of the surface 11, or the middle extension electrode 28 is substantially coincident with the virtual center line A1, and is directed along the first extension direction D1 from the place where the electrode pad 21 is connected. The second side 13 extends. In this embodiment, the shape of the middle extension electrode 28 is different from or not similar to the first, second and third extension electrodes 22 , 23 and 24 , for example, the middle extension electrode 28 does not have a corner. In the second embodiment, the number of the middle extension electrodes 28 is one, but in some embodiments, the number of the middle extension electrodes 28 may also be multiple, which can increase the current spreading ability, which is not limited herein.

請參照第4圖所示,此為本揭露內容第三實施例的俯視示意圖,其中第三實施例之半導體元件300的各構件與構件間的連接關係與第二實施例大致相同或相似。在第三實施例中,半導體元件300的第一延伸電極22具有變化的寬度,意即第一延伸電極22的寬度非均一,其中第一延伸電極22的第一部分22a具有一平均寬度,第二部分22b具有另一平均寬度不同於第一部分22a的平均寬度,且第一部分22a的平均寬度大於第二部分22b的平均寬度。詳言之,第一延伸電極22的第一部份22a的寬度為第一寬度W1,第二部分22b的寬度則朝向第一端222的方向漸窄,且第一端222具有一第二寬度小於第一寬度W1,藉由第一延伸電極22在靠近電極墊21的部分具有較寬的寬度,在遠離電極墊21的部分具有較窄的寬度,可使電極結構2在高電流密度操作下(例如電流密度大於1A/mm2) 能具有快速均勻擴散電流的能力,亦可減少遮光而在遮蔽光線與電流散布之間取得平衡。相似地,第二延伸電極23的第一部份23a的寬度為第三寬度W3,第二部分23b的寬度係朝向第二端232的方向漸窄,且第二端232具有一第四寬度小於第三寬度W3;第三延伸電極24的第一部份24a的寬度為第五寬度W5,第二部分24b的寬度係朝向第三端242的方向漸窄,且第三端242具有一第六寬度小於第五寬度W5。本實施例的第一寬度W1、第三寬度W3與第五寬度W5大致相同,且第二寬度、第四寬度及第六寬度係大致相同,但本揭露內容並不以此為限。在另一實施例中,第一寬度W1大於第三寬度W3,且第三寬度W3大於第五寬度W5。此外,在又一實施例中,中間延伸電極28連接於電極墊21的一端具有一第七寬度W7,且在靠近第二邊13的一端具有一第八寬度小於第七寬度W7,其中,第一、三、五寬度W1、W3、W5均大於第七寬度W7,或者在另一實施例中,第一、三、五寬度W1、W3、W5與第七寬度W7相同。在第三實施例中,第一寬度W1與第二寬度的比值為1.5~8,較佳為2~6,以達到較好的電流分散能力,進而增進半導體元件300的可靠性及使用壽命。上述實施例的第一寬度W1、第三寬度W3及第五寬度W5分別為第一部分22a、23a、25a的平均寬度,但在其他實施例中,寬度W1、W3、W5亦可以為第一部分22a、23a、25a的最大寬度或最小寬度。 Please refer to FIG. 4 , which is a schematic top view of the third embodiment of the disclosure, wherein the connection relationship between the components of the semiconductor device 300 of the third embodiment is substantially the same or similar to that of the second embodiment. In the third embodiment, the first extension electrodes 22 of the semiconductor device 300 have varying widths, that is, the widths of the first extension electrodes 22 are non-uniform, wherein the first portion 22a of the first extension electrodes 22 has an average width, and the second extension electrodes 22 have an average width. The portion 22b has another average width different from that of the first portion 22a, and the average width of the first portion 22a is greater than the average width of the second portion 22b. Specifically, the width of the first portion 22a of the first extension electrode 22 is the first width W1, the width of the second portion 22b is gradually narrowed toward the first end 222, and the first end 222 has a second width When the width is smaller than the first width W1, the first extension electrode 22 has a wider width at a portion close to the electrode pad 21 and a narrower width at a portion far from the electrode pad 21, so that the electrode structure 2 can operate at a high current density. (For example, the current density is greater than 1A/mm 2 ), it can have the ability to quickly and uniformly spread current, and can also reduce shading and achieve a balance between shading light and current spreading. Similarly, the width of the first portion 23a of the second extension electrode 23 is the third width W3, the width of the second portion 23b is tapered toward the second end 232, and the second end 232 has a fourth width less than The third width W3; the width of the first portion 24a of the third extension electrode 24 is the fifth width W5, the width of the second portion 24b is tapered toward the third end 242, and the third end 242 has a sixth width W5 The width is smaller than the fifth width W5. In this embodiment, the first width W1 , the third width W3 and the fifth width W5 are approximately the same, and the second width, the fourth width and the sixth width are approximately the same, but the present disclosure is not limited thereto. In another embodiment, the first width W1 is greater than the third width W3, and the third width W3 is greater than the fifth width W5. In addition, in yet another embodiment, the end of the middle extension electrode 28 connected to the electrode pad 21 has a seventh width W7, and the end close to the second side 13 has an eighth width smaller than the seventh width W7, wherein the first The first, third and fifth widths W1, W3 and W5 are all larger than the seventh width W7, or in another embodiment, the first, third and fifth widths W1, W3 and W5 are the same as the seventh width W7. In the third embodiment, the ratio of the first width W1 to the second width is 1.5-8, preferably 2-6, so as to achieve better current dispersion capability, thereby improving the reliability and service life of the semiconductor device 300 . The first width W1, the third width W3 and the fifth width W5 in the above embodiment are the average widths of the first portions 22a, 23a and 25a, respectively, but in other embodiments, the widths W1, W3 and W5 may also be the first portions 22a. , 23a, 25a maximum width or minimum width.

此外,在一實施例中,由俯視觀之,電極墊21的特徵長度較於延伸電極22~27的寬度大,且電極墊21的特徵長度較佳的為延伸電極22~27的平均寬度之1.5倍以上,其中,特徵長度指的是一元件的輪廓之任意兩點的最長距離,舉例而言,輪廓為圓形的元件之特徵長度為直徑,輪廓為方形的元件之特徵長度為對角線。 In addition, in one embodiment, from a top view, the characteristic length of the electrode pad 21 is larger than the width of the extension electrodes 22-27, and the characteristic length of the electrode pad 21 is preferably the average width of the extension electrodes 22-27. 1.5 times or more, where the characteristic length refers to the longest distance between any two points on the outline of an element. For example, the characteristic length of a circular element is the diameter, and the characteristic length of a square element is the diagonal String.

可理解的是,本發明所列舉之各實施例僅用以說明本發明,並非用以限制本發明之範圍。任何人對本發明所作顯而易見的修飾或變更皆不脫離本發明之精神與範圍。不同實施例中相同或相似的構件,或者不同實施例中具 相同標號的構件皆具有相同的物理或化學特性。此外,本發明中上述之實施例在適當的情況下,是可互相組合或替換,而非僅限於所描述之特定實施例。在一實施例中詳細描述之特定構件與其他構件的連接關係亦可以應用於其他實施例中,且均落於如後所述之本發明之權利保護範圍的範疇中。 It should be understood that, the embodiments listed in the present invention are only used to illustrate the present invention, but not to limit the scope of the present invention. Obvious modifications or changes made by anyone to the present invention will not depart from the spirit and scope of the present invention. The same or similar components in different embodiments, or Components with the same number all have the same physical or chemical properties. In addition, the above-mentioned embodiments of the present invention may be combined or replaced with each other under appropriate circumstances, and are not limited to the specific embodiments described. The connection relationship between a specific component and other components described in detail in one embodiment can also be applied to other embodiments, and all fall within the scope of the protection scope of the present invention as described later.

242:第三端 242: Third End

100:半導體元件 100: Semiconductor Components

25:第四延伸電極 25: Fourth extension electrode

1:半導體疊層 1: Semiconductor stack

26:第五延伸電極 26: Fifth extension electrode

11:表面 11: Surface

27:第六延伸電極 27: Sixth extension electrode

12:第一邊 12: First side

θ1:第一角度 θ 1: first angle

13:第二邊 13: Second side

θ2:第二角度 θ 2: second angle

14:側邊 14: Side

θ3:第三角度 θ 3: The third angle

15:中心 15: Center

θ4:夾角 θ 4: included angle

16:角落 16: Corner

d1:第一距離 d1: first distance

2:電極結構 2: Electrode structure

d2:第二距離 d2: second distance

2a:延伸電極組 2a: Extended electrode set

d3:第三距離 d3: the third distance

21:電極墊 21: Electrode pads

d4:第四距離 d4: fourth distance

22:第一延伸電極 22: The first extension electrode

d5:第五距離 d5: fifth distance

221:第一轉角 221: The first corner

A1:虛擬中央線 A1: Virtual central line

222:第一端 222: First End

P:輪廓 P: outline

22a,23a,24a:第一部分 22a, 23a, 24a: Part 1

L1:第一虛擬連線 L1: The first virtual link

22b,23b,24b:第二部分 22b, 23b, 24b: Part II

L2:第二虛擬連線 L2: Second virtual link

23:第二延伸電極 23: The second extension electrode

P1:第一間距 P1: first pitch

231:第二轉角 231: Second Corner

P2:第二間距 P2: Second pitch

232:第二端 232: Second End

D1:第一延伸方向 D1: The first extension direction

233:交會點 233: Rendezvous Point

D2:第二延伸方向 D2: The second extension direction

24:第三延伸電極 24: The third extension electrode

D3:第三延伸方向 D3: The third extension direction

241:第三轉角 241: The third corner

D4:第四延伸方向 D4: Fourth extension direction

Claims (10)

一種半導體元件,包含:一半導體疊層,具有一表面,且該表面具有一中心、一第一邊及一側邊,該側邊連接該第一邊並形成一角落,該角落與該中心間具有一虛擬連線;及一電極結構,包含一電極墊形成於該表面上、一第一延伸電極及一第二延伸電極,該第一延伸電極較該第二延伸電極靠近該側邊,且各該延伸電極皆具有第一部分及第二部分;其中,該第一延伸電極的該第一部分平行於該第一邊,且該第一延伸電極的該第一部分與該第一延伸電極的該第二部分連接並具有一第一角度θ1的一第一轉角;其中,該第二延伸電極的該第一部分與該第二延伸電極的該第二部分連接並具有一第二角度θ2的一第二轉角,且θ2>θ1;以及其中,該第一轉角與該虛擬連線之間具有一第一距離,該第二轉角與該虛擬連線之間具有一第二距離,該第二距離大於該第一距離。 A semiconductor device, comprising: a semiconductor stack, having a surface, and the surface has a center, a first side and a side, the side connects the first side and forms a corner, the corner and the center are having a dummy connection line; and an electrode structure including an electrode pad formed on the surface, a first extension electrode and a second extension electrode, the first extension electrode is closer to the side than the second extension electrode, and Each of the extension electrodes has a first portion and a second portion; wherein, the first portion of the first extension electrode is parallel to the first side, and the first portion of the first extension electrode and the first portion of the first extension electrode are The two parts are connected and have a first corner with a first angle θ1; wherein the first part of the second extension electrode is connected with the second part of the second extension electrode and has a second angle with a second angle θ2 corner, and θ2>θ1; and wherein, there is a first distance between the first corner and the virtual connection line, there is a second distance between the second corner and the virtual connection line, and the second distance is greater than the first distance. 一種半導體元件,包含:一半導體疊層,具有一表面,且該表面具有一中心、一第一邊、相對於該第一邊之一第二邊以及一側邊,該側邊連接該第一邊及該第二邊,且該側邊與該第一邊間具有一角落;及一電極結構,形成於該表面上,該電極結構包含一電極墊、一第一延伸電極及一第二延伸電極,該第一延伸電極較該第二延伸電極靠近該側邊,且該第一延伸電極及該第二延伸電極各具有一第一部分、一第二部分;其中,該第一延伸電極的該第一部分與該第一延伸電極的該第二部分連接並具有一第一角度θ1的一第一轉角; 其中,該第二延伸電極的該第一部分與該第二延伸電極的該第二部分連接並具有一第二角度θ2的一第二轉角,且θ2>θ1;以及其中,由俯視觀之,該第一延伸電極具有遠離該電極墊的一第一端,該中心與該角落之間具有一第一虛擬連線,且該中心與該第一端之間具有一第二虛擬連線,該第一虛擬連線與該第二虛擬連線的夾角小於120度。 A semiconductor device, comprising: a semiconductor stack having a surface, and the surface has a center, a first side, a second side opposite to the first side, and a side, the side connecting the first side side and the second side, and there is a corner between the side side and the first side; and an electrode structure formed on the surface, the electrode structure comprising an electrode pad, a first extension electrode and a second extension electrode, the first extension electrode is closer to the side than the second extension electrode, and the first extension electrode and the second extension electrode each have a first part and a second part; wherein, the first extension electrode The first part is connected to the second part of the first extension electrode and has a first corner with a first angle θ1; Wherein, the first part of the second extension electrode is connected to the second part of the second extension electrode and has a second angle of a second angle θ2, and θ2>θ1; and wherein, from a top view, the The first extension electrode has a first end away from the electrode pad, a first virtual connection is formed between the center and the corner, and a second virtual connection is formed between the center and the first end. The included angle between a virtual connection line and the second virtual connection line is less than 120 degrees. 如請求項1或2所述的半導體元件,其中,80度≦θ1≦110度,90度≦θ2≦125度。 The semiconductor element according to claim 1 or 2, wherein 80 degrees≦θ1≦110 degrees, and 90 degrees≦θ2≦125 degrees. 如請求項1或2所述的半導體元件,更包含具有一第一部分以及一第二部分的一第三延伸電極,且該第三延伸電極的該第一部分與該第三延伸電極的該第二部分連接並具有一第三轉角,該第三轉角具有一第三角度θ3,且θ3為鈍角。 The semiconductor device of claim 1 or 2, further comprising a third extension electrode having a first portion and a second portion, and the first portion of the third extension electrode and the second portion of the third extension electrode The part is connected and has a third corner, the third corner has a third angle θ3, and θ3 is an obtuse angle. 如請求項4所述的半導體元件,其中,該第三角度θ3中,110度≦θ3≦145度。 The semiconductor device according to claim 4, wherein, in the third angle θ3, 110 degrees≦θ3≦145 degrees. 如請求項1或2所述的半導體元件,更包含具有一第一部分以及一第二部分的一第三延伸電極,且該第三延伸電極的該第一部分與該第三延伸電極的該第二部分連接並具有一第三轉角,該第三轉角具有一第三角度θ3,且θ3>θ2>θ1。 The semiconductor device of claim 1 or 2, further comprising a third extension electrode having a first portion and a second portion, and the first portion of the third extension electrode and the second portion of the third extension electrode The part is connected and has a third angle, the third angle has a third angle θ3, and θ3>θ2>θ1. 如請求項1或2所述的半導體元件,其中,該第一延伸電極或該第二延伸電極的該第二部分平行於該側邊。 The semiconductor device of claim 1 or 2, wherein the second portion of the first extension electrode or the second extension electrode is parallel to the side. 如請求項2所述的半導體元件,其中,該第一延伸電極的該第一部分平行於該第一邊,該第一邊與該第一延伸電極的該第一部分的最短距離大於該第二邊至該第一端的最短距離。 The semiconductor device of claim 2, wherein the first portion of the first extension electrode is parallel to the first side, and the shortest distance between the first side and the first portion of the first extension electrode is greater than the second side The shortest distance to the first end. 如請求項1或2所述的半導體元件,其中,該第一延伸電極的該第一部分及該第二延伸電極的該第一部分直接連接該電極墊。 The semiconductor device of claim 1 or 2, wherein the first portion of the first extension electrode and the first portion of the second extension electrode are directly connected to the electrode pad. 如請求項1或2所述的半導體元件,其中,該電極結構具有一上表面,且該上表面具有一上表面積,該半導體疊層的該表面具有一表面積,該上表面積係6%~15%的該表面積。 The semiconductor device according to claim 1 or 2, wherein the electrode structure has an upper surface, and the upper surface has an upper surface area, the surface of the semiconductor stack has a surface area, and the upper surface area is 6% to 15% % of this surface area.
TW110118446A 2017-09-13 2017-09-13 Semiconductor device TWI757187B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW110118446A TWI757187B (en) 2017-09-13 2017-09-13 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW110118446A TWI757187B (en) 2017-09-13 2017-09-13 Semiconductor device

Publications (2)

Publication Number Publication Date
TW202135329A TW202135329A (en) 2021-09-16
TWI757187B true TWI757187B (en) 2022-03-01

Family

ID=78777381

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110118446A TWI757187B (en) 2017-09-13 2017-09-13 Semiconductor device

Country Status (1)

Country Link
TW (1) TWI757187B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201037857A (en) * 2009-04-09 2010-10-16 Huga Optotech Inc Electrode structure and light-emitting device using the same
TW201131831A (en) * 2010-03-08 2011-09-16 Toshiba Kk Semiconductor light emitting device
US20130328055A1 (en) * 2012-06-11 2013-12-12 Jumpei Tajima Semiconductor light emitting device
TW201631794A (en) * 2015-02-17 2016-09-01 新世紀光電股份有限公司 Light emitting diode chip
TW201637239A (en) * 2015-01-16 2016-10-16 Toshiba Kk Semiconductor light emitting device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201037857A (en) * 2009-04-09 2010-10-16 Huga Optotech Inc Electrode structure and light-emitting device using the same
TW201131831A (en) * 2010-03-08 2011-09-16 Toshiba Kk Semiconductor light emitting device
US20130328055A1 (en) * 2012-06-11 2013-12-12 Jumpei Tajima Semiconductor light emitting device
TW201637239A (en) * 2015-01-16 2016-10-16 Toshiba Kk Semiconductor light emitting device
TW201631794A (en) * 2015-02-17 2016-09-01 新世紀光電股份有限公司 Light emitting diode chip

Also Published As

Publication number Publication date
TW202135329A (en) 2021-09-16

Similar Documents

Publication Publication Date Title
US10749075B2 (en) Semiconductor light-emitting device
US11721791B2 (en) Light-emitting device with semiconductor stack and reflective layer on semiconductor stack
JP2006108698A (en) Contact for flip-chip light-emitting device and omnidirectional reflecting mirror
KR101763072B1 (en) LED Device For Enhancing Light Extraction Efficiency And Current Injection Efficiency
KR20150139194A (en) Light emitting diode and method of fabricating the same
US20220231196A1 (en) Semiconductor light-emitting device
US20230014825A1 (en) Light-emitting device
CN109494286B (en) Semiconductor device with a plurality of semiconductor chips
KR20120079327A (en) Light emitting diode having current spreading layer with an opening and light emitting diode package
US20230135799A1 (en) Light-emitting device
KR20150107400A (en) Light emitting diode
TWI757187B (en) Semiconductor device
KR102424325B1 (en) Light emitting diode
US20110133154A1 (en) Light-emitting device
TWI785930B (en) Optoelectronic semiconductor device
KR102217128B1 (en) Light emitting diode and method of fabricating the same
TWI752295B (en) Optoelectronic semiconductor device
TWI705532B (en) Semiconductor device and method of manufacturing thereof
KR101312404B1 (en) Light Emitting Diode having current blocking pattern and light Emitting Diode package
TWI789617B (en) Semiconductor device and method of manufacturing thereof
TW202247491A (en) Light-emitting device
TW202310448A (en) Light-emitting device
KR20120031718A (en) Vertical light emitting diode
KR20120081511A (en) Light emitting diode having bonding pads formed on recess region and light emitting diode package
TW202310451A (en) Optoelectronic semiconductor device