TWI823136B - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
TWI823136B
TWI823136B TW110132123A TW110132123A TWI823136B TW I823136 B TWI823136 B TW I823136B TW 110132123 A TW110132123 A TW 110132123A TW 110132123 A TW110132123 A TW 110132123A TW I823136 B TWI823136 B TW I823136B
Authority
TW
Taiwan
Prior art keywords
layer
conductive oxide
semiconductor device
contact
semiconductor
Prior art date
Application number
TW110132123A
Other languages
Chinese (zh)
Other versions
TW202310449A (en
Inventor
偉善 楊
馮子耘
呂其孟
鄭偉文
張昀雅
Original Assignee
晶元光電股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 晶元光電股份有限公司 filed Critical 晶元光電股份有限公司
Priority to TW110132123A priority Critical patent/TWI823136B/en
Publication of TW202310449A publication Critical patent/TW202310449A/en
Application granted granted Critical
Publication of TWI823136B publication Critical patent/TWI823136B/en

Links

Images

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Bipolar Transistors (AREA)
  • Noodles (AREA)

Abstract

A semiconductor device is provided. The semiconductor device includes an epitaxial stack, an insulating layer, and a first conductive oxide layer. The insulating layer is disposed on the epitaxial stack, and includes a plurality of openings and a surface away from the epitaxial stack. The first conductive oxide layer is disposed on the epitaxial stack and the insulating layer, and a plurality of first conductive oxide portions separated from each other are provided in the plurality of openings. The surface includes a first portion and a second portion, and the first conductive oxide layer covers the first portion and does not cover the second portion.

Description

半導體元件Semiconductor components

本發明係關於一種半導體元件,詳細而言,係關於一種光電半導體元件。The present invention relates to a semiconductor element, specifically, to an optoelectronic semiconductor element.

光電半導體元件為可將光訊號及電訊號進行轉換的元件,其可運用光子、電子的交互作用,達到吸收能量並激發輻射等機制。其中,屬於光電半導體元件的發光二極體(light emitting diode, LED)因為具有體積小、用電省、亮度高、色彩飽和度高,可以調變出各種不同的色彩等優點,故常被使用於日常生活中的各種照明燈具、交通警告號誌等。Optoelectronic semiconductor components are components that can convert optical signals and electrical signals. They can use the interaction of photons and electrons to absorb energy and stimulate radiation. Among them, light emitting diodes (LEDs), which are optoelectronic semiconductor components, are often used in Various lighting fixtures, traffic warning signs, etc. in daily life.

然而,為了達到節能省電的需求,如何使光電半導體元件中的發光二極體可具有更好的出光效率,乃為此一業界亟待解決之問題。However, in order to meet the demand for energy saving, how to make the light emitting diodes in optoelectronic semiconductor components have better light extraction efficiency is an issue that the industry urgently needs to solve.

為了解決上述技術問題,本發明是這樣實現的:In order to solve the above technical problems, the present invention is implemented as follows:

本發明實施例提供一種半導體元件,包含一磊晶疊層、一絕緣層及一第一導電氧化層。絕緣層位於磊晶疊層上,且具有複數個開口及一表面遠離磊晶疊層。第一導電氧化層位於磊晶疊層及絕緣層上,且具有互相分離之複數第一導電氧化部位於複數個開口中。表面具有一第一部分及一第二部分,第一導電氧化層覆蓋第一部份且未覆蓋第二部分。Embodiments of the present invention provide a semiconductor device including an epitaxial stack, an insulating layer and a first conductive oxide layer. The insulating layer is located on the epitaxial layer and has a plurality of openings and a surface away from the epitaxial layer. The first conductive oxide layer is located on the epitaxial stack and the insulating layer, and has a plurality of mutually separated first conductive oxide portions located in a plurality of openings. The surface has a first part and a second part, and the first conductive oxide layer covers the first part but does not cover the second part.

下面將結合本發明實施例中的附圖,對本發明實施例中的技術方案進行清楚、完整地描述,顯然,所描述的實施例是本發明一部分實施例,而不是全部的實施例。基於本發明中的實施例,本領域普通技術人員在沒有作出創造性勞動前提下所獲得的所有其他實施例,都屬本發明保護的範圍。The technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are part of the embodiments of the present invention, not all of them. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative efforts fall within the scope of protection of the present invention.

在未特別說明的情況下,通式InGaP代表In x0Ga 1-x0P,其中0< x0<1;通式AlInP代表Al x1In 1-x1P,其中0<x1<1;通式AlGaInP代表Al x2Ga x3In 1-x2-x3P,其中0<x2<1且0<x3<1;通式InGaAsP代表In x4Ga 1-x4As x5P 1-x5,其中0<x4<1,0<x5<1;通式AlGaInAs代表Al x6Ga x7In 1-x6-x7As,其中0<x6<1,0<x7<1;通式InGaNAs代表In x8Ga 1-x8N x9As 1-x9,其中0<x8<1,0<x9<1;通式InGaAs代表In x10Ga 1-x10As,其中0<x10<1;通式AlGaAs代表Al x11Ga 1-x11As,其中0<x11<1。可依不同目的調整各元素的含量,例如但不限於調整能隙大小,或是當半導體元件為一發光元件時,可藉此調整發光元件的主波長(dominant wavelength)或峰值波長(peak wavelength)。 Unless otherwise specified, the general formula InGaP represents In x0 Ga 1-x0 P, where 0 < x0 <1; the general formula AlInP represents Al x1 In 1-x1 P, where 0 < x1 <1; the general formula AlGaInP represents Al x2 Ga x3 In 1-x2-x3 P, where 0<x2<1 and 0<x3<1; the general formula InGaAsP represents In x4 Ga 1-x4 As x5 P 1-x5 , where 0<x4<1, 0 <x5<1; the general formula AlGaInAs represents Al x6 Ga x7 In 1-x6-x7 As, where 0<x6<1, 0<x7<1; the general formula InGaNAs represents In x8 Ga 1-x8 N x9 As 1-x9 , where 0<x8<1, 0<x9<1; the general formula InGaAs represents In x10 Ga 1-x10 As, where 0<x10<1; the general formula AlGaAs represents Al x11 Ga 1-x11 As, where 0<x11< 1. The content of each element can be adjusted according to different purposes, such as but not limited to adjusting the energy gap size, or when the semiconductor element is a light-emitting element, the dominant wavelength or peak wavelength of the light-emitting element can be adjusted. .

本揭露內容的半導體元件例如是發光元件(例如:發光二極體(light-emitting diode)、雷射二極體(laser diode))、吸光元件(例如:光電二極體(photo-detector))或不發光元件。本揭露內容的半導體元件包含的各層組成及摻質(dopant)可用任何適合的方式分析而得,例如二次離子質譜儀(secondary ion mass spectrometer,SIMS),而各層之厚度亦可用任何適合的方式分析而得,例如穿透式電子顯微鏡(transmission electron microscopy,TEM)或是掃描式電子顯微鏡(scanning electron microscope,SEM)等。Semiconductor components of the present disclosure are, for example, light-emitting components (e.g., light-emitting diodes, laser diodes), and light-absorbing components (e.g., photo-detectors). or non-luminous components. The composition and dopant of each layer contained in the semiconductor device of the present disclosure can be analyzed by any suitable method, such as secondary ion mass spectrometer (SIMS), and the thickness of each layer can also be obtained by any suitable method. It is obtained by analysis, such as transmission electron microscopy (TEM) or scanning electron microscope (SEM).

所屬領域中具通常知識者應理解,可以在以下所說明各實施例之基礎上添加其他構件。舉例來說,在未特別說明之情況下,「第一層(或結構)位於第二層(或結構)上」的類似描述可包含第一層(或結構)與第二層(或結構)直接接觸的實施例,也可包含第一層(或結構)與第二層(或結構)之間具有其他結構而彼此未直接接觸的實施例。另外,應理解各層(或結構)的上下位置關係等可能因由不同方位觀察而有所改變。Those with ordinary skill in the art should understand that other components can be added on the basis of each embodiment described below. For example, unless otherwise specified, a similar description of "a first layer (or structure) located on a second layer (or structure)" may include the first layer (or structure) and the second layer (or structure) Embodiments of direct contact may also include embodiments in which the first layer (or structure) and the second layer (or structure) have other structures but are not in direct contact with each other. In addition, it should be understood that the upper and lower position relationships of each layer (or structure) may change due to observation from different directions.

此外,於本揭露內容中,一層或結構「實質上由M所組成」之敘述表示上述層或結構的主要組成為M,但並不排除上述層或結構包含摻質或不可避免的雜質(impurities)。In addition, in this disclosure, the statement that a layer or structure "substantially consists of M" means that the above-mentioned layer or structure is mainly composed of M, but it does not exclude that the above-mentioned layer or structure contains dopants or unavoidable impurities. ).

第1A圖為本揭露內容一實施例之半導體元件100的剖面示意圖。第1B圖為第1A圖框選區域之放大圖。半導體元件100包含一磊晶疊層1、一導電結構4及一絕緣層8位於磊晶疊層1及導電結構4之間。半導體元件100更包含一第一電極2及一第二電極3分別位於磊晶疊層1的上下兩側,且可選擇性包含一反射層5、一接合結構6及一基底7。導電結構4位於磊晶疊層1與反射層5之間,接合結構6位於基底7與反射層5之間。FIG. 1A is a schematic cross-sectional view of a semiconductor device 100 according to an embodiment of the present disclosure. Figure 1B is an enlarged view of the framed area in Figure 1A. The semiconductor device 100 includes an epitaxial layer 1 , a conductive structure 4 and an insulating layer 8 located between the epitaxial layer 1 and the conductive structure 4 . The semiconductor device 100 further includes a first electrode 2 and a second electrode 3 located on the upper and lower sides of the epitaxial layer 1 respectively, and optionally includes a reflective layer 5, a bonding structure 6 and a substrate 7. The conductive structure 4 is located between the epitaxial layer 1 and the reflective layer 5 , and the bonding structure 6 is located between the substrate 7 and the reflective layer 5 .

如第1B圖所示,在本實施例中,絕緣層8具有複數個第一開口8a,且由剖面觀之,絕緣層8包含互相分離的複數個絕緣部81,且第一開口8a位於相鄰的兩個絕緣部81之間,各絕緣部81包含一表面811遠離磊晶疊層1及一側壁812。表面811具有第一部分811a靠近第一開口8a及第二部分811b較第一部分811a遠離第一開口8a。側壁812連接磊晶疊層1及表面811,且各第一開口8a由兩鄰近絕緣部81之側壁812所定義。As shown in Figure 1B, in this embodiment, the insulating layer 8 has a plurality of first openings 8a, and from a cross-sectional view, the insulating layer 8 includes a plurality of insulating portions 81 that are separated from each other, and the first openings 8a are located in adjacent Between two adjacent insulating portions 81 , each insulating portion 81 includes a surface 811 away from the epitaxial stack 1 and a side wall 812 . The surface 811 has a first portion 811a close to the first opening 8a and a second portion 811b farther away from the first opening 8a than the first portion 811a. The sidewalls 812 connect the epitaxial stack 1 and the surface 811 , and each first opening 8 a is defined by two sidewalls 812 adjacent to the insulating portion 81 .

如第1A圖所示,在本實施例中,第一電極2包含一第一電極墊21及複數個延伸電極22,且絕緣層8的複數個第一開口8a與第一電極墊21及/或複數個延伸電極22在磊晶疊層1的堆疊方向上(如第1A圖所示的Y方向)不重疊,藉此可以增加電流分散於磊晶疊層1的效果。導電結構4包含一第一導電氧化層41接觸絕緣層8。詳言之,第一導電氧化層41係圖案化且具有複數個第一導電氧化部411接觸複數個絕緣部81,且複數個第一導電氧化部411填入複數個第一開口8a中與磊晶疊層1直接接觸並形成電連接。如第1B圖所示,第一導電氧化部411接觸絕緣部81的第一部分811a,且並未接觸絕緣部81的第二部分811b。第一導電氧化部411同時接觸第一部分811a及側壁812。由於第一導電氧化層41會吸收活性區13所發出的光,因此透過圖形化的第一導電氧化層41,(即:第一導電氧化層41設置於第一開口8a以及部分絕緣層8),可助於減少第一導電氧化層41對光的吸收,藉此提升半導體元件100的發光效率。在另一實施例中,第一導電氧化部411僅填入第一開口8a中與磊晶疊層1直接接觸、且未接觸絕緣部81的第一部分811a及第二部分811b,藉此,更可以避免第一導電氧化層41對光的吸收,能夠進一步提升半導體元件100的發光效率。As shown in Figure 1A, in this embodiment, the first electrode 2 includes a first electrode pad 21 and a plurality of extended electrodes 22, and the plurality of first openings 8a of the insulating layer 8 are in contact with the first electrode pad 21 and/or Or the plurality of extended electrodes 22 do not overlap in the stacking direction of the epitaxial layer 1 (such as the Y direction shown in FIG. 1A ), thereby increasing the effect of current dispersion in the epitaxial layer 1 . The conductive structure 4 includes a first conductive oxide layer 41 contacting the insulating layer 8 . In detail, the first conductive oxide layer 41 is patterned and has a plurality of first conductive oxide portions 411 contacting the plurality of insulating portions 81, and the plurality of first conductive oxide portions 411 are filled in the plurality of first openings 8a. The crystal stack 1 is in direct contact and forms an electrical connection. As shown in FIG. 1B , the first conductive oxide portion 411 contacts the first portion 811 a of the insulating portion 81 and does not contact the second portion 811 b of the insulating portion 81 . The first conductive oxide portion 411 contacts the first portion 811a and the side wall 812 at the same time. Since the first conductive oxide layer 41 will absorb the light emitted from the active area 13, it passes through the patterned first conductive oxide layer 41 (that is, the first conductive oxide layer 41 is provided in the first opening 8a and part of the insulating layer 8) , which can help reduce the absorption of light by the first conductive oxide layer 41, thereby improving the luminous efficiency of the semiconductor device 100. In another embodiment, the first conductive oxide portion 411 only fills the first opening 8 a and is in direct contact with the epitaxial layer 1 and does not contact the first portion 811 a and the second portion 811 b of the insulating portion 81 , thereby further The absorption of light by the first conductive oxide layer 41 can be avoided, and the luminous efficiency of the semiconductor element 100 can be further improved.

在本實施例中,第一電極墊21及第一導電氧化層41在磊晶疊層1的堆疊方向上(如第1A圖所示的Y方向)不重疊,意即,第一電極墊21下方未對應形成第一導電氧化層41。導電結構4選擇性地另包含一第二導電氧化層42接觸第一導電氧化層41及絕緣層8,且第二導電氧化層42透過第一開口8a直接接觸位於第一電極墊21下方的磊晶疊層1。在一實施例中,如第1B圖所示,第一導電氧化層41具有一第一厚度T1,第二導電氧化層42具有一第二厚度T2大於第一厚度T1,例如:第一厚度T1為5 nm至500 nm,第二厚度T2為1000 nm至8000 nm。上述第一厚度T1及第二厚度T2係以平行磊晶疊層1的堆疊方向(如第1A圖所示的Y方向)進行量測。In this embodiment, the first electrode pad 21 and the first conductive oxide layer 41 do not overlap in the stacking direction of the epitaxial layer 1 (such as the Y direction shown in FIG. 1A), that is, the first electrode pad 21 The first conductive oxide layer 41 is not formed below. The conductive structure 4 optionally further includes a second conductive oxide layer 42 in contact with the first conductive oxide layer 41 and the insulating layer 8, and the second conductive oxide layer 42 directly contacts the electrode located under the first electrode pad 21 through the first opening 8a. Crystal stack 1. In one embodiment, as shown in Figure 1B, the first conductive oxide layer 41 has a first thickness T1, and the second conductive oxide layer 42 has a second thickness T2 that is greater than the first thickness T1, for example: the first thickness T1 is 5 nm to 500 nm, and the second thickness T2 is 1000 nm to 8000 nm. The above-mentioned first thickness T1 and second thickness T2 are measured parallel to the stacking direction of the epitaxial layer 1 (such as the Y direction shown in Figure 1A).

在第一方向上(如第1B圖的X方向),第一開口8a具有一第一寬度W1,第一導電氧化部411具有第二寬度W2大於第一寬度W1。在一實施例中,第一寬度W1大於4 μm,例如為4 μm至15 μm、6 μm至12 μm、8 μm至10 μm;第二寬度W2大於6 μm,例如為6 μm至18 μm、8 μm至15 μm、10 μm至 12μm。在另一實施例中,第二寬度W2與第一寬度W1的差值為1 μm至5 μm,例如為2 μm至4 μm。上述第一方向垂直於磊晶疊層1的各層之堆疊方向。In the first direction (such as the X direction in FIG. 1B), the first opening 8a has a first width W1, and the first conductive oxide portion 411 has a second width W2 that is greater than the first width W1. In one embodiment, the first width W1 is greater than 4 μm, such as 4 μm to 15 μm, 6 μm to 12 μm, 8 μm to 10 μm; the second width W2 is greater than 6 μm, such as 6 μm to 18 μm, 8 μm to 15 μm, 10 μm to 12 μm. In another embodiment, the difference between the second width W2 and the first width W1 is 1 μm to 5 μm, such as 2 μm to 4 μm. The above-mentioned first direction is perpendicular to the stacking direction of each layer of the epitaxial stack 1 .

磊晶疊層1包含一第一半導體結構11、一第二半導體結構12、一活性區13位於第一半導體結構11及第二半導體結構12之間、一第一侷限層14位於活性區13及第一半導體結構11之間、及一第二侷限層15位於活性區13及第二半導體結構12之間。於本實施例中,磊晶疊層1之上表面S(即為第二半導體結構12之表面)具有一粗化結構,第一電極2與第二半導體結構12直接接觸。第一半導體結構11與第二半導體結構12可具有相異的導電型態。例如,第一半導體結構11為N型,第二半導體結構12為P型;或者,第一半導體結構11為P型,第二半導體結構12為N型。藉此,當半導體元件100為發光元件時,第一半導體結構11與第二半導體結構12可分別提供電子與電洞、或電洞與電子。第一半導體結構11具有一第一摻質,第二半導體結構12具有一第二摻質,使第一半導體結構11及第二半導體結構12具有不同的導電性。第一摻質及第二摻質可以分別為碳(C)、鋅(Zn)、矽(Si)、鍺(Ge)、錫(Sn)、硒(Se)、鎂(Mg)或碲(Te)。在本實施例中,第一半導體結構11為P型,第二半導體結構12為N型,且第一半導體結構11及第二半導體結構12的摻雜濃度為5 10 17/cm 3至1 10 20/cm 3。第一半導體結構11及第二半導體結構12的能隙分別大於第一侷限層14及第二侷限層15,藉此將載子(電子及電洞)更進一步地限制在活性區13中。 The epitaxial stack 1 includes a first semiconductor structure 11, a second semiconductor structure 12, an active region 13 located between the first semiconductor structure 11 and the second semiconductor structure 12, a first confinement layer 14 located in the active region 13 and between the first semiconductor structure 11 and a second confinement layer 15 between the active region 13 and the second semiconductor structure 12 . In this embodiment, the upper surface S of the epitaxial layer 1 (ie, the surface of the second semiconductor structure 12 ) has a roughened structure, and the first electrode 2 is in direct contact with the second semiconductor structure 12 . The first semiconductor structure 11 and the second semiconductor structure 12 may have different conductive types. For example, the first semiconductor structure 11 is N-type and the second semiconductor structure 12 is P-type; or the first semiconductor structure 11 is P-type and the second semiconductor structure 12 is N-type. Therefore, when the semiconductor device 100 is a light-emitting device, the first semiconductor structure 11 and the second semiconductor structure 12 can respectively provide electrons and holes, or holes and electrons. The first semiconductor structure 11 has a first dopant, and the second semiconductor structure 12 has a second dopant, so that the first semiconductor structure 11 and the second semiconductor structure 12 have different conductivities. The first dopant and the second dopant may be carbon (C), zinc (Zn), silicon (Si), germanium (Ge), tin (Sn), selenium (Se), magnesium (Mg) or tellurium (Te) respectively. ). In this embodiment, the first semiconductor structure 11 is P-type, the second semiconductor structure 12 is N-type, and the doping concentration of the first semiconductor structure 11 and the second semiconductor structure 12 is 5 10 17 /cm 3 to 1 10 20 /cm 3 . The energy gaps of the first semiconductor structure 11 and the second semiconductor structure 12 are respectively larger than the first confinement layer 14 and the second confinement layer 15 , thereby further confining carriers (electrons and holes) in the active region 13 .

活性區13位於第一侷限層14及第二侷限層15之間,且於本實施例中,活性區13與第一侷限層14直接相接,且活性區13與第二侷限層15直接相接。在本實施例中,活性區13包含複數個互相堆疊的阱層及阻障層(圖未示)。本實施例半導體元件100的活性區13中,阱層的厚度小於阻障層的厚度。阱層及/或阻障層可包含或未包含摻質。The active area 13 is located between the first localization layer 14 and the second localization layer 15. In this embodiment, the active area 13 is directly connected to the first localization layer 14, and the active area 13 is directly connected to the second localization layer 15. catch. In this embodiment, the active region 13 includes a plurality of well layers and barrier layers (not shown) stacked on each other. In the active region 13 of the semiconductor device 100 in this embodiment, the thickness of the well layer is smaller than the thickness of the barrier layer. The well layer and/or barrier layer may or may not include dopants.

由半導體元件100的剖面觀之,磊晶疊層1可選擇性包含接觸層111位於第一半導體結構11及導電結構4之間。接觸層111具有第一摻質,且接觸層111中的第一摻質濃度大於第一半導體結構11的第一摻質濃度。接觸層111的材料可包含III-V族半導體材料,例如二元III-V族半導體材料如GaAs、GaP、GaN等。接觸層111有助於降低磊晶疊層1與導電結構4之間的接觸電阻,提升半導體元件100的電性表現。Viewed from the cross-section of the semiconductor device 100 , the epitaxial stack 1 may optionally include a contact layer 111 between the first semiconductor structure 11 and the conductive structure 4 . The contact layer 111 has a first dopant, and the first dopant concentration in the contact layer 111 is greater than the first dopant concentration of the first semiconductor structure 11 . The material of the contact layer 111 may include III-V semiconductor materials, such as binary III-V semiconductor materials such as GaAs, GaP, GaN, etc. The contact layer 111 helps reduce the contact resistance between the epitaxial layer 1 and the conductive structure 4 and improves the electrical performance of the semiconductor device 100 .

第一半導體結構11、第二半導體結構12、活性區13、第一侷限層14以及第二侷限層15可分別包含三五族半導體材料。上述三五族半導體材料可包含Al、Ga、As、P或In。在一實施例中,第一半導體結構11、第二半導體結構12、活性區13、第一侷限層14以及第二侷限層15不包含N。具體來說,上述三五族半導體材料可為二元化合物半導體(如GaAs或GaP)、三元化合物半導體(如InGaAs、AlGaAs、InGaP或AlInP)或四元化合物半導體(如AlGaInAs、AlGaInP、InGaAsP、InGaAsN或AlGaAsP)。於一實施例,活性區13實質上由三元化合物半導體(如InGaAs、AlGaAs、InGaP或AlInP)或四元化合物半導體(如AlGaInAs、AlGaInP、InGaAsP或AlGaAsP)所組成。The first semiconductor structure 11 , the second semiconductor structure 12 , the active region 13 , the first confinement layer 14 and the second confinement layer 15 may respectively include III-V semiconductor materials. The above-mentioned Group III and V semiconductor materials may include Al, Ga, As, P or In. In one embodiment, the first semiconductor structure 11 , the second semiconductor structure 12 , the active region 13 , the first confinement layer 14 and the second confinement layer 15 do not contain N. Specifically, the above-mentioned III-V semiconductor materials can be binary compound semiconductors (such as GaAs or GaP), ternary compound semiconductors (such as InGaAs, AlGaAs, InGaP or AlInP) or quaternary compound semiconductors (such as AlGaInAs, AlGaInP, InGaAsP, InGaAsN or AlGaAsP). In one embodiment, the active region 13 is essentially composed of a ternary compound semiconductor (such as InGaAs, AlGaAs, InGaP or AlInP) or a quaternary compound semiconductor (such as AlGaInAs, AlGaInP, InGaAsP or AlGaAsP).

半導體元件100可包含雙異質結構(double heterostructure,DH)、雙側雙異質結構 (double-side double heterostructure,DDH)或多重量子井(multiple quantum wells,MQW)結構。根據一實施例,當半導體元件100為發光元件時,活性區13可由第一半導體結構11朝第二半導體結構12的方向發出一光線。所述光線包含可見光或不可見光。半導體元件100所發出之光線波長決定於活性區13之材料。活性區13之材料可包含InGaAs、AlGaAsP或GaAsP、InGaAsP、AlGaAs、AlGaInAs、InGaP或AlGaInP。舉例來說:活性區13可以發射出峰值波長為700至1700 nm的紅外光、峰值波長為610 nm至700 nm的紅光、或是峰值波長為530 nm至600 nm的黃光。於本實施例中,活性區13發出峰值波長為730 nm至1100 nm的紅外光。The semiconductor device 100 may include a double heterostructure (DH), a double-side double heterostructure (DDH), or a multiple quantum wells (MQW) structure. According to an embodiment, when the semiconductor device 100 is a light-emitting device, the active region 13 can emit light from the first semiconductor structure 11 toward the second semiconductor structure 12 . The light includes visible light or invisible light. The wavelength of the light emitted by the semiconductor device 100 is determined by the material of the active region 13 . The material of the active region 13 may include InGaAs, AlGaAsP or GaAsP, InGaAsP, AlGaAs, AlGaInAs, InGaP or AlGaInP. For example, the active area 13 can emit infrared light with a peak wavelength of 700 to 1700 nm, red light with a peak wavelength of 610 nm to 700 nm, or yellow light with a peak wavelength of 530 nm to 600 nm. In this embodiment, the active area 13 emits infrared light with a peak wavelength of 730 nm to 1100 nm.

基底7包含導電或絕緣材料。導電材料例如砷化鎵(GaAs)、磷化銦(InP)、碳化矽(SiC)、磷化鎵(GaP)、氧化鋅(ZnO)、氮化鎵(GaN)、氮化鋁(AlN)、鍺(Ge)或矽(Si)。絕緣材料例如藍寶石(Sapphire)。在其他實施例中,基底7為一成長基板,即於基底7上可透過例如有機金屬化學氣相沉積法(MOCVD)磊晶形成磊晶疊層1。在一實施例中,基底7為一接合基板而非成長基板,其可藉由接合結構6而與磊晶疊層1相接合,如第1A圖所示。The substrate 7 contains electrically conductive or insulating material. Conductive materials such as gallium arsenide (GaAs), indium phosphide (InP), silicon carbide (SiC), gallium phosphide (GaP), zinc oxide (ZnO), gallium nitride (GaN), aluminum nitride (AlN), Germanium (Ge) or silicon (Si). Insulating materials such as sapphire. In other embodiments, the substrate 7 is a growth substrate, that is, the epitaxial layer 1 can be formed on the substrate 7 through, for example, metal-organic chemical vapor deposition (MOCVD) epitaxy. In one embodiment, the substrate 7 is a bonding substrate rather than a growth substrate, which can be bonded to the epitaxial stack 1 through the bonding structure 6 , as shown in FIG. 1A .

第一電極2以及第二電極3用於與外部電源電性連接。第一電極2以及第二電極3的材料可相同或不同,例如分別包含金屬氧化材料、金屬或合金。金屬氧化材料包含氧化銦錫(ITO)、氧化銦(InO)、氧化錫(SnO)、氧化鎘錫(CTO)、氧化銻錫(ATO)、氧化鋁鋅(AZO)、氧化鋅錫(ZTO)、氧化鎵鋅(GZO)、氧化銦鎢(IWO)、氧化鋅(ZnO)或氧化銦鋅(IZO)等。金屬可包含鍺(Ge)、鈹(Be)、鋅(Zn)、金(Au)、鉑(Pt)、鈦(Ti)、鋁(Al)、鎳(Ni)或銅(Cu)等。合金可包含選自由上述金屬所組成之群組中的至少兩者,例如鍺金鎳(GeAuNi)、鈹金(BeAu)、鍺金(GeAu)或鋅金(ZnAu)等。The first electrode 2 and the second electrode 3 are used for electrical connection with an external power supply. The materials of the first electrode 2 and the second electrode 3 may be the same or different, for example, they may respectively include metal oxide materials, metals or alloys. Metal oxide materials include indium tin oxide (ITO), indium oxide (InO), tin oxide (SnO), cadmium tin oxide (CTO), antimony tin oxide (ATO), aluminum zinc oxide (AZO), zinc tin oxide (ZTO) , Gallium zinc oxide (GZO), indium tungsten oxide (IWO), zinc oxide (ZnO) or indium zinc oxide (IZO), etc. The metal may include germanium (Ge), beryllium (Be), zinc (Zn), gold (Au), platinum (Pt), titanium (Ti), aluminum (Al), nickel (Ni) or copper (Cu), etc. The alloy may include at least two selected from the group consisting of the above metals, such as germanium gold nickel (GeAuNi), beryllium gold (BeAu), germanium gold (GeAu) or zinc gold (ZnAu).

絕緣層8包括絕緣材料,例如氮化矽(SiN x)、氧化鋁(AlO x)、氧化矽(SiO x)、氟化鎂(MgF x)、氧化鈦(TiO 2)、氧化鈮(Nb 2O 5)或其組合,絕緣層8可選擇為特別是折射係數(refractive index)小於或等於2的絕緣材料。在一實施例中,絕緣層8亦可以包含第一布拉格反射結構(Distributed Bragg Reflector structure,DBR),例如由上述兩種以上的絕緣材料交替堆疊而形成。導電結構4可包含金屬氧化材料,例如:氧化銦錫(ITO)、氧化銦(InO)、氧化錫(SnO)、氧化鎘錫(CTO)、氧化銻錫(ATO)、氧化鋁鋅(AZO)、氧化鋅錫(ZTO)、氧化鎵鋅(GZO)、氧化銦鎢(IWO)、氧化鋅(ZnO)、氧化銦鋅(IZO)或上述材料之組合。 The insulating layer 8 includes insulating materials, such as silicon nitride (SiN x ), aluminum oxide (AlO x ), silicon oxide (SiO x ), magnesium fluoride (MgF x ), titanium oxide (TiO 2 ), niobium oxide (Nb 2 O 5 ) or a combination thereof, the insulating layer 8 may be selected to be an insulating material with a refractive index less than or equal to 2, in particular. In one embodiment, the insulating layer 8 may also include a first Distributed Bragg Reflector structure (DBR), for example, formed by alternately stacking two or more of the above-mentioned insulating materials. The conductive structure 4 may include metal oxide materials, such as indium tin oxide (ITO), indium oxide (InO), tin oxide (SnO), cadmium tin oxide (CTO), antimony tin oxide (ATO), aluminum zinc oxide (AZO) , zinc tin oxide (ZTO), gallium zinc oxide (GZO), indium tungsten oxide (IWO), zinc oxide (ZnO), indium zinc oxide (IZO) or a combination of the above materials.

反射層5可反射活性區13所發出的光線以朝第一電極2方向射出半導體元件100外。反射層5可包含半導體材料、金屬或合金。半導體材料可包含三五族半導體材料,例如二元、三元或四元三五族半導體材料。金屬包含但不限於銅(Cu)、鋁(Al)、錫(Sn)、金(Au)或銀(Ag)等。合金可包含選自由上述金屬所組成之群組中的至少兩者。在一實施例中,反射層5可包含第二布拉格反射結構(Distributed Bragg Reflector structure,DBR)。第二布拉格反射結構可導電且由不同折射率的兩種以上之半導體材料交替堆疊而形成,例如由AlAs/GaAs、AlGaAs/GaAs或InGaP/GaAs所形成。The reflective layer 5 can reflect the light emitted from the active area 13 so as to be emitted out of the semiconductor element 100 toward the first electrode 2 . Reflective layer 5 may comprise semiconductor material, metal or alloy. The semiconductor material may include a III-V semiconductor material, such as a binary, ternary or quaternary III-V semiconductor material. Metals include but are not limited to copper (Cu), aluminum (Al), tin (Sn), gold (Au) or silver (Ag), etc. The alloy may include at least two selected from the group consisting of the above metals. In an embodiment, the reflective layer 5 may include a second Distributed Bragg Reflector structure (DBR). The second Bragg reflective structure is conductive and is formed by alternately stacking two or more semiconductor materials with different refractive indexes, such as AlAs/GaAs, AlGaAs/GaAs or InGaP/GaAs.

接合結構6連接基底7與反射層5。在一實施例中,接合結構6可為單層或多層(未繪示)。接合結構6之材料可包含透明導電材料、透明絕緣材料、金屬或合金。透明導電材料包含氧化銦錫(ITO)、氧化銦(InO)、氧化錫(SnO)、氧化鎘錫(CTO)、氧化銻錫(ATO)、氧化鋁鋅(AZO)、氧化鋅錫(ZTO)、氧化鎵鋅(GZO)、氧化鋅(ZnO)、磷化鎵(GaP)、氧化銦鈰(ICO)、氧化銦鎢(IWO)、氧化銦鈦(ITiO)、氧化銦鋅(IZO)、氧化銦鎵(IGO)、氧化鎵鋁鋅(GAZO)、石墨烯(graphene)或上述材料之組合。透明絕緣材料包含氧化鋁(AlO x)、氧化矽(SiO2)、氮化矽(SiN)等。金屬包含銅(Cu)、鋁(Al)、錫(Sn)、銦(In)、金(Au)、銀(Ag)、鈦(Ti)、鎳(Ni)、鉑(Pt)或鎢(W)等。合金可包含選自由上述金屬所組成之群組中的至少兩者。 The bonding structure 6 connects the substrate 7 and the reflective layer 5 . In one embodiment, the bonding structure 6 can be a single layer or multiple layers (not shown). The material of the joint structure 6 may include transparent conductive materials, transparent insulating materials, metals or alloys. Transparent conductive materials include indium tin oxide (ITO), indium oxide (InO), tin oxide (SnO), cadmium tin oxide (CTO), antimony tin oxide (ATO), aluminum zinc oxide (AZO), zinc tin oxide (ZTO) , Gallium zinc oxide (GZO), zinc oxide (ZnO), gallium phosphide (GaP), indium cerium oxide (ICO), indium tungsten oxide (IWO), indium titanium oxide (ITiO), indium zinc oxide (IZO), oxide Indium gallium (IGO), gallium aluminum zinc oxide (GAZO), graphene or a combination of the above materials. Transparent insulating materials include aluminum oxide (AlO x ), silicon oxide (SiO2), silicon nitride (SiN), etc. Metals include copper (Cu), aluminum (Al), tin (Sn), indium (In), gold (Au), silver (Ag), titanium (Ti), nickel (Ni), platinum (Pt) or tungsten (W) )wait. The alloy may include at least two selected from the group consisting of the above metals.

第2圖為本揭露內容一實施例之半導體元件200的部分剖面示意圖。半導體元件200之結構大致與第1A、1B圖所示之半導體元件100相似,差異在於本實施例的接觸層111包含互相分離的複數個接觸部111a,相鄰之複數個接觸部111a之間各具有一第二開口111b,絕緣部81填入第二開口111b並與第一半導體結構11直接接觸,且延伸電極22與接觸部111a互相錯位,藉此增加半導體元件200的電流分散效果。FIG. 2 is a partial cross-sectional view of a semiconductor device 200 according to an embodiment of the present disclosure. The structure of the semiconductor device 200 is generally similar to the semiconductor device 100 shown in FIGS. 1A and 1B. The difference is that the contact layer 111 of this embodiment includes a plurality of contact portions 111a that are separated from each other. There is a second opening 111b, the insulating portion 81 fills the second opening 111b and is in direct contact with the first semiconductor structure 11, and the extended electrode 22 and the contact portion 111a are misaligned with each other, thereby increasing the current dispersion effect of the semiconductor element 200.

第3圖為本揭露內容一實施例之半導體元件300的部分剖面示意圖。半導體元件300之結構大致與第1A、1B圖所示之半導體元件100相似,差異在於本實施例的第二導電氧化層42包含互相分離的複數個第二導電氧化部421,相鄰之複數個第二導電氧化部421之間各具有一第三開口421a,反射層5填入第三開口421a並與絕緣層8(複數個絕緣部81)直接接觸,複數個第二導電氧化部421大致對應複數個第一導電氧化部411的位置。FIG. 3 is a partial cross-sectional view of a semiconductor device 300 according to an embodiment of the present disclosure. The structure of the semiconductor device 300 is generally similar to the semiconductor device 100 shown in Figures 1A and 1B. The difference is that the second conductive oxide layer 42 of this embodiment includes a plurality of second conductive oxide portions 421 that are separated from each other, and a plurality of adjacent conductive oxide portions 421. There is a third opening 421a between the second conductive oxide parts 421. The reflective layer 5 fills the third opening 421a and is in direct contact with the insulating layer 8 (the plurality of insulating parts 81). The plurality of second conductive oxidation parts 421 roughly correspond to each other. The positions of the plurality of first conductive oxide portions 411.

第4圖為本揭露內容一實施例之半導體元件400的部分剖面示意圖。半導體元件400之結構大致與第3圖所示之半導體元件300相似,差異在於本實施例的接觸層111包含互相分離的複數個接觸部111a,相鄰之複數個接觸部111a之間各具有一第二開口111b,絕緣部81填入第二開口111b並與第一半導體結構11直接接觸,且延伸電極22與接觸部111a互相錯位。FIG. 4 is a partial cross-sectional view of a semiconductor device 400 according to an embodiment of the present disclosure. The structure of the semiconductor device 400 is generally similar to the semiconductor device 300 shown in FIG. 3. The difference is that the contact layer 111 of this embodiment includes a plurality of contact portions 111a that are separated from each other, and each of the adjacent contact portions 111a has a contact layer 111a. In the second opening 111b, the insulating portion 81 fills the second opening 111b and is in direct contact with the first semiconductor structure 11, and the extended electrode 22 and the contact portion 111a are misaligned with each other.

第5、6圖為本揭露內容其他實施例之半導體元件500、600的部分剖面示意圖,半導體元件500、600之結構大致與第1A圖所示之半導體元件100相似,差異在於這些實施例的半導體元件500、600不具有第二導電氧化層42,反射層5與第一導電氧化層41及絕緣層8(複數個絕緣部81)直接接觸。第6圖所示之半導體元件600的接觸層111包含互相分離的複數個接觸部111a,相鄰之複數個接觸部111a之間各具有一第二開口111b,絕緣部81填入第二開口111b並與第一半導體結構11直接接觸,且延伸電極22與接觸部111a互相錯位。Figures 5 and 6 are partial cross-sectional schematic diagrams of semiconductor devices 500 and 600 according to other embodiments of the present disclosure. The structures of the semiconductor devices 500 and 600 are generally similar to the semiconductor device 100 shown in Figure 1A . The difference lies in the semiconductor devices in these embodiments. The components 500 and 600 do not have the second conductive oxide layer 42 , and the reflective layer 5 is in direct contact with the first conductive oxide layer 41 and the insulating layer 8 (the plurality of insulating portions 81 ). The contact layer 111 of the semiconductor device 600 shown in FIG. 6 includes a plurality of contact portions 111a that are separated from each other. Each of the adjacent contact portions 111a has a second opening 111b. The insulating portion 81 fills the second opening 111b. And is in direct contact with the first semiconductor structure 11, and the extended electrode 22 and the contact portion 111a are misaligned with each other.

第7圖為本揭露內容其他實施例之半導體元件700的部分剖面示意圖,半導體元件700結構大致與第1A圖所示之半導體元件100相似,差異在於這些實施例的半導體元件700不具有絕緣層8。第7圖所示之半導體元件700的接觸層111包含互相分離的複數個接觸部111a,相鄰之複數個接觸部111a之間各具有一第二開口111b,第二導電氧化層42填入第二開口111b並與第一半導體結構11直接接觸,且延伸電極22與接觸部111a互相錯位。複數個第一導電氧化部411各自位於複數個接觸部111a下方。FIG. 7 is a partial cross-sectional view of a semiconductor device 700 according to other embodiments of the present disclosure. The structure of the semiconductor device 700 is generally similar to the semiconductor device 100 shown in FIG. 1A . The difference is that the semiconductor device 700 in these embodiments does not have an insulating layer 8 . . The contact layer 111 of the semiconductor device 700 shown in FIG. 7 includes a plurality of contact portions 111a that are separated from each other. Each of the adjacent contact portions 111a has a second opening 111b. The second conductive oxide layer 42 is filled with the second opening 111b. The two openings 111b are in direct contact with the first semiconductor structure 11, and the extended electrode 22 and the contact portion 111a are offset from each other. The plurality of first conductive oxide portions 411 are respectively located under the plurality of contact portions 111a.

第8圖所示之半導體元件800大致與第7圖相似,差異在於本實施例的第二導電氧化層42包含互相分離的複數個第二導電氧化部421,相鄰之複數個第二導電氧化部421之間各具有一第三開口421a,反射層5透過第三開口421a及第二開口111b與第一半導體結構11直接接觸,複數個第二導電氧化部421大致對應複數個第一導電氧化部411的位置。The semiconductor device 800 shown in FIG. 8 is generally similar to that of FIG. 7 . The difference is that the second conductive oxide layer 42 in this embodiment includes a plurality of second conductive oxide portions 421 that are separated from each other. Each of the portions 421 has a third opening 421a. The reflective layer 5 directly contacts the first semiconductor structure 11 through the third opening 421a and the second opening 111b. The plurality of second conductive oxide portions 421 generally correspond to the plurality of first conductive oxide portions. The location of part 411.

第9圖所示之半導體元件900大致與第8圖相似,差異在於本實施例之半導體元件不具有第二導電氧化層42,反射層5直接接觸複數個第一導電氧化部411,且亦透過第二開口111b與第一半導體結構11直接接觸。The semiconductor element 900 shown in Figure 9 is generally similar to Figure 8. The difference is that the semiconductor element in this embodiment does not have the second conductive oxide layer 42. The reflective layer 5 directly contacts the plurality of first conductive oxide portions 411 and also passes through it. The second opening 111 b is in direct contact with the first semiconductor structure 11 .

第10圖為本揭露內容其他實施例之半導體元件1000的部分剖面示意圖,半導體元件1000之結構大致與第1A圖所示之半導體元件相似,差異在於本實施例的半導體元件1000不具有絕緣層8,第一導電氧化層41完全位於接觸層111下方且包含互相分離的複數個第一導電氧化部411。FIG. 10 is a partial cross-sectional view of a semiconductor device 1000 according to another embodiment of the present disclosure. The structure of the semiconductor device 1000 is generally similar to the semiconductor device shown in FIG. 1A . The difference is that the semiconductor device 1000 in this embodiment does not have an insulating layer 8 , the first conductive oxide layer 41 is completely located under the contact layer 111 and includes a plurality of first conductive oxide portions 411 separated from each other.

第11圖為本揭露內容其他實施例之半導體元件1100的部分剖面示意圖,半導體元件1100之結構大致與第1A圖所示之半導體元件100相似,差異在於本實施例的半導體元件1100不具有絕緣層8,且第二導電氧化層42包含互相分離的複數個第二導電氧化部421,相鄰之複數個第二導電氧化部421之間各具有一第三開口421a,反射層5透過第三開口421a與接觸層111直接接觸,複數個第二導電氧化部421大致對應複數個第一導電氧化部411的位置。FIG. 11 is a partial cross-sectional view of a semiconductor device 1100 according to another embodiment of the present disclosure. The structure of the semiconductor device 1100 is generally similar to the semiconductor device 100 shown in FIG. 1A . The difference is that the semiconductor device 1100 in this embodiment does not have an insulating layer. 8, and the second conductive oxide layer 42 includes a plurality of second conductive oxide portions 421 that are separated from each other. There is a third opening 421a between the adjacent second conductive oxide portions 421, and the reflective layer 5 passes through the third opening. 421a is in direct contact with the contact layer 111, and the plurality of second conductive oxide portions 421 roughly correspond to the positions of the plurality of first conductive oxide portions 411.

第12圖為本揭露內容其他實施例之半導體元件1200的部分剖面示意圖,半導體元件1200之結構大致與第10圖所示之半導體元件1000相似,差異在於本實施例的半導體元件1200不具有第二導電氧化層42,使反射層5直接連接於第一導電氧化部411及接觸層111。Figure 12 is a partial cross-sectional view of a semiconductor device 1200 according to another embodiment of the present disclosure. The structure of the semiconductor device 1200 is generally similar to the semiconductor device 1000 shown in Figure 10 . The difference is that the semiconductor device 1200 in this embodiment does not have a second The conductive oxide layer 42 directly connects the reflective layer 5 to the first conductive oxide portion 411 and the contact layer 111 .

第13圖為本揭露內容其他實施例之半導體元件1300的部分剖面示意圖,半導體元件1300之結構大致與第2圖所示之半導體元件200相似,差異在於本實施例的半導體元件的接觸部111a與絕緣部81具有大致相同的厚度,且接觸部111a及絕緣部81遠離磊晶疊層1的表面為共平面。詳言之,各接觸部111a具有一第三厚度T3,各絕緣部81具有一第四厚度T4大致等於第三厚度T3,各接觸部111a具有一第一表面1111a遠離磊晶疊層1,第一表面1111a與各絕緣部81的表面811為共平面,且第一導電氧化部411未接觸絕緣部81的側壁812。接觸部111a具有一第三寬度W3,第三寬度W3實質上等於第一導電氧化部411的第二寬度W2。在一實施例中,第三寬度W3可大於或小於第一導電氧化部411的第二寬度W2。Figure 13 is a partial cross-sectional schematic diagram of a semiconductor device 1300 according to another embodiment of the present disclosure. The structure of the semiconductor device 1300 is generally similar to the semiconductor device 200 shown in Figure 2 . The difference lies in the contact portion 111a of the semiconductor device in this embodiment. The insulating portion 81 has substantially the same thickness, and the contact portion 111a and the surface of the insulating portion 81 away from the epitaxial layer 1 are coplanar. In detail, each contact portion 111a has a third thickness T3, each insulating portion 81 has a fourth thickness T4 that is substantially equal to the third thickness T3, each contact portion 111a has a first surface 1111a away from the epitaxial layer 1, and One surface 1111 a is coplanar with the surface 811 of each insulating part 81 , and the first conductive oxidation part 411 does not contact the sidewall 812 of the insulating part 81 . The contact portion 111a has a third width W3, and the third width W3 is substantially equal to the second width W2 of the first conductive oxide portion 411. In an embodiment, the third width W3 may be greater than or less than the second width W2 of the first conductive oxide portion 411 .

第14圖為本揭露內容一實施例之半導體封裝結構結構2000的部分剖面結構示意圖,半導體封裝結構2000包含一承載體220、第一半導體元件211及第二半導體元件231。第一半導體元件211及/或第二半導體元件231可以為上述第1A圖至第13圖所示的半導體元件。承載體220包含第一擋牆221、第二擋牆222、第三擋牆223、載板224、一第一空間225及第二空間226,第一半導體元件211位於第一擋牆221與第二擋牆222之間的第一空間225中,第二半導體元件231位於第二擋牆222與第三擋牆223之間的第二空間226中。第一半導體元件211及/或第二半導體元件231可以為如第1A圖之垂直式晶片。第一半導體元件211及第二半導體元件231位於載板224上,並與載板224上的電路連接結構(圖未示)形成電性連接。在本實施中,第一半導體元件211為一發光元件,第二半導體元件231為一光接收元件,且半導體封裝結構2000可置於穿戴裝置(例如;手錶、耳機)中,第一半導體元件211發出之光線穿過皮膚並照射身體細胞以及血液,再藉由第二半導體元件231吸收從身體細胞以及血液散射/反射回來的光,根據此反射、散射光的變化,用以偵測人體的生理訊號,例如:心率、血糖、血壓、血氧濃度等。FIG. 14 is a partial cross-sectional structural diagram of a semiconductor package structure 2000 according to an embodiment of the disclosure. The semiconductor package structure 2000 includes a carrier 220, a first semiconductor element 211 and a second semiconductor element 231. The first semiconductor element 211 and/or the second semiconductor element 231 may be the semiconductor elements shown in the above-mentioned FIGS. 1A to 13 . The carrier 220 includes a first retaining wall 221, a second retaining wall 222, a third retaining wall 223, a carrier plate 224, a first space 225 and a second space 226. The first semiconductor element 211 is located between the first retaining wall 221 and the second retaining wall 223. In the first space 225 between the two blocking walls 222 , the second semiconductor element 231 is located in the second space 226 between the second blocking wall 222 and the third blocking wall 223 . The first semiconductor element 211 and/or the second semiconductor element 231 may be a vertical wafer as shown in Figure 1A. The first semiconductor element 211 and the second semiconductor element 231 are located on the carrier board 224 and are electrically connected to the circuit connection structure (not shown) on the carrier board 224 . In this implementation, the first semiconductor element 211 is a light-emitting element, the second semiconductor element 231 is a light-receiving element, and the semiconductor package structure 2000 can be placed in a wearable device (eg, watch, earphone). The first semiconductor element 211 The emitted light passes through the skin and irradiates the body cells and blood, and then absorbs the light scattered/reflected from the body cells and blood through the second semiconductor element 231. Based on the changes in the reflected and scattered light, it is used to detect the physiology of the human body. Signals, such as: heart rate, blood sugar, blood pressure, blood oxygen concentration, etc.

第15圖為本揭露內容一實施例之半導體封裝結構3000的剖面結構示意圖。半導體封裝結構3000包含半導體元件100、封裝基板31、載體33、接合線35、接觸結構36以及封裝層38。封裝基板31可包含陶瓷或玻璃材料。封裝基板31中具有多個通孔32。通孔32中可填充有導電性材料如金屬等而有助於導電或/且散熱。載體33位於封裝基板31一側的表面上,且亦包含導電性材料,如金屬。接觸結構36位於封裝基板31另一側的表面上。在本實施例中,接觸結構36包含第一接觸墊36a以及第二接觸墊36b,且第一接觸墊36a以及第二接觸墊36b可藉由通孔32而與載體33電性連接。在一實施例中,接觸結構36可進一步包含散熱墊(thermal pad)(未繪示),例如位於第一接觸墊36a與第二接觸墊36b之間。FIG. 15 is a schematic cross-sectional structural diagram of a semiconductor packaging structure 3000 according to an embodiment of the present disclosure. The semiconductor packaging structure 3000 includes a semiconductor element 100 , a packaging substrate 31 , a carrier 33 , bonding wires 35 , contact structures 36 and packaging layers 38 . The packaging substrate 31 may include ceramic or glass materials. The package substrate 31 has a plurality of through holes 32 therein. The through hole 32 may be filled with conductive material such as metal to facilitate conduction and/or heat dissipation. The carrier 33 is located on the surface of one side of the packaging substrate 31 and also includes conductive material, such as metal. Contact structure 36 is located on the surface of the other side of package substrate 31 . In this embodiment, the contact structure 36 includes a first contact pad 36 a and a second contact pad 36 b, and the first contact pad 36 a and the second contact pad 36 b can be electrically connected to the carrier 33 through the through hole 32 . In one embodiment, the contact structure 36 may further include a thermal pad (not shown), for example, located between the first contact pad 36a and the second contact pad 36b.

半導體元件100位於載體33上。在本實施例中,載體33包含第一部分33a及第二部分33b,半導體元件100藉由接合線35而與載體33的第二部分33b電性連接。接合線35的材質可包含金屬,例如金、銀、銅、鋁或至少包含上述任一元素之合金。封裝層38覆蓋於半導體元件100上,具有保護半導體元件100之效果。具體來說,封裝層38可包含樹脂材料如環氧樹脂(epoxy)、矽氧烷樹脂(silicone)等。封裝層38選擇性地可包含複數個波長轉換粒子(圖未示)以轉換半導體元件100所發出的第一光為一第二光。第二光的波長大於第一光的波長。Semiconductor component 100 is located on carrier 33 . In this embodiment, the carrier 33 includes a first part 33 a and a second part 33 b, and the semiconductor device 100 is electrically connected to the second part 33 b of the carrier 33 through the bonding wire 35 . The material of the bonding wire 35 may include metal, such as gold, silver, copper, aluminum or an alloy containing at least any of the above elements. The encapsulation layer 38 covers the semiconductor element 100 and has the effect of protecting the semiconductor element 100 . Specifically, the encapsulation layer 38 may include resin materials such as epoxy, silicone, etc. The encapsulation layer 38 may optionally include a plurality of wavelength conversion particles (not shown) to convert the first light emitted by the semiconductor device 100 into a second light. The wavelength of the second light is greater than the wavelength of the first light.

具體來說,本揭露內容之半導體元件及半導體封裝結構可應用於照明、醫療、顯示、通訊、感測、電源系統等領域的產品,例如燈具、監視器、手機、平板電腦、車用儀表板、電視、電腦、穿戴裝置(如手錶、手環、項鍊等)、交通號誌、戶外顯示器、醫療器材等。Specifically, the semiconductor components and semiconductor packaging structures disclosed in the present disclosure can be applied to products in the fields of lighting, medical care, display, communication, sensing, power supply systems, etc., such as lamps, monitors, mobile phones, tablet computers, and automotive instrument panels. , TVs, computers, wearable devices (such as watches, bracelets, necklaces, etc.), traffic signals, outdoor displays, medical equipment, etc.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,所屬技術領域中具有通常知識者應理解,在不脫離本發明之精神和範圍內可作些許之修飾或變更,故本發明之保護範圍當視後附之申請專利範圍所界定者為準。此外,上述實施例內容在適當的情況下可互相組合或替換,而非僅限於所描述之特定實施例。舉例而言,在一實施例中所揭露特定構件之相關參數或特定構件與其他構件的連接關係亦可應用於其他實施例中,且均落於本發明之權利保護範圍。Although the present invention has been disclosed above through embodiments, they are not intended to limit the present invention. Those of ordinary skill in the art will understand that slight modifications or changes may be made without departing from the spirit and scope of the present invention. Therefore, the present invention is The protection scope of the invention shall be determined by the appended patent application scope. In addition, the above-described embodiments may be combined or replaced with each other under appropriate circumstances and are not limited to the specific embodiments described. For example, the relevant parameters of a specific component or the connection relationship between a specific component and other components disclosed in one embodiment can also be applied to other embodiments, and all fall within the scope of the present invention.

100、200、300、400、500、600、700、800、900、1000、1100、1200、1300:半導體元件 211:第一半導體元件 220:承載體 221:第一擋牆 222:第二擋牆 223:第三擋牆 224:載板 225:第一空間 226:第二空間 231:第二半導體元件 31:封裝基板 32:通孔 33:載體 33a:第一部分 33b:第二部分 35:接合線 36:接觸結構 36a:第一接觸墊 36b:第二接觸墊 38:封裝層 1:磊晶疊層 11:第一半導體結構 111:接觸層 111a:接觸部 1111a:第一表面 111b:第二開口 12:第二半導體結構 13:活性區 14:第一侷限層 15:第二侷限層 2:第一電極 21:第一電極墊 22:延伸電極 3:第二電極 4:導電結構 41:第一導電氧化層 411:第一導電氧化部 42:第二導電氧化層 421:第二導電氧化部 421a:第三開口 5:反射層 6:接合結構 7:基底 8:絕緣層 8a:第一開口 81:絕緣部 811:表面 811a:第一部分 811b:第二部分 812:側壁 S:上表面 T1:第一厚度 T2:第二厚度 T3:第三厚度 T4:第四厚度 W1:第一寬度 W2:第二寬度 W3:第三寬度 2000、3000:半導體封裝結構 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1100, 1200, 1300: semiconductor components 211: First semiconductor element 220:Bearer 221:The first retaining wall 222:Second retaining wall 223:The third retaining wall 224: Carrier board 225:First space 226:Second Space 231: Second semiconductor element 31:Package substrate 32:Through hole 33: Carrier 33a:Part 1 33b:Part 2 35:Joining wire 36:Contact structure 36a: First contact pad 36b: Second contact pad 38: Encapsulation layer 1: Epitaxial layer 11: First semiconductor structure 111:Contact layer 111a: Contact Department 1111a: First surface 111b: Second opening 12: Second semiconductor structure 13:Active area 14: The first localization layer 15: The second localization layer 2: First electrode 21: First electrode pad 22:Extended electrode 3: Second electrode 4: Conductive structure 41: First conductive oxide layer 411: First conductive oxidation part 42: Second conductive oxide layer 421: Second conductive oxidation part 421a: The third opening 5: Reflective layer 6: Joint structure 7: Base 8: Insulation layer 8a: First opening 81:Insulation Department 811:Surface 811a:Part 1 811b:Part 2 812:Side wall S: upper surface T1: first thickness T2: second thickness T3: The third thickness T4: The fourth thickness W1: first width W2: second width W3: third width 2000, 3000: Semiconductor packaging structure

此處所說明的附圖用來提供對本發明的進一步理解,構成本發明的一部分,本發明的示意性實施方式及其說明用於解釋本發明,並不構成對本發明的不當限定。在附圖中: 第1A圖為本揭露內容一實施例之半導體元件的剖面示意圖。 第1B圖為第1A圖框選區域之放大圖。 第2圖為本揭露內容一實施例之半導體元件的部分剖面示意圖。 第3圖為本揭露內容一實施例之半導體元件的部分剖面示意圖。 第4圖為本揭露內容一實施例之半導體元件的部分剖面示意圖。 第5圖為本揭露內容一實施例之半導體元件的部分剖面示意圖。 第6圖為本揭露內容一實施例之半導體元件的部分剖面示意圖。 第7圖為本揭露內容一實施例之半導體元件的部分剖面示意圖。 第8圖為本揭露內容一實施例之半導體元件的部分剖面示意圖。 第9圖為本揭露內容一實施例之半導體元件的部分剖面示意圖。 第10圖為本揭露內容一實施例之半導體元件的部分剖面示意圖。 第11圖為本揭露內容一實施例之半導體元件的部分剖面示意圖。 第12圖為本揭露內容一實施例之半導體元件的部分剖面示意圖。 第13圖為本揭露內容一實施例之半導體元件的部分剖面示意圖。 第14圖為本揭露內容一實施例之半導體封裝結構的部分剖面結構示意圖。 第15圖為本揭露內容一實施例之半導體封裝結構的剖面結構示意圖。 The drawings described here are used to provide a further understanding of the present invention and constitute a part of the present invention. The schematic embodiments of the present invention and their descriptions are used to explain the present invention and do not constitute an improper limitation of the present invention. In the attached picture: FIG. 1A is a schematic cross-sectional view of a semiconductor device according to an embodiment of the present disclosure. Figure 1B is an enlarged view of the framed area in Figure 1A. FIG. 2 is a partial cross-sectional view of a semiconductor device according to an embodiment of the present disclosure. FIG. 3 is a partial cross-sectional view of a semiconductor device according to an embodiment of the present disclosure. FIG. 4 is a partial cross-sectional view of a semiconductor device according to an embodiment of the present disclosure. FIG. 5 is a partial cross-sectional view of a semiconductor device according to an embodiment of the present disclosure. FIG. 6 is a partial cross-sectional view of a semiconductor device according to an embodiment of the present disclosure. FIG. 7 is a partial cross-sectional view of a semiconductor device according to an embodiment of the present disclosure. FIG. 8 is a partial cross-sectional view of a semiconductor device according to an embodiment of the present disclosure. FIG. 9 is a partial cross-sectional view of a semiconductor device according to an embodiment of the present disclosure. FIG. 10 is a partial cross-sectional view of a semiconductor device according to an embodiment of the present disclosure. FIG. 11 is a partial cross-sectional view of a semiconductor device according to an embodiment of the present disclosure. FIG. 12 is a partial cross-sectional view of a semiconductor device according to an embodiment of the present disclosure. FIG. 13 is a partial cross-sectional view of a semiconductor device according to an embodiment of the present disclosure. FIG. 14 is a partial cross-sectional structural diagram of a semiconductor packaging structure according to an embodiment of the present disclosure. FIG. 15 is a schematic cross-sectional view of a semiconductor packaging structure according to an embodiment of the present disclosure.

100:半導體元件 100:Semiconductor components

1:磊晶疊層 1: Epitaxial layer

11:第一半導體結構 11: First semiconductor structure

111:接觸層 111:Contact layer

12:第二半導體結構 12: Second semiconductor structure

13:活性區 13:Active area

14:第一侷限層 14: The first localization layer

15:第二侷限層 15: The second localization layer

2:第一電極 2: First electrode

21:第一電極墊 21: First electrode pad

22:延伸電極 22:Extended electrode

3:第二電極 3: Second electrode

4:導電結構 4: Conductive structure

41:第一導電氧化層 41: First conductive oxide layer

42:第二導電氧化層 42: Second conductive oxide layer

5:反射層 5: Reflective layer

6:接合結構 6: Joint structure

7:基底 7: Base

8:絕緣層 8: Insulation layer

81:絕緣部 81:Insulation Department

8a:第一開口 8a: First opening

S:上表面 S: upper surface

Claims (10)

一半導體元件,包含:一磊晶疊層;一絕緣層,位於該磊晶疊層上,且具有複數個開口及一表面遠離該磊晶疊層;以及一第一導電氧化層,位於該磊晶疊層及該絕緣層上,且具有互相分離之複數第一導電氧化部位於該複數個開口中;其中,該表面具有一第一部分及一第二部分,該第一導電氧化層覆蓋該第一部份且未覆蓋該第二部分。 A semiconductor device includes: an epitaxial layer; an insulating layer located on the epitaxial layer and having a plurality of openings and a surface away from the epitaxial layer; and a first conductive oxide layer located on the epitaxial layer. on the crystal stack and the insulating layer, and having a plurality of first conductive oxide parts separated from each other located in the plurality of openings; wherein the surface has a first part and a second part, and the first conductive oxide layer covers the first part part and does not cover this second part. 如申請專利範圍第1項所述之半導體元件,其中,該第一部分較該第二部分靠近該開口。 The semiconductor device described in claim 1 of the patent application, wherein the first part is closer to the opening than the second part. 如申請專利範圍第1項所述之半導體元件,其中,該磊晶疊層包含一接觸層位於該複數個開口中,且該第一導電氧化層與該接觸層接觸。 The semiconductor device according to claim 1, wherein the epitaxial stack includes a contact layer located in the plurality of openings, and the first conductive oxide layer is in contact with the contact layer. 如申請專利範圍第3項所述之半導體元件,其中,該接觸層包含互相分離之複數個接觸部。 In the semiconductor device described in claim 3 of the patent application, the contact layer includes a plurality of contact portions separated from each other. 如申請專利範圍第1項所述之半導體元件,另包含一第二導電氧化層位於該第一導電氧化層上。 The semiconductor device described in claim 1 of the patent application further includes a second conductive oxide layer located on the first conductive oxide layer. 如申請專利範圍第1項所述之半導體元件,另包含一反射層位於該第一導電氧化層上並與該第一導電氧化層直接接觸。 The semiconductor device described in Item 1 of the patent application further includes a reflective layer located on the first conductive oxide layer and in direct contact with the first conductive oxide layer. 如申請專利範圍第5項所述之半導體元件,其中,該第二導電氧化層具有互相分離之複數第二導電氧化部位於該複數個開口中。 As in the semiconductor device described in claim 5 of the patent application, the second conductive oxide layer has a plurality of mutually separated second conductive oxide portions located in the plurality of openings. 一半導體元件,包含: 一活性區;一接觸層,位於該活性區的一側並具有互相分離的複數個接觸部,各接觸部具有一遠離該活性區的第一表面;一絕緣層,位於任意二相鄰該接觸部之間;一第一導電氧化層,位於該接觸層遠離該活性區的一側,且具有互相分離之複數第一導電氧化部分別位於該複數接觸部的該第一表面上;其中,該第一表面包含一第一區及一第二區,該第一區接觸該第一導電氧化部,該第二區接觸該絕緣層。 A semiconductor component, including: An active area; a contact layer located on one side of the active area and having a plurality of contact portions separated from each other, each contact portion having a first surface away from the active area; an insulating layer located on any two adjacent contacts between the parts; a first conductive oxide layer is located on the side of the contact layer away from the active area, and has a plurality of mutually separated first conductive oxide parts respectively located on the first surface of the plurality of contact parts; wherein, the The first surface includes a first region and a second region, the first region contacts the first conductive oxide portion, and the second region contacts the insulating layer. 如申請專利範圍第8項所述之半導體元件,另包含一反射層,位於該第一導電氧化層遠離該接觸層的一側且接觸該第一導電氧化層及該絕緣層。 The semiconductor device described in Item 8 of the patent application further includes a reflective layer located on a side of the first conductive oxide layer away from the contact layer and in contact with the first conductive oxide layer and the insulating layer. 如申請專利範圍第8項所述之半導體元件,另包含一第二導電氧化層位於該第一導電氧化層遠離該接觸層的一側;其中,每一該第一導電氧化部具有一與該第一表面平行的第二表面以及一與該第一表面不平行的側表面,該第二表面接觸該第二導電氧化層,該側表面接觸該絕緣層。 The semiconductor device described in item 8 of the patent application further includes a second conductive oxide layer located on a side of the first conductive oxide layer away from the contact layer; wherein each first conductive oxide portion has a A second surface parallel to the first surface and a side surface not parallel to the first surface, the second surface contacts the second conductive oxide layer, and the side surface contacts the insulating layer.
TW110132123A 2021-08-30 2021-08-30 Semiconductor device TWI823136B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW110132123A TWI823136B (en) 2021-08-30 2021-08-30 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW110132123A TWI823136B (en) 2021-08-30 2021-08-30 Semiconductor device

Publications (2)

Publication Number Publication Date
TW202310449A TW202310449A (en) 2023-03-01
TWI823136B true TWI823136B (en) 2023-11-21

Family

ID=86690823

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110132123A TWI823136B (en) 2021-08-30 2021-08-30 Semiconductor device

Country Status (1)

Country Link
TW (1) TWI823136B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100140637A1 (en) * 2008-12-08 2010-06-10 Matthew Donofrio Light Emitting Diode with a Dielectric Mirror having a Lateral Configuration
US20120273814A1 (en) * 2010-12-16 2012-11-01 Xiamen Sanan Optoelectronics Technology Co., Ltd Light Emitting Diode with a Current Concentrating Structure
TW201830737A (en) * 2017-02-13 2018-08-16 鼎元光電科技股份有限公司 Light-emitting device and manufacturing method of light-emitting device using a conductor line to connect two ohmic contact layers so that a package process required by wire bonding can be eliminated to thus reduce the size of the light-emitting device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100140637A1 (en) * 2008-12-08 2010-06-10 Matthew Donofrio Light Emitting Diode with a Dielectric Mirror having a Lateral Configuration
US20120273814A1 (en) * 2010-12-16 2012-11-01 Xiamen Sanan Optoelectronics Technology Co., Ltd Light Emitting Diode with a Current Concentrating Structure
TW201830737A (en) * 2017-02-13 2018-08-16 鼎元光電科技股份有限公司 Light-emitting device and manufacturing method of light-emitting device using a conductor line to connect two ohmic contact layers so that a package process required by wire bonding can be eliminated to thus reduce the size of the light-emitting device

Also Published As

Publication number Publication date
TW202310449A (en) 2023-03-01

Similar Documents

Publication Publication Date Title
US20230014825A1 (en) Light-emitting device
US20230335669A1 (en) Semiconductor device
US20230129560A1 (en) Semiconductor device and semiconductor component including the same
US20230163239A1 (en) Semiconductor device and semiconductor component including the same
TWI823136B (en) Semiconductor device
TWI785930B (en) Optoelectronic semiconductor device
TWI840665B (en) Semiconductor device and semiconductor component including the same
TW202044618A (en) Semiconductor device
CN220569701U (en) Semiconductor element and semiconductor assembly
US20220302360A1 (en) Semiconductor device and semiconductor component including the same
US20230058195A1 (en) Semiconductor device
CN220358110U (en) Semiconductor element and semiconductor device including the same
TWI830100B (en) Semiconductor optoelectronic device
TW202245296A (en) Semiconductor device and semiconductor component including the same
TWI844832B (en) Semiconductor device and semiconductor component
TWI752295B (en) Optoelectronic semiconductor device
CN217086612U (en) Semiconductor device with a plurality of semiconductor chips
TWI823644B (en) Optoelectronic semiconductor device
US20240079524A1 (en) Semiconductor device
TW202337043A (en) Optoelectronic semiconductor device
TW202339300A (en) Semiconductor device and semiconductor component
TW202119651A (en) Semiconductor device and semiconductor component including the same