TWI817701B - Semiconductor structure and the method for forming the same - Google Patents

Semiconductor structure and the method for forming the same Download PDF

Info

Publication number
TWI817701B
TWI817701B TW111133332A TW111133332A TWI817701B TW I817701 B TWI817701 B TW I817701B TW 111133332 A TW111133332 A TW 111133332A TW 111133332 A TW111133332 A TW 111133332A TW I817701 B TWI817701 B TW I817701B
Authority
TW
Taiwan
Prior art keywords
layer
opening
forming
semiconductor structure
substrate
Prior art date
Application number
TW111133332A
Other languages
Chinese (zh)
Other versions
TW202412187A (en
Inventor
劉重顯
Original Assignee
華邦電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 華邦電子股份有限公司 filed Critical 華邦電子股份有限公司
Priority to TW111133332A priority Critical patent/TWI817701B/en
Application granted granted Critical
Publication of TWI817701B publication Critical patent/TWI817701B/en
Publication of TW202412187A publication Critical patent/TW202412187A/en

Links

Images

Abstract

A semiconductor structure is provided. The semiconductor structure includes a substrate including a trench between active regions, a tunneling dielectric layer disposed on the substrate, a floating gate disposed on the tunneling dielectric layer, an isolation feature, which has a first opening and a second opening below the first opening, disposed in the trench and on the substrate, mask disposed on the sidewall of the first opening, and a dielectric stack layer disposed directly above the mask and the second opening.

Description

半導體結構及其形成方法Semiconductor structures and methods of forming them

本揭露係有關於一種半導體結構,且特別是有關於快閃記憶體。 The present disclosure relates to a semiconductor structure, and in particular to a flash memory.

隨著半導體元件的尺寸持續微縮,許多挑戰隨之而生。例如,在快閃記憶體中,元件凹陷的控制對於元件的可靠性來說是重要的。舉例來說,在形成浮置閘極間的開口時,由於製程微縮,蝕刻製程所形成的開口深度變得難以控制,將導致後續控制閘極的形成位置不一,且蝕刻製程可能會造成浮置閘極的損耗,進而導致可靠性及良率下降。因此,業界仍需要改進快閃記憶體的結構及形成方法,以克服元件尺寸縮小所產生的問題。 As the size of semiconductor components continues to shrink, many challenges arise. For example, in flash memory, control of device dents is important for device reliability. For example, when forming openings between floating gates, due to process shrinkage, the depth of the openings formed by the etching process becomes difficult to control, which will result in subsequent formation positions of the control gates being different, and the etching process may cause floating gates to form. The loss of the gate electrode will lead to a decrease in reliability and yield. Therefore, the industry still needs to improve the structure and formation method of flash memory to overcome the problems caused by shrinking device size.

本發明實施例提供半導體結構,包含基板,其包含介於複數個主動區之間的溝槽;設置在基板上的穿隧介電層;設置在穿隧介電層上的浮置閘極層;設置在溝槽中與基板上的隔離部件, 其中隔離部件具有第一開口與位於第一開口下方的第二開口;設置在第一開口的側壁上的遮罩;以及設置在遮罩的正上方與第二開口的正上方的介電堆疊層。 Embodiments of the present invention provide a semiconductor structure, including a substrate including trenches between a plurality of active regions; a tunnel dielectric layer disposed on the substrate; and a floating gate layer disposed on the tunnel dielectric layer. ;Isolation components arranged in the trench and on the substrate, The isolation component has a first opening and a second opening located below the first opening; a mask disposed on the side wall of the first opening; and a dielectric stack layer disposed directly above the mask and directly above the second opening. .

本發明實施例提供半導體結構的形成方法,包含依序形成穿隧介電層、浮置閘極層、氧化層與蓋層於基板上;形成溝槽於基板、穿隧介電層、浮置閘極層、氧化層與蓋層中;形成隔離部件在溝槽中;以蓋層作為蝕刻遮罩蝕刻隔離部件,以形成第一開口;形成多個遮罩於第一開口的側壁上與第一開口的底部的一部分上;以多個遮罩作為蝕刻遮罩蝕刻隔離部件,以形成第二開口;以及形成介電堆疊層於多個遮罩的正上方與第二開口的正上方。 Embodiments of the present invention provide a method for forming a semiconductor structure, which includes sequentially forming a tunnel dielectric layer, a floating gate layer, an oxide layer, and a capping layer on a substrate; forming a trench on the substrate, the tunnel dielectric layer, and the floating gate layer. in the gate layer, oxide layer and cap layer; forming an isolation component in the trench; using the cap layer as an etching mask to etch the isolation component to form the first opening; forming a plurality of masks on the side walls of the first opening and the first opening. on a portion of the bottom of an opening; using a plurality of masks as etching masks to etch the isolation component to form a second opening; and forming a dielectric stack layer directly above the plurality of masks and directly above the second opening.

100:基板 100:Substrate

110:穿隧介電層 110: Tunnel dielectric layer

200:浮置閘極層 200: Floating gate layer

210:氧化層 210:Oxide layer

300:蓋層 300: cover

400:隔離部件 400:Isolation components

400T:溝槽 400T:Trench

500:遮罩層 500: Mask layer

500’:遮罩 500’:mask

600:犧牲層 600:Sacrificial layer

600’:犧牲件 600’:Sacrificial piece

700:介電堆疊層 700: Dielectric stack layer

800:控制閘極層 800: Control gate layer

1000:蝕刻製程 1000: Etching process

1100:沉積製程 1100:Deposition process

1200:蝕刻製程 1200: Etching process

1300:蝕刻製程 1300: Etching process

1400:蝕刻製程 1400: Etching process

AA:主動區 AA: active area

T500,T600:寬度 T500, T600: Width

O1:開口 O1: Open your mouth

O2:開口 O2:Open your mouth

W1:寬度 W1: Width

W2:寬度 W2: Width

第1-8圖是根據本發明的一些實施例,繪示形成半導體結構在不同階段的剖面示意圖。 1-8 are schematic cross-sectional views illustrating different stages of forming a semiconductor structure according to some embodiments of the present invention.

第9-10圖是根據本發明的其他實施例,繪示形成半導體結構在不同階段的剖面示意圖。 9-10 are schematic cross-sectional views showing different stages of forming a semiconductor structure according to other embodiments of the present invention.

第1-8圖是根據本發明的一些實施例,繪示形成半導體結構在不同階段的剖面示意圖。 1-8 are schematic cross-sectional views illustrating different stages of forming a semiconductor structure according to some embodiments of the present invention.

參照第1圖,提供基板100。基板100可以是元素半導體基板,例如矽基板、或鍺基板;或化合物半導體基板,例如碳化 矽基板、砷化鎵基板、磷化鎵基板、磷化銦基板、砷化銦基板及/或銻化銦基板;或合金半導體,例如SiGe、GaAsP、AlInAs、AlGaAs、GaInAs、GaInP、GaInAsP、及/或前述之組合。在一些實施例中,半導體基板100可以是絕緣體上的半導體基板。 Referring to Figure 1, a substrate 100 is provided. The substrate 100 may be an element semiconductor substrate, such as a silicon substrate or a germanium substrate; or a compound semiconductor substrate, such as a carbonized substrate. Silicon substrate, gallium arsenide substrate, gallium phosphide substrate, indium phosphide substrate, indium arsenide substrate and/or indium antimonide substrate; or alloy semiconductor, such as SiGe, GaAsP, AlInAs, AlGaAs, GaInAs, GaInP, GaInAsP, and /or a combination of the above. In some embodiments, the semiconductor substrate 100 may be a semiconductor-on-insulator substrate.

繼續參照第1圖,在基板100上形成穿隧介電層110、浮置閘極層200、氧化層210、及蓋層300。 Continuing to refer to FIG. 1 , a tunnel dielectric layer 110 , a floating gate layer 200 , an oxide layer 210 and a capping layer 300 are formed on the substrate 100 .

穿隧介電層110可包括氧化物、氮化物、氮氧化物、或前述之組合。在一實施例中,穿隧介電層110可為氧化矽、氮化矽、氮氧化矽、高介電常數(high-k)材料、或前述之組合。高介電常數材料可為金屬氧化物、金屬氮化物、金屬矽化物、過渡金屬氧化物、過渡金屬氮化物、過渡金屬矽化物、金屬的氮氧化物、金屬鋁酸鹽、鋯矽酸鹽、鋯鋁酸鹽。在一實施例中,穿隧介電層110可藉由沉積製程或熱氧化製程來形成。前述沉積製程可包括化學氣相沉積(chemical vapor deposition,CVD)製程、物理氣相沉積(physical vapor deposition,PVD)製程、原子層沉積(atomic layer deposition,ALD)製程或其它合適的製程。 The tunnel dielectric layer 110 may include oxide, nitride, oxynitride, or a combination of the foregoing. In one embodiment, the tunnel dielectric layer 110 may be silicon oxide, silicon nitride, silicon oxynitride, a high-k material, or a combination of the foregoing. High dielectric constant materials can be metal oxides, metal nitrides, metal silicides, transition metal oxides, transition metal nitrides, transition metal silicides, metal oxynitrides, metal aluminates, zirconosilicates, Zircoaluminate. In one embodiment, the tunnel dielectric layer 110 may be formed by a deposition process or a thermal oxidation process. The aforementioned deposition process may include a chemical vapor deposition (CVD) process, a physical vapor deposition (PVD) process, an atomic layer deposition (ALD) process, or other suitable processes.

浮置閘極層200可包含導電材料,例如摻雜或未摻雜的多晶矽、非晶矽、金屬、金屬氮化物、導電金屬氧化物、或其組合,且其形成方法例如可包括CVD、PVD、ALD、濺鍍法、電阻加熱蒸鍍法、電子束蒸鍍法或其它合適的製程。 The floating gate layer 200 may include conductive materials, such as doped or undoped polycrystalline silicon, amorphous silicon, metal, metal nitride, conductive metal oxide, or combinations thereof, and its formation method may include, for example, CVD, PVD , ALD, sputtering, resistance heating evaporation, electron beam evaporation or other suitable processes.

氧化層210例如可包含四乙氧基矽烷(TEOS),且其形成方法例如可包括CVD、PVD、ALD、或其他合適的製程。蓋層 300可包含氮化物,例如氮化矽等,且其形成方法例如可包括CVD、PVD、ALD、或其他合適的製程。氧化層210及蓋層300可作為保護層,以在後續的蝕刻製程保護浮置閘極層200受到損耗。 The oxide layer 210 may include, for example, tetraethoxysilane (TEOS), and its formation method may include, for example, CVD, PVD, ALD, or other suitable processes. capping layer 300 may include nitride, such as silicon nitride, and its formation method may include, for example, CVD, PVD, ALD, or other suitable processes. The oxide layer 210 and the capping layer 300 can serve as protective layers to protect the floating gate layer 200 from loss during the subsequent etching process.

繼續參照第1圖,在基板100的主動區AA之間形成隔離部件400。詳細來說,在基板100、穿隧介電層110、浮置閘極層200、氧化層210與蓋層300中形成溝槽400T,並形成隔離部件400於溝槽400T中。在一實施例中,可藉由隔離部件400定義出主動區AA。隔離部件400可包含介電材料,其可包含氧化矽、氮化矽、氮氧化矽、磷矽酸玻璃、硼磷矽酸鹽玻璃、氟化矽酸鹽玻璃、未摻雜的矽玻璃、有機矽酸玻璃、SiOxCy、旋塗式玻璃、四乙氧基矽烷、低介電常數介電材料、或其組合。 Continuing to refer to FIG. 1 , isolation components 400 are formed between the active areas AA of the substrate 100 . Specifically, a trench 400T is formed in the substrate 100, the tunnel dielectric layer 110, the floating gate layer 200, the oxide layer 210 and the capping layer 300, and the isolation component 400 is formed in the trench 400T. In one embodiment, the active area AA can be defined by the isolation component 400 . The isolation component 400 may include a dielectric material, which may include silicon oxide, silicon nitride, silicon oxynitride, phosphosilicate glass, borophosphosilicate glass, fluorosilicate glass, undoped silicon glass, organic Silicate glass, SiO x C y , spin-on glass, tetraethoxysilane, low-k dielectric materials, or combinations thereof.

在一實施例中,可先藉由非等向性乾蝕刻製程蝕刻蓋層300、浮置閘極層200、穿隧介電層110、與基板100來形成溝槽400T,再藉由類似於上述的沉積製程來沉積隔離部件材料,接著藉由平坦化製程或蝕刻製程去除多餘的隔離部件材料,來形成隔離部件400。在一實施例中,蓋層300與隔離部件400可分別包含氮化物(如氮化矽)與氧化物(如旋塗式玻璃)。在一實施例中,隔離部件400的頂表面與蓋層300的頂表面齊平。前述蝕刻製程例如可包含乾式或濕式蝕刻製程。前述平坦化製程可包含化學機械研磨。 In one embodiment, the trench 400T can be formed by first etching the capping layer 300, the floating gate layer 200, the tunneling dielectric layer 110, and the substrate 100 through an anisotropic dry etching process, and then through a process similar to The above-mentioned deposition process deposits the isolation component material, and then removes excess isolation component material through a planarization process or an etching process to form the isolation component 400 . In one embodiment, the capping layer 300 and the isolation component 400 may include nitride (such as silicon nitride) and oxide (such as spin-on glass), respectively. In one embodiment, the top surface of the isolation component 400 is flush with the top surface of the cover layer 300 . The aforementioned etching process may include, for example, a dry or wet etching process. The aforementioned planarization process may include chemical mechanical polishing.

請參照第2圖,藉由蝕刻製程1000蝕刻隔離部件400的上部,以形成開口O1。在一實施例中,形成的開口O1的底表面高於穿隧介電層110的頂表面。在一實施例中,開口O1具有 寬度W1。在一實施例中,蝕刻製程1000包含非等向性乾蝕刻製程。 Referring to FIG. 2 , the upper part of the isolation component 400 is etched through the etching process 1000 to form the opening O1 . In one embodiment, the bottom surface of the opening O1 is formed higher than the top surface of the tunnel dielectric layer 110 . In one embodiment, the opening O1 has Width W1. In one embodiment, the etching process 1000 includes an anisotropic dry etching process.

接著,參照第3-5圖,形成遮罩500’於開口O1的側壁上與開口O1的底部的一部分上。 Next, referring to Figure 3-5, a mask 500' is formed on the side wall of the opening O1 and a part of the bottom of the opening O1.

詳細來說,如第3圖所示,藉由沉積製程1100順應性形成遮罩層500與犧牲層600。即,沿著蓋層300的頂表面、開口O1的底表面與側壁依序形成遮罩層500與犧牲層600。遮罩層500可包含氮化物,例如氮化矽。犧牲層600可包含氧化物,例如高溫氧化物或氧化矽。在一實施例中,可透過CVD、PVD、ALD、或其他合適的製程形成遮罩層500與犧牲層600。在一特定實施例中,相較於藉由CVD製程形成犧牲層600造成在邊角處厚度過大,藉由ALD製程形成犧牲層600可在邊角處形成厚度較均勻的輪廓。 Specifically, as shown in FIG. 3 , the mask layer 500 and the sacrificial layer 600 are compliantly formed through a deposition process 1100 . That is, the mask layer 500 and the sacrificial layer 600 are sequentially formed along the top surface of the cover layer 300, the bottom surface and side walls of the opening O1. Mask layer 500 may include nitride, such as silicon nitride. Sacrificial layer 600 may include an oxide, such as a high temperature oxide or silicon oxide. In one embodiment, the mask layer 500 and the sacrificial layer 600 can be formed through CVD, PVD, ALD, or other suitable processes. In a specific embodiment, compared to forming the sacrificial layer 600 through a CVD process, which results in excessive thickness at the corners, forming the sacrificial layer 600 through an ALD process can form a more uniform thickness profile at the corners.

如第3圖所示,遮罩層500具有寬度T500,犧牲層600具有寬度T600。在一實施例中,可藉由寬度T600控制後續形成的第二開口的寬度(第6圖),並進一步控制是否於相鄰的主動區之間設置氣隙(參考第8與10圖)。 As shown in Figure 3, the mask layer 500 has a width T500, and the sacrificial layer 600 has a width T600. In one embodiment, the width T600 can be used to control the width of the subsequently formed second opening (Fig. 6), and further control whether to set an air gap between adjacent active areas (refer to Figs. 8 and 10).

接著,如第4圖所示,藉由蝕刻製程1200去除犧牲層600的橫向部分以形成多個犧牲件600’於開口O1的側壁上。詳細來說,去除蓋層300頂表面上與隔離部件400頂表面上的犧牲層600,以在開口O1的側壁上留下多個犧牲件600’。在一實施例中,蝕刻製程1200包含具有蝕刻選擇性之非等向性乾蝕刻製程。 Next, as shown in FIG. 4 , the lateral portion of the sacrificial layer 600 is removed through the etching process 1200 to form a plurality of sacrificial members 600' on the sidewalls of the opening O1. In detail, the sacrificial layer 600 on the top surface of the cover layer 300 and the top surface of the isolation component 400 is removed to leave a plurality of sacrificial pieces 600' on the side walls of the opening O1. In one embodiment, the etching process 1200 includes an anisotropic dry etching process with etch selectivity.

接著,如第5圖所示,藉由蝕刻製程1300去除遮罩層500的橫向部分以形成多個遮罩500’於開口O1的側壁上。詳細來說,去除未被犧牲層600’覆蓋的遮罩層500(即,蓋層300上的遮罩層500與隔離部件400上且位於犧牲件600’之間的遮罩層500),以在開口O1的側壁上留下多個遮罩500’。在一實施例中,藉由蝕刻製程1300更去除蓋層300與氧化層210。在一實施例中,遮罩500’的頂表面不高於浮置閘極層200的頂表面,以確保在犧牲件600’之間的遮罩層500能夠截斷,進而暴露出下方的隔離部件400。在一實施例中,遮罩500’呈現L形,其除作為後續形成開口之蝕刻遮罩外,並可保護浮置閘極層200的側壁於後續的蝕刻製程中受到損耗。 Next, as shown in FIG. 5, the lateral portion of the mask layer 500 is removed through the etching process 1300 to form a plurality of masks 500' on the side walls of the opening O1. In detail, the mask layer 500 that is not covered by the sacrificial layer 600' (ie, the mask layer 500 on the cover layer 300 and the mask layer 500 on the isolation component 400 and between the sacrificial component 600') is removed, so as to A plurality of masks 500' are left on the side walls of the opening O1. In one embodiment, the capping layer 300 and the oxide layer 210 are further removed through the etching process 1300 . In one embodiment, the top surface of the mask 500' is no higher than the top surface of the floating gate layer 200 to ensure that the mask layer 500 between the sacrificial members 600' can be cut off to expose the underlying isolation components. 400. In one embodiment, the mask 500' is L-shaped, which not only serves as an etching mask for subsequent formation of openings, but also protects the sidewalls of the floating gate layer 200 from being lost in the subsequent etching process.

在一實施例中,蝕刻製程1300包含具有蝕刻選擇性之等向性濕蝕刻製程,其在大致上不蝕刻浮置閘極層200的情況下,蝕刻遮罩層500、蓋層300與氧化層210。在另一實施例中,蝕刻製程1300包含具有蝕刻選擇性之非等向性乾蝕刻製程與等向性濕蝕刻製程。詳細來說,可藉由乾蝕刻先將犧牲件600’之間的遮罩層500截斷,並去除浮置閘極層200上的遮罩層500,再藉由乾蝕刻或濕蝕刻去除蓋層300,接著藉由乾蝕刻製程去除氧化層210。藉此,可防止側向蝕刻。應注意的是,由於濕蝕刻的影響,遮罩500的頂表面可能會略低於浮置閘極層200的頂表面。濕蝕刻製程可包含磷酸(H3PO4)溶液而乾蝕刻製程包含鹵代烴蝕刻劑(例如CF4、CHF3、CH2F2等)。 In one embodiment, the etching process 1300 includes an isotropic wet etching process with etch selectivity, which etch the mask layer 500 , the capping layer 300 and the oxide layer without substantially etching the floating gate layer 200 210. In another embodiment, the etching process 1300 includes an anisotropic dry etching process and an isotropic wet etching process with etching selectivity. Specifically, the mask layer 500 between the sacrificial members 600' can be cut off first by dry etching, and the mask layer 500 on the floating gate layer 200 can be removed, and then the capping layer can be removed by dry etching or wet etching. 300, and then remove the oxide layer 210 through a dry etching process. This prevents lateral etching. It should be noted that due to the effects of wet etching, the top surface of the mask 500 may be slightly lower than the top surface of the floating gate layer 200 . The wet etching process may include a phosphoric acid (H 3 PO 4 ) solution and the dry etching process may include a halogenated hydrocarbon etchant (eg, CF 4 , CHF 3 , CH 2 F 2 , etc.).

接著,如第6圖所示,以遮罩500作為蝕刻遮罩,藉由蝕刻製程1400蝕刻隔離部件400,以形成開口O2。此外,在一實施例中,犧牲件600’可以在蝕刻隔離部件400的期間一併被去除,也可以在蝕刻隔離部件400之前或之後被去除。在一些實施例中,開口O2的底表面低於穿隧介電層110的底表面,換言之,如第6圖所示,開口O2的底部向下延伸至二相鄰主動區AA之間。在一實施例中,開口O2的寬度W2小於第一開口的寬度W1(W2<W1)。 Next, as shown in FIG. 6 , using the mask 500 as an etching mask, the isolation component 400 is etched through the etching process 1400 to form the opening O2 . Furthermore, in one embodiment, the sacrificial member 600' may be removed during the etching of the isolation component 400, or may be removed before or after the isolation component 400 is etched. In some embodiments, the bottom surface of the opening O2 is lower than the bottom surface of the tunnel dielectric layer 110 . In other words, as shown in FIG. 6 , the bottom of the opening O2 extends downward to between two adjacent active areas AA. In one embodiment, the width W2 of the opening O2 is smaller than the width W1 of the first opening (W2<W1).

在一實施例中,蝕刻製程1400包含具有蝕刻選擇性的等向性濕蝕刻製程,例如,緩衝氫氟酸、氫氟酸稀釋溶液等。相較於使用乾蝕刻製程的情況,使用濕蝕刻製程可防止電漿攻擊浮置閘極層200。 In one embodiment, the etching process 1400 includes an isotropic wet etching process with etching selectivity, such as buffered hydrofluoric acid, dilute hydrofluoric acid solution, etc. Compared with using a dry etching process, using a wet etching process can prevent plasma from attacking the floating gate layer 200 .

在一實施例中,由於犧牲件600’與隔離部件400皆包含氧化物,而遮罩500’包含氮化物,因此蝕刻製程1400可在大致上不去除遮罩500’的情況下,同時去除犧牲件600’與部分的隔離部件400,藉以減少製程複雜度。在一實施例中,由於開口O1藉由乾蝕刻製程形成、開口O2藉由濕蝕刻製程形成,因此在基板100的法線方向上,開口O1的寬度W1大致上不隨著向基板100而改變,而開口O2的寬度隨著向基板100而縮小。此外,在一實施例中,開口O1呈現方形(具有角),而開口O2呈現弧形(或碗狀)。 In one embodiment, since the sacrificial member 600' and the isolation member 400 both include oxide, and the mask 500' includes nitride, the etching process 1400 can simultaneously remove the sacrificial member without substantially removing the mask 500'. 600' and part of the isolation component 400, thereby reducing process complexity. In one embodiment, since the opening O1 is formed by a dry etching process and the opening O2 is formed by a wet etching process, the width W1 of the opening O1 does not substantially change toward the substrate 100 in the normal direction of the substrate 100 , and the width of the opening O2 decreases toward the substrate 100 . Furthermore, in one embodiment, the opening O1 is square (with corners), and the opening O2 is arc-shaped (or bowl-shaped).

接著,參照第7圖,於基板100上順應性地形成介電堆疊層700。詳細而言,介電堆疊層700覆蓋浮置閘極200、遮 罩500’、以及開口O2中暴露出的隔離部件400。介電堆疊層700可包含單層結構或多層結構,例如,可僅為氮化矽或氧化矽,或者,也可為氧化物-氮化物-氧化物結構或氧化物-氮化物-氧化物-氮化物結構。在一實施例中,形成介電堆疊層700的方法例如可包括CVD、PVD、ALD、或其他合適的製程。 Next, referring to FIG. 7 , a dielectric stack layer 700 is compliantly formed on the substrate 100 . In detail, the dielectric stack layer 700 covers the floating gate 200, shields Cover 500', and isolation member 400 exposed in opening O2. The dielectric stack 700 may include a single-layer structure or a multi-layer structure, for example, may be only silicon nitride or silicon oxide, or may also be an oxide-nitride-oxide structure or an oxide-nitride-oxide- Nitride structure. In one embodiment, a method of forming the dielectric stack layer 700 may include, for example, CVD, PVD, ALD, or other suitable processes.

接著,參照第8圖,在介電堆疊層700上全面性地形成控制閘極層800。控制閘極層800可包含類似上述的導電材料,例如多晶矽,且其形成方法例如可包括CVD、PVD、ALD、或其他合適的製程。 Next, referring to FIG. 8 , the control gate layer 800 is comprehensively formed on the dielectric stack layer 700 . The control gate layer 800 may include a conductive material similar to that described above, such as polysilicon, and its formation method may include, for example, CVD, PVD, ALD, or other suitable processes.

第9-10圖是根據本發明的其他實施例,繪示形成半導體結構在不同階段的剖面示意圖。 9-10 are schematic cross-sectional views showing different stages of forming a semiconductor structure according to other embodiments of the present invention.

承接第6圖,第9圖的結構大致上與第7圖相似,其差異在於,介電堆疊層700懸置(suspend)於開口O2上方。即,介電堆疊層700覆蓋浮置閘極200及遮罩500’,但並未覆蓋開口O2中暴露出的隔離部件400。因此,開口O2中設置有氣隙G,氣隙G介於介電堆疊層700與隔離部件400之間。在一實施例中,藉由在兩個相鄰主動區AA之間的隔離部件400設置氣隙G,可進一步降低相鄰主動區間的干擾。在一實施例中,由於應力影響,在兩個遮罩500’之間的介電堆疊層700呈現碟形(dish-shaped),即兩側高於中間。 Continuing from FIG. 6 , the structure of FIG. 9 is generally similar to that of FIG. 7 , except that the dielectric stack layer 700 is suspended above the opening O2 . That is, the dielectric stack layer 700 covers the floating gate 200 and the mask 500', but does not cover the isolation component 400 exposed in the opening O2. Therefore, an air gap G is provided in the opening O2, and the air gap G is between the dielectric stack layer 700 and the isolation component 400. In one embodiment, by setting an air gap G in the isolation component 400 between two adjacent active areas AA, the interference between adjacent active areas can be further reduced. In one embodiment, due to stress effects, the dielectric stack layer 700 between the two masks 500' is dish-shaped, that is, the two sides are higher than the middle.

接著,類似於第8圖的實施例,形成控制閘極層800於介電堆疊層700上,而可得到如第10圖的半導體結構。 Next, similar to the embodiment of FIG. 8 , a control gate layer 800 is formed on the dielectric stack layer 700 to obtain the semiconductor structure as shown in FIG. 10 .

綜上所述,相較於以往僅藉由乾蝕刻製程或僅藉由濕蝕刻製程所形成的單一開口而言,根據本發明的實施例,藉由在浮置閘極層的頂部形成氧化物、蓋層,並在在浮置閘極層的側壁形成遮罩,並分段形成兩個開口,可減少浮置閘極層在蝕刻的過程中受到損耗,並可較佳的控制整體開口(兩個開口)的輪廓及所有開口的均勻度,確保後續控制閘極層形成的位置,提高結構的可靠性。再者,根據本發明的實施例,透過形成延伸至相鄰主動區間的開口,可進一步使介電堆疊層延伸至相鄰的主動區間,降低相鄰主動區之間的操作干擾。此外,本發明一實施例更可透過在開口處設置氣隙,進一步降低相鄰主動區將的操作干擾,提高結構的可靠性。 In summary, compared with the previous single opening formed only by a dry etching process or only a wet etching process, according to embodiments of the present invention, by forming an oxide on the top of the floating gate layer , cover layer, and form a mask on the side wall of the floating gate layer, and form two openings in segments, which can reduce the loss of the floating gate layer during the etching process, and can better control the overall opening ( The outline of the two openings) and the uniformity of all openings ensure the subsequent control of the position of the gate layer formation and improve the reliability of the structure. Furthermore, according to embodiments of the present invention, by forming openings extending to adjacent active areas, the dielectric stack layer can be further extended to adjacent active areas, thereby reducing operational interference between adjacent active areas. In addition, an embodiment of the present invention can further reduce the operational interference of adjacent active areas and improve the reliability of the structure by setting an air gap at the opening.

100:基板 100:Substrate

110:穿隧介電層 110: Tunnel dielectric layer

200:浮置閘極層 200: Floating gate layer

400:隔離部件 400:Isolation parts

500’:遮罩 500’:mask

700:介電堆疊層 700: Dielectric stack layer

O1:開口 O1: Open your mouth

O2:開口 O2:Open your mouth

Claims (13)

一種半導體結構,包括:一基板,包括介於複數個主動區之間的一溝槽;一穿隧介電層,設置在該基板上;一浮置閘極層,設置在該穿隧介電層上;一隔離部件,設置在該溝槽中與該基板上,其中該隔離部件具有一第一開口與位於該第一開口下方的一第二開口;一遮罩,設置在該第一開口的側壁及底部,其中該遮罩為L形;以及一介電堆疊層,設置在該遮罩的正上方與該第二開口的正上方。 A semiconductor structure includes: a substrate including a trench between a plurality of active regions; a tunneling dielectric layer disposed on the substrate; and a floating gate layer disposed on the tunneling dielectric on the layer; an isolation component disposed in the trench and on the substrate, wherein the isolation component has a first opening and a second opening located below the first opening; a mask disposed on the first opening The side walls and bottom of the shield are L-shaped; and a dielectric stack layer is disposed directly above the shield and directly above the second opening. 如請求項1之半導體結構,其中該第二開口的底表面低於該穿隧介電層的底表面。 The semiconductor structure of claim 1, wherein a bottom surface of the second opening is lower than a bottom surface of the tunnel dielectric layer. 如請求項1之半導體結構,其中在該基板的法線方向上,該第一開口的寬度大致上不隨著向該基板而改變,而該第二開口的寬度隨著向該基板而縮小。 The semiconductor structure of claim 1, wherein in the normal direction of the substrate, the width of the first opening does not substantially change toward the substrate, and the width of the second opening decreases toward the substrate. 如請求項1之半導體結構,其中在該第二開口中設置氣隙,其中該氣隙介於該隔離部件與該介電堆疊層之間。 The semiconductor structure of claim 1, wherein an air gap is provided in the second opening, wherein the air gap is between the isolation component and the dielectric stack layer. 如請求項1之半導體結構,其中該介電堆疊層懸置(suspend)於該第二開口上方。 The semiconductor structure of claim 1, wherein the dielectric stack layer is suspended above the second opening. 如請求項1之半導體結構,其中該介電堆疊層設置於該第一開口的側表面與底表面以及該第二開口的側表面與底表面。 The semiconductor structure of claim 1, wherein the dielectric stack layer is disposed on the side surface and the bottom surface of the first opening and the side surface and the bottom surface of the second opening. 一種半導體結構的形成方法,包括:依序形成一穿隧介電層、一浮置閘極層、一氧化層與一蓋層於一基板上;形成一溝槽於該基板、該穿隧介電層、該浮置閘極層、該氧化層、與該蓋層中;形成一隔離部件在該溝槽中;以該蓋層作為蝕刻遮罩蝕刻該隔離部件,以形成一第一開口;形成多個遮罩於該第一開口的側壁上與該第一開口的底部的一部分上;以該些遮罩作為蝕刻遮罩蝕刻該隔離部件,以形成一第二開口;以及形成一介電堆疊層於該些遮罩的正上方與該第二開口的正上方。 A method for forming a semiconductor structure, including: sequentially forming a tunnel dielectric layer, a floating gate layer, an oxide layer and a capping layer on a substrate; forming a trench on the substrate, the tunnel dielectric forming an isolation component in the trench in the electrical layer, the floating gate layer, the oxide layer, and the cap layer; etching the isolation component using the cap layer as an etching mask to form a first opening; Forming a plurality of masks on the sidewalls of the first opening and a portion of the bottom of the first opening; etching the isolation component using the masks as etching masks to form a second opening; and forming a dielectric The layers are stacked directly above the masks and directly above the second opening. 如請求項7之半導體結構的形成方法,其中形成該第一開口的步驟包括使用乾蝕刻製程,且其中形成該第二開口的步驟包括使用濕蝕刻製程。 The method of forming a semiconductor structure as claimed in claim 7, wherein the step of forming the first opening includes using a dry etching process, and wherein the step of forming the second opening includes using a wet etching process. 如請求項7之半導體結構的形成方法,形成該些遮罩的步驟包括:沿著該第一開口的側壁與底表面依序形成一遮罩層與一犧牲層;依序去除該犧牲層的橫向部分與該遮罩層的橫向部分,以分別形成多個犧牲件與多個遮罩於該第一開口的側壁上;以及去除該些犧牲件。 As in the method of forming a semiconductor structure according to claim 7, the steps of forming the masks include: sequentially forming a mask layer and a sacrificial layer along the sidewall and bottom surface of the first opening; and sequentially removing the sacrificial layer. The transverse portion and the transverse portion of the mask layer are used to form a plurality of sacrificial members and a plurality of masks on the side walls of the first opening respectively; and the sacrificial members are removed. 如請求項9之半導體結構的形成方法,其中去除該犧牲層的橫向部分的步驟包括藉由非等向性乾蝕刻製程蝕刻該犧牲層。 The method of forming a semiconductor structure according to claim 9, wherein the step of removing the lateral portion of the sacrificial layer includes etching the sacrificial layer through an anisotropic dry etching process. 如請求項9之半導體結構的形成方法,其中去除該遮罩層的橫向部分的步驟包括藉由濕蝕刻製程蝕刻未被該些犧牲件覆蓋的該遮罩層。 The method of forming a semiconductor structure as claimed in claim 9, wherein the step of removing the lateral portion of the mask layer includes etching the mask layer not covered by the sacrificial members through a wet etching process. 如請求項7之半導體結構的形成方法,其中形成該第一開口的步驟包括暴露出該浮置閘極層的側壁,但不暴露出該穿隧介電層的側壁。 The method of forming a semiconductor structure as claimed in claim 7, wherein the step of forming the first opening includes exposing sidewalls of the floating gate layer but not exposing sidewalls of the tunnel dielectric layer. 如請求項7之半導體結構的形成方法,其中在形成該第二開口之前,該方法更包括:去除該蓋層與該氧化層。 The method of forming a semiconductor structure as claimed in claim 7, wherein before forming the second opening, the method further includes: removing the capping layer and the oxide layer.
TW111133332A 2022-09-02 2022-09-02 Semiconductor structure and the method for forming the same TWI817701B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW111133332A TWI817701B (en) 2022-09-02 2022-09-02 Semiconductor structure and the method for forming the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW111133332A TWI817701B (en) 2022-09-02 2022-09-02 Semiconductor structure and the method for forming the same

Publications (2)

Publication Number Publication Date
TWI817701B true TWI817701B (en) 2023-10-01
TW202412187A TW202412187A (en) 2024-03-16

Family

ID=89857916

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111133332A TWI817701B (en) 2022-09-02 2022-09-02 Semiconductor structure and the method for forming the same

Country Status (1)

Country Link
TW (1) TWI817701B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101118877A (en) * 2006-08-01 2008-02-06 力晶半导体股份有限公司 Method for manufacturing flash memory
CN101840888A (en) * 2009-03-16 2010-09-22 台湾积体电路制造股份有限公司 Integrated circuit structure and method for forming the same
US20190341449A1 (en) * 2017-04-19 2019-11-07 Winbond Electronics Corp. Method of manufacturing memory structure

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101118877A (en) * 2006-08-01 2008-02-06 力晶半导体股份有限公司 Method for manufacturing flash memory
CN101840888A (en) * 2009-03-16 2010-09-22 台湾积体电路制造股份有限公司 Integrated circuit structure and method for forming the same
US20190341449A1 (en) * 2017-04-19 2019-11-07 Winbond Electronics Corp. Method of manufacturing memory structure

Similar Documents

Publication Publication Date Title
TWI582950B (en) Semiconductor device and manufacturing method thereof
US9923100B2 (en) Flash memory structure and fabrication method thereof
CN107785315B (en) Method for forming semiconductor structure
CN104733315B (en) The forming method of semiconductor structure
TWI779778B (en) Memory device and method of forming the same
US8513132B2 (en) Method for fabricating metal pattern in semiconductor device
US10522662B1 (en) FinFET device with T-shaped fin and method for forming the same
US10658489B2 (en) Semiconductor structure and fabrication method thereof
CN107768308B (en) Semiconductor structure and forming method thereof
US7968423B2 (en) Method for forming isolation layer and method for fabricating nonvolatile memory device using the same
CN110581101B (en) Semiconductor device and method of forming the same
TWI609457B (en) Method of forming contact hole and semiconductor structure with contact plug
CN108962817B (en) Semiconductor structure and forming method thereof
CN108807377B (en) Semiconductor device and method of forming the same
US10566203B1 (en) Method for alleviating etching defect of salicide barrier layer
TWI817701B (en) Semiconductor structure and the method for forming the same
CN113903666B (en) Semiconductor structure and forming method thereof
WO2022109988A1 (en) Semiconductor structure and method for forming semiconductor structure
TW202412187A (en) Semiconductor structure and the method for forming the same
TWI618224B (en) Memory structure and manufacturing method there
CN107731917B (en) Method for forming semiconductor structure
CN112117192A (en) Method for forming semiconductor structure
CN108155148B (en) Method for forming semiconductor structure
CN114068709B (en) Semiconductor device and method of forming the same
CN111430241B (en) Semiconductor structure and forming method thereof