TWI817491B - Boost converter with high efficiency - Google Patents

Boost converter with high efficiency Download PDF

Info

Publication number
TWI817491B
TWI817491B TW111117425A TW111117425A TWI817491B TW I817491 B TWI817491 B TW I817491B TW 111117425 A TW111117425 A TW 111117425A TW 111117425 A TW111117425 A TW 111117425A TW I817491 B TWI817491 B TW I817491B
Authority
TW
Taiwan
Prior art keywords
terminal
potential
coupled
node
transistor
Prior art date
Application number
TW111117425A
Other languages
Chinese (zh)
Other versions
TW202345509A (en
Inventor
詹子增
Original Assignee
宏碁股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宏碁股份有限公司 filed Critical 宏碁股份有限公司
Priority to TW111117425A priority Critical patent/TWI817491B/en
Application granted granted Critical
Publication of TWI817491B publication Critical patent/TWI817491B/en
Publication of TW202345509A publication Critical patent/TW202345509A/en

Links

Images

Landscapes

  • Dc-Dc Converters (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

A boost converter includes a bridge rectifier, a boost inductor, a supply circuit, a power switch element, a PWM (Pulse Width Modulation) IC (Integrated Circuit), an output stage circuit, a voltage divider circuit, a logic circuit, and an active rectifying circuit. The bridge rectifier generates a rectified voltage according to a first input voltage and a second input voltage. The supply circuit generates a supply voltage according to the rectified voltage. The PWM IC is supplied by the supply voltage, and generates a start-up voltage. The output stage circuit generates an output voltage. The voltage divider circuit generates a divided voltage according to the output voltage. The logic circuit generates a logic voltage according to the start-up voltage and the divided voltage. The active rectifying circuit selectively controls the rectified voltage according to the logic voltage.

Description

高效率之升壓轉換器High efficiency boost converter

本發明係關於一種升壓轉換器,特別係關於一種具有高效率之升壓轉換器。The present invention relates to a boost converter, and in particular to a boost converter with high efficiency.

在傳統升壓轉換器當中,其橋式整流器通常具有較大之功率損耗。然而,若將橋式整流器以一主動電路元件來取代,則此主動電路元件又常有被初始時瞬間過大之湧浪電流所燒毀之風險。有鑑於此,勢必要提出一種全新之解決方案,以克服先前技術所面臨之困境。In traditional boost converters, the bridge rectifier usually has large power losses. However, if the bridge rectifier is replaced by an active circuit component, there is often a risk that the active circuit component will be burned out by the initial excessive surge current. In view of this, it is necessary to propose a new solution to overcome the difficulties faced by previous technologies.

在較佳實施例中,本發明提出一種升壓轉換器,包括:一橋式整流器,根據一第一輸入電位和一第二輸入電位來產生一整流電位;一升壓電感器,接收該整流電位;一供電電路,根據該整流電位來產生一供應電位;一功率切換器,根據一脈波寬度調變電位來選擇性地將該升壓電感器耦接至一接地電位;一脈波寬度調變積體電路,由該供應電位來進行供電,並產生該脈波寬度調變電位和一啟動電位;一輸出級電路,耦接至該升壓電感器,並產生一輸出電位;一分壓電路,根據該輸出電位來產生一分壓電位;一邏輯電路,根據該啟動電位和該分壓電位來產生一邏輯電位;以及一主動整流電路,接收該第一輸入電位和該第二輸入電位,其中該主動整流電路係根據該邏輯電位來選擇性地控制該整流電位。In a preferred embodiment, the present invention proposes a boost converter, including: a bridge rectifier that generates a rectified potential based on a first input potential and a second input potential; a boost inductor that receives the rectified potential ; A power supply circuit that generates a supply potential based on the rectified potential; a power switch that modulates the potential based on a pulse width to selectively couple the boost inductor to a ground potential; a pulse width A modulation integrated circuit is powered by the supply potential and generates the pulse width modulation potential and a starting potential; an output stage circuit is coupled to the boost inductor and generates an output potential; A voltage dividing circuit generates a divided voltage potential based on the output potential; a logic circuit generates a logic potential based on the starting potential and the divided voltage potential; and an active rectification circuit receives the first input potential and The second input potential, wherein the active rectification circuit selectively controls the rectification potential according to the logic potential.

為讓本發明之目的、特徵和優點能更明顯易懂,下文特舉出本發明之具體實施例,並配合所附圖式,作詳細說明如下。In order to make the purpose, features and advantages of the present invention more obvious and easy to understand, specific embodiments of the present invention are listed below and described in detail with reference to the accompanying drawings.

在說明書及申請專利範圍當中使用了某些詞彙來指稱特定的元件。本領域技術人員應可理解,硬體製造商可能會用不同的名詞來稱呼同一個元件。本說明書及申請專利範圍並不以名稱的差異來作為區分元件的方式,而是以元件在功能上的差異來作為區分的準則。在通篇說明書及申請專利範圍當中所提及的「包含」及「包括」一詞為開放式的用語,故應解釋成「包含但不僅限定於」。「大致」一詞則是指在可接受的誤差範圍內,本領域技術人員能夠在一定誤差範圍內解決所述技術問題,達到所述基本之技術效果。此外,「耦接」一詞在本說明書中包含任何直接及間接的電性連接手段。因此,若文中描述一第一裝置耦接至一第二裝置,則代表該第一裝置可直接電性連接至該第二裝置,或經由其它裝置或連接手段而間接地電性連接至該第二裝置。Certain words are used in the specification and patent claims to refer to specific components. Those skilled in the art will understand that hardware manufacturers may use different names to refer to the same component. This specification and the patent application do not use differences in names as a way to distinguish components, but differences in functions of components as a criterion for distinction. The words "include" and "include" mentioned throughout the specification and the scope of the patent application are open-ended terms, and therefore should be interpreted as "include but not limited to." The term "approximately" means that within an acceptable error range, those skilled in the art can solve the technical problem and achieve the basic technical effect within a certain error range. In addition, the word "coupling" in this specification includes any direct and indirect electrical connection means. Therefore, if a first device is coupled to a second device, it means that the first device can be directly electrically connected to the second device, or indirectly electrically connected to the second device via other devices or connections. Two devices.

第1圖係顯示根據本發明一實施例所述之升壓轉換器100之示意圖。例如,升壓轉換器100可應用於桌上型電腦、筆記型電腦,或一體成形電腦。如第1圖所示,升壓轉換器100包括:一橋式整流器110、一升壓電感器LU、一供電電路120、一功率切換器130、一脈波寬度調變積體電路(Pulse Width Modulation Integrated Circuit,PWM IC)140、一輸出級電路150、一分壓電路160、一邏輯電路170,以及一主動整流電路180。必須注意的是,雖然未顯示於第1圖中,但升壓轉換器100更可包括其他元件,例如:一穩壓器或(且)一負回授電路。FIG. 1 is a schematic diagram of a boost converter 100 according to an embodiment of the present invention. For example, the boost converter 100 can be applied to desktop computers, notebook computers, or all-in-one computers. As shown in Figure 1, the boost converter 100 includes: a bridge rectifier 110, a boost inductor LU, a power supply circuit 120, a power switch 130, and a pulse width modulation integrated circuit (Pulse Width Modulation IC). Integrated Circuit (PWM IC) 140, an output stage circuit 150, a voltage dividing circuit 160, a logic circuit 170, and an active rectifier circuit 180. It should be noted that, although not shown in FIG. 1 , the boost converter 100 may further include other components, such as a voltage regulator or/and a negative feedback circuit.

橋式整流器110可根據一第一輸入電位VIN1和一第二輸入電位VIN2來產生一整流電位VR,其中第一輸入電位VIN1和第二輸入電位VIN2之間可形成具有任意頻率和任意振幅之一交流電壓。例如,交流電壓之頻率可約為50Hz或60Hz,而交流電壓之方均根值可約由90V至264V,但亦不僅限於此。升壓電感器LU可接收整流電位VR。供電電路120可根據整流電位VR來產生一供應電位VCC。功率切換器130可根據一脈波寬度調變電位VM來選擇性地將升壓電感器LU耦接至一接地電位VSS(例如:0V)。例如,若脈波寬度調變電位VM為一高邏輯位準(亦即,邏輯「1」),則功率切換器130可將升壓電感器LU耦接至接地電位VSS(亦即,功率切換器130可近似於一短路路徑);反之,若脈波寬度調變電位VM為一低邏輯位準(亦即,邏輯「0」),則功率切換器130不會將升壓電感器LU耦接至接地電位VSS(亦即,功率切換器130可近似於一開路路徑)。脈波寬度調變積體電路140可由供應電位VCC來進行供電,並可產生脈波寬度調變電位VM和一啟動電位VE。在一些實施例中,若供應電位VCC為高邏輯位準,則脈波寬度調變積體電路140將產生具有高邏輯位準之啟動電位VE;反之,若供應電位VCC為低邏輯位準,則脈波寬度調變積體電路140將產生具有低邏輯位準之啟動電位VE。輸出級電路150係耦接至升壓電感器LU,並可產生一輸出電位VOUT。例如,輸出電位VOUT可為一直流電位,其電位位準可約為400V,但亦不僅限於此。分壓電路160可根據輸出電位VOUT來產生一分壓電位VD。例如,分壓電位VD可為輸出電位VOUT之一特定比例。邏輯電路170可根據啟動電位VE和分壓電位VD來產生一邏輯電位VG。主動整流電路180可接收第一輸入電位VIN1和第二輸入電位VIN2,其中主動整流電路180可根據邏輯電位VG來選擇性地控制整流電位VR。在一些實施例中,若邏輯電位VG為高邏輯位準,則主動整流電路180將被致能;反之,若邏輯電位VG為低邏輯位準,則主動整流電路180將被禁能。在此設計下,主動整流電路180和橋式整流器110兩者皆可提供整流功能。由於主動整流電路180之非理想損耗相對較低,其將能於升壓轉換器100操作於穩定狀態時進一步提升整體之轉換效率。The bridge rectifier 110 can generate a rectified potential VR according to a first input potential VIN1 and a second input potential VIN2, wherein one of the first input potential VIN1 and the second input potential VIN2 can have any frequency and any amplitude. AC voltage. For example, the frequency of the AC voltage can be about 50Hz or 60Hz, and the root mean square value of the AC voltage can be about 90V to 264V, but it is not limited thereto. The boost inductor LU receives the rectified potential VR. The power supply circuit 120 can generate a supply potential VCC according to the rectified potential VR. The power switch 130 can selectively couple the boost inductor LU to a ground potential VSS (eg, 0V) according to a pulse width modulation potential VM. For example, if the pulse width modulation potential VM is a high logic level (ie, logic “1”), the power switch 130 may couple the boost inductor LU to the ground potential VSS (ie, the power The switch 130 can be approximated as a short-circuit path); conversely, if the pulse width modulation potential VM is a low logic level (ie, logic "0"), the power switch 130 will not convert the boost inductor LU is coupled to ground potential VSS (ie, power switch 130 may approximate an open path). The pulse width modulation integrated circuit 140 can be powered by the supply potential VCC, and can generate a pulse width modulation potential VM and a starting potential VE. In some embodiments, if the supply potential VCC is a high logic level, the pulse width modulation integrated circuit 140 will generate a start-up potential VE with a high logic level; conversely, if the supply potential VCC is a low logic level, Then the pulse width modulation integrated circuit 140 will generate the activation potential VE with a low logic level. The output stage circuit 150 is coupled to the boost inductor LU and can generate an output potential VOUT. For example, the output potential VOUT can be a DC potential, and its potential level can be about 400V, but it is not limited thereto. The voltage dividing circuit 160 can generate a divided voltage potential VD according to the output potential VOUT. For example, the divided voltage potential VD may be a specific ratio of the output potential VOUT. The logic circuit 170 can generate a logic potential VG according to the starting potential VE and the divided voltage potential VD. The active rectification circuit 180 may receive the first input potential VIN1 and the second input potential VIN2, wherein the active rectification circuit 180 may selectively control the rectification potential VR according to the logic potential VG. In some embodiments, if the logic potential VG is a high logic level, the active rectification circuit 180 will be enabled; conversely, if the logic potential VG is a low logic level, the active rectification circuit 180 will be disabled. Under this design, both the active rectifier circuit 180 and the bridge rectifier 110 can provide rectification functions. Since the non-ideal losses of the active rectifier circuit 180 are relatively low, it can further improve the overall conversion efficiency when the boost converter 100 operates in a steady state.

以下實施例將介紹升壓轉換器100之詳細結構及操作方式。必須理解的是,這些圖式和敘述僅為舉例,而非用於限制本發明之範圍。The following embodiments will introduce the detailed structure and operation of the boost converter 100 . It must be understood that these drawings and descriptions are only examples and are not intended to limit the scope of the invention.

第2圖係顯示根據本發明一實施例所述之升壓轉換器200之電路圖。在第2圖之實施例中,升壓轉換器200具有一第一輸入節點NIN1、一第二輸入節點NIN2,以及一輸出節點NOUT,並包括一橋式整流器210、一升壓電感器LU、一供電電路220、一功率切換器230、一脈波寬度調變積體電路240、一輸出級電路250、一分壓電路260、一邏輯電路270,以及一主動整流電路280。升壓轉換器200之第一輸入節點NIN1和第二輸入節點NIN2可用於接收一第一輸入電位VIN1和一第二輸入電位VIN2。升壓轉換器200之輸出節點NOUT可用於輸出一輸出電位VOUT。Figure 2 is a circuit diagram of a boost converter 200 according to an embodiment of the present invention. In the embodiment of FIG. 2, the boost converter 200 has a first input node NIN1, a second input node NIN2, and an output node NOUT, and includes a bridge rectifier 210, a boost inductor LU, a A power supply circuit 220, a power switch 230, a pulse width modulation integrated circuit 240, an output stage circuit 250, a voltage dividing circuit 260, a logic circuit 270, and an active rectifier circuit 280. The first input node NIN1 and the second input node NIN2 of the boost converter 200 can be used to receive a first input potential VIN1 and a second input potential VIN2. The output node NOUT of the boost converter 200 can be used to output an output potential VOUT.

橋式整流器210包括一第一二極體D1、一第二二極體D2、一第三二極體D3、一第四二極體D4、一第一正溫度係數(Positive Temperature Coefficient,PTC)電阻器RP1,以及一第二正溫度係數電阻器RP2。第一二極體D1具有一陽極和一陰極,其中第一二極體D1之陽極係耦接至第一輸入節點NIN1,而第一二極體D1之陰極係耦接至一第一節點N1。第二二極體D2具有一陽極和一陰極,其中第二二極體D2之陽極係耦接至第二輸入節點NIN2,而第二二極體D2之陰極係耦接至一第二節點N2以輸出一整流電位VR。第三二極體D3具有一陽極和一陰極,其中第三二極體D3之陽極係耦接至一第三節點N3,而第三二極體D3之陰極係耦接至第一輸入節點NIN1。第四二極體D4具有一陽極和一陰極,其中第四二極體D4之陽極係耦接至一接地電位VSS(例如:0V),而第四二極體D4之陰極係耦接至第二輸入節點NIN2。第一正溫度係數電阻器RP1具有一第一端和一第二端,其中第一正溫度係數電阻器RP1之第一端係耦接至第一節點N1,而第一正溫度係數電阻器RP1之第二端係耦接至第二節點N2。第二正溫度係數電阻器RP2具有一第一端和一第二端,其中第二正溫度係數電阻器RP2之第一端係耦接至第三節點N3,而第二正溫度係數電阻器RP2之第二端係耦接至接地電位VSS。The bridge rectifier 210 includes a first diode D1, a second diode D2, a third diode D3, a fourth diode D4, and a first positive temperature coefficient (Positive Temperature Coefficient, PTC) resistor RP1, and a second positive temperature coefficient resistor RP2. The first diode D1 has an anode and a cathode, wherein the anode of the first diode D1 is coupled to the first input node NIN1, and the cathode of the first diode D1 is coupled to a first node N1 . The second diode D2 has an anode and a cathode, wherein the anode of the second diode D2 is coupled to the second input node NIN2, and the cathode of the second diode D2 is coupled to a second node N2 To output the rectified potential VR. The third diode D3 has an anode and a cathode, wherein the anode of the third diode D3 is coupled to a third node N3, and the cathode of the third diode D3 is coupled to the first input node NIN1 . The fourth diode D4 has an anode and a cathode, wherein the anode of the fourth diode D4 is coupled to a ground potential VSS (for example: 0V), and the cathode of the fourth diode D4 is coupled to the ground potential VSS (for example: 0V). Two input nodes NIN2. The first positive temperature coefficient resistor RP1 has a first terminal and a second terminal, wherein the first terminal of the first positive temperature coefficient resistor RP1 is coupled to the first node N1, and the first positive temperature coefficient resistor RP1 The second terminal is coupled to the second node N2. The second positive temperature coefficient resistor RP2 has a first terminal and a second terminal, wherein the first terminal of the second positive temperature coefficient resistor RP2 is coupled to the third node N3, and the second positive temperature coefficient resistor RP2 The second terminal is coupled to the ground potential VSS.

升壓電感器LU具有一第一端和一第二端,其中升壓電感器LU之第一端係耦接至第二節點N2以接收整流電位VR,而升壓電感器LU之第二端係耦接至一第四節點N4。The boost inductor LU has a first terminal and a second terminal, wherein the first terminal of the boost inductor LU is coupled to the second node N2 to receive the rectified potential VR, and the second terminal of the boost inductor LU is coupled to a fourth node N4.

供電電路220可根據整流電位VR來產生一供應電位VCC。例如,在升壓轉換器200已接收到第一輸入電位VIN1和第二輸入電位VIN2之後,供電電路220才會根據整流電位VR來產生具有高邏輯位準之供應電位VCC;否則,供應電位VCC將維持於低邏輯位準。The power supply circuit 220 can generate a supply potential VCC according to the rectified potential VR. For example, after the boost converter 200 has received the first input potential VIN1 and the second input potential VIN2, the power supply circuit 220 will generate the supply potential VCC with a high logic level according to the rectification potential VR; otherwise, the supply potential VCC will remain at a low logic level.

功率切換器230包括一切換電晶體MS。例如,切換電晶體MS可為一N型金氧半場效電晶體。切換電晶體MS具有一控制端、一第一端,以及一第二端,其中切換電晶體MS之控制端係用於接收一脈波寬度調變電位VM,切換電晶體MS之第一端係耦接至接地電位VSS,而切換電晶體MS之第二端係耦接至第四節點N4。The power switch 230 includes a switching transistor MS. For example, the switching transistor MS can be an N-type metal oxide semiconductor field effect transistor. The switching transistor MS has a control end, a first end, and a second end. The control end of the switching transistor MS is used to receive a pulse width modulation potential VM. The first end of the switching transistor MS is coupled to the ground potential VSS, and the second terminal of the switching transistor MS is coupled to the fourth node N4.

脈波寬度調變積體電路240可由供應電位VCC進行供電,並可用於產生脈波寬度調變電位VM和一啟動電位VE。例如,若供應電位VCC為高邏輯位準,則脈波寬度調變積體電路240將可產生具有高邏輯位準之啟動電位VE;反之,若供應電位VCC為低邏輯位準,則脈波寬度調變積體電路240將可產生具有低邏輯位準之啟動電位VE。另外,脈波寬度調變電位VM於升壓轉換器200剛初始化時可維持於一固定電位,而在升壓轉換器200進入正常使用階段後則可提供週期性之時脈波形。The pulse width modulation integrated circuit 240 can be powered by the supply potential VCC, and can be used to generate the pulse width modulation potential VM and a starting potential VE. For example, if the supply potential VCC is a high logic level, the pulse width modulation integrated circuit 240 will generate a start-up potential VE with a high logic level; conversely, if the supply potential VCC is a low logic level, the pulse width modulation integrated circuit 240 will generate a start-up potential VE with a high logic level. The width modulation integrated circuit 240 will generate the activation potential VE with a low logic level. In addition, the pulse width modulation potential VM can be maintained at a fixed potential when the boost converter 200 is first initialized, and can provide a periodic clock waveform after the boost converter 200 enters the normal use stage.

輸出級電路250包括一第五二極體D5和一輸出電容器CO。第五二極體D5具有一陽極和一陰極,其中第五二極體D5之陽極係耦接至第四節點N4,而第五二極體D5之陰極係耦接至輸出節點NOUT。輸出電容器CO具有一第一端和一第二端,其中輸出電容器CO之第一端係耦接至輸出節點NOUT,而輸出電容器CO之第二端係耦接至接地電位VSS。The output stage circuit 250 includes a fifth diode D5 and an output capacitor CO. The fifth diode D5 has an anode and a cathode, wherein the anode of the fifth diode D5 is coupled to the fourth node N4, and the cathode of the fifth diode D5 is coupled to the output node NOUT. The output capacitor CO has a first terminal and a second terminal, wherein the first terminal of the output capacitor CO is coupled to the output node NOUT, and the second terminal of the output capacitor CO is coupled to the ground potential VSS.

分壓電路260包括一第一電阻器R1和一第二電阻器R2。第一電阻器R1具有一第一端和一第二端,其中第一電阻器R1之第一端係耦接至輸出節點NOUT以接收輸出電位VOUT,而第一電阻器R1之第二端係耦接至一第五節點N5以輸出一分壓電位VD。第二電阻器R2具有一第一端和一第二端,其中第二電阻器R2之第一端係耦接至第五節點N5,而第二電阻器R2之第二端係耦接至接地電位VSS。The voltage dividing circuit 260 includes a first resistor R1 and a second resistor R2. The first resistor R1 has a first terminal and a second terminal, wherein the first terminal of the first resistor R1 is coupled to the output node NOUT to receive the output potential VOUT, and the second terminal of the first resistor R1 is Coupled to a fifth node N5 to output a divided voltage potential VD. The second resistor R2 has a first terminal and a second terminal, wherein the first terminal of the second resistor R2 is coupled to the fifth node N5, and the second terminal of the second resistor R2 is coupled to the ground. Potential VSS.

邏輯電路270包括一及閘(AND Gate)275。詳細而言,及閘275具有一第一輸入端、一第二輸入端,以及一輸出端,其中及閘275之第一輸入端係用於接收啟動電位VE,及閘275之第二輸入端係用於接收分壓電位VD,而及閘275之輸出端係用於輸出一邏輯電位VG。亦即,只有當啟動電位VE和分壓電位VD均為高邏輯位準時,邏輯電路270才會產生具有高邏輯位準之邏輯電位VG;否則,邏輯電路270將產生具有低邏輯位準之邏輯電位VG。The logic circuit 270 includes an AND Gate 275 . In detail, the AND gate 275 has a first input end, a second input end, and an output end, wherein the first input end of the AND gate 275 is used to receive the starting potential VE, and the second input end of the AND gate 275 It is used to receive the divided voltage potential VD, and the output end of the AND gate 275 is used to output a logic potential VG. That is, only when the startup potential VE and the voltage dividing potential VD are both high logic levels, the logic circuit 270 will generate a logic potential VG with a high logic level; otherwise, the logic circuit 270 will generate a logic potential VG with a low logic level. Logic potential VG.

主動整流電路280包括一控制器285、一第一電晶體M1、一第二電晶體M2、一第三電晶體M3,以及一第四電晶體M4。控制器285可根據邏輯電位VG來選擇性地產生一第一控制電位VC1、一第二控制電位VC2、一第三控制電位VC3,以及一第四控制電位VC4。在一些實施例中,若邏輯電位VG為高邏輯位準,則控制器285將被致能,以產生前述之第一控制電位VC1、第二控制電位VC2、第三控制電位VC3,以及第四控制電位VC4;反之,若邏輯電位VG為低邏輯位準,則控制器285將被禁能,其不會產生任何控制電位。The active rectification circuit 280 includes a controller 285, a first transistor M1, a second transistor M2, a third transistor M3, and a fourth transistor M4. The controller 285 can selectively generate a first control potential VC1, a second control potential VC2, a third control potential VC3, and a fourth control potential VC4 according to the logic potential VG. In some embodiments, if the logic potential VG is a high logic level, the controller 285 will be enabled to generate the aforementioned first control potential VC1, second control potential VC2, third control potential VC3, and fourth Control potential VC4; on the contrary, if the logic potential VG is a low logic level, the controller 285 will be disabled and will not generate any control potential.

例如,第一電晶體M1、第二電晶體M2、第三電晶體M3,以及第四電晶體M4可各自為一N型金氧半場效電晶體。第一電晶體M1具有一控制端、一第一端,以及一第二端,其中第一電晶體M1之控制端係用於接收第一控制電位VC1,第一電晶體M1之第一端係耦接至第二節點N2,而第一電晶體M1之第二端係耦接至第一輸入節點NIN1以接收第一輸入電位VIN1。第二電晶體M2具有一控制端、一第一端,以及一第二端,其中第二電晶體M2之控制端係用於接收第二控制電位VC2,第二電晶體M2之第一端係耦接至第二節點N2,而第二電晶體M2之第二端係耦接至第二輸入節點NIN2以接收第二輸入電位VIN2。第三電晶體M3具有一控制端、一第一端,以及一第二端,其中第三電晶體M3之控制端係用於接收第三控制電位VC3,第三電晶體M3之第一端係耦接至第一輸入節點NIN1,而第三電晶體M3之第二端係耦接至接地電位VSS。第四電晶體M4具有一控制端、一第一端,以及一第二端,其中第四電晶體M4之控制端係用於接收第四控制電位VC4,第四電晶體M4之第一端係耦接至第二輸入節點NIN2,而第四電晶體M4之第二端係耦接至接地電位VSS。For example, the first transistor M1, the second transistor M2, the third transistor M3, and the fourth transistor M4 may each be an N-type MOSFET. The first transistor M1 has a control terminal, a first terminal, and a second terminal. The control terminal of the first transistor M1 is used to receive the first control potential VC1. The first terminal of the first transistor M1 is is coupled to the second node N2, and the second terminal of the first transistor M1 is coupled to the first input node NIN1 to receive the first input potential VIN1. The second transistor M2 has a control terminal, a first terminal, and a second terminal. The control terminal of the second transistor M2 is used to receive the second control potential VC2. The first terminal of the second transistor M2 is is coupled to the second node N2, and the second terminal of the second transistor M2 is coupled to the second input node NIN2 to receive the second input potential VIN2. The third transistor M3 has a control terminal, a first terminal, and a second terminal. The control terminal of the third transistor M3 is used to receive the third control potential VC3. The first terminal of the third transistor M3 is is coupled to the first input node NIN1, and the second terminal of the third transistor M3 is coupled to the ground potential VSS. The fourth transistor M4 has a control terminal, a first terminal, and a second terminal. The control terminal of the fourth transistor M4 is used to receive the fourth control potential VC4. The first terminal of the fourth transistor M4 is is coupled to the second input node NIN2, and the second terminal of the fourth transistor M4 is coupled to the ground potential VSS.

在一些實施例中,升壓轉換器200之操作原理可如下列所述。初始時,升壓轉換器200開始接收第一輸入電位VIN1和第二輸入電位VIN2。接著,在脈波寬度調變積體電路240接收到高邏輯位準之供應電位VCC之後,其將可產生具有高邏輯位準之啟動電位VE。另外,在輸出級電路250已建立正常之輸出電位VOUT之後,其亦可將分壓電位VD拉升至高邏輯位準。此時,邏輯電路270將可產生具有高邏輯位準之邏輯電位VG以致能主動整流電路280,使得橋式整流器210和主動整流電路280兩者共同產生及控制整流電位VR。 In some embodiments, the operating principle of the boost converter 200 may be as follows. Initially, the boost converter 200 begins to receive the first input potential VIN1 and the second input potential VIN2. Then, after the pulse width modulation integrated circuit 240 receives the supply potential VCC with a high logic level, it will generate a start-up potential VE with a high logic level. In addition, after the output stage circuit 250 has established the normal output potential VOUT, it can also raise the divided voltage potential VD to a high logic level. At this time, the logic circuit 270 will generate a logic potential VG with a high logic level to enable the active rectification circuit 280, so that the bridge rectifier 210 and the active rectification circuit 280 jointly generate and control the rectification potential VR.

在一段時間之後,升壓轉換器200會操作於穩定狀態(或又稱之為熱機狀態)。因為升壓轉換器200之溫度逐漸增加,所以第一正溫度係數電阻器RP1和第二正溫度係數電阻器RP2兩者之電阻值都會變得很大。換言之,橋式整流器210之整體阻抗值將遠大於主動整流電路280之整體阻抗值,故此將導致升壓轉換器200之一輸入電流IIN主要會流往主動整流電路280。此時,前述之整流電位VR將主要由主動整流電路280所產生及控制(而非開始時之橋式整流器210),使得升壓轉換器200之整體轉換效率將可大幅提升。 After a period of time, the boost converter 200 will operate in a stable state (also known as a thermal engine state). Since the temperature of the boost converter 200 gradually increases, the resistance values of both the first positive temperature coefficient resistor RP1 and the second positive temperature coefficient resistor RP2 become very large. In other words, the overall impedance value of the bridge rectifier 210 will be much larger than the overall impedance value of the active rectification circuit 280 , so the input current IIN of the boost converter 200 will mainly flow to the active rectification circuit 280 . At this time, the aforementioned rectification potential VR will be mainly generated and controlled by the active rectification circuit 280 (instead of the bridge rectifier 210 at the beginning), so that the overall conversion efficiency of the boost converter 200 can be greatly improved.

第3圖係顯示傳統升壓轉換器之輸入電流IIN之波形圖,其中橫軸代表時間(μs),而縱軸代表輸入電流IIN之電流值(mA)。如第3圖所示,傳統升壓轉換器於一初始時間點TN處開始接上一輸入電源,此將導致輸入電流IIN突然升高,俗稱為「湧浪電流」。然而,過大之湧浪電流可能會燒毀傳統升壓轉換器中之主動元件。 Figure 3 shows the waveform of the input current IIN of a conventional boost converter, in which the horizontal axis represents time ( μ s) and the vertical axis represents the current value (mA) of the input current IIN. As shown in Figure 3, the traditional boost converter starts to connect an input power supply at an initial time point TN, which will cause the input current IIN to suddenly increase, commonly known as "inrush current". However, excessive inrush current may burn out the active components in conventional boost converters.

第4圖係顯示根據本發明一實施例所述之升壓轉換器200之輸入電流IIN之波形圖,其中橫軸代表時間(μs),而縱軸代表輸入電流IIN之電流值(mA)。必須注意的是,主動整流電路280係於輸出級電路250已建立正常之輸出電位VOUT之後才被致能。根據第4圖之量測結果,由於主動整流電路280不會於初始時承受過 大之湧浪電流,故本發明之設計將能大幅降低主動整流電路280被意外燒毀之機率。 Figure 4 shows a waveform diagram of the input current IIN of the boost converter 200 according to an embodiment of the present invention. The horizontal axis represents time (μs), and the vertical axis represents the current value (mA) of the input current IIN. It must be noted that the active rectification circuit 280 is enabled after the output stage circuit 250 has established a normal output potential VOUT. According to the measurement results in Figure 4, since the active rectifier circuit 280 will not withstand the initial The inrush current is large, so the design of the present invention can greatly reduce the probability of the active rectifier circuit 280 being accidentally burned.

本發明提出一種新穎之升壓轉換器,其可同時包括橋式整流器和主動整流電路。根據實際量測結果,使用前述設計之升壓轉換器可有效改善整體之轉換效率並降低其主動元件之損壞風險,故其很適合應用於各種各式之裝置當中。 The present invention proposes a novel boost converter, which can include a bridge rectifier and an active rectification circuit at the same time. According to actual measurement results, using the boost converter designed as mentioned above can effectively improve the overall conversion efficiency and reduce the risk of damage to its active components, so it is very suitable for use in various devices.

值得注意的是,以上所述之電位、電流、電阻值、電感值、電容值,以及其餘元件參數均非為本發明之限制條件。設計者可以根據不同需要調整這些設定值。本發明之升壓轉換器並不僅限於第1-4圖所圖示之狀態。本發明可以僅包括第1-4圖之任何一或複數個實施例之任何一或複數項特徵。換言之,並非所有圖示之特徵均須同時實施於本發明之升壓轉換器當中。雖然本發明之實施例係使用金氧半場效電晶體為例,但本發明並不僅限於此,本技術領域人士可改用其他種類之電晶體,例如:接面場效電晶體,或是鰭式場效電晶體等等,而不致於影響本發明之效果。 It is worth noting that the above-mentioned potential, current, resistance value, inductance value, capacitance value, and other component parameters are not limiting conditions of the present invention. Designers can adjust these settings according to different needs. The boost converter of the present invention is not limited to the state shown in Figures 1-4. The present invention may only include any one or multiple features of any one or multiple embodiments of Figures 1-4. In other words, not all features shown in the figures need to be implemented in the boost converter of the present invention at the same time. Although the embodiment of the present invention uses a metal oxide semi-field effect transistor as an example, the present invention is not limited thereto. Those skilled in the art can use other types of transistors, such as junction field effect transistors or fins. type field effect transistor, etc., without affecting the effect of the present invention.

在本說明書以及申請專利範圍中的序數,例如「第一」、「第二」、「第三」等等,彼此之間並沒有順序上的先後關係,其僅用於標示區分兩個具有相同名字之不同元件。 The ordinal numbers in this specification and the scope of the patent application, such as "first", "second", "third", etc., have no sequential relationship with each other. They are only used to distinguish two items with the same Different components with names.

本發明雖以較佳實施例揭露如上,然其並非用以限定本發明的範圍,任何熟習此項技藝者,在不脫離本發明之精神和範圍內,當可做些許的更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。 Although the present invention is disclosed above in terms of preferred embodiments, they are not intended to limit the scope of the present invention. Anyone skilled in the art can make slight changes and modifications without departing from the spirit and scope of the present invention. Therefore, The protection scope of the present invention shall be determined by the appended patent application scope.

100,200:升壓轉換器 100,200:Boost converter

110,210:橋式整流器 110,210: Bridge rectifier

120,220:供電電路 120,220: Power supply circuit

130,230:功率切換器 130,230:Power switcher

140,240:脈波寬度調變積體電路 140,240: Pulse width modulation integrated circuit

150,250:輸出級電路 150,250: Output stage circuit

160,260:分壓電路 160,260: voltage divider circuit

170,270:邏輯電路 170,270:Logic circuit

180,280:主動整流電路 180,280: Active rectification circuit

275:及閘 275:And gate

285:控制器 285:Controller

CO:輸出電容器 CO: output capacitor

D1:第一二極體 D1: first diode

D2:第二二極體 D2: Second diode

D3:第三二極體 D3: The third diode

D4:第四二極體 D4: The fourth diode

D5:第五二極體 D5: The fifth diode

IIN:輸入電流 IIN: input current

LU:升壓電感器 LU: Boost inductor

M1:第一電晶體 M1: the first transistor

M2:第二電晶體 M2: Second transistor

M3:第三電晶體 M3: The third transistor

M4:第四電晶體 M4: The fourth transistor

MS:切換電晶體 MS: switching transistor

N1:第一節點 N1: first node

N2:第二節點 N2: second node

N3:第三節點 N3: The third node

N4:第四節點 N4: fourth node

N5:第五節點 N5: fifth node

NIN1:第一輸入節點 NIN1: first input node

NIN2:第二輸入節點 NIN2: second input node

NOUT:輸出節點 NOUT: output node

R1:第一電阻器 R1: first resistor

R2:第二電阻器 R2: second resistor

RP1:第一正溫度係數電阻器 RP1: The first positive temperature coefficient resistor

RP2:第二正溫度係數電阻器 RP2: Second positive temperature coefficient resistor

TN:初始時間點 TN: initial time point

VC1:第一控制電位 VC1: first control potential

VC2:第二控制電位 VC2: second control potential

VC3:第三控制電位 VC3: The third control potential

VC4:第四控制電位 VC4: The fourth control potential

VCC:供應電位 VCC: supply potential

VD:分壓電位 VD: voltage dividing potential

VE:啟動電位 VE: starting potential

VG:邏輯電位 VG: logic potential

VIN1:第一輸入電位 VIN1: first input potential

VIN2:第二輸入電位 VIN2: second input potential

VM:脈波寬度調變電位 VM: pulse width modulation potential

VOUT:輸出電位 VOUT: output potential

VR:整流電位 VR: rectifier potential

VSS:接地電位 VSS: ground potential

第1圖係顯示根據本發明一實施例所述之升壓轉換器之示意圖。 第2圖係顯示根據本發明一實施例所述之升壓轉換器之電路圖。 第3圖係顯示傳統升壓轉換器之輸入電流之波形圖。 第4圖係顯示根據本發明一實施例所述之升壓轉換器之輸入電流之波形圖。 Figure 1 is a schematic diagram of a boost converter according to an embodiment of the present invention. Figure 2 is a circuit diagram showing a boost converter according to an embodiment of the present invention. Figure 3 is a waveform diagram showing the input current of a conventional boost converter. FIG. 4 is a waveform diagram showing the input current of the boost converter according to an embodiment of the present invention.

100:升壓轉換器 100:Boost converter

110:橋式整流器 110: Bridge rectifier

120:供電電路 120:Power supply circuit

130:功率切換器 130:Power switcher

140:脈波寬度調變積體電路 140: Pulse width modulation integrated circuit

150:輸出級電路 150: Output stage circuit

160:分壓電路 160: Voltage dividing circuit

170:邏輯電路 170:Logic circuit

180:主動整流電路 180: Active rectification circuit

LU:升壓電感器 LU: Boost inductor

VCC:供應電位 VCC: supply potential

VD:分壓電位 VD: voltage dividing potential

VE:啟動電位 VE: starting potential

VG:邏輯電位 VG: logic potential

VIN1:第一輸入電位 VIN1: first input potential

VIN2:第二輸入電位 VIN2: second input potential

VM:脈波寬度調變電位 VM: pulse width modulation potential

VOUT:輸出電位 VOUT: output potential

VR:整流電位 VR: rectifier potential

VSS:接地電位 VSS: ground potential

Claims (10)

一種升壓轉換器,包括: 一橋式整流器,根據一第一輸入電位和一第二輸入電位來產生一整流電位; 一升壓電感器,接收該整流電位; 一供電電路,根據該整流電位來產生一供應電位; 一功率切換器,根據一脈波寬度調變電位來選擇性地將該升壓電感器耦接至一接地電位; 一脈波寬度調變積體電路,由該供應電位來進行供電,並產生該脈波寬度調變電位和一啟動電位; 一輸出級電路,耦接至該升壓電感器,並產生一輸出電位; 一分壓電路,根據該輸出電位來產生一分壓電位; 一邏輯電路,根據該啟動電位和該分壓電位來產生一邏輯電位;以及 一主動整流電路,接收該第一輸入電位和該第二輸入電位,其中該主動整流電路係根據該邏輯電位來選擇性地控制該整流電位。 A boost converter including: A bridge rectifier generates a rectified potential based on a first input potential and a second input potential; A boost inductor receives the rectified potential; a power supply circuit that generates a supply potential based on the rectified potential; a power switch that selectively couples the boost inductor to a ground potential based on a pulse width modulated potential; A pulse width modulation integrated circuit is powered by the supply potential and generates the pulse width modulation potential and a starting potential; An output stage circuit is coupled to the boost inductor and generates an output potential; A voltage dividing circuit generates a divided voltage potential based on the output potential; A logic circuit that generates a logic potential based on the starting potential and the divided voltage potential; and An active rectification circuit receives the first input potential and the second input potential, wherein the active rectification circuit selectively controls the rectification potential according to the logic potential. 如請求項1之升壓轉換器,其中該橋式整流器包括: 一第一二極體,具有一陽極和一陰極,其中該第一二極體之該陽極係耦接至一第一輸入節點以接收該第一輸入電位,而該第一二極體之該陰極係耦接至一第一節點; 一第二二極體,具有一陽極和一陰極,其中該第二二極體之該陽極係耦接至一第二輸入節點以接收該第二輸入電位,而該第二二極體之該陰極係耦接至一第二節點以輸出該整流電位;一第三二極體,具有一陽極和一陰極,其中該第三二極體之該陽極係耦接至一第三節點,而該第三二極體之該陰極係耦接至該第一輸入節點;以及一第四二極體,具有一陽極和一陰極,其中該第四二極體之該陽極係耦接至該接地電位,而該第四二極體之該陰極係耦接至該第二輸入節點。 The boost converter of claim 1, wherein the bridge rectifier includes: a first diode having an anode and a cathode, wherein the anode of the first diode is coupled to a first input node to receive the first input potential, and the first diode The cathode is coupled to a first node; a second diode having an anode and a cathode, wherein the anode of the second diode is coupled to a second input node to receive the second input potential, and the The cathode is coupled to a second node to output the rectified potential; a third diode has an anode and a cathode, wherein the anode of the third diode is coupled to a third node, and the The cathode of a third diode is coupled to the first input node; and a fourth diode having an anode and a cathode, wherein the anode of the fourth diode is coupled to the ground potential. , and the cathode of the fourth diode is coupled to the second input node. 如請求項2之升壓轉換器,其中該橋式整流器更包括:一第一正溫度係數電阻器,具有一第一端和一第二端,其中該第一正溫度係數電阻器之該第一端係耦接至該第一節點,而該第一正溫度係數電阻器之該第二端係耦接至該第二節點;以及一第二正溫度係數電阻器,具有一第一端和一第二端,其中該第二正溫度係數電阻器之該第一端係耦接至該第三節點,而該第二正溫度係數電阻器之該第二端係耦接至該接地電位。 The boost converter of claim 2, wherein the bridge rectifier further includes: a first positive temperature coefficient resistor having a first terminal and a second terminal, wherein the first positive temperature coefficient resistor has a first terminal and a second terminal. One end is coupled to the first node, and the second end of the first positive temperature coefficient resistor is coupled to the second node; and a second positive temperature coefficient resistor has a first end and a second terminal, wherein the first terminal of the second positive temperature coefficient resistor is coupled to the third node, and the second terminal of the second positive temperature coefficient resistor is coupled to the ground potential. 如請求項2之升壓轉換器,其中該升壓電感器具有一第一端和一第二端,該升壓電感器之該第一端係耦接至該第二節點以接收該整流電位,而該升壓電感器之該第二端係耦接至一第四節點。 The boost converter of claim 2, wherein the boost inductor has a first terminal and a second terminal, and the first terminal of the boost inductor is coupled to the second node to receive the rectified potential, The second terminal of the boost inductor is coupled to a fourth node. 如請求項4之升壓轉換器,其中該功率切換器包括: 一切換電晶體,具有一控制端、一第一端,以及一第二端,其中該切換電晶體之該控制端係用於接收該脈波寬度調變電位,該切換電晶體之該第一端係耦接至該接地電位,而該切換電晶體之該第二端係耦接至該第四節點。 The boost converter of claim 4, wherein the power switcher includes: A switching transistor has a control terminal, a first terminal, and a second terminal, wherein the control terminal of the switching transistor is used to receive the pulse width modulation potential, and the third terminal of the switching transistor One terminal is coupled to the ground potential, and the second terminal of the switching transistor is coupled to the fourth node. 如請求項4之升壓轉換器,其中該輸出級電路包括: 一第五二極體,具有一陽極和一陰極,其中該第五二極體之該陽極係耦接至該第四節點,而該第五二極體之該陰極係耦接至一輸出節點以輸出該輸出電位;以及 一輸出電容器,具有一第一端和一第二端,其中該輸出電容器之該第一端係耦接至該輸出節點,而該輸出電容器之該第二端係耦接至該接地電位。 The boost converter of claim 4, wherein the output stage circuit includes: a fifth diode having an anode and a cathode, wherein the anode of the fifth diode is coupled to the fourth node, and the cathode of the fifth diode is coupled to an output node to output the output potential; and An output capacitor has a first terminal and a second terminal, wherein the first terminal of the output capacitor is coupled to the output node, and the second terminal of the output capacitor is coupled to the ground potential. 如請求項6之升壓轉換器,其中該分壓電路包括: 一第一電阻器,具有一第一端和一第二端,其中該第一電阻器之該第一端係耦接至該輸出節點以接收該輸出電位,而該第一電阻器之該第二端係耦接至一第五節點以輸出該分壓電位;以及 一第二電阻器,具有一第一端和一第二端,其中該第二電阻器之該第一端係耦接至該第五節點,而該第二電阻器之該第二端係耦接至該接地電位。 The boost converter of claim 6, wherein the voltage dividing circuit includes: a first resistor having a first terminal and a second terminal, wherein the first terminal of the first resistor is coupled to the output node to receive the output potential, and the first terminal of the first resistor The two terminals are coupled to a fifth node to output the divided voltage potential; and a second resistor having a first terminal and a second terminal, wherein the first terminal of the second resistor is coupled to the fifth node, and the second terminal of the second resistor is coupled to connected to this ground potential. 如請求項2之升壓轉換器,其中該邏輯電路包括: 一及閘,具有一第一輸入端、一第二輸入端,以及一輸出端,其中該及閘之該第一輸入端係用於接收該啟動電位,該及閘之該第二輸入端係用於接收該分壓電位,而該及閘之該輸出端係用於輸出該邏輯電位。 The boost converter of claim 2, wherein the logic circuit includes: An AND gate has a first input end, a second input end, and an output end, wherein the first input end of the AND gate is used to receive the starting potential, and the second input end of the AND gate is is used to receive the divided voltage potential, and the output end of the AND gate is used to output the logic potential. 如請求項8之升壓轉換器,其中該主動整流電路包括: 一控制器,根據該邏輯電位來選擇性地產生一第一控制電位、一第二控制電位、一第三控制電位,以及一第四控制電位。 The boost converter of claim 8, wherein the active rectification circuit includes: A controller selectively generates a first control potential, a second control potential, a third control potential, and a fourth control potential according to the logic potential. 如請求項9之升壓轉換器,其中該主動整流電路更包括: 一第一電晶體,具有一控制端、一第一端,以及一第二端,其中該第一電晶體之該控制端係用於接收該第一控制電位,該第一電晶體之該第一端係耦接至該第二節點,而該第一電晶體之該第二端係耦接至該第一輸入節點以接收該第一輸入電位; 一第二電晶體,具有一控制端、一第一端,以及一第二端,其中該第二電晶體之該控制端係用於接收該第二控制電位,該第二電晶體之該第一端係耦接至該第二節點,而該第二電晶體之該第二端係耦接至該第二輸入節點以接收該第二輸入電位; 一第三電晶體,具有一控制端、一第一端,以及一第二端,其中該第三電晶體之該控制端係用於接收該第三控制電位,該第三電晶體之該第一端係耦接至該第一輸入節點,而該第三電晶體之該第二端係耦接至該接地電位;以及 一第四電晶體,具有一控制端、一第一端,以及一第二端,其中該第四電晶體之該控制端係用於接收該第四控制電位,該第四電晶體之該第一端係耦接至該第二輸入節點,而該第四電晶體之該第二端係耦接至該接地電位。 For example, the boost converter of claim 9, wherein the active rectification circuit further includes: A first transistor has a control terminal, a first terminal, and a second terminal, wherein the control terminal of the first transistor is used to receive the first control potential, and the third terminal of the first transistor One terminal is coupled to the second node, and the second terminal of the first transistor is coupled to the first input node to receive the first input potential; A second transistor has a control terminal, a first terminal, and a second terminal, wherein the control terminal of the second transistor is used to receive the second control potential, and the third terminal of the second transistor One terminal is coupled to the second node, and the second terminal of the second transistor is coupled to the second input node to receive the second input potential; A third transistor has a control terminal, a first terminal, and a second terminal, wherein the control terminal of the third transistor is used to receive the third control potential, and the third terminal of the third transistor One terminal is coupled to the first input node, and the second terminal of the third transistor is coupled to the ground potential; and A fourth transistor has a control terminal, a first terminal, and a second terminal, wherein the control terminal of the fourth transistor is used to receive the fourth control potential, and the third terminal of the fourth transistor One terminal is coupled to the second input node, and the second terminal of the fourth transistor is coupled to the ground potential.
TW111117425A 2022-05-10 2022-05-10 Boost converter with high efficiency TWI817491B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW111117425A TWI817491B (en) 2022-05-10 2022-05-10 Boost converter with high efficiency

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW111117425A TWI817491B (en) 2022-05-10 2022-05-10 Boost converter with high efficiency

Publications (2)

Publication Number Publication Date
TWI817491B true TWI817491B (en) 2023-10-01
TW202345509A TW202345509A (en) 2023-11-16

Family

ID=89720446

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111117425A TWI817491B (en) 2022-05-10 2022-05-10 Boost converter with high efficiency

Country Status (1)

Country Link
TW (1) TWI817491B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5991174A (en) * 1998-08-28 1999-11-23 Lucent Technologies Inc. Snubber circuit for a rectifier, method of operation thereof and power converter employing the same
TW200737679A (en) * 2006-01-03 2007-10-01 York Int Corp Electronic control transformer using DC link voltage
KR20110031551A (en) * 2009-09-21 2011-03-29 경성대학교 산학협력단 Active boost power converter for single phase single-phase srm
US20110181115A1 (en) * 2010-01-28 2011-07-28 Texas Instruments Incorporated Power management DC-DC converter and method for induction energy harvester
US10193462B1 (en) * 2017-10-11 2019-01-29 Infineon Technologies Ag Power converter using bi-directional active rectifying bridge

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5991174A (en) * 1998-08-28 1999-11-23 Lucent Technologies Inc. Snubber circuit for a rectifier, method of operation thereof and power converter employing the same
TW200737679A (en) * 2006-01-03 2007-10-01 York Int Corp Electronic control transformer using DC link voltage
KR20110031551A (en) * 2009-09-21 2011-03-29 경성대학교 산학협력단 Active boost power converter for single phase single-phase srm
US20110181115A1 (en) * 2010-01-28 2011-07-28 Texas Instruments Incorporated Power management DC-DC converter and method for induction energy harvester
US10193462B1 (en) * 2017-10-11 2019-01-29 Infineon Technologies Ag Power converter using bi-directional active rectifying bridge

Also Published As

Publication number Publication date
TW202345509A (en) 2023-11-16

Similar Documents

Publication Publication Date Title
TWI736367B (en) Boost converter with high power factor
TW202119745A (en) Boost converter
TWI731772B (en) Boost converter with low noise
TWI740686B (en) Boost converter for reducing total harmonic distortion
TWI726758B (en) Power supply device for eliminating ringing effect
TWI715328B (en) Boost converter
TWI817491B (en) Boost converter with high efficiency
TWI704757B (en) Boost converter
TW202220352A (en) Soft-start boost converter
TWI715468B (en) Buck converter
TWI806548B (en) Boost converter
TWI806609B (en) Boost converter with high output stability
TWI715464B (en) Buck converter
TWI817586B (en) Power supply device with tunable heat dissipation function
TWI832742B (en) Boost converter for suppressing magnetic saturation
TWI844324B (en) Boost converter with high conversion efficiency
TWI751658B (en) Boost converter with low loss
TWI826135B (en) Boost converter with high conversion efficiency
TWI825667B (en) Power supply device
TWI838141B (en) Boost converter with high power factor
TWI825945B (en) Power supply device with high conversion efficiency
TWI763057B (en) Boost converter for eliminating start-up overshoot
TWI837730B (en) Boost converter with fast discharge function
TWI838133B (en) Power supply device with high output stability
TWI757667B (en) Boost converter