TWI731772B - Boost converter with low noise - Google Patents

Boost converter with low noise Download PDF

Info

Publication number
TWI731772B
TWI731772B TW109127508A TW109127508A TWI731772B TW I731772 B TWI731772 B TW I731772B TW 109127508 A TW109127508 A TW 109127508A TW 109127508 A TW109127508 A TW 109127508A TW I731772 B TWI731772 B TW I731772B
Authority
TW
Taiwan
Prior art keywords
coupled
inductor
node
diode
potential
Prior art date
Application number
TW109127508A
Other languages
Chinese (zh)
Other versions
TW202207595A (en
Inventor
詹子增
Original Assignee
宏碁股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宏碁股份有限公司 filed Critical 宏碁股份有限公司
Priority to TW109127508A priority Critical patent/TWI731772B/en
Application granted granted Critical
Publication of TWI731772B publication Critical patent/TWI731772B/en
Publication of TW202207595A publication Critical patent/TW202207595A/en

Links

Images

Landscapes

  • Dc-Dc Converters (AREA)

Abstract

A power supply device with low noise includes a bridge rectifier, a first inductor, a second inductor, a first power switch element, a second power switch element, an energy release circuit, an energy recovery circuit, and an output stage circuit. The bridge rectifier generates a rectified voltage according to a first input voltage and a second input voltage. The first inductor and the second inductor receive the rectified voltage. The first power switch element selectively couples the first inductor to a ground voltage. The second power switch element selectively couples the second inductor to the ground voltage. The output stage circuit includes an energy compensation circuit and generates an output voltage. The electromagnetic energy stored in the first inductor and the second inductor is transferred through the energy recovery circuit and the energy release circuit to the energy compensation circuit.

Description

低雜訊之升壓轉換器Low noise boost converter

本發明係關於一種升壓轉換器,特別係關於一種低雜訊之升壓轉換器。The present invention relates to a boost converter, and particularly relates to a low-noise boost converter.

傳統升壓轉換器通常會採用電流模式控制。然而,當其功率切換器之責任週期大於50%時,傳統升壓轉換器容易產生次諧波振盪,並造成相關雜訊上升。有鑑於此,勢必要提出一種全新之解決方案,以克服先前技術所面臨之困境。Traditional boost converters usually use current mode control. However, when the duty cycle of the power switcher is greater than 50%, the traditional boost converter is prone to sub-harmonic oscillation and causes the related noise to rise. In view of this, it is necessary to propose a new solution to overcome the difficulties faced by the previous technology.

在較佳實施例中,本發明提出一種低雜訊之升壓轉換器,包括:一橋式整流器,根據一第一輸入電位和一第二輸入電位來產生一整流電位;一第一電感器,接收該整流電位;一第一功率切換器,根據一第一脈衝寬度調變電位來選擇性地將該第一電感器耦接至一接地電位;一第二電感器,接收該整流電位;一第二功率切換器,根據一第二脈衝寬度調變電位來選擇性地將該第二電感器耦接至該接地電位;一脈衝寬度調變積體電路,產生該第一脈衝寬度調變電位和該第二脈衝寬度調變電位;一能量釋放電路;一能量回收電路,與該能量釋放電路並聯耦接;以及一輸出級電路,包括一能量補償電路,並產生一輸出電位,其中該輸出級電路係耦接至該第一電感器、該第二電感器、該能量釋放電路,以及該能量回收電路;其中該第一電感器和該第二電感器所儲存之電磁能係經由該能量回收電路和該能量釋放電路再轉移至該能量補償電路。In a preferred embodiment, the present invention provides a low-noise boost converter, including: a bridge rectifier that generates a rectified potential based on a first input potential and a second input potential; and a first inductor, Receiving the rectified potential; a first power switch that selectively couples the first inductor to a ground potential according to a first pulse width modulation potential; a second inductor that receives the rectified potential; A second power switch selectively couples the second inductor to the ground potential according to a second pulse width modulation potential; a pulse width modulation integrated circuit generates the first pulse width modulation Variable potential and the second pulse width modulated potential; an energy release circuit; an energy recovery circuit coupled in parallel with the energy release circuit; and an output stage circuit including an energy compensation circuit and generates an output potential , Wherein the output stage circuit is coupled to the first inductor, the second inductor, the energy release circuit, and the energy recovery circuit; wherein the electromagnetic energy stored by the first inductor and the second inductor It is transferred to the energy compensation circuit through the energy recovery circuit and the energy release circuit.

為讓本發明之目的、特徵和優點能更明顯易懂,下文特舉出本發明之具體實施例,並配合所附圖式,作詳細說明如下。In order to make the purpose, features and advantages of the present invention more comprehensible, specific embodiments of the present invention are listed below, with the accompanying drawings, and detailed descriptions are as follows.

在說明書及申請專利範圍當中使用了某些詞彙來指稱特定的元件。本領域技術人員應可理解,硬體製造商可能會用不同的名詞來稱呼同一個元件。本說明書及申請專利範圍並不以名稱的差異來作為區分元件的方式,而是以元件在功能上的差異來作為區分的準則。在通篇說明書及申請專利範圍當中所提及的「包含」及「包括」一詞為開放式的用語,故應解釋成「包含但不僅限定於」。「大致」一詞則是指在可接受的誤差範圍內,本領域技術人員能夠在一定誤差範圍內解決所述技術問題,達到所述基本之技術效果。此外,「耦接」一詞在本說明書中包含任何直接及間接的電性連接手段。因此,若文中描述一第一裝置耦接至一第二裝置,則代表該第一裝置可直接電性連接至該第二裝置,或經由其它裝置或連接手段而間接地電性連接至該第二裝置。Certain vocabulary is used to refer to specific elements in the specification and the scope of the patent application. Those skilled in the art should understand that hardware manufacturers may use different terms to refer to the same component. This specification and the scope of the patent application do not use differences in names as a way to distinguish elements, but use differences in functions of elements as a criterion for distinguishing. The terms "including" and "including" mentioned in the entire specification and the scope of the patent application are open-ended terms and should be interpreted as "including but not limited to". The term "approximately" means that within an acceptable error range, those skilled in the art can solve the technical problem within a certain error range and achieve the basic technical effect. In addition, the term "coupling" includes any direct and indirect electrical connection means in this specification. Therefore, if it is described in the text that a first device is coupled to a second device, it means that the first device can be directly electrically connected to the second device, or indirectly electrically connected to the second device through other devices or connection means. Two devices.

第1圖係顯示根據本發明一實施例所述之升壓轉換器100之示意圖。例如,升壓轉換器100可應用於桌上型電腦、筆記型電腦,或一體成形電腦。如第1圖所示,升壓轉換器100包括:一橋式整流器110、一第一電感器L1、一第二電感器L2、一第一功率切換器120、一第二功率切換器130、一脈衝寬度調變積體電路140、一能量釋放電路150、一能量回收電路160,以及一輸出級電路170,其中輸出級電路170包括一能量補償電路180。必須注意的是,雖然未顯示於第1圖中,但升壓轉換器100更可包括其他元件,例如:一穩壓器或(且)一負回授電路。Fig. 1 shows a schematic diagram of a boost converter 100 according to an embodiment of the invention. For example, the boost converter 100 can be applied to a desktop computer, a notebook computer, or an integrated computer. As shown in Figure 1, the boost converter 100 includes a bridge rectifier 110, a first inductor L1, a second inductor L2, a first power switch 120, a second power switch 130, and a The pulse width modulation integrated circuit 140, an energy release circuit 150, an energy recovery circuit 160, and an output stage circuit 170, wherein the output stage circuit 170 includes an energy compensation circuit 180. It should be noted that although not shown in Figure 1, the boost converter 100 may further include other components, such as a voltage regulator or (and) a negative feedback circuit.

橋式整流器110可根據一第一輸入電位VIN1和一第二輸入電位VIN2來產生一整流電位VR。第一輸入電位VIN1和第二輸入電位VIN2皆可來自一外部輸入電源,其中第一輸入電位VIN1和第二輸入電位VIN2之間可形成具有任意頻率和任意振幅之一交流電壓。例如,交流電壓之頻率可約為50Hz或60Hz,而交流電壓之方均根值可由90V至264V,但亦不僅限於此。第一電感器L1可接收整流電位VR。第一功率切換器120可根據一第一脈衝寬度調變電位VM1來選擇性地將第一電感器L1耦接至一接地電位VSS(例如:0V)。例如,若第一脈衝寬度調變電位VM1為高邏輯位準,則第一功率切換器120即可將第一電感器L1耦接至接地電位VSS(亦即,第一功率切換器120可近似於一短路路徑);反之,若第一脈衝寬度調變電位VM1為低邏輯位準,則第一功率切換器120不會將第一電感器L1耦接至接地電位VSS(亦即,第一功率切換器120可近似於一開路路徑)。第二電感器L2亦可接收整流電位VR。第二功率切換器130可根據一第二脈衝寬度調變電位VM2來選擇性地將第二電感器L2耦接至接地電位VSS。例如,若第二脈衝寬度調變電位VM2為高邏輯位準,則第二功率切換器130即可將第二電感器L2耦接至接地電位VSS(亦即,第二功率切換器130可近似於一短路路徑);反之,若第二脈衝寬度調變電位VM2為低邏輯位準,則第二功率切換器130不會將第二電感器L2耦接至接地電位VSS(亦即,第二功率切換器130可近似於一開路路徑)。脈衝寬度調變積體電路140可產生第一脈衝寬度調變電位VM1和第二脈衝寬度調變電位VM2。在一些實施例中,第一脈衝寬度調變電位VM1和第二脈衝寬度調變電位VM2可具有相同波形但其間存在一相位差,使得兩者不會同時為高邏輯位準。能量回收電路160可與能量釋放電路150作並聯耦接。輸出級電路170可產生一輸出電位VOUT。例如,輸出電位VOUT可大致為一直流電位,其位準可約為400V,但亦不僅限於此。輸出級電路170可同時耦接至第一電感器L1、第二電感器L2、能量釋放電路150,以及能量回收電路160。必須注意的是,第一電感器L1和第二電感器L2所儲存之電磁能可經由能量回收電路160和能量釋放電路150再轉移至輸出級電路170之能量補償電路180。在此設計下,第一功率切換器120和第二功率切換器130之每一者之責任週期皆可小於50%,以抑制升壓轉換器100中不必要之次諧波振盪。因此,升壓轉換器100之相關雜訊將可被有效降低。The bridge rectifier 110 can generate a rectified potential VR according to a first input potential VIN1 and a second input potential VIN2. Both the first input potential VIN1 and the second input potential VIN2 can come from an external input power source, wherein an AC voltage having any frequency and any amplitude can be formed between the first input potential VIN1 and the second input potential VIN2. For example, the frequency of the AC voltage can be about 50Hz or 60Hz, and the root mean square value of the AC voltage can be 90V to 264V, but it is not limited to this. The first inductor L1 can receive the rectified potential VR. The first power switch 120 can selectively couple the first inductor L1 to a ground potential VSS (for example, 0V) according to a first pulse width modulation potential VM1. For example, if the first pulse width modulation potential VM1 is at a high logic level, the first power switch 120 can couple the first inductor L1 to the ground potential VSS (that is, the first power switch 120 can Approximately a short-circuit path); on the contrary, if the first pulse width modulation potential VM1 is at a low logic level, the first power switch 120 will not couple the first inductor L1 to the ground potential VSS (that is, The first power switch 120 can be approximated as an open path). The second inductor L2 can also receive the rectified potential VR. The second power switch 130 can selectively couple the second inductor L2 to the ground potential VSS according to a second pulse width modulation potential VM2. For example, if the second pulse width modulation potential VM2 is at a high logic level, the second power switch 130 can couple the second inductor L2 to the ground potential VSS (that is, the second power switch 130 can Approximately a short-circuit path); on the contrary, if the second pulse width modulation potential VM2 is at a low logic level, the second power switch 130 will not couple the second inductor L2 to the ground potential VSS (that is, The second power switch 130 can be approximated as an open path). The pulse width modulation integrated circuit 140 can generate a first pulse width modulation potential VM1 and a second pulse width modulation potential VM2. In some embodiments, the first pulse width modulated potential VM1 and the second pulse width modulated potential VM2 may have the same waveform but there is a phase difference between them, so that they will not be at a high logic level at the same time. The energy recovery circuit 160 can be coupled in parallel with the energy release circuit 150. The output stage circuit 170 can generate an output potential VOUT. For example, the output potential VOUT can be roughly a DC potential, and its level can be about 400V, but it is not limited to this. The output stage circuit 170 can be coupled to the first inductor L1, the second inductor L2, the energy release circuit 150, and the energy recovery circuit 160 at the same time. It must be noted that the electromagnetic energy stored in the first inductor L1 and the second inductor L2 can be transferred to the energy compensation circuit 180 of the output stage circuit 170 via the energy recovery circuit 160 and the energy release circuit 150. Under this design, the duty cycle of each of the first power switch 120 and the second power switch 130 can be less than 50%, so as to suppress unnecessary sub-harmonic oscillation in the boost converter 100. Therefore, the noise related to the boost converter 100 can be effectively reduced.

以下實施例將介紹升壓轉換器100之詳細結構及操作方式。必須理解的是,這些圖式和敘述僅為舉例,而非用於限制本發明之範圍。The following embodiments will introduce the detailed structure and operation of the boost converter 100. It must be understood that these drawings and descriptions are only examples, and are not used to limit the scope of the present invention.

第2圖係顯示根據本發明一實施例所述之升壓轉換器200之示意圖。在第2圖之實施例中,升壓轉換器200具有一第一輸入節點NIN1、一第二輸入節點NIN2,以及一輸出節點NOUT,並包括:一橋式整流器210、一第一電感器L1、一第二電感器L2、一第一功率切換器220、一第二功率切換器230、一脈衝寬度調變積體電路240、一能量釋放電路250、一能量回收電路260,以及一輸出級電路270,其中輸出級電路270包括一能量補償電路280。升壓轉換器200之第一輸入節點NIN1和第二輸入節點NIN2可分別由一外部輸入電源處接收一第一輸入電位VIN1和一第二輸入電位VIN2,而升壓轉換器200之輸出節點NOUT可用於輸出一輸出電位VOUT至一電子裝置(未顯示)。FIG. 2 is a schematic diagram of a boost converter 200 according to an embodiment of the invention. In the embodiment of Figure 2, the boost converter 200 has a first input node NIN1, a second input node NIN2, and an output node NOUT, and includes: a bridge rectifier 210, a first inductor L1, A second inductor L2, a first power switch 220, a second power switch 230, a pulse width modulation integrated circuit 240, an energy release circuit 250, an energy recovery circuit 260, and an output stage circuit 270, wherein the output stage circuit 270 includes an energy compensation circuit 280. The first input node NIN1 and the second input node NIN2 of the boost converter 200 can receive a first input potential VIN1 and a second input potential VIN2 from an external input power source, respectively, and the output node NOUT of the boost converter 200 It can be used to output an output potential VOUT to an electronic device (not shown).

橋式整流器210包括一第一二極體D1、一第二二極體D2、一第三二極體D3,以及一第四二極體D4。第一二極體D1之陽極係耦接至第一輸入節點NIN1,而第一二極體D1之陰極係耦接至一第一節點N1以輸出一整流電位VR。第二二極體D2之陽極係耦接至第二輸入節點NIN2,而第二二極體D2之陰極係耦接至第一節點N1。第三二極體D3之陽極係耦接至一接地電位VSS,而第三二極體D3之陰極係耦接至第一輸入節點NIN1。第四二極體D4之陽極係耦接至接地電位VSS,而第四二極體D4之陰極係耦接至第二輸入節點NIN2。The bridge rectifier 210 includes a first diode D1, a second diode D2, a third diode D3, and a fourth diode D4. The anode of the first diode D1 is coupled to the first input node NIN1, and the cathode of the first diode D1 is coupled to a first node N1 to output a rectified potential VR. The anode of the second diode D2 is coupled to the second input node NIN2, and the cathode of the second diode D2 is coupled to the first node N1. The anode of the third diode D3 is coupled to a ground potential VSS, and the cathode of the third diode D3 is coupled to the first input node NIN1. The anode of the fourth diode D4 is coupled to the ground potential VSS, and the cathode of the fourth diode D4 is coupled to the second input node NIN2.

第一電感器L1之第一端係耦接至第一節點N1以接收整流電位VR,而第一電感器L1之第二端係耦接至一第二節點N2。The first end of the first inductor L1 is coupled to the first node N1 to receive the rectified potential VR, and the second end of the first inductor L1 is coupled to a second node N2.

第二電感器L2之第一端係耦接至第一節點N1以接收整流電位VR,而第二電感器L2之第二端係耦接至一第三節點N3。The first end of the second inductor L2 is coupled to the first node N1 to receive the rectified potential VR, and the second end of the second inductor L2 is coupled to a third node N3.

第一功率切換器220包括一第一電晶體M1。第一電晶體M1可為一N型金氧半場效電晶體。第一電晶體M1具有一控制端(例如:一閘極)、一第一端(例如:一源極),以及一第二端(例如:一汲極),其中第一電晶體M1之控制端係用於接收一第一脈衝寬度調變電位VM1,第一電晶體M1之第一端係耦接至接地電位VSS,而第一電晶體M1之第二端係耦接至第二節點N2。第一脈衝寬度調變電位VM1可用於調整第一功率切換器220之責任週期。例如,若第一脈衝寬度調變電位VM1為高邏輯位準,則第一電晶體M1將可被致能;反之,若第一脈衝寬度調變電位VM1為低邏輯位準,則第一電晶體M1將可被禁能。The first power switch 220 includes a first transistor M1. The first transistor M1 can be an N-type MOSFET. The first transistor M1 has a control terminal (for example: a gate), a first terminal (for example: a source), and a second terminal (for example: a drain), wherein the control of the first transistor M1 The terminal is used to receive a first pulse width modulation potential VM1, the first terminal of the first transistor M1 is coupled to the ground potential VSS, and the second terminal of the first transistor M1 is coupled to the second node N2. The first pulse width modulation potential VM1 can be used to adjust the duty cycle of the first power switch 220. For example, if the first pulse width modulation potential VM1 is at a high logic level, the first transistor M1 will be enabled; on the contrary, if the first pulse width modulation potential VM1 is at a low logic level, the first transistor M1 will be enabled. A transistor M1 will be disabled.

第二功率切換器230包括一第二電晶體M2。第二電晶體M2可為一N型金氧半場效電晶體。第二電晶體M2之控制端係用於接收一第二脈衝寬度調變電位VM2,第二電晶體M2之第一端係耦接至接地電位VSS,而第二電晶體M2之第二端係耦接至第三節點N3。第二脈衝寬度調變電位VM2可用於調整第二功率切換器230之責任週期。例如,若第二脈衝寬度調變電位VM2為高邏輯位準,則第二電晶體M2將可被致能;反之,若第二脈衝寬度調變電位VM2為低邏輯位準,則第二電晶體M2將可被禁能。The second power switch 230 includes a second transistor M2. The second transistor M2 can be an N-type MOSFET. The control terminal of the second transistor M2 is used to receive a second pulse width modulation potential VM2, the first terminal of the second transistor M2 is coupled to the ground potential VSS, and the second terminal of the second transistor M2 It is coupled to the third node N3. The second pulse width modulation potential VM2 can be used to adjust the duty cycle of the second power switch 230. For example, if the second pulse width modulation potential VM2 is at a high logic level, the second transistor M2 will be enabled; on the contrary, if the second pulse width modulation potential VM2 is at a low logic level, the second transistor M2 will be enabled. The two transistor M2 will be disabled.

脈衝寬度調變積體電路240可產生第一脈衝寬度調變電位VM1和第二脈衝寬度調變電位VM2。例如,第一脈衝寬度調變電位VM1和第二脈衝寬度調變電位VM2於升壓轉換器200初始化時可維持於一固定電位,而在升壓轉換器200進入正常使用階段後則可提供週期性之時脈波形。The pulse width modulation integrated circuit 240 can generate a first pulse width modulation potential VM1 and a second pulse width modulation potential VM2. For example, the first pulse width modulation potential VM1 and the second pulse width modulation potential VM2 can be maintained at a fixed potential when the boost converter 200 is initialized, and can be maintained after the boost converter 200 enters the normal use phase. Provide periodic clock waveform.

能量釋放電路250包括一第五二極體D5和一第三電感器L3。第五二極體D5之陽極係耦接至接地電位VSS,而第五二極體D5之陰極係耦接至一第四節點N4。第三電感器L3之第一端係耦接至第四節點N4,而第三電感器L3之第二端係耦接至一第五節點N5。The energy release circuit 250 includes a fifth diode D5 and a third inductor L3. The anode of the fifth diode D5 is coupled to the ground potential VSS, and the cathode of the fifth diode D5 is coupled to a fourth node N4. The first end of the third inductor L3 is coupled to the fourth node N4, and the second end of the third inductor L3 is coupled to a fifth node N5.

能量回收電路260包括一第四電感器L4、一第一電阻器R1,以及一第六二極體D6。第四電感器L4之第一端係耦接至接地電位VSS,而第四電感器L4之第二端係耦接至一第六節點N6。第一電阻器R1之第一端係耦接至第六節點N6,而第一電阻器R1之第二端係耦接至一第七節點N7。第六二極體D6之陽極係耦接至第五節點N5,而第六二極體D6之陰極係耦接至第七節點N7。在一些實施例中,第一電感器L1係與第四電感器L4互相耦合,而第二電感器L2亦與第四電感器L4互相耦合。The energy recovery circuit 260 includes a fourth inductor L4, a first resistor R1, and a sixth diode D6. The first end of the fourth inductor L4 is coupled to the ground potential VSS, and the second end of the fourth inductor L4 is coupled to a sixth node N6. The first end of the first resistor R1 is coupled to the sixth node N6, and the second end of the first resistor R1 is coupled to a seventh node N7. The anode of the sixth diode D6 is coupled to the fifth node N5, and the cathode of the sixth diode D6 is coupled to the seventh node N7. In some embodiments, the first inductor L1 and the fourth inductor L4 are coupled to each other, and the second inductor L2 and the fourth inductor L4 are also coupled to each other.

輸出級電路270之能量補償電路280包括一第一電容器C1、一第二電阻器R2、一第五電感器L5,以及一第七二極體D7。第一電容器C1之第一端係耦接至第五節點N5,而第一電容器C1之第二端係耦接至一共同節點NCM。例如,共同節點NCM可提供另一接地電位,其可與前述之接地電位VSS相同或相異。第二電阻器R2之第一端係耦接至一第八節點N8,而第二電阻器R2之第二端係耦接至第五節點N5。第五電感器L5之第一端係耦接至第八節點N8,而第五電感器L5之第二端係耦接至一第九節點N9。第七二極體D7之陽極係耦接至共同節點NCM,而第七二極體D7之陰極係耦接至第九節點N9。在一些實施例中,第三電感器L3係與第五電感器L5互相耦合。The energy compensation circuit 280 of the output stage circuit 270 includes a first capacitor C1, a second resistor R2, a fifth inductor L5, and a seventh diode D7. The first terminal of the first capacitor C1 is coupled to the fifth node N5, and the second terminal of the first capacitor C1 is coupled to a common node NCM. For example, the common node NCM may provide another ground potential, which may be the same as or different from the aforementioned ground potential VSS. The first end of the second resistor R2 is coupled to an eighth node N8, and the second end of the second resistor R2 is coupled to the fifth node N5. The first end of the fifth inductor L5 is coupled to the eighth node N8, and the second end of the fifth inductor L5 is coupled to a ninth node N9. The anode of the seventh diode D7 is coupled to the common node NCM, and the cathode of the seventh diode D7 is coupled to the ninth node N9. In some embodiments, the third inductor L3 and the fifth inductor L5 are coupled to each other.

除了能量補償電路280之外,輸出級電路270更包括一第八二極體D8、一第九二極體D9、一第二電容器C2,以及一第三電容器C3。第八二極體D8之陽極係耦接至第二節點N2,而第八二極體D8之陰極係耦接至輸出節點NOUT。第九二極體D9之陽極係耦接至第三節點N3,而第九二極體D9之陰極係耦接至輸出節點NOUT。第二電容器C2具有一第一端和一第二端,其中第二電容器C2之第一端係耦接至輸出節點NOUT,而第二電容器C2之第二端係耦接至第五節點N5。第三電容器C3之第一端係耦接至輸出節點NOUT,而第三電容器C3之第二端係耦接至共同節點NCM。In addition to the energy compensation circuit 280, the output stage circuit 270 further includes an eighth diode D8, a ninth diode D9, a second capacitor C2, and a third capacitor C3. The anode of the eighth diode D8 is coupled to the second node N2, and the cathode of the eighth diode D8 is coupled to the output node NOUT. The anode of the ninth diode D9 is coupled to the third node N3, and the cathode of the ninth diode D9 is coupled to the output node NOUT. The second capacitor C2 has a first terminal and a second terminal. The first terminal of the second capacitor C2 is coupled to the output node NOUT, and the second terminal of the second capacitor C2 is coupled to the fifth node N5. The first end of the third capacitor C3 is coupled to the output node NOUT, and the second end of the third capacitor C3 is coupled to the common node NCM.

第3圖係顯示根據本發明一實施例所述之升壓轉換器200之電位波形圖,其中橫軸代表時間,而縱軸代表電位位準。根據第3圖之量測結果,升壓轉換器200可逐一操作於一第一階段T1、一第二階段T2、一第三階段T3,以及一第四階段T4,其原理可如下列所述。必須注意的是,第一電容器C1之第一端和第二端之間具有一第一電位差VD1,第二電容器C2之第一端和第二端之間具有一第二電位差VD2,而第三電容器C3之第一端和第二端之間具有一第三電位差VD3。當共同節點NCM之電位設定為0V時,輸出電位VOUT之電位位準可大致等於第三電位差VD3。Fig. 3 shows a potential waveform diagram of the boost converter 200 according to an embodiment of the present invention, in which the horizontal axis represents time, and the vertical axis represents potential level. According to the measurement results in Figure 3, the boost converter 200 can operate in a first stage T1, a second stage T2, a third stage T3, and a fourth stage T4 one by one. The principle can be as follows . It must be noted that there is a first potential difference VD1 between the first terminal and the second terminal of the first capacitor C1, a second potential difference VD2 is between the first terminal and the second terminal of the second capacitor C2, and the third There is a third potential difference VD3 between the first terminal and the second terminal of the capacitor C3. When the potential of the common node NCM is set to 0V, the potential level of the output potential VOUT may be substantially equal to the third potential difference VD3.

在第一階段T1期間,第一脈衝寬度調變電位VM1為高邏輯位準且第二脈衝寬度調變電位VM2為低邏輯位準,使得第一電晶體M1被致能,而第二電晶體M2被禁能。此時,第一電感器L1逐漸儲存電磁能。能量釋放電路250和能量回收電路260皆不動作。第一電容器C1之第一電位差VD1、第二電容器C2之第二電位差VD2,以及第三電容器C3之第三電位差VD3皆維持於0V。During the first stage T1, the first pulse width modulation potential VM1 is at a high logic level and the second pulse width modulation potential VM2 is at a low logic level, so that the first transistor M1 is enabled, and the second Transistor M2 is disabled. At this time, the first inductor L1 gradually stores electromagnetic energy. Neither the energy release circuit 250 nor the energy recovery circuit 260 operates. The first potential difference VD1 of the first capacitor C1, the second potential difference VD2 of the second capacitor C2, and the third potential difference VD3 of the third capacitor C3 are all maintained at 0V.

在第二階段T2期間,第一脈衝寬度調變電位VM1和第二脈衝寬度調變電位VM2皆為低邏輯位準,使得第一電晶體M1和第二電晶體M2皆被禁能。此時,儲存於第一電感器L1之電磁能將經由第八二極體D8對第二電容器C2進行充電。能量回收電路260之第四電感器L4逐漸儲存電磁能,但能量釋放電路250則不動作。由於第一電容器C1尚未充電,故第三電容器C3之第三電位差VD3會等於第二電容器C2之第二電位差VD2,其並由0V逐漸上升。During the second stage T2, the first pulse width modulation potential VM1 and the second pulse width modulation potential VM2 are both at low logic levels, so that both the first transistor M1 and the second transistor M2 are disabled. At this time, the electromagnetic energy stored in the first inductor L1 will charge the second capacitor C2 through the eighth diode D8. The fourth inductor L4 of the energy recovery circuit 260 gradually stores electromagnetic energy, but the energy release circuit 250 does not operate. Since the first capacitor C1 is not yet charged, the third potential difference VD3 of the third capacitor C3 will be equal to the second potential difference VD2 of the second capacitor C2, and it will gradually rise from 0V.

在第三階段T3期間,第一脈衝寬度調變電位VM1為低邏輯位準且第二脈衝寬度調變電位VM2為高邏輯位準,使得第一電晶體M1被禁能,而第二電晶體M2被致能。此時,能量回收電路260之第四電感器L4因為冷次定律發生電壓反轉,並迫使能量釋放電路250之第五二極體D5被致能。由於第四電感器L4所儲存之電磁能會經由第三電感器L3和第五電感器L5轉移至第一電容器C1,故第一電容器C1會被充電。因此,第三電容器C3之第三電位差VD3會大致等於第一電位差VD1和第二電位差VD2之總和。During the third stage T3, the first pulse width modulation potential VM1 is at a low logic level and the second pulse width modulation potential VM2 is at a high logic level, so that the first transistor M1 is disabled, and the second Transistor M2 is enabled. At this time, the fourth inductor L4 of the energy recovery circuit 260 undergoes a voltage reversal due to the cold order law and forces the fifth diode D5 of the energy release circuit 250 to be enabled. Since the electromagnetic energy stored in the fourth inductor L4 is transferred to the first capacitor C1 through the third inductor L3 and the fifth inductor L5, the first capacitor C1 is charged. Therefore, the third potential difference VD3 of the third capacitor C3 is approximately equal to the sum of the first potential difference VD1 and the second potential difference VD2.

在第四階段T4期間,第一脈衝寬度調變電位VM1和第二脈衝寬度調變電位VM2皆為低邏輯位準,使得第一電晶體M1和第二電晶體M2皆被禁能。此時,儲存於第二電感器L2之電磁能將經由第九二極體D9對第二電容器C2進行充電。能量回收電路260之第四電感器L4逐漸儲存電磁能,但能量釋放電路250則不動作。因為能量補償電路280之第七二極體D7被禁能,第一電容器C1之第一電位差VD1可維持不變。因此,第三電容器C3之第三電位差VD3亦會大致等於第一電位差VD1和第二電位差VD2之總和。During the fourth stage T4, the first pulse width modulation potential VM1 and the second pulse width modulation potential VM2 are both at low logic levels, so that both the first transistor M1 and the second transistor M2 are disabled. At this time, the electromagnetic energy stored in the second inductor L2 will charge the second capacitor C2 through the ninth diode D9. The fourth inductor L4 of the energy recovery circuit 260 gradually stores electromagnetic energy, but the energy release circuit 250 does not operate. Because the seventh diode D7 of the energy compensation circuit 280 is disabled, the first potential difference VD1 of the first capacitor C1 can remain unchanged. Therefore, the third potential difference VD3 of the third capacitor C3 is also approximately equal to the sum of the first potential difference VD1 and the second potential difference VD2.

簡而言之,升壓轉換器200之不同操作階段可如下表一所述:   第一電晶體M1 第二電晶體M2 能量釋放電路250 能量釋回收路260 第三電位差VD3 第一階段T1 致能 禁能 不動作 不動作 0 第二階段T2 禁能 禁能 不動作 動作 VD2 第三階段T3 禁能 致能 動作 動作 VD1+VD2 第四階段T4 禁能 禁能 不動作 動作 VD1+VD2 表一:升壓轉換器之不同階段之操作特徵 In short, the different operating stages of the boost converter 200 can be described in Table 1 below: The first transistor M1 The second transistor M2 Energy release circuit 250 Energy release and recovery circuit 260 The third potential difference VD3 Phase 1 T1 Enable Disable No action No action 0 Second stage T2 Disable Disable No action action VD2 The third stage T3 Disable Enable action action VD1+VD2 Fourth stage T4 Disable Disable No action action VD1+VD2 Table 1: Operating characteristics of different stages of boost converter

根據第3圖之量測結果,本發明額外使用第一電容器C1之第一電位差VD1來補償第三電容器C3之第三電位差VD3(或是輸出電位VOUT),是以第二電容器C2之第二電位差VD2可設定為一相對較低值(例如,傳統第二電位差VD2必須等於400V,但本發明之第二電位差VD2可僅約為250V,惟亦不僅限於此)。在此設計下,所提之升壓轉換器200可保證第一功率切換器220和第二功率切換器230之每一者之責任週期皆能小於50%,從而可有效降低升壓轉換器200之相關雜訊。According to the measurement results in Figure 3, the present invention additionally uses the first potential difference VD1 of the first capacitor C1 to compensate the third potential difference VD3 (or the output potential VOUT) of the third capacitor C3, which is the second of the second capacitor C2 The potential difference VD2 can be set to a relatively low value (for example, the conventional second potential difference VD2 must be equal to 400V, but the second potential difference VD2 of the present invention can be only about 250V, but it is not limited to this). Under this design, the proposed boost converter 200 can ensure that the duty cycle of each of the first power switch 220 and the second power switch 230 can be less than 50%, thereby effectively reducing the boost converter 200 The related noise.

在一些實施例中,升壓轉換器200之元件參數可如下列所述。第一電容器C1之電容值可介於544μF至816μF之間,較佳可為680μF。第二電容器C2之電容值可介於544μF至816μF之間,較佳可為680μF。第三電容器C3之電容值可介於1200μF至1800μF之間,較佳可為1500μF。第一電感器L1之電感值可介於315μH至385μH之間,較佳可為350μH。第二電感器L2之電感值可介於315μH至385μH之間,較佳可為350μH。第三電感器L3之電感值可介於127.5μH至172.5μH之間,較佳可為150μH。第四電感器L4之電感值可介於187μH至253μH之間,較佳可為220μH。第五電感器L5之電感值可介於382.5μH至517.5μH之間,較佳可為450μH。第一電阻器R1之電阻值可介於90Ω至110Ω之間,較佳可為100Ω。第二電阻器R2之電阻值可介於0.9KΩ至1.1KΩ之間,較佳可為1KΩ。第一功率切換器220和第二功率切換器230之每一者之最大責任週期可約為49.2%。第一電位差VD1之最大值可約為150V。第二電位差VD2之最大值可約為250V。第三電位差VD3之最大值可約為400V。以上參數範圍係根據多次實驗結果而得出,其有助於最小化升壓轉換器200之次諧波振盪。In some embodiments, the component parameters of the boost converter 200 may be as described below. The capacitance value of the first capacitor C1 may be between 544 μF and 816 μF, preferably 680 μF. The capacitance value of the second capacitor C2 may be between 544 μF and 816 μF, preferably 680 μF. The capacitance value of the third capacitor C3 may be between 1200 μF and 1800 μF, preferably 1500 μF. The inductance value of the first inductor L1 may be between 315 μH and 385 μH, preferably 350 μH. The inductance value of the second inductor L2 may be between 315 μH and 385 μH, preferably 350 μH. The inductance value of the third inductor L3 may be between 127.5 μH and 172.5 μH, preferably 150 μH. The inductance value of the fourth inductor L4 may be between 187 μH and 253 μH, preferably 220 μH. The inductance value of the fifth inductor L5 may be between 382.5 μH and 517.5 μH, preferably 450 μH. The resistance value of the first resistor R1 may be between 90Ω and 110Ω, and preferably may be 100Ω. The resistance value of the second resistor R2 may be between 0.9KΩ and 1.1KΩ, and preferably may be 1KΩ. The maximum duty cycle of each of the first power switch 220 and the second power switch 230 may be about 49.2%. The maximum value of the first potential difference VD1 may be about 150V. The maximum value of the second potential difference VD2 may be about 250V. The maximum value of the third potential difference VD3 may be about 400V. The above parameter range is based on the results of many experiments, which helps to minimize the sub-harmonic oscillation of the boost converter 200.

本發明提出一種新穎之升壓轉換器,其包括能量釋放電路和能量回收電路以最小化功率切換器之責任週期。根據實際量測結果,使用前述設計之升壓轉換器可大幅降低相關雜訊,故其很適合應用於各種各式之裝置當中。The present invention proposes a novel boost converter, which includes an energy release circuit and an energy recovery circuit to minimize the duty cycle of the power switch. According to the actual measurement results, using the boost converter designed as described above can greatly reduce the related noise, so it is very suitable for use in various types of devices.

值得注意的是,以上所述之電位、電流、電阻值、電感值、電容值,以及其餘元件參數均非為本發明之限制條件。設計者可以根據不同需要調整這些設定值。本發明之升壓轉換器並不僅限於第1-3圖所圖示之狀態。本發明可以僅包括第1-3圖之任何一或複數個實施例之任何一或複數項特徵。換言之,並非所有圖示之特徵均須同時實施於本發明之升壓轉換器當中。It is worth noting that the above-mentioned potential, current, resistance value, inductance value, capacitance value, and other component parameters are not limitations of the present invention. The designer can adjust these settings according to different needs. The boost converter of the present invention is not limited to the state shown in Figs. 1-3. The present invention may only include any one or more of the features of any one or more of the embodiments shown in FIGS. 1-3. In other words, not all the features shown in the figures need to be implemented in the boost converter of the present invention.

本發明雖以較佳實施例揭露如上,然其並非用以限定本發明的範圍,任何熟習此項技藝者,在不脫離本發明之精神和範圍內,當可做些許的更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。Although the present invention is disclosed as above in the preferred embodiment, it is not intended to limit the scope of the present invention. Anyone who is familiar with the art can make some changes and modifications without departing from the spirit and scope of the present invention. Therefore, The scope of protection of the present invention shall be subject to those defined by the attached patent scope.

100,200:升壓轉換器 110,210:橋式整流器 120,220:第一功率切換器 130,230:第二功率切換器 140,240:脈衝寬度調變積體電路 150,250:能量釋放電路 160,260:能量回收電路 170,270:輸出級電路 180,280:能量補償電路 C1:第一電容器 C2:第二電容器 C3:第三電容器 D1:第一二極體 D2:第二二極體 D3:第三二極體 D4:第四二極體 D5:第五二極體 D6:第六二極體 D7:第七二極體 D8:第八二極體 D9:第九二極體 L1:第一電感器 L2:第二電感器 L3:第三電感器 L4:第四電感器 L5:第五電感器 M1:第一電晶體 M2:第二電晶體 N1:第一節點 N2:第二節點 N3:第三節點 N4:第四節點 N5:第五節點 N6:第六節點 N7:第七節點 N8:第八節點 N9:第九節點 NCM:共同節點 NIN1:第一輸入節點 NIN2:第二輸入節點 NOUT:輸出節點 R1:第一電阻器 R2:第二電阻器 T1:第一階段 T2:第二階段 T3:第三階段 T4:第四階段 VD1:第一電位差 VD2:第二電位差 VD3:第三電位差 VIN1:第一輸入電位 VIN2:第二輸入電位 VM1:第一脈衝寬度調變電位 VM2:第二脈衝寬度調變電位 VOUT:輸出電位 VR:整流電位 VSS:接地電位100,200: Boost converter 110, 210: Bridge rectifier 120, 220: the first power switch 130, 230: second power switch 140, 240: Pulse width modulation integrated circuit 150, 250: Energy release circuit 160,260: Energy recovery circuit 170,270: output stage circuit 180,280: Energy compensation circuit C1: The first capacitor C2: second capacitor C3: third capacitor D1: The first diode D2: The second diode D3: The third diode D4: The fourth diode D5: Fifth diode D6: The sixth diode D7: seventh diode D8: Eighth diode D9: Ninth diode L1: first inductor L2: second inductor L3: third inductor L4: Fourth inductor L5: fifth inductor M1: The first transistor M2: second transistor N1: the first node N2: second node N3: third node N4: Fourth node N5: fifth node N6: sixth node N7: seventh node N8: The eighth node N9: Ninth node NCM: Common Node NIN1: the first input node NIN2: second input node NOUT: output node R1: first resistor R2: second resistor T1: first stage T2: second stage T3: The third stage T4: Fourth stage VD1: the first potential difference VD2: second potential difference VD3: third potential difference VIN1: the first input potential VIN2: second input potential VM1: first pulse width modulation potential VM2: second pulse width modulation potential VOUT: output potential VR: Rectified potential VSS: Ground potential

第1圖係顯示根據本發明一實施例所述之升壓轉換器之示意圖。 第2圖係顯示根據本發明一實施例所述之升壓轉換器之示意圖。 第3圖係顯示根據本發明一實施例所述之升壓轉換器之電位波形圖。 Figure 1 shows a schematic diagram of a boost converter according to an embodiment of the invention. Figure 2 is a schematic diagram of a boost converter according to an embodiment of the invention. Fig. 3 shows a potential waveform diagram of the boost converter according to an embodiment of the invention.

100:升壓轉換器 100: Boost converter

110:橋式整流器 110: Bridge rectifier

120:第一功率切換器 120: The first power switch

130:第二功率切換器 130: The second power switch

140:脈衝寬度調變積體電路 140: Pulse width modulation integrated circuit

150:能量釋放電路 150: Energy release circuit

160:能量回收電路 160: Energy recovery circuit

170:輸出級電路 170: output stage circuit

180:能量補償電路 180: Energy compensation circuit

L1:第一電感器 L1: first inductor

L2:第二電感器 L2: second inductor

VIN1:第一輸入電位 VIN1: the first input potential

VIN2:第二輸入電位 VIN2: second input potential

VM1:第一脈衝寬度調變電位 VM1: first pulse width modulation potential

VM2:第二脈衝寬度調變電位 VM2: second pulse width modulation potential

VOUT:輸出電位 VOUT: output potential

VR:整流電位 VR: Rectified potential

VSS:接地電位 VSS: Ground potential

Claims (10)

一種低雜訊之升壓轉換器,包括: 一橋式整流器,根據一第一輸入電位和一第二輸入電位來產生一整流電位; 一第一電感器,接收該整流電位; 一第一功率切換器,根據一第一脈衝寬度調變電位來選擇性地將該第一電感器耦接至一接地電位; 一第二電感器,接收該整流電位; 一第二功率切換器,根據一第二脈衝寬度調變電位來選擇性地將該第二電感器耦接至該接地電位; 一脈衝寬度調變積體電路,產生該第一脈衝寬度調變電位和該第二脈衝寬度調變電位; 一能量釋放電路; 一能量回收電路,與該能量釋放電路並聯耦接;以及 一輸出級電路,包括一能量補償電路,並產生一輸出電位,其中該輸出級電路係耦接至該第一電感器、該第二電感器、該能量釋放電路,以及該能量回收電路; 其中該第一電感器和該第二電感器所儲存之電磁能係經由該能量回收電路和該能量釋放電路再轉移至該能量補償電路。 A low-noise boost converter, including: A bridge rectifier that generates a rectified potential according to a first input potential and a second input potential; A first inductor, which receives the rectified potential; A first power switch, selectively coupling the first inductor to a ground potential according to a first pulse width modulation potential; A second inductor, which receives the rectified potential; A second power switch, selectively coupling the second inductor to the ground potential according to a second pulse width modulation potential; A pulse width modulation integrated circuit that generates the first pulse width modulation potential and the second pulse width modulation potential; An energy release circuit; An energy recovery circuit coupled in parallel with the energy release circuit; and An output stage circuit including an energy compensation circuit and generating an output potential, wherein the output stage circuit is coupled to the first inductor, the second inductor, the energy release circuit, and the energy recovery circuit; The electromagnetic energy stored in the first inductor and the second inductor is transferred to the energy compensation circuit through the energy recovery circuit and the energy release circuit. 如請求項1所述之升壓轉換器,其中該橋式整流器包括: 一第一二極體,具有一陽極和一陰極,其中該第一二極體之該陽極係耦接至一第一輸入節點以接收該第一輸入電位,而該第一二極體之該陰極係耦接至一第一節點以輸出該整流電位; 一第二二極體,具有一陽極和一陰極,其中該第二二極體之該陽極係耦接至一第二輸入節點以接收該第二輸入電位,而該第二二極體之該陰極係耦接至該第一節點; 一第三二極體,具有一陽極和一陰極,其中該第三二極體之該陽極係耦接至該接地電位,而該第三二極體之該陰極係耦接至該第一輸入節點;以及 一第四二極體,具有一陽極和一陰極,其中該第四二極體之該陽極係耦接至該接地電位,而該第四二極體之該陰極係耦接至該第二輸入節點。 The boost converter according to claim 1, wherein the bridge rectifier includes: A first diode has an anode and a cathode, wherein the anode of the first diode is coupled to a first input node to receive the first input potential, and the first diode of the The cathode is coupled to a first node to output the rectified potential; A second diode has an anode and a cathode, wherein the anode of the second diode is coupled to a second input node to receive the second input potential, and the second diode of the The cathode is coupled to the first node; A third diode having an anode and a cathode, wherein the anode of the third diode is coupled to the ground potential, and the cathode of the third diode is coupled to the first input Node; and A fourth diode having an anode and a cathode, wherein the anode of the fourth diode is coupled to the ground potential, and the cathode of the fourth diode is coupled to the second input node. 如請求項2所述之升壓轉換器,其中該第一電感器具有一第一端和一第二端,該第一電感器之該第一端係耦接至該第一節點以接收該整流電位,該第一電感器之該第二端係耦接至一第二節點,該第二電感器具有一第一端和一第二端,該第二電感器之該第一端係耦接至該第一節點以接收該整流電位,而該第二電感器之該第二端係耦接至一第三節點。The boost converter according to claim 2, wherein the first inductor has a first terminal and a second terminal, and the first terminal of the first inductor is coupled to the first node to receive the rectification Potential, the second end of the first inductor is coupled to a second node, the second inductor has a first end and a second end, and the first end of the second inductor is coupled to The first node receives the rectified potential, and the second end of the second inductor is coupled to a third node. 如請求項3所述之升壓轉換器,其中該第一功率切換器包括: 一第一電晶體,具有一控制端、一第一端,以及一第二端,其中該第一電晶體之該控制端係用於接收該第一脈衝寬度調變電位,該第一電晶體之該第一端係耦接至該接地電位,而該第一電晶體之該第二端係耦接至該第二節點。 The boost converter according to claim 3, wherein the first power switch includes: A first transistor has a control terminal, a first terminal, and a second terminal, wherein the control terminal of the first transistor is used to receive the first pulse width modulation potential, and the first transistor The first end of the crystal is coupled to the ground potential, and the second end of the first transistor is coupled to the second node. 如請求項3所述之升壓轉換器,其中該第二功率切換器包括: 一第二電晶體,具有一控制端、一第一端,以及一第二端,其中該第二電晶體之該控制端係用於接收該第二脈衝寬度調變電位,該第二電晶體之該第一端係耦接至該接地電位,而該第二電晶體之該第二端係耦接至該第三節點。 The boost converter according to claim 3, wherein the second power switch includes: A second transistor has a control terminal, a first terminal, and a second terminal, wherein the control terminal of the second transistor is used to receive the second pulse width modulation potential, and the second transistor The first terminal of the crystal is coupled to the ground potential, and the second terminal of the second transistor is coupled to the third node. 如請求項3所述之升壓轉換器,其中該能量釋放電路包括: 一第五二極體,具有一陽極和一陰極,其中該第五二極體之該陽極係耦接至該接地電位,而該第五二極體之該陰極係耦接至一第四節點;以及 一第三電感器,具有一第一端和一第二端,其中該第三電感器之該第一端係耦接至該第四節點,而該第三電感器之該第二端係耦接至一第五節點。 The boost converter according to claim 3, wherein the energy release circuit includes: A fifth diode having an anode and a cathode, wherein the anode of the fifth diode is coupled to the ground potential, and the cathode of the fifth diode is coupled to a fourth node ;as well as A third inductor has a first end and a second end, wherein the first end of the third inductor is coupled to the fourth node, and the second end of the third inductor is coupled Connect to a fifth node. 如請求項6所述之升壓轉換器,其中該能量回收電路包括: 一第四電感器,具有一第一端和一第二端,其中該第四電感器之該第一端係耦接至該接地電位,而該第四電感器之該第二端係耦接至一第六節點; 一第一電阻器,具有一第一端和一第二端,其中該第一電阻器之該第一端係耦接至該第六節點,而該第一電阻器之該第二端係耦接至一第七節點;以及 一第六二極體,具有一陽極和一陰極,其中該第六二極體之該陽極係耦接至該第五節點,而該第六二極體之該陰極係耦接至該第七節點。 The boost converter according to claim 6, wherein the energy recovery circuit includes: A fourth inductor has a first end and a second end, wherein the first end of the fourth inductor is coupled to the ground potential, and the second end of the fourth inductor is coupled To a sixth node; A first resistor has a first end and a second end, wherein the first end of the first resistor is coupled to the sixth node, and the second end of the first resistor is coupled Connected to a seventh node; and A sixth diode having an anode and a cathode, wherein the anode of the sixth diode is coupled to the fifth node, and the cathode of the sixth diode is coupled to the seventh node. 如請求項7所述之升壓轉換器,其中該輸出級電路之該能量補償電路包括: 一第一電容器,具有一第一端和一第二端,其中該第一電容器之該第一端係耦接至該第五節點,而該第一電容器之該第二端係耦接至一共同節點; 一第二電阻器,具有一第一端和一第二端,其中該第二電阻器之該第一端係耦接至一第八節點,而該第二電阻器之該第二端係耦接至該第五節點; 一第五電感器,具有一第一端和一第二端,其中該第五電感器之該第一端係耦接至該第八節點,而該第五電感器之該第二端係耦接至一第九節點;以及 一第七二極體,具有一陽極和一陰極,其中該第七二極體之該陽極係耦接至該共同節點,而該第七二極體之該陰極係耦接至該第九節點。 The boost converter according to claim 7, wherein the energy compensation circuit of the output stage circuit includes: A first capacitor has a first terminal and a second terminal, wherein the first terminal of the first capacitor is coupled to the fifth node, and the second terminal of the first capacitor is coupled to a Common node A second resistor has a first end and a second end, wherein the first end of the second resistor is coupled to an eighth node, and the second end of the second resistor is coupled Connected to the fifth node; A fifth inductor has a first end and a second end, wherein the first end of the fifth inductor is coupled to the eighth node, and the second end of the fifth inductor is coupled Connected to a ninth node; and A seventh diode having an anode and a cathode, wherein the anode of the seventh diode is coupled to the common node, and the cathode of the seventh diode is coupled to the ninth node . 如請求項8所述之升壓轉換器,其中該第一電感器係與該第四電感器互相耦合,該第二電感器係與該第四電感器互相耦合,而該第三電感器係與該第五電感器互相耦合。The boost converter according to claim 8, wherein the first inductor and the fourth inductor are coupled to each other, the second inductor and the fourth inductor are coupled to each other, and the third inductor is And the fifth inductor are mutually coupled. 如請求項8所述之升壓轉換器,其中該輸出級電路更包括: 一第八二極體,具有一陽極和一陰極,其中該第八二極體之該陽極係耦接至該第二節點,而該第八二極體之該陰極係耦接至一輸出節點以輸出該輸出電位; 一第九二極體,具有一陽極和一陰極,其中該第九二極體之該陽極係耦接至該第三節點,而該第九二極體之該陰極係耦接至該輸出節點; 一第二電容器,具有一第一端和一第二端,其中該第二電容器之該第一端係耦接至該輸出節點,而該第二電容器之該第二端係耦接至該第五節點;以及 一第三電容器,具有一第一端和一第二端,其中該第三電容器之該第一端係耦接至該輸出節點,而該第三電容器之該第二端係耦接至該共同節點。 The boost converter according to claim 8, wherein the output stage circuit further includes: An eighth diode having an anode and a cathode, wherein the anode of the eighth diode is coupled to the second node, and the cathode of the eighth diode is coupled to an output node To output the output potential; A ninth diode having an anode and a cathode, wherein the anode of the ninth diode is coupled to the third node, and the cathode of the ninth diode is coupled to the output node ; A second capacitor has a first terminal and a second terminal, wherein the first terminal of the second capacitor is coupled to the output node, and the second terminal of the second capacitor is coupled to the first terminal Five nodes; and A third capacitor has a first terminal and a second terminal, wherein the first terminal of the third capacitor is coupled to the output node, and the second terminal of the third capacitor is coupled to the common node.
TW109127508A 2020-08-13 2020-08-13 Boost converter with low noise TWI731772B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW109127508A TWI731772B (en) 2020-08-13 2020-08-13 Boost converter with low noise

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW109127508A TWI731772B (en) 2020-08-13 2020-08-13 Boost converter with low noise

Publications (2)

Publication Number Publication Date
TWI731772B true TWI731772B (en) 2021-06-21
TW202207595A TW202207595A (en) 2022-02-16

Family

ID=77517316

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109127508A TWI731772B (en) 2020-08-13 2020-08-13 Boost converter with low noise

Country Status (1)

Country Link
TW (1) TWI731772B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI784810B (en) * 2021-11-24 2022-11-21 宏碁股份有限公司 Boost power conversion device
TWI826135B (en) * 2022-11-22 2023-12-11 宏碁股份有限公司 Boost converter with high conversion efficiency

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200504487A (en) * 2003-07-31 2005-02-01 Acbel Polytech Inc Zero-current switching power factor corrector with energy recycling
US20070216385A1 (en) * 2006-03-14 2007-09-20 Energy Conservation Technologies, Inc. Switch mode power converter having multiple inductor windings equipped with snubber circuits
US20100091526A1 (en) * 1997-01-24 2010-04-15 Schlecht Martin F High efficiency power converter
CN210183223U (en) * 2019-08-05 2020-03-24 芯好半导体(成都)有限公司 Energy recovery circuit, energy recovery module, energy recovery system, switching power supply and intelligent control switching power supply
TW202013863A (en) * 2018-09-18 2020-04-01 遠東科技大學 High step-down ration direct current power converter

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100091526A1 (en) * 1997-01-24 2010-04-15 Schlecht Martin F High efficiency power converter
TW200504487A (en) * 2003-07-31 2005-02-01 Acbel Polytech Inc Zero-current switching power factor corrector with energy recycling
US20070216385A1 (en) * 2006-03-14 2007-09-20 Energy Conservation Technologies, Inc. Switch mode power converter having multiple inductor windings equipped with snubber circuits
TW202013863A (en) * 2018-09-18 2020-04-01 遠東科技大學 High step-down ration direct current power converter
CN210183223U (en) * 2019-08-05 2020-03-24 芯好半导体(成都)有限公司 Energy recovery circuit, energy recovery module, energy recovery system, switching power supply and intelligent control switching power supply

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI784810B (en) * 2021-11-24 2022-11-21 宏碁股份有限公司 Boost power conversion device
TWI826135B (en) * 2022-11-22 2023-12-11 宏碁股份有限公司 Boost converter with high conversion efficiency

Also Published As

Publication number Publication date
TW202207595A (en) 2022-02-16

Similar Documents

Publication Publication Date Title
TWI736367B (en) Boost converter with high power factor
TWI731772B (en) Boost converter with low noise
TWI692185B (en) Boost converter
TWI740686B (en) Boost converter for reducing total harmonic distortion
TWI751768B (en) Soft-start boost converter
TWI726758B (en) Power supply device for eliminating ringing effect
TW202123592A (en) Boost converter
TWI704757B (en) Boost converter
TWI731675B (en) Power supply device for eliminating ringing effect
TWI757667B (en) Boost converter
TWI704756B (en) Boost converter
TWI806548B (en) Boost converter
TW202143626A (en) Power supply device with dynamic output
TWI751658B (en) Boost converter with low loss
TWI844324B (en) Boost converter with high conversion efficiency
TWI817491B (en) Boost converter with high efficiency
TWI832742B (en) Boost converter for suppressing magnetic saturation
TWI715468B (en) Buck converter
TWI837670B (en) Power supply device
TWI715464B (en) Buck converter
TWI826135B (en) Boost converter with high conversion efficiency
TWI726759B (en) Boost converter for improving output stability
TWI844373B (en) Power supply device with low switching loss
TWI763057B (en) Boost converter for eliminating start-up overshoot
TWI837944B (en) Power supply device with high output stability