TWI816608B - Method for manufacturing optical communication module - Google Patents

Method for manufacturing optical communication module Download PDF

Info

Publication number
TWI816608B
TWI816608B TW111144688A TW111144688A TWI816608B TW I816608 B TWI816608 B TW I816608B TW 111144688 A TW111144688 A TW 111144688A TW 111144688 A TW111144688 A TW 111144688A TW I816608 B TWI816608 B TW I816608B
Authority
TW
Taiwan
Prior art keywords
photoelectric conversion
conversion element
patterned photoresist
light
photoresist layer
Prior art date
Application number
TW111144688A
Other languages
Chinese (zh)
Inventor
葉士德
劉忠武
張正芳
Original Assignee
大陸商業泓科技(成都)有限公司
業泓科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大陸商業泓科技(成都)有限公司, 業泓科技股份有限公司 filed Critical 大陸商業泓科技(成都)有限公司
Application granted granted Critical
Publication of TWI816608B publication Critical patent/TWI816608B/en

Links

Images

Landscapes

  • Light Receiving Elements (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

The present invention provides a method for manufacturing optical communication module. By using a photoelectric conversion element to block light to replace the role of a high-precision mask. The present invention solves the problem of increasing the production cost by designing a high-precision mask in the current method of preparing the optical communication module by the photolithography.

Description

光通訊模組的製備方法Preparation method of optical communication module

本發明有關於光通訊領域,尤其關於一種光通訊模組的製備方法。The present invention relates to the field of optical communication, and in particular to a method for preparing an optical communication module.

光通訊模組為進行光電轉換的通訊模組,其中光通訊模組可分出發射端與接收端,其中發射端用於將電訊號轉換為光訊號,接收端則用於將光訊號轉換為電訊號,而其中發射端主要又可進一步拆分為發射模組及光纖,並且發射模組與光纖耦合,其中發射模組會再與印刷電路板耦接,以接收印刷電路板傳輸的電訊號,並將接收到的電訊號轉換為光訊號,而光纖則用於傳輸發射模組所產生的光訊號,而其中接收端主要又可進一步拆分為接收模組及光纖,並且接收模組與光纖耦合,其中接收模組會再與印刷電路板耦接,以接收光纖傳輸的光訊號,並將接收到的光訊號轉換為電訊號。The optical communication module is a communication module that performs photoelectric conversion. The optical communication module can be divided into a transmitting end and a receiving end. The transmitting end is used to convert electrical signals into optical signals, and the receiving end is used to convert optical signals into Electrical signals, and the transmitting end can be further divided into a transmitting module and an optical fiber, and the transmitting module is coupled to the optical fiber, and the transmitting module is coupled to the printed circuit board to receive the electrical signal transmitted by the printed circuit board. , and convert the received electrical signal into an optical signal, and the optical fiber is used to transmit the optical signal generated by the transmitting module, and the receiving end can be further divided into a receiving module and an optical fiber, and the receiving module and Optical fiber coupling, in which the receiving module is coupled to the printed circuit board to receive the optical signal transmitted by the optical fiber and convert the received optical signal into an electrical signal.

現行耦合光通訊模組與光纖的耦合技術可分為直接耦合及間接耦合,其中直接耦合技術為讓光纖直接與光通訊模組耦合,其中光通訊模組包括介電質、光電轉換元件及金屬線路層,其中光電轉換元件位於介電質中,且金屬線路層耦接光電轉換元件,而介電質設置有開口以暴露光電轉換元件的上表面,而光電轉換元件的上表面包括有光圈,光電轉換元件產生的光訊號即經由光圈進行輸出,因此當光纖插入介電質上設置的開口,即可接收光電轉換元件經由光圈及出光口傳輸的光訊號,達到直接耦合的功效,其中光通訊模組的製備方法一般採用光蝕刻方法、濕式蝕刻方法或雷射剝蝕方法等方式進行製備;其中光電轉換元件可為雷射元件或光接收元件。The current coupling technology for coupling optical communication modules to optical fibers can be divided into direct coupling and indirect coupling. Direct coupling technology allows optical fibers to be directly coupled to optical communication modules. Optical communication modules include dielectrics, photoelectric conversion components and metals. The circuit layer, wherein the photoelectric conversion element is located in the dielectric, and the metal circuit layer is coupled to the photoelectric conversion element, and the dielectric is provided with an opening to expose the upper surface of the photoelectric conversion element, and the upper surface of the photoelectric conversion element includes an aperture, The optical signal generated by the photoelectric conversion element is output through the aperture. Therefore, when the optical fiber is inserted into the opening provided on the dielectric, it can receive the optical signal transmitted by the photoelectric conversion element through the aperture and the light outlet, achieving the effect of direct coupling. Among them, optical communication The module is generally prepared by photo etching, wet etching or laser ablation; the photoelectric conversion element can be a laser element or a light receiving element.

現行以光蝕刻方法製備光通訊模組的方式之一,為先於基板上配置光電轉換元件,再來塗佈介電質於光電轉換元件的周圍區域及光電轉換元件的上表面,使介電質包覆光電轉換元件,其中介電質可為正型光阻劑或負型光阻劑,接著使用高精度光罩對光電轉換元件位置進行精準定位後,曝光光源再由高精度光罩的上方對介電質進行曝光,其中若介電質為正型光阻劑,則被曝光區域不會產生交聯反應,其中若介電質為負型光阻劑,則被曝光區域會產生交聯反應,其中高精度光罩指精度達1 μm的光罩,而高精度光罩的作用在於讓對應光電轉換元件的上方的介電質不會產生交聯反應,因此於顯影時即可以顯影劑溶解位於光電轉換元件的上方未產生交聯反應的介電質,藉以暴露光電轉換元件的上表面,再來於光電轉換元件的上表面形成金屬線路層,其中金屬線路層耦接光電轉換元件,其中金屬線路層用於與印刷電路板耦接,藉以讓印刷電路板傳輸的電訊號得以傳輸至光電轉換元件,接著設置間隔件(Spacer)於光電轉換元件的上表面,再來塗佈介電質於光電轉換元件的上表面並覆蓋間隔件及金屬線路層的部分區域,接著再次使用高精度光罩對光電轉換元件位置進行精準定位後,曝光光源再由高精度光罩的上方對介電質進行曝光,以確保對應光電轉換元件的上表面的介電質不會產生交聯反應,因此於顯影時會介電質會形成一個開口以暴露光電轉換元件的上表面及間隔件,而後續光纖即可經由插入開口進行直接耦合,其中當光電轉換元件為雷射元件時,光纖即可得以接收雷射元件傳遞的光訊號,其中當光電轉換元件為光接收元件時,光接收元件即可接收光纖傳遞的光訊號,並藉由間隔件進行間隔光纖及光電轉換元件,以避免光纖與光電轉換元件直接接觸。One of the current ways to prepare optical communication modules by photolithography is to first configure photoelectric conversion elements on the substrate, and then coat dielectric materials around the photoelectric conversion elements and on the upper surface of the photoelectric conversion elements to make the dielectric The photoelectric conversion element is coated with a dielectric material, in which the dielectric material can be a positive photoresist or a negative photoresist. Then, a high-precision photomask is used to accurately position the photoelectric conversion element, and then the exposure light source is formed by a high-precision photomask. The dielectric is exposed from above. If the dielectric is a positive photoresist, there will be no cross-linking reaction in the exposed area. If the dielectric is a negative photoresist, there will be cross-linking reaction in the exposed area. The high-precision mask refers to a mask with an accuracy of 1 μm. The function of the high-precision mask is to prevent the dielectric above the corresponding photoelectric conversion element from producing a cross-linking reaction, so it can be developed during development. The agent dissolves the dielectric that has not produced cross-linking reaction above the photoelectric conversion element, thereby exposing the upper surface of the photoelectric conversion element, and then forms a metal circuit layer on the upper surface of the photoelectric conversion element, wherein the metal circuit layer is coupled to the photoelectric conversion element , in which the metal circuit layer is used to couple with the printed circuit board, so that the electrical signal transmitted by the printed circuit board can be transmitted to the photoelectric conversion element, and then a spacer (Spacer) is placed on the upper surface of the photoelectric conversion element, and then the medium is coated The electric substance is placed on the upper surface of the photoelectric conversion element and covers the spacer and part of the metal circuit layer. Then a high-precision photomask is used again to accurately position the photoelectric conversion element, and the exposure light source is directed through the upper part of the high-precision photomask. The dielectric is exposed to ensure that the dielectric corresponding to the upper surface of the photoelectric conversion element will not produce a cross-linking reaction. Therefore, during development, the dielectric will form an opening to expose the upper surface of the photoelectric conversion element and the spacer, and The subsequent optical fiber can be directly coupled through the insertion opening. When the photoelectric conversion element is a laser element, the optical fiber can receive the optical signal transmitted by the laser element. When the photoelectric conversion element is a light receiving element, the light receiving element is It can receive the optical signal transmitted by the optical fiber, and use spacers to separate the optical fiber and the photoelectric conversion element to avoid direct contact between the optical fiber and the photoelectric conversion element.

不過現行以光蝕刻方法製備光通訊模組的方式,為了對光電轉換元件進行精準定位,因此需要使用高精度光罩,並且高精度光罩需要根據光電轉換元件的形狀及大小進行設計,因而產生設計高精度光罩的所需的時間及金錢上的生產成本。However, the current method of preparing optical communication modules by photoetching requires the use of high-precision masks in order to accurately position the photoelectric conversion elements, and the high-precision masks need to be designed according to the shape and size of the photoelectric conversion elements, resulting in The time and money required to design high-precision photomasks are high in production costs.

本發明的一目的在於改善現行以光蝕刻法製備光通訊模組必須使用高精度光罩進行曝光位置的定位,而增加生產成本的問題。One purpose of the present invention is to improve the current problem of using a high-precision photomask to position the exposure position when preparing optical communication modules using photolithography, which increases production costs.

基於本發明的目的,本發明提供一種光通訊模組的製備方法,步驟依序包括提供透光基板、第一金屬線路層及光電轉換元件,其中第一金屬線路層形成於透光基板的上表面的部分區域,而光電轉換元件配置於透光基板的上方,並且光電轉換元件的下表面耦接第一金屬線路層;塗佈第一負型光阻劑於光電轉換元件的周圍區域及光電轉換元件的上表面,其中光電轉換元件的周圍區域包括第一金屬線路層的部分區域;由透光基板的下方朝上對第一負型光阻劑曝光;對第一負型光阻劑顯影以形成第一圖案化光阻層,第一圖案化光阻層形成於光電轉換元件的周圍區域,並暴露光電轉換元件的上表面;形成第二金屬線路層於光電轉換元件的上表面的部分區域、第一圖案化光阻層的上表面及第一圖案化光阻層的側面,第二金屬線路層耦接光電轉換元件的上表面;全面塗佈第二負型光阻劑以覆蓋第一圖案化光阻層的上表面、光電轉換元件的上表面外露部份及第二金屬線路層的部分區域;由透光基板的下方朝上對第一圖案化光阻層及第二負型光阻劑曝光;對第二負型光阻劑顯影以形成第二圖案化光阻層,且第二圖案化光阻層相對於光電轉換元件上方的區域形成一個開口,開口暴露光電轉換元件的上表面外露部份;於本發明的一實施例中,完成各個步驟後,進一步包括「移除透光基板」的步驟;於本發明的一實施例中,於完成「形成第二金屬線路層於光電轉換元件的上表面的部分區域、第一圖案化光阻層的上表面及第一圖案化光阻層的側面,第二金屬線路層耦接光電轉換元件的上表面」的步驟後,進一步包括「形成間隔件於光電轉換元件的上表面的另一部分區域」的步驟。Based on the purpose of the invention, the invention provides a method for manufacturing an optical communication module. The steps include providing a light-transmitting substrate, a first metal circuit layer and a photoelectric conversion element, wherein the first metal circuit layer is formed on the light-transmitting substrate. Partial area of the surface, and the photoelectric conversion element is arranged above the light-transmitting substrate, and the lower surface of the photoelectric conversion element is coupled to the first metal circuit layer; the first negative photoresist is coated on the surrounding area of the photoelectric conversion element and the photoelectric conversion element. The upper surface of the conversion element, where the surrounding area of the photoelectric conversion element includes part of the first metal circuit layer; exposing the first negative photoresist from the bottom of the light-transmitting substrate upward; developing the first negative photoresist To form a first patterned photoresist layer, the first patterned photoresist layer is formed in the surrounding area of the photoelectric conversion element and exposes the upper surface of the photoelectric conversion element; and a second metal circuit layer is formed on the upper surface of the photoelectric conversion element. area, the upper surface of the first patterned photoresist layer and the side surfaces of the first patterned photoresist layer, the second metal circuit layer is coupled to the upper surface of the photoelectric conversion element; the second negative photoresist is fully coated to cover the The upper surface of a patterned photoresist layer, the exposed portion of the upper surface of the photoelectric conversion element and a partial area of the second metal circuit layer; facing upward from the bottom of the light-transmitting substrate to the first patterned photoresist layer and the second negative type Exposing the photoresist; developing the second negative photoresist to form a second patterned photoresist layer, and the second patterned photoresist layer forms an opening relative to the area above the photoelectric conversion element, and the opening exposes the photoelectric conversion element The exposed portion of the upper surface; in one embodiment of the present invention, after completing each step, a step of "removing the light-transmitting substrate" is further included; in one embodiment of the present invention, after completing "forming the second metal circuit layer" After the step of "coupling the second metal circuit layer to the upper surface of the photoelectric conversion element in a partial area of the upper surface of the photoelectric conversion element, the upper surface of the first patterned photoresist layer and the side surface of the first patterned photoresist layer," It further includes the step of "forming a spacer on another part of the upper surface of the photoelectric conversion element".

基於本發明的目的,本發明提供一種光通訊模組的製備方法,步驟依序包括提供透光基板、第一金屬線路層及光電轉換元件,其中第一金屬線路層形成於透光基板的上表面的部分區域,而光電轉換元件配置於透光基板的上方,並且光電轉換元件的下表面耦接第一金屬線路層;塗佈第一負型光阻劑於光電轉換元件的周圍區域及光電轉換元件的上表面,其中光電轉換元件的周圍區域包括第一金屬線路層的部分區域;由透光基板的下方朝上對第一負型光阻劑曝光;對第一負型光阻劑顯影以形成第一圖案化光阻層,第一圖案化光阻層形成於光電轉換元件的周圍區域,並暴露光電轉換元件的上表面;全面塗佈第二負型光阻劑以覆蓋第一圖案化光阻層的上表面及光電轉換元件的上表面外露部份;由透光基板的下方朝上對第一圖案化光阻層及第二負型光阻劑曝光;對第二負型光阻劑顯影以形成第二圖案化光阻層,且第二圖案化光阻層相對於光電轉換元件上方的區域形成一個開口,開口暴露光電轉換元件的上表面外露部分;於本發明的一實施例中,完成各個步驟後,進一步包括「移除透光基板」的步驟;於本發明的一實施例中,於完成「對第一負型光阻劑顯影以形成第一圖案化光阻層,第一圖案化光阻層形成於光電轉換元件的周圍區域,並暴露光電轉換元件的上表面」的步驟後,進一步包括「形成間隔件於光電轉換元件的上表面的部分區域」的步驟。Based on the purpose of the invention, the invention provides a method for manufacturing an optical communication module. The steps include providing a light-transmitting substrate, a first metal circuit layer and a photoelectric conversion element, wherein the first metal circuit layer is formed on the light-transmitting substrate. Partial area of the surface, and the photoelectric conversion element is arranged above the light-transmitting substrate, and the lower surface of the photoelectric conversion element is coupled to the first metal circuit layer; the first negative photoresist is coated on the surrounding area of the photoelectric conversion element and the photoelectric conversion element. The upper surface of the conversion element, where the surrounding area of the photoelectric conversion element includes part of the first metal circuit layer; exposing the first negative photoresist from the bottom of the light-transmitting substrate upward; developing the first negative photoresist To form a first patterned photoresist layer, the first patterned photoresist layer is formed in the surrounding area of the photoelectric conversion element and exposes the upper surface of the photoelectric conversion element; the second negative photoresist is fully coated to cover the first pattern Pattern the upper surface of the photoresist layer and the exposed portion of the upper surface of the photoelectric conversion element; expose the first patterned photoresist layer and the second negative photoresist from the bottom of the light-transmitting substrate upward; expose the second negative photoresist to The resist is developed to form a second patterned photoresist layer, and the second patterned photoresist layer forms an opening relative to the area above the photoelectric conversion element, and the opening exposes the exposed portion of the upper surface of the photoelectric conversion element; in an implementation of the present invention In an example, after completing each step, a step of "removing the light-transmitting substrate" is further included; in one embodiment of the present invention, after completing "developing the first negative photoresist to form a first patterned photoresist layer" After the step of "forming a first patterned photoresist layer in the surrounding area of the photoelectric conversion element and exposing the upper surface of the photoelectric conversion element", it further includes the step of "forming a spacer on a partial area of the upper surface of the photoelectric conversion element".

基於本發明的目的,本發明提供一種光通訊模組的製備方法,步驟依序包括提供透光基板及光電轉換元件,光電轉換元件配置於透光基板的上表面;塗佈第一負型光阻劑於光電轉換元件的周圍區域及光電轉換元件的上表面;由透光基板的下方朝上對第一負型光阻劑曝光;對第一負型光阻劑顯影以形成第一圖案化光阻層,第一圖案化光阻層形成於光電轉換元件的周圍區域,並暴露光電轉換元件的上表面;形成第二金屬線路層於光電轉換元件的上表面的部分區域、第一圖案化光阻層的上表面及第一圖案化光阻層的側面,第二金屬線路層耦接光電轉換元件的上表面;全面塗佈第二負型光阻劑以覆蓋第一圖案化光阻層的上表面、光電轉換元件的上表面外露部分及第二金屬線路層的部分區域;由透光基板的下方朝上對第一圖案化光阻層及第二負型光阻劑曝光;對第二負型光阻劑顯影以形成第二圖案化光阻層,且第二圖案化光阻層相對於光電轉換元件上方的區域形成一個開口,開口暴露光電轉換元件的上表面外露部分;於本發明的一實施例中,完成各個步驟後,進一步包括「移除透光基板」的步驟;於本發明的一實施例中,於完成「形成第二金屬線路層於光電轉換元件的上表面的部分區域、第一圖案化光阻層的上表面及第一圖案化光阻層的側面,第二金屬線路層耦接光電轉換元件的上表面」的步驟後,進一步包括「形成間隔件於光電轉換元件的上表面的另一部分區域」的步驟。Based on the purpose of the invention, the invention provides a method for preparing an optical communication module. The steps in sequence include providing a light-transmitting substrate and a photoelectric conversion element. The photoelectric conversion element is arranged on the upper surface of the light-transmitting substrate; coating a first negative light The resist is applied to the surrounding area of the photoelectric conversion element and the upper surface of the photoelectric conversion element; exposing the first negative photoresist upward from the bottom of the light-transmitting substrate; developing the first negative photoresist to form the first pattern Photoresist layer, a first patterned photoresist layer is formed in the surrounding area of the photoelectric conversion element and exposes the upper surface of the photoelectric conversion element; a second metal circuit layer is formed in a partial area of the upper surface of the photoelectric conversion element, and the first patterned The upper surface of the photoresist layer and the side of the first patterned photoresist layer, the second metal circuit layer is coupled to the upper surface of the photoelectric conversion element; the second negative photoresist is fully coated to cover the first patterned photoresist layer The upper surface of the photoelectric conversion element, the exposed portion of the upper surface of the photoelectric conversion element and part of the second metal circuit layer; expose the first patterned photoresist layer and the second negative photoresist from the bottom of the light-transmitting substrate upward; The two negative photoresists are developed to form a second patterned photoresist layer, and the second patterned photoresist layer forms an opening relative to the area above the photoelectric conversion element, and the opening exposes the exposed portion of the upper surface of the photoelectric conversion element; in this paper In one embodiment of the invention, after completing each step, a step of "removing the light-transmitting substrate" is further included; in one embodiment of the invention, after completing "the step of forming a second metal circuit layer on the upper surface of the photoelectric conversion element" After the step of "partial area, the upper surface of the first patterned photoresist layer and the side surface of the first patterned photoresist layer, the second metal circuit layer is coupled to the upper surface of the photoelectric conversion element", it further includes "forming a spacer on the photoelectric conversion element". Convert another area of the upper surface of the component.

基於本發明的目的,本發明提供一種光通訊模組的製備方法,步驟依序包括提供透光基板及光電轉換元件,光電轉換元件配置於透光基板的上方;塗佈第一負型光阻劑於光電轉換元件的周圍區域及光電轉換元件的上表面;由透光基板的下方朝上對第一負型光阻劑曝光;對第一負型光阻劑顯影以形成第一圖案化光阻層,第一圖案化光阻層形成於光電轉換元件的周圍區域,並暴露光電轉換元件的上表面;形成第二金屬線路層於光電轉換元件的上表面的部分區域、第一圖案化光阻層的上表面及第一圖案化光阻層的側面,第二金屬線路層耦接光電轉換元件的上表面;全面塗佈第二負型光阻劑以覆蓋第一圖案化光阻層的上表面、光電轉換元件的上表面外露部份及第二金屬線路層的部分區域;由透光基板的下方朝上對第一圖案化光阻層及第二負型光阻劑曝光;對第二負型光阻劑顯影以形成第二圖案化光阻層,且第二圖案化光阻層相對於光電轉換元件上方的區域形成一個開口,開口暴露光電轉換元件的上表面外露部份;移除透光基板;形成第一金屬線路層,第一金屬線路層耦接光電轉換元件的下表面;於本發明的一實施例中,於完成「形成第二金屬線路層於光電轉換元件的上表面的部分區域、第一圖案化光阻層的上表面及第一圖案化光阻層的側面,第二金屬線路層耦接光電轉換元件的上表面」的步驟後,進一步包括「形成間隔件於光電轉換元件的上表面的另一部分區域」的步驟。Based on the purpose of the invention, the invention provides a method for preparing an optical communication module. The steps in sequence include providing a light-transmitting substrate and a photoelectric conversion element. The photoelectric conversion element is arranged above the light-transmitting substrate; coating a first negative photoresist Apply an agent to the surrounding area of the photoelectric conversion element and the upper surface of the photoelectric conversion element; expose the first negative photoresist from the bottom of the light-transmitting substrate upward; develop the first negative photoresist to form the first patterned light resist layer, the first patterned photoresist layer is formed in the surrounding area of the photoelectric conversion element and exposes the upper surface of the photoelectric conversion element; the second metal circuit layer is formed in a partial area of the upper surface of the photoelectric conversion element, and the first patterned photoresist layer is formed on the upper surface of the photoelectric conversion element. The upper surface of the resist layer and the side of the first patterned photoresist layer, the second metal circuit layer is coupled to the upper surface of the photoelectric conversion element; the second negative photoresist is fully coated to cover the first patterned photoresist layer The upper surface, the exposed portion of the upper surface of the photoelectric conversion element and part of the second metal circuit layer; expose the first patterned photoresist layer and the second negative photoresist from the bottom of the light-transmitting substrate upward; The second negative photoresist is developed to form a second patterned photoresist layer, and the second patterned photoresist layer forms an opening relative to the area above the photoelectric conversion element, and the opening exposes the exposed portion of the upper surface of the photoelectric conversion element; Remove the light-transmitting substrate; form a first metal circuit layer, and the first metal circuit layer is coupled to the lower surface of the photoelectric conversion element; in one embodiment of the present invention, after completing "forming a second metal circuit layer on the upper surface of the photoelectric conversion element After the step of "partial area of the surface, the upper surface of the first patterned photoresist layer and the side surface of the first patterned photoresist layer, the second metal circuit layer is coupled to the upper surface of the photoelectric conversion element", it further includes "forming a spacer" on another part of the upper surface of the photoelectric conversion element."

基於本發明的目的,本發明提供一種光通訊模組的製備方法,步驟依序包括提供透光基板及光電轉換元件,光電轉換元件配置於透光基板的上方;塗佈第一負型光阻劑於光電轉換元件的周圍區域及光電轉換元件的上表面;由透光基板的下方朝上對第一負型光阻劑曝光;對第一負型光阻劑顯影以形成第一圖案化光阻層,第一圖案化光阻層形成於光電轉換元件的周圍區域,並暴露光電轉換元件的上表面;全面塗佈第二負型光阻劑以覆蓋第一圖案化光阻層的上表面及光電轉換元件的上表面外露部份;由透光基板的下方朝上對第一圖案化光阻層及第二負型光阻劑曝光;對第二負型光阻劑顯影以形成第二圖案化光阻層,且第二圖案化光阻層相對於光電轉換元件上方的區域形成一個開口,開口暴露光電轉換元件的上表面外露部分;於本發明的一實施例中,於完成「對第一負型光阻劑顯影以形成第一圖案化光阻層,第一圖案化光阻層形成於光電轉換元件的周圍區域,並暴露光電轉換元件的上表面」的步驟後,進一步包括「形成間隔件於光電轉換元件的上表面的部分區域」的步驟。Based on the purpose of the invention, the invention provides a method for preparing an optical communication module. The steps in sequence include providing a light-transmitting substrate and a photoelectric conversion element. The photoelectric conversion element is arranged above the light-transmitting substrate; coating a first negative photoresist Apply an agent to the surrounding area of the photoelectric conversion element and the upper surface of the photoelectric conversion element; expose the first negative photoresist from the bottom of the light-transmitting substrate upward; develop the first negative photoresist to form the first patterned light resist layer, the first patterned photoresist layer is formed in the surrounding area of the photoelectric conversion element and exposes the upper surface of the photoelectric conversion element; the second negative photoresist is fully coated to cover the upper surface of the first patterned photoresist layer and the exposed portion of the upper surface of the photoelectric conversion element; exposing the first patterned photoresist layer and the second negative photoresist from the bottom of the light-transmitting substrate upward; developing the second negative photoresist to form a second Patterned photoresist layer, and the second patterned photoresist layer forms an opening relative to the area above the photoelectric conversion element, and the opening exposes the exposed portion of the upper surface of the photoelectric conversion element; in one embodiment of the present invention, after completing " After the step of developing the first negative photoresist to form a first patterned photoresist layer, the first patterned photoresist layer is formed in the surrounding area of the photoelectric conversion element and exposes the upper surface of the photoelectric conversion element, further including " The step of forming a spacer on a partial area of the upper surface of the photoelectric conversion element.

於本發明的一實施例中,透光基板為透明片或濾光片。In one embodiment of the present invention, the light-transmitting substrate is a transparent sheet or a light filter.

於本發明的一實施例中,光電轉換元件為雷射元件或光接收元件。In one embodiment of the present invention, the photoelectric conversion element is a laser element or a light receiving element.

於本發明的一實施例中,形成第一金屬線路層的方法為化學氣相沉積或物理氣相沉積。In an embodiment of the present invention, the method of forming the first metal circuit layer is chemical vapor deposition or physical vapor deposition.

於本發明的一實施例中,形成第二金屬線路層的方法為化學氣相沉積或物理氣相沉積。In an embodiment of the present invention, the method of forming the second metal circuit layer is chemical vapor deposition or physical vapor deposition.

於本發明的一實施例中,光電轉換元件的外型為正方體或長方體,且光電轉換元件的光圈位於光電轉換元件的上表面的中心位置。In one embodiment of the present invention, the shape of the photoelectric conversion element is a cube or a cuboid, and the aperture of the photoelectric conversion element is located at the center of the upper surface of the photoelectric conversion element.

於本發明的一實施例中,第一金屬線路層的材質為金、銀、銅、鐵、鋁、鉬、鈦、鎢、鎳、鈷、釕或氧化銦錫。In an embodiment of the present invention, the material of the first metal circuit layer is gold, silver, copper, iron, aluminum, molybdenum, titanium, tungsten, nickel, cobalt, ruthenium or indium tin oxide.

於本發明的一實施例中,第一金屬線路層的金屬線路的寬度為100 μm,厚度為2~5 μm。In an embodiment of the present invention, the width of the metal circuit of the first metal circuit layer is 100 μm, and the thickness is 2~5 μm.

於本發明的一實施例中,第二金屬線路層的材質為金、銀、銅、鐵、鋁、鉬、鈦、鎢、鎳、鈷、釕或氧化銦錫。In an embodiment of the present invention, the material of the second metal circuit layer is gold, silver, copper, iron, aluminum, molybdenum, titanium, tungsten, nickel, cobalt, ruthenium or indium tin oxide.

於本發明的一實施例中,第二金屬線路層的金屬線路的寬度為100 μm,厚度為2~5 μm。In an embodiment of the present invention, the width of the metal circuit of the second metal circuit layer is 100 μm, and the thickness is 2~5 μm.

於本發明的一實施例中,第一負型光阻劑及第二負型光阻劑皆為苯環丁烯(benzocyclobutene, BCB)。In one embodiment of the invention, both the first negative photoresist and the second negative photoresist are benzocyclobutene (BCB).

為了使本發明所屬技術領域中具有通常知識者易於理解本發明的內容,以下結合實施例與圖式對本發明作進一步的說明,各個實施例僅用於說明本發明的技術特徵,提及的內容並非對本發明的限定。In order to make it easy for those with ordinary knowledge in the technical field to understand the content of the present invention, the present invention will be further described below in conjunction with the embodiments and drawings. Each embodiment is only used to illustrate the technical features of the present invention. The mentioned content It does not limit the invention.

於整個說明書中所述的「一實施例」表示結合實施例所描述的特定特點、結構或特徵包括於至少一個實施例中。因此於整個說明書的各個位置所述的“一實施例”無需全都指相同實施例。另外,特定特點、結構或特徵可在一個或多個實施例中以任何方式組合。Reference throughout this specification to "one embodiment" means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment. Therefore, references to "one embodiment" in various places throughout this specification are not necessarily all referring to the same embodiment. Additionally, specific features, structures, or characteristics may be combined in any manner in one or more embodiments.

本發明的描述中,需要說明的是,術語「上」、「下」、「左」、「右」等指示的方位或者位置關係為基於附圖所示的方位或者位置關係,僅是為了便於描述本實用和簡化描述,而不是指示或者暗示所指的裝置或者元件必須具有特定的方位,以特定的方位構造和操作,因此不能理解為對本發明的限制。In the description of the present invention, it should be noted that the orientation or positional relationship indicated by the terms "upper", "lower", "left", "right", etc. are based on the orientation or positional relationship shown in the drawings, and are only for convenience. The description is pragmatic and simplified, and is not intended to indicate or imply that the device or element referred to must have a specific orientation, be constructed and operate in a specific orientation, and therefore should not be construed as a limitation of the invention.

本發明的描述中「第一」、「第二」僅用於描述目的,而不能理解為指示或者暗示相對重要性。The terms "first" and "second" in the description of the present invention are only used for descriptive purposes and cannot be understood as indicating or implying relative importance.

請參閱圖1,圖1為光通訊模組的第一態樣的剖面圖,其中光通訊模組包括透光基板10、第一金屬線路層20、光電轉換元件30、間隔件50、第一圖案化光阻層70、第二金屬線路層22及第二圖案化光阻層72;其中第一金屬線路層20設置於透光基板10的上表面的部分區域,並且透光基板10的上方設置有光電轉換元件30,而光電轉換元件30的下表面與第一金屬線路層20耦接;其中第一圖案化光阻層70形成於光電轉換元件30的周圍區域,光電轉換元件30的周圍區域包括第一金屬線路層20的部分區域;其中第二金屬線路層22分佈於光電轉換元件30的上表面的部分區域、第一圖案化光阻層70的上表面及第一圖案化光阻層70的側面,並且第二金屬線路層22耦接光電轉換元件30的上表面;其中間隔件50設置於光電轉換元件30的上表面的另一部分區域;其中第二圖案化光阻層72形成於第一圖案化光阻層70的上表面,並覆蓋第二金屬線路層22的部分區域,並且第二圖案化光阻層72相對於光電轉換元件30上方的區域形成有一個開口80,開口80暴露光電轉換元件30的上表面外露部分及間隔件50,其中光電轉換元件30的上表面外露部分指光電轉換元件30的上表面未被第二金屬線路層22及間隔件50覆蓋的區域;其中第一金屬線路層20遠離光電轉換元件30且未被第一圖案化光阻層70覆蓋的區域,及第二金屬線路層22遠離光電轉換元件30且未被第一圖案化光阻層70覆蓋的區域皆用於與印刷電路板(圖中未顯示)耦接,藉以將印刷電路板(圖中未顯示)傳輸的電訊號傳輸至光電轉換元件30,再藉由光電轉換元件30將電訊號轉換為光訊號,並經由光電轉換元件30的光圈輸出光訊號;其中第一圖案化光阻層70為第一負型光阻劑40經由曝光及顯影後形成的圖案化光阻層;其中第二圖案化光阻層72為第二負型光阻劑42經由曝光及顯影後形成的圖案化光阻層;其中第一圖案化光阻層70及第二圖案化光阻層72皆作為介電質,用於封裝光電轉換元件30;其中光電轉換元件30用於進行電光轉換,將接收到的電訊號轉換為光訊號;其中間隔件50用於間隔光電轉換元件30及插入至開口80的光纖(圖中未顯示),並且間隔件50不會遮蔽光電轉換元件30的光圈,使光電轉換元件30的光訊號得以傳輸至插入至開口80的光纖(圖中未顯示);其中曝光光源60產生的曝光光線62會穿過透光基板10後照射至第一負型光阻劑40及第二負型光阻劑42,並使第一負型光阻劑40及第二負型光阻劑42產生交聯反應而固化。Please refer to Figure 1. Figure 1 is a cross-sectional view of a first aspect of an optical communication module. The optical communication module includes a light-transmitting substrate 10, a first metal circuit layer 20, a photoelectric conversion element 30, a spacer 50, a first Patterned photoresist layer 70, second metal circuit layer 22 and second patterned photoresist layer 72; wherein the first metal circuit layer 20 is disposed on a partial area of the upper surface of the light-transmitting substrate 10, and above the light-transmitting substrate 10 A photoelectric conversion element 30 is provided, and the lower surface of the photoelectric conversion element 30 is coupled to the first metal circuit layer 20; wherein the first patterned photoresist layer 70 is formed in the surrounding area of the photoelectric conversion element 30, and the surrounding area of the photoelectric conversion element 30 The area includes a partial area of the first metal circuit layer 20; the second metal circuit layer 22 is distributed on a partial area of the upper surface of the photoelectric conversion element 30, the upper surface of the first patterned photoresist layer 70 and the first patterned photoresist. The side of the layer 70, and the second metal circuit layer 22 is coupled to the upper surface of the photoelectric conversion element 30; wherein the spacer 50 is disposed on another part of the upper surface of the photoelectric conversion element 30; wherein the second patterned photoresist layer 72 is formed An opening 80 is formed on the upper surface of the first patterned photoresist layer 70 and covers part of the second metal circuit layer 22 , and the second patterned photoresist layer 72 is formed with respect to the area above the photoelectric conversion element 30 . 80 expose the exposed portion of the upper surface of the photoelectric conversion element 30 and the spacer 50, where the exposed portion of the upper surface of the photoelectric conversion element 30 refers to the area of the upper surface of the photoelectric conversion element 30 that is not covered by the second metal circuit layer 22 and the spacer 50; The area where the first metal circuit layer 20 is far away from the photoelectric conversion element 30 and not covered by the first patterned photoresist layer 70 , and the second metal circuit layer 22 is far away from the photoelectric conversion element 30 and is not covered by the first patterned photoresist layer 70 The covered area is used for coupling with the printed circuit board (not shown in the figure), so as to transmit the electrical signals transmitted by the printed circuit board (not shown in the figure) to the photoelectric conversion element 30, and then through the photoelectric conversion element 30, the telecommunication signal is transmitted The signal is converted into an optical signal, and the optical signal is output through the aperture of the photoelectric conversion element 30; wherein the first patterned photoresist layer 70 is a patterned photoresist layer formed by exposing and developing the first negative photoresist 40; wherein The second patterned photoresist layer 72 is a patterned photoresist layer formed by exposing and developing the second negative photoresist 42; the first patterned photoresist layer 70 and the second patterned photoresist layer 72 both serve as The dielectric is used to encapsulate the photoelectric conversion element 30; the photoelectric conversion element 30 is used to perform electro-optical conversion and convert the received electrical signal into an optical signal; the spacer 50 is used to separate the photoelectric conversion element 30 and insert into the opening 80 The optical fiber (not shown in the figure), and the spacer 50 does not block the aperture of the photoelectric conversion element 30, so that the optical signal of the photoelectric conversion element 30 can be transmitted to the optical fiber (not shown in the figure) inserted into the opening 80; wherein the exposure light source The exposure light 62 generated by 60 will pass through the light-transmitting substrate 10 and then illuminate the first negative photoresist 40 and the second negative photoresist 42, causing the first negative photoresist 40 and the second negative photoresist to The resist 42 undergoes a cross-linking reaction and is cured.

請參閱圖1~圖10,本發明提供光通訊模組的第一態樣的製備方法,步驟依序包括步驟S101、步驟S102、步驟S103、步驟S104、步驟S105、步驟S106、步驟S107、步驟S108及步驟S109,以下搭配圖式分段敘述。Please refer to Figures 1 to 10. The present invention provides a first aspect of preparation method of an optical communication module. The steps in sequence include step S101, step S102, step S103, step S104, step S105, step S106, step S107, step S108 and step S109 are described in sections below with figures.

請參閱圖2及圖3,步驟S101:提供透光基板10、第一金屬線路層20及光電轉換元件30,其中第一金屬線路層20形成於透光基板10的上表面的部分區域,而光電轉換元件30配置於透光基板10的上方,並且光電轉換元件30的下表面耦接第一金屬線路層20;其中形成第一金屬線路層20的方法可為化學氣相沉積或物理氣相沉積;其中光電轉換元件30為使用導電膠固晶、植球覆晶或表面貼裝技術以配置於透光基板10的上方,以使光電轉換元件30的下表面耦接第一金屬線路層20。Referring to Figures 2 and 3, step S101: Provide a light-transmissive substrate 10, a first metal circuit layer 20 and a photoelectric conversion element 30, wherein the first metal circuit layer 20 is formed on a partial area of the upper surface of the light-transmissive substrate 10, and The photoelectric conversion element 30 is disposed above the light-transmitting substrate 10, and the lower surface of the photoelectric conversion element 30 is coupled to the first metal circuit layer 20; the method of forming the first metal circuit layer 20 can be chemical vapor deposition or physical vapor deposition. Deposition; wherein the photoelectric conversion element 30 is disposed above the light-transmitting substrate 10 using conductive adhesive die-hardening, ball flip-chip or surface mounting technology, so that the lower surface of the photoelectric conversion element 30 is coupled to the first metal circuit layer 20 .

請參閱圖2及圖4,步驟S102:塗佈第一負型光阻劑40於光電轉換元件30的周圍區域及光電轉換元件30的上表面,其中光電轉換元件30的周圍區域包括第一金屬線路層20的部分區域,即讓光電轉換元件30及第一金屬線路層20的部分區域被第一負型光阻劑40覆蓋;其中第一金屬線路層20未被第一負型光阻劑40覆蓋的區域用於與印刷電路板(圖中未顯示)耦接,以接收來自印刷電路板(圖中未顯示)的電訊號。Please refer to FIG. 2 and FIG. 4 , step S102: Coat the first negative photoresist 40 on the surrounding area of the photoelectric conversion element 30 and the upper surface of the photoelectric conversion element 30, wherein the surrounding area of the photoelectric conversion element 30 includes the first metal Partial areas of the circuit layer 20, that is, partial areas of the photoelectric conversion element 30 and the first metal circuit layer 20 are covered by the first negative photoresist 40; the first metal circuit layer 20 is not covered by the first negative photoresist. The area covered by 40 is used for coupling with the printed circuit board (not shown in the figure) to receive electrical signals from the printed circuit board (not shown in the figure).

請參閱圖2及圖5,步驟S103:由透光基板10的下方朝上對第一負型光阻劑40曝光;其中所述曝光為使用曝光光源60產生曝光光線62,曝光光線62穿過透光基板10後照射至第一負型光阻劑40,並使第一負型光阻劑40產生交聯反應,而位於透光基板10上方的光電轉換元件30會遮擋曝光光線62,因此位於光電轉換元件30的上方區域的第一負型光阻劑40無法受到曝光,因此於後續使用顯影劑進行顯影時,相較於受到曝光的位於光電轉換元件30的周圍區域的第一負型光阻劑40,位於光電轉換元件30的上方區域的第一負型光阻劑40無法受到曝光因而更容易溶解於顯影劑中。Please refer to FIG. 2 and FIG. 5 , step S103: Expose the first negative photoresist 40 from the bottom of the light-transmitting substrate 10 upward; the exposure is to use the exposure light source 60 to generate the exposure light 62, and the exposure light 62 passes through The light-transmitting substrate 10 is then irradiated to the first negative photoresist 40, causing the first negative photoresist 40 to undergo a cross-linking reaction. The photoelectric conversion element 30 located above the light-transmitting substrate 10 will block the exposure light 62. Therefore, The first negative photoresist 40 located in the area above the photoelectric conversion element 30 cannot be exposed. Therefore, when the developer is used for subsequent development, compared with the exposed first negative type photoresist located in the surrounding area of the photoelectric conversion element 30 The photoresist 40 and the first negative photoresist 40 located in the area above the photoelectric conversion element 30 cannot be exposed to light and are therefore more likely to dissolve in the developer.

請參閱圖2及圖6,步驟S104:對第一負型光阻劑40顯影以形成第一圖案化光阻層70,第一圖案化光阻層70形成於光電轉換元件30的周圍區域,並暴露光電轉換元件30的上表面;其中顯影為使用顯影劑溶解第一負型光阻劑40,由於位於光電轉換元件30的上方區域的第一負型光阻劑40未受到曝光,因此會被顯影劑溶解,而暴露光電轉換元件30的上表面,並且進一步為了方便後續進行金屬線路的佈置,因此當位於光電轉換元件30的上方區域的第一負型光阻劑40溶解於顯影劑後,會繼續用顯影劑溶解位於光電轉換元件30的周圍區域的第一負型光阻劑40,使位於光電轉換元件30的周圍區域的第一負型光阻劑40的上表面的高度與光電轉換元件30的上表面的高度相同,再將顯影劑移除以形成第一圖案化光阻層70,因此第一圖案化光阻層70位於光電轉換元件30的周邊區域,並且第一圖案化光阻層70的上表面與光電轉換元件30的上表面的高度相同,並暴露光電轉換元件30的上表面;此僅為較佳的實施例,實際實施時不限於此,亦可根據實務需求使位於光電轉換元件30的周邊區域的第一圖案化光阻層70的上表面高度高於光電轉換元件30的上表面的高度或低於光電轉換元件30的上表面的高度。Please refer to FIG. 2 and FIG. 6 , step S104: develop the first negative photoresist 40 to form a first patterned photoresist layer 70. The first patterned photoresist layer 70 is formed in the surrounding area of the photoelectric conversion element 30. And expose the upper surface of the photoelectric conversion element 30; wherein development is to use a developer to dissolve the first negative photoresist 40. Since the first negative photoresist 40 located in the upper area of the photoelectric conversion element 30 is not exposed, it will It is dissolved by the developer to expose the upper surface of the photoelectric conversion element 30, and further to facilitate the subsequent layout of metal circuits, when the first negative photoresist 40 located in the upper area of the photoelectric conversion element 30 is dissolved in the developer , the developer will continue to be used to dissolve the first negative photoresist 40 located in the surrounding area of the photoelectric conversion element 30, so that the height of the upper surface of the first negative photoresist 40 located in the surrounding area of the photoelectric conversion element 30 is consistent with the photoelectric conversion element 30. The height of the upper surface of the conversion element 30 is the same, and the developer is removed to form the first patterned photoresist layer 70. Therefore, the first patterned photoresist layer 70 is located in the peripheral area of the photoelectric conversion element 30, and the first patterned The upper surface of the photoresist layer 70 is at the same height as the upper surface of the photoelectric conversion element 30 and exposes the upper surface of the photoelectric conversion element 30; this is only a preferred embodiment, and the actual implementation is not limited to this, and can also be implemented according to practical needs. The height of the upper surface of the first patterned photoresist layer 70 located in the peripheral area of the photoelectric conversion element 30 is higher than the height of the upper surface of the photoelectric conversion element 30 or lower than the height of the upper surface of the photoelectric conversion element 30 .

請參閱圖2及圖7,步驟S105:形成第二金屬線路層22於光電轉換元件30的上表面的部分區域、第一圖案化光阻層70的上表面及第一圖案化光阻層70的側面,第二金屬線路層22耦接光電轉換元件30的上表面;其中形成第二金屬線路層22的方法可為化學氣相沉積或物理氣相沉積。Please refer to FIG. 2 and FIG. 7 , step S105 : forming the second metal circuit layer 22 on a partial area of the upper surface of the photoelectric conversion element 30 , the upper surface of the first patterned photoresist layer 70 and the first patterned photoresist layer 70 On the side, the second metal circuit layer 22 is coupled to the upper surface of the photoelectric conversion element 30; the method of forming the second metal circuit layer 22 may be chemical vapor deposition or physical vapor deposition.

請參閱圖2及圖8,步驟S106:形成間隔件50於光電轉換元件30的上表面的另一部分區域;其中間隔件50可使用正型光阻劑經曝光形成於光電轉換元件30的上表面,亦可以環氧樹脂或丙烯酸樹脂等各類樹脂以撞針噴射方式或膠針點膠方式形成於光電轉換元件30的上表面;其中間隔件50的尺寸可以與光電轉換元件30的尺寸相同,亦可不同於光電轉換元件30的尺寸,於本發明的實施例中以間隔件50的尺寸小於光電轉換元件30的尺寸作為示範例。Please refer to FIG. 2 and FIG. 8 , step S106: forming a spacer 50 on another part of the upper surface of the photoelectric conversion element 30; the spacer 50 can be formed on the upper surface of the photoelectric conversion element 30 using a positive photoresist through exposure. , or various resins such as epoxy resin or acrylic resin can be formed on the upper surface of the photoelectric conversion element 30 by a needle injection method or a glue needle dispensing method; the size of the spacer 50 can be the same as the size of the photoelectric conversion element 30, or It may be different from the size of the photoelectric conversion element 30. In the embodiment of the present invention, the size of the spacer 50 is smaller than the size of the photoelectric conversion element 30 as an example.

請參閱圖2及圖9,步驟S107:全面塗佈第二負型光阻劑42以覆蓋第一圖案化光阻層70的上表面、光電轉換元件30的上表面外露部分、間隔件50及第二金屬線路層22的部分區域;其中第二金屬線路層22未被第二負型光阻劑42覆蓋的區域用於與印刷電路板(圖中未顯示)耦接,以接收來自印刷電路板(圖中未顯示)的電訊號。Please refer to FIG. 2 and FIG. 9 , step S107 : fully coat the second negative photoresist 42 to cover the upper surface of the first patterned photoresist layer 70 , the exposed portion of the upper surface of the photoelectric conversion element 30 , the spacer 50 and Partial area of the second metal circuit layer 22; the area of the second metal circuit layer 22 not covered by the second negative photoresist 42 is used to couple with the printed circuit board (not shown in the figure) to receive signals from the printed circuit. board (not shown in the figure).

請參閱圖2及圖10,步驟S108:由透光基板10的下方朝上對第一圖案化光阻層70及第二負型光阻劑42曝光。Please refer to FIG. 2 and FIG. 10 , step S108 : exposing the first patterned photoresist layer 70 and the second negative photoresist 42 from the bottom of the light-transmitting substrate 10 upward.

請回頭參閱圖1及圖2,步驟S109:對第二負型光阻劑42顯影以形成第二圖案化光阻層72,且第二圖案化光阻層72相對於光電轉換元件30上方的區域形成一個開口80,開口80暴露光電轉換元件30的上表面外露部分及間隔件50;其中顯影為使用顯影劑溶解第二負型光阻劑42,由於位於光電轉換元件30的上方區域的第二負型光阻劑42未受到曝光,因此第二負型光阻劑42相對於光電轉換元件30上方的區域會形成一個開口80,並且開口80會暴露光電轉換元件30的上表面外露部分及間隔件50,使光纖(圖中未顯示)得以經由插入開口80達到直接耦合的功效;其中於光通訊模組的第一態樣的製備方法中,光電轉換元件30的上表面外露部分指光電轉換元件30的上表面未被第二金屬線路層22及間隔件50覆蓋的區域。Please refer back to FIGS. 1 and 2 , step S109 : develop the second negative photoresist 42 to form a second patterned photoresist layer 72 , and the second patterned photoresist layer 72 is positioned above the photoelectric conversion element 30 An opening 80 is formed in the area, and the opening 80 exposes the exposed portion of the upper surface of the photoelectric conversion element 30 and the spacer 50; wherein development is to use a developer to dissolve the second negative photoresist 42, because the third negative photoresist 42 located in the upper area of the photoelectric conversion element 30 The second negative photoresist 42 is not exposed, so the second negative photoresist 42 will form an opening 80 relative to the area above the photoelectric conversion element 30, and the opening 80 will expose the exposed portion of the upper surface of the photoelectric conversion element 30 and The spacer 50 enables the optical fiber (not shown in the figure) to achieve direct coupling through the insertion opening 80; in the first aspect of the preparation method of the optical communication module, the exposed portion of the upper surface of the photoelectric conversion element 30 refers to the photoelectric conversion element 30. The upper surface of the conversion element 30 is an area not covered by the second metal circuit layer 22 and the spacer 50 .

請參閱圖1及圖2,於本發明的一實施例中,進一步提供光通訊模組的第一態樣中不包括間隔件50的態樣的製備方法,製備方法與光通訊模組的第一態樣的製備方法基本一致,差異在於不包括關於間隔件50的描述,即無須步驟S106,並且步驟S107及步驟S109中移除關於間隔件50的描述,並且由於無間隔件50形成於光電轉換元件30的上表面,因此光電轉換元件30的上表面外露部分指光電轉換元件30的上表面未被第二金屬線路層22覆蓋的區域,所以步驟S107變為「全面塗佈第二負型光阻劑42以覆蓋第一圖案化光阻層70的上表面、光電轉換元件30的上表面外露部分及第二金屬線路層22的部分區域;其中第二金屬線路層22未被第二負型光阻劑42覆蓋的區域用於與印刷電路板(圖中未顯示)耦接,以接收來自印刷電路板(圖中未顯示)的電訊號。」而步驟S109變為「對第二負型光阻劑42顯影以形成第二圖案化光阻層72,且第二圖案化光阻層72相對於光電轉換元件30上方的區域形成一個開口80,開口80暴露光電轉換元件30的上表面外露部分;其中顯影為使用顯影劑溶解第二負型光阻劑42,由於位於光電轉換元件30的上方區域的第二負型光阻劑42未受到曝光,因此第二負型光阻劑42相對於光電轉換元件30上方的區域會形成一個開口80,並且開口80會暴露光電轉換元件30的上表面外露部分,使光纖(圖中未顯示)得以經由插入開口80達到直接耦合的功效」。Please refer to FIGS. 1 and 2 . In one embodiment of the present invention, a method for manufacturing a first aspect of an optical communication module that does not include the spacer 50 is further provided. The preparation method is the same as that of the third aspect of the optical communication module. The preparation method of one aspect is basically the same. The difference is that the description about the spacer 50 is not included, that is, step S106 is not required, and the description about the spacer 50 is removed in steps S107 and S109, and because no spacer 50 is formed in the photovoltaic The upper surface of the conversion element 30, therefore the exposed portion of the upper surface of the photoelectric conversion element 30 refers to the area of the upper surface of the photoelectric conversion element 30 that is not covered by the second metal circuit layer 22, so step S107 becomes "Fully coating the second negative type The photoresist 42 covers the upper surface of the first patterned photoresist layer 70 , the exposed portion of the upper surface of the photoelectric conversion element 30 and a partial area of the second metal circuit layer 22 ; wherein the second metal circuit layer 22 is not exposed to the second negative The area covered by the photoresist 42 is used to couple with the printed circuit board (not shown in the figure) to receive electrical signals from the printed circuit board (not shown in the figure)." And step S109 becomes "For the second negative The photoresist 42 is developed to form a second patterned photoresist layer 72 , and the second patterned photoresist layer 72 forms an opening 80 relative to the area above the photoelectric conversion element 30 , and the opening 80 exposes the upper surface of the photoelectric conversion element 30 Exposed portion; wherein development is to use a developer to dissolve the second negative photoresist 42. Since the second negative photoresist 42 located in the upper area of the photoelectric conversion element 30 is not exposed, the second negative photoresist 42 An opening 80 will be formed relative to the area above the photoelectric conversion element 30, and the opening 80 will expose the exposed portion of the upper surface of the photoelectric conversion element 30, so that the optical fiber (not shown in the figure) can achieve direct coupling through the insertion opening 80."

請參閱圖11,圖11為光通訊模組的第二態樣的剖面圖,光通訊模組的第二態樣與第一態樣的差異,在於第二態樣不包括第二金屬線路層22。Please refer to Figure 11. Figure 11 is a cross-sectional view of a second aspect of the optical communication module. The difference between the second aspect of the optical communication module and the first aspect is that the second aspect does not include the second metal circuit layer. twenty two.

請參閱圖12,圖12為光通訊模組的第三態樣的剖面圖,光通訊模組的第三態樣與第一態樣的差異,在於第三態樣不包括第一金屬線路層20。Please refer to Figure 12. Figure 12 is a cross-sectional view of a third aspect of the optical communication module. The difference between the third aspect of the optical communication module and the first aspect is that the third aspect does not include the first metal circuit layer. 20.

請參閱圖11及圖13,本發明提供光通訊模組的第二態樣的製備方法,步驟依序包括步驟S201、步驟S202、步驟S203、步驟S204、步驟S205、步驟S206、步驟S207及步驟S208,步驟與第一態樣的光通訊模組的製備方法基本一致,差異在於不包括形成第二金屬線路層22的步驟;步驟S201為提供透光基板10、第一金屬線路層20及光電轉換元件30,其中第一金屬線路層20形成於透光基板10的上表面的部分區域,而光電轉換元件30配置於透光基板10的上方,並且光電轉換元件30的下表面耦接第一金屬線路層20;其中形成第一金屬線路層20的方法可為化學氣相沉積或物理氣相沉積;其中光電轉換元件30為使用導電膠固晶、植球覆晶或表面貼裝技術以配置於透光基板10的上方,以使光電轉換元件30的下表面耦接第一金屬線路層20;其中步驟S202為塗佈第一負型光阻劑40於光電轉換元件30的周圍區域及光電轉換元件30的上表面,其中光電轉換元件30的周圍區域包括第一金屬線路層20的部分區域;其中步驟S203為由透光基板10的下方朝上對第一負型光阻劑40曝光;其中步驟S204為對第一負型光阻劑40顯影以形成第一圖案化光阻層70,第一圖案化光阻層70形成於光電轉換元件30的周圍區域,並暴露光電轉換元件30的上表面;其中步驟S205為形成間隔件50於光電轉換元件30的上表面的部分區域;其中步驟S206為全面塗佈第二負型光阻劑42以覆蓋第一圖案化光阻層70的上表面、光電轉換元件30的上表面外露部分及間隔件50;其中步驟S207為由透光基板10的下方朝上對第一圖案化光阻層70及第二負型光阻劑42曝光;其中步驟S208為對第二負型光阻劑42顯影以形成第二圖案化光阻層72,且第二圖案化光阻層72相對於光電轉換元件30上方的區域形成一個開口80,開口80暴露光電轉換元件30的上表面外露部分及間隔件50;其中由於第二態樣的光通訊模組的製備方法中不包括形成第二金屬線路層22的步驟,因此光電轉換元件30的上表面外露部分指光電轉換元件30的上表面未被間隔件50覆蓋的區域。Please refer to Figure 11 and Figure 13. The present invention provides a second aspect of preparation method of an optical communication module. The steps in sequence include step S201, step S202, step S203, step S204, step S205, step S206, step S207 and step S208, the steps are basically the same as the preparation method of the optical communication module of the first aspect, except that the step of forming the second metal circuit layer 22 is not included; Step S201 is to provide the light-transmitting substrate 10, the first metal circuit layer 20 and the optoelectronic circuit layer 20. Conversion element 30, in which the first metal circuit layer 20 is formed on a partial area of the upper surface of the light-transmitting substrate 10, and the photoelectric conversion element 30 is arranged above the light-transmitting substrate 10, and the lower surface of the photoelectric conversion element 30 is coupled to the first Metal circuit layer 20; the method of forming the first metal circuit layer 20 can be chemical vapor deposition or physical vapor deposition; wherein the photoelectric conversion element 30 is configured using conductive glue solid crystal, ball mounting flip chip or surface mount technology. Above the light-transmitting substrate 10, the lower surface of the photoelectric conversion element 30 is coupled to the first metal circuit layer 20; step S202 is to coat the first negative photoresist 40 on the surrounding area of the photoelectric conversion element 30 and the photoelectric conversion element 30. The upper surface of the conversion element 30, where the surrounding area of the photoelectric conversion element 30 includes part of the first metal circuit layer 20; wherein step S203 is to expose the first negative photoresist 40 from the bottom of the light-transmitting substrate 10 upward; Step S204 is to develop the first negative photoresist 40 to form a first patterned photoresist layer 70. The first patterned photoresist layer 70 is formed in the surrounding area of the photoelectric conversion element 30 and exposes the photoelectric conversion element 30. The upper surface; Step S205 is to form the spacer 50 on a partial area of the upper surface of the photoelectric conversion element 30 ; and Step S206 is to fully coat the second negative photoresist 42 to cover the upper surface of the first patterned photoresist layer 70 surface, the exposed portion of the upper surface of the photoelectric conversion element 30 and the spacer 50; wherein step S207 is to expose the first patterned photoresist layer 70 and the second negative photoresist 42 from the bottom of the light-transmitting substrate 10 upward; wherein Step S208 is to develop the second negative photoresist 42 to form a second patterned photoresist layer 72, and the second patterned photoresist layer 72 forms an opening 80 relative to the area above the photoelectric conversion element 30, and the opening 80 is exposed The exposed portion of the upper surface of the photoelectric conversion element 30 and the spacer 50; since the preparation method of the second aspect of the optical communication module does not include the step of forming the second metal circuit layer 22, the upper surface of the photoelectric conversion element 30 is exposed. The portion refers to an area of the upper surface of the photoelectric conversion element 30 that is not covered by the spacer 50 .

請參閱圖11及圖13,於本發明的一實施例中,進一步提供光通訊模組的第二態樣中不包括間隔件50的態樣的製備方法,製備方法與光通訊模組的第二態樣的製備方法基本一致,差異在於不包括關於間隔件50的描述,即無須步驟S205,並且步驟S206及步驟S208中移除關於間隔件50的描述,並且由於無間隔件50形成於光電轉換元件30的上表面,因此光電轉換元件30的上表面外露部分即為光電轉換元件30的上表面,所以步驟S206變為「全面塗佈第二負型光阻劑42以覆蓋第一圖案化光阻層70的上表面及光電轉換元件30的上表面外露部分」而步驟S208變為「對第二負型光阻劑42顯影以形成第二圖案化光阻層72,且第二圖案化光阻層72相對於光電轉換元件30上方的區域形成一個開口80,開口80暴露光電轉換元件30的上表面外露部分」。Please refer to FIG. 11 and FIG. 13 . In one embodiment of the present invention, a method for manufacturing a second aspect of an optical communication module that does not include the spacer 50 is further provided. The manufacturing method is the same as that of the second aspect of the optical communication module. The preparation methods of the two forms are basically the same. The difference is that the description about the spacer 50 is not included, that is, step S205 is not required, and the description about the spacer 50 is removed in steps S206 and S208, and since no spacer 50 is formed in the photovoltaic The upper surface of the conversion element 30, therefore the exposed portion of the upper surface of the photoelectric conversion element 30 is the upper surface of the photoelectric conversion element 30, so step S206 becomes "Fully coat the second negative photoresist 42 to cover the first patterning The upper surface of the photoresist layer 70 and the exposed portion of the upper surface of the photoelectric conversion element 30" and step S208 becomes "Develop the second negative photoresist 42 to form the second patterned photoresist layer 72, and the second patterning The photoresist layer 72 forms an opening 80 relative to the area above the photoelectric conversion element 30, and the opening 80 exposes the exposed portion of the upper surface of the photoelectric conversion element 30.

請參閱圖12及圖14,本發明提供第三態樣的光通訊模組的製備方法,步驟依序包括步驟S301、步驟S302、步驟S303、步驟S304、步驟S305、步驟S306、步驟S307、步驟S308及步驟S309,步驟與第一態樣的光通訊模組的製備方法基本一致,差異在於不包括形成第一金屬線路層20的步驟;其中步驟S301為提供透光基板10及光電轉換元件30,光電轉換元件30配置於透光基板10的上表面;其中步驟S302為塗佈第一負型光阻劑40於光電轉換元件30的周圍區域及光電轉換元件30的上表面;其中步驟S303為由透光基板10的下方朝上對第一負型光阻劑40曝光;其中步驟S304為對第一負型光阻劑40顯影以形成第一圖案化光阻層70,第一圖案化光阻層70形成於光電轉換元件30的周圍區域,並暴露光電轉換元件30的上表面;其中步驟S305為形成第二金屬線路層22於光電轉換元件30的上表面的部分區域、第一圖案化光阻層70的上表面及第一圖案化光阻層70的側面,第二金屬線路層22耦接光電轉換元件30的上表面;其中步驟S306為形成間隔件50於光電轉換元件30的上表面的另一部分區域;其中步驟S307為全面塗佈第二負型光阻劑42以覆蓋第一圖案化光阻層70的上表面、光電轉換元件30的上表面外露部分、間隔件50及第二金屬線路層22的部分區域;其中步驟S308為由透光基板10的下方朝上對第一圖案化光阻層70及第二負型光阻劑42曝光;其中步驟S309為對第二負型光阻劑42顯影以形成第二圖案化光阻層72,且第二圖案化光阻層72相對於光電轉換元件30上方的區域形成一個開口80,開口80暴露光電轉換元件30的上表面外露部分及間隔件50;其中於光通訊模組的第三態樣的製備方法中,光電轉換元件30的上表面外露部分指光電轉換元件30的上表面未被第二金屬線路層22及間隔件50覆蓋的區域。Please refer to Figure 12 and Figure 14. The present invention provides a third aspect of a method for manufacturing an optical communication module. The steps in sequence include step S301, step S302, step S303, step S304, step S305, step S306, step S307, step S308 and step S309 are basically the same as the preparation method of the optical communication module of the first aspect, except that the step of forming the first metal circuit layer 20 is not included; step S301 is to provide the light-transmitting substrate 10 and the photoelectric conversion element 30 , the photoelectric conversion element 30 is arranged on the upper surface of the light-transmitting substrate 10; wherein step S302 is to coat the first negative photoresist 40 on the surrounding area of the photoelectric conversion element 30 and the upper surface of the photoelectric conversion element 30; wherein step S303 is The first negative photoresist 40 is exposed upward from the bottom of the light-transmitting substrate 10; step S304 is to develop the first negative photoresist 40 to form the first patterned photoresist layer 70. The first patterned light The resistive layer 70 is formed in the surrounding area of the photoelectric conversion element 30 and exposes the upper surface of the photoelectric conversion element 30; Step S305 is to form the second metal circuit layer 22 on a partial area of the upper surface of the photoelectric conversion element 30, first patterning The upper surface of the photoresist layer 70 and the side surface of the first patterned photoresist layer 70 and the second metal circuit layer 22 are coupled to the upper surface of the photoelectric conversion element 30; Step S306 is to form a spacer 50 on the upper surface of the photoelectric conversion element 30. Another part of the surface; step S307 is to fully coat the second negative photoresist 42 to cover the upper surface of the first patterned photoresist layer 70, the exposed portion of the upper surface of the photoelectric conversion element 30, the spacer 50 and the third Partial areas of the two metal circuit layers 22; Step S308 is to expose the first patterned photoresist layer 70 and the second negative photoresist 42 from the bottom of the light-transmissive substrate 10 upward; and Step S309 is to expose the second negative photoresist layer 70 upward. The photoresist 42 is developed to form a second patterned photoresist layer 72 , and the second patterned photoresist layer 72 forms an opening 80 relative to the area above the photoelectric conversion element 30 , and the opening 80 exposes the upper surface of the photoelectric conversion element 30 Exposed portion and spacer 50; in the third aspect of the preparation method of the optical communication module, the exposed portion of the upper surface of the photoelectric conversion element 30 means that the upper surface of the photoelectric conversion element 30 is not separated by the second metal circuit layer 22 and Area covered by piece 50.

請參閱圖12及圖14,於本發明的一實施例中,進一步提供光通訊模組的第三態樣中不包括間隔件50的態樣的製備方法,製備方法與光通訊模組的第三態樣的製備方法基本一致,差異在於不包括關於間隔件50的描述,即無須步驟S306,並且步驟S307及步驟S309中移除關於間隔件50的描述,並且由於無間隔件50形成於光電轉換元件30的上表面,因此光電轉換元件30的上表面外露部分指光電轉換元件30的上表面未被第二金屬線路層22覆蓋的區域,所以步驟S307變為「全面塗佈第二負型光阻劑42以覆蓋第一圖案化光阻層70的上表面、光電轉換元件30的上表面外露部分及第二金屬線路層22的部分區域」而步驟S309變為「對第二負型光阻劑42顯影以形成第二圖案化光阻層72,且第二圖案化光阻層72相對於光電轉換元件30上方的區域形成一個開口80,開口80暴露光電轉換元件30的上表面外露部分」。Please refer to FIGS. 12 and 14 . In one embodiment of the present invention, a method for manufacturing a third aspect of an optical communication module that does not include the spacer 50 is further provided. The manufacturing method is the same as the third aspect of the optical communication module. The preparation methods of the three states are basically the same. The difference is that the description about the spacer 50 is not included, that is, step S306 is not required, and the description about the spacer 50 is removed in steps S307 and S309, and since no spacer 50 is formed in the photovoltaic The upper surface of the conversion element 30, therefore the exposed portion of the upper surface of the photoelectric conversion element 30 refers to the area of the upper surface of the photoelectric conversion element 30 that is not covered by the second metal circuit layer 22, so step S307 becomes "Fully coating the second negative type The photoresist 42 covers the upper surface of the first patterned photoresist layer 70, the exposed portion of the upper surface of the photoelectric conversion element 30, and a partial area of the second metal circuit layer 22" and step S309 becomes "for the second negative light The resist 42 is developed to form a second patterned photoresist layer 72 , and the second patterned photoresist layer 72 forms an opening 80 relative to the area above the photoelectric conversion element 30 , and the opening 80 exposes the exposed portion of the upper surface of the photoelectric conversion element 30 ”.

請參閱圖1、圖2、圖11、圖12、圖13及圖14,於本發明的一實施例中,光通訊模組的第一態樣、第二態樣及第三態樣亦可為不包括透光基板10的態樣,因此於第一態樣的光通訊模組的製備方法於完成步驟S109後、第二態樣的光通訊模組的製備方法於完成步驟S208後,以及第三態樣的光通訊模組的製備方法於完成步驟S309後,可進一步包括移除透光基板10的步驟。Please refer to Figure 1, Figure 2, Figure 11, Figure 12, Figure 13 and Figure 14. In an embodiment of the present invention, the first aspect, the second aspect and the third aspect of the optical communication module can also be It is an aspect that does not include the light-transmitting substrate 10, so the method of manufacturing the optical communication module of the first aspect is after completing step S109, the method of manufacturing the optical communication module of the second aspect is after completing step S208, and After completing step S309, the manufacturing method of the optical communication module of the third aspect may further include the step of removing the light-transmitting substrate 10.

請參閱圖15,於本發明的另一實施例中,光通訊模組的第一態樣的製備方法中,可於完成移除透光基板10後,再形成第一金屬線路層20,並且由於第一金屬線路層20為於透光基板10後才形成,因此第一金屬線路層20會形成於光電轉換元件30的下表面及第一圖案化光阻層70的下表面,並且第一金屬線路層耦接光電轉換元件30的下表面,以下將此稱為光通訊模組的第四態樣。Please refer to Figure 15. In another embodiment of the present invention, in the first aspect of the preparation method of the optical communication module, the first metal circuit layer 20 can be formed after the light-transmitting substrate 10 is removed, and Since the first metal circuit layer 20 is formed after the light-transmitting substrate 10, the first metal circuit layer 20 will be formed on the lower surface of the photoelectric conversion element 30 and the lower surface of the first patterned photoresist layer 70, and the first The metal circuit layer is coupled to the lower surface of the photoelectric conversion element 30, which is hereinafter referred to as the fourth aspect of the optical communication module.

請參閱圖15及圖16,光通訊模組的第四態樣的製備方法與光通訊模組的第一態樣的製備方法基本一致,差異在於進一步包括移除透光基板10的步驟,且第一金屬線路層20為移除透光基板10後才形成,並且由於第一金屬線路層20於配置光電轉換元件30時尚不存在,因此光電轉換元件30改以透光黏著材料使光電轉換元件30配置於透光基板10的上方,其中透光黏著材料可為固態光學膠或液態光學膠,步驟依序包括步驟S401、步驟S402、步驟S403、步驟S404、步驟S405、步驟S406、步驟S407及步驟S408、步驟S409、步驟S410及步驟S411,其中步驟S401為提供透光基板10及光電轉換元件30,光電轉換元件30配置於透光基板10的上方;其中步驟S402為塗佈第一負型光阻劑40於光電轉換元件30的周圍區域及光電轉換元件30的上表面,即讓光電轉換元件30被第一負型光阻劑40覆蓋;其中步驟S403為由透光基板10的下方朝上對第一負型光阻劑40曝光;其中步驟S404為對第一負型光阻劑40顯影以形成第一圖案化光阻層70,第一圖案化光阻層70形成於光電轉換元件30的周圍區域,並暴露光電轉換元件30的上表面;其中步驟S405為形成第二金屬線路層22於光電轉換元件30的上表面的部分區域、第一圖案化光阻層70的上表面及第一圖案化光阻層70的側面,第二金屬線路層22耦接光電轉換元件30的上表面;其中步驟S406為形成間隔件50於光電轉換元件30的上表面的另一部分區域;其中步驟S407為全面塗佈第二負型光阻劑42以覆蓋第一圖案化光阻層70的上表面、光電轉換元件30的上表面外露部分、間隔件50及第二金屬線路層22的部分區域;其中步驟S408為由透光基板10的下方朝上對第一圖案化光阻層70及第二負型光阻劑42曝光;其中步驟S409為對第二負型光阻劑42顯影以形成第二圖案化光阻層72,且第二圖案化光阻層72相對於光電轉換元件30上方的區域形成一個開口80,開口80暴露光電轉換元件30的上表面外露部分及間隔件50;其中於光電轉換元件30的上表面外露部分指光電轉換元件30的上表面未被第二金屬線路層22及間隔件50覆蓋的區域;其中步驟S410為移除透光基板10;步驟S411為形成第一金屬線路層20,其中第一金屬線路層20耦接光電轉換元件30的下表面。Please refer to Figures 15 and 16. The preparation method of the fourth aspect of the optical communication module is basically the same as the preparation method of the first aspect of the optical communication module. The difference is that it further includes the step of removing the light-transmitting substrate 10, and The first metal circuit layer 20 is formed after removing the light-transmitting substrate 10 . Since the first metal circuit layer 20 does not exist when the photoelectric conversion element 30 is configured, the photoelectric conversion element 30 is replaced with a light-transmitting adhesive material. 30 is disposed above the light-transmitting substrate 10, in which the light-transmitting adhesive material can be solid optical glue or liquid optical glue. The steps include step S401, step S402, step S403, step S404, step S405, step S406, step S407 and Step S408, step S409, step S410 and step S411, wherein step S401 is to provide a light-transmitting substrate 10 and a photoelectric conversion element 30, and the photoelectric conversion element 30 is disposed above the light-transmitting substrate 10; and step S402 is to coat a first negative type The photoresist 40 is in the surrounding area of the photoelectric conversion element 30 and the upper surface of the photoelectric conversion element 30 , that is, the photoelectric conversion element 30 is covered by the first negative photoresist 40 ; Step S403 is from the bottom of the light-transmitting substrate 10 toward The first negative photoresist 40 is exposed; step S404 is developing the first negative photoresist 40 to form a first patterned photoresist layer 70. The first patterned photoresist layer 70 is formed on the photoelectric conversion element. 30 and expose the upper surface of the photoelectric conversion element 30; step S405 is to form the second metal circuit layer 22 on a partial area of the upper surface of the photoelectric conversion element 30, the upper surface of the first patterned photoresist layer 70 and On the side of the first patterned photoresist layer 70, the second metal circuit layer 22 is coupled to the upper surface of the photoelectric conversion element 30; Step S406 is to form the spacer 50 on another part of the upper surface of the photoelectric conversion element 30; wherein the steps S407 is to fully coat the second negative photoresist 42 to cover the upper surface of the first patterned photoresist layer 70 , the exposed portion of the upper surface of the photoelectric conversion element 30 , the spacer 50 and a partial area of the second metal circuit layer 22 ; Step S408 is to expose the first patterned photoresist layer 70 and the second negative photoresist 42 from the bottom of the light-transmitting substrate 10 upward; Step S409 is to develop the second negative photoresist 42 to form The second patterned photoresist layer 72 forms an opening 80 relative to the area above the photoelectric conversion element 30, and the opening 80 exposes the exposed portion of the upper surface of the photoelectric conversion element 30 and the spacer 50; wherein The exposed portion of the upper surface of the photoelectric conversion element 30 refers to the area of the upper surface of the photoelectric conversion element 30 that is not covered by the second metal circuit layer 22 and the spacer 50; step S410 is to remove the light-transmitting substrate 10; step S411 is to form a third A metal circuit layer 20 , wherein the first metal circuit layer 20 is coupled to the lower surface of the photoelectric conversion element 30 .

請參閱圖15及圖16,本發明進一步提供光通訊模組的第四態樣中不包括間隔件50的態樣的製備方法,製備方法與光通訊模組的第四態樣的製備方法基本一致,差異在於不包括關於間隔件50的描述,即無須步驟S406,並且步驟S407及步驟S409中移除關於間隔件50的描述,並且由於無間隔件50形成於光電轉換元件30的上表面,因此光電轉換元件30的上表面外露部分指光電轉換元件30的上表面未被第二金屬線路層22覆蓋的區域,所以步驟S407變為「全面塗佈第二負型光阻劑42以覆蓋第一圖案化光阻層70的上表面、光電轉換元件30的上表面外露部分及第二金屬線路層22的部分區域」而步驟S409變為「對第二負型光阻劑42顯影以形成第二圖案化光阻層72,且第二圖案化光阻層72相對於光電轉換元件30上方的區域形成一個開口80,開口80暴露光電轉換元件30的上表面外露部分」。Please refer to FIG. 15 and FIG. 16 . The present invention further provides a preparation method of the fourth aspect of the optical communication module that does not include the spacer 50 . The preparation method is basically the same as the preparation method of the fourth aspect of the optical communication module. Consistent, the difference is that the description about the spacer 50 is not included, that is, step S406 is not required, and the description about the spacer 50 is removed in steps S407 and S409, and since no spacer 50 is formed on the upper surface of the photoelectric conversion element 30, Therefore, the exposed portion of the upper surface of the photoelectric conversion element 30 refers to the area of the upper surface of the photoelectric conversion element 30 that is not covered by the second metal circuit layer 22 , so step S407 becomes “Fully coat the second negative photoresist 42 to cover the second metal circuit layer 22 . A patterned upper surface of the photoresist layer 70, the exposed portion of the upper surface of the photoelectric conversion element 30 and a partial area of the second metal circuit layer 22" and step S409 becomes "Develop the second negative photoresist 42 to form a third Two patterned photoresist layers 72 are formed, and the second patterned photoresist layer 72 forms an opening 80 relative to the area above the photoelectric conversion element 30, and the opening 80 exposes the exposed portion of the upper surface of the photoelectric conversion element 30."

請參閱圖17及圖18,於本發明的另一實施例中,光通訊模組的第二態樣的製備方法中,可於完成移除透光基板10後,再形成第一金屬線路層20,並且由於第一金屬線路層20為於透光基板10後才形成,因此第一金屬線路層20會形成於光電轉換元件30的下表面及第一圖案化光阻層70的下表面,並且第一金屬線路層耦接光電轉換元件30的下表面,以下將此稱為光通訊模組的第五態樣。Please refer to Figures 17 and 18. In another embodiment of the present invention, in the second aspect of the manufacturing method of the optical communication module, the first metal circuit layer can be formed after the light-transmitting substrate 10 is removed. 20. Since the first metal circuit layer 20 is formed after the light-transmitting substrate 10, the first metal circuit layer 20 will be formed on the lower surface of the photoelectric conversion element 30 and the lower surface of the first patterned photoresist layer 70. And the first metal circuit layer is coupled to the lower surface of the photoelectric conversion element 30, which is hereinafter referred to as the fifth aspect of the optical communication module.

請參閱圖17及圖18,光通訊模組的第五態樣的製備方法與光通訊模組的第二態樣的製備方法基本一致,差異在於進一步包括移除透光基板10的步驟,且第一金屬線路層20為移除透光基板10後才形成,並且由於第一金屬線路層20於配置光電轉換元件30時尚不存在,因此光電轉換元件30改以透光黏著材料使光電轉換元件30配置於透光基板10的上方,其中透光黏著材料可為固態光學膠或液態光學膠,步驟依序包括步驟S501、步驟S502、步驟S503、步驟S504、步驟S505、步驟S506、步驟S507、步驟S508、步驟S509及步驟S510,步驟S501為提供透光基板10及光電轉換元件30,光電轉換元件30配置於透光基板10的上方;其中步驟S502為塗佈第一負型光阻劑40於光電轉換元件30的周圍區域及光電轉換元件30的上表面;其中步驟S503為由透光基板10的下方朝上對第一負型光阻劑40曝光;其中步驟S504為對第一負型光阻劑40顯影以形成第一圖案化光阻層70,第一圖案化光阻層70形成於光電轉換元件30的周圍區域,並暴露光電轉換元件30的上表面;其中步驟S505為形成間隔件50於光電轉換元件30的上表面的部分區域;其中步驟S506為全面塗佈第二負型光阻劑42以覆蓋第一圖案化光阻層70的上表面、光電轉換元件30的上表面外露部分及間隔件50;其中步驟S507為由透光基板10的下方朝上對第一圖案化光阻層70及第二負型光阻劑42曝光;其中步驟S508為對第二負型光阻劑42顯影以形成第二圖案化光阻層72,且第二圖案化光阻層72相對於光電轉換元件30上方的區域形成一個開口80,開口80暴露光電轉換元件30的上表面外露部分及間隔件50;其中由於不包括形成第二金屬線路層22的步驟,因此光電轉換元件30的上表面外露部分指光電轉換元件30的上表面未被間隔件50覆蓋的區域;其中步驟S509為移除透光基板10;步驟S510為形成第一金屬線路層20,其中第一金屬線路層20耦接光電轉換元件30的下表面。Please refer to Figures 17 and 18. The preparation method of the fifth aspect of the optical communication module is basically the same as the preparation method of the second aspect of the optical communication module. The difference is that it further includes the step of removing the light-transmitting substrate 10, and The first metal circuit layer 20 is formed after removing the light-transmitting substrate 10 . Since the first metal circuit layer 20 does not exist when the photoelectric conversion element 30 is configured, the photoelectric conversion element 30 is replaced with a light-transmitting adhesive material. 30 is disposed above the light-transmitting substrate 10, in which the light-transmitting adhesive material can be solid optical glue or liquid optical glue. The steps include step S501, step S502, step S503, step S504, step S505, step S506, step S507, Step S508, step S509 and step S510. Step S501 is to provide a light-transmitting substrate 10 and a photoelectric conversion element 30. The photoelectric conversion element 30 is disposed above the light-transmitting substrate 10; step S502 is to coat the first negative photoresist 40. In the surrounding area of the photoelectric conversion element 30 and the upper surface of the photoelectric conversion element 30; step S503 is to expose the first negative photoresist 40 from the bottom of the light-transmitting substrate 10 upward; and step S504 is to expose the first negative photoresist 40 upward. The photoresist 40 is developed to form a first patterned photoresist layer 70. The first patterned photoresist layer 70 is formed in the surrounding area of the photoelectric conversion element 30 and exposes the upper surface of the photoelectric conversion element 30; step S505 is to form a spacer. Part 50 is placed on a partial area of the upper surface of the photoelectric conversion element 30; step S506 is to fully coat the second negative photoresist 42 to cover the upper surface of the first patterned photoresist layer 70 and the upper surface of the photoelectric conversion element 30. The exposed portion and the spacer 50; Step S507 is to expose the first patterned photoresist layer 70 and the second negative photoresist 42 from the bottom of the light-transmissive substrate 10 upward; and Step S508 is to expose the second negative photoresist layer 70 to the second negative photoresist 42 from below. The resist 42 is developed to form a second patterned photoresist layer 72 , and the second patterned photoresist layer 72 forms an opening 80 relative to the area above the photoelectric conversion element 30 , and the opening 80 exposes the exposed portion of the upper surface of the photoelectric conversion element 30 and the spacer 50; since the step of forming the second metal circuit layer 22 is not included, the exposed portion of the upper surface of the photoelectric conversion element 30 refers to the area of the upper surface of the photoelectric conversion element 30 that is not covered by the spacer 50; wherein step S509 is The light-transmitting substrate 10 is removed; step S510 is to form a first metal circuit layer 20 , where the first metal circuit layer 20 is coupled to the lower surface of the photoelectric conversion element 30 .

本發明進一步提供光通訊模組的第五態樣中不包括間隔件50的態樣的製備方法,製備方法與光通訊模組的第五態樣的製備方法基本一致,差異在於不包括關於間隔件50的描述,即無須步驟S505,並且步驟S506及步驟S508中移除關於間隔件50的描述,並且由於無間隔件50形成於光電轉換元件30的上表面,因此光電轉換元件30的上表面外露部分即為光電轉換元件30的上表面,所以步驟S506變為「全面塗佈第二負型光阻劑42以覆蓋第一圖案化光阻層70的上表面及光電轉換元件30的上表面外露部分」而步驟S508變為「其中步驟S508為對第二負型光阻劑42顯影以形成第二圖案化光阻層72,且第二圖案化光阻層72相對於光電轉換元件30上方的區域形成一個開口80,開口80暴露光電轉換元件30的上表面外露部分;其中步驟S509為移除透光基板10;步驟S510為形成第一金屬線路層20,其中第一金屬線路層20耦接光電轉換元件30的下表面。」。The present invention further provides a preparation method of the fifth aspect of the optical communication module that does not include the spacer 50. The preparation method is basically the same as the preparation method of the fifth aspect of the optical communication module. The difference is that the spacer 50 is not included. description of the spacer 50 , that is, step S505 is not required, and the description of the spacer 50 is removed in steps S506 and S508 , and since no spacer 50 is formed on the upper surface of the photoelectric conversion element 30 , the upper surface of the photoelectric conversion element 30 The exposed part is the upper surface of the photoelectric conversion element 30, so step S506 becomes "Fully coat the second negative photoresist 42 to cover the upper surface of the first patterned photoresist layer 70 and the upper surface of the photoelectric conversion element 30 Exposed portion" and step S508 becomes "wherein step S508 is to develop the second negative photoresist 42 to form a second patterned photoresist layer 72, and the second patterned photoresist layer 72 is above the photoelectric conversion element 30 An opening 80 is formed in the area, and the opening 80 exposes the exposed portion of the upper surface of the photoelectric conversion element 30; Step S509 is to remove the light-transmitting substrate 10; Step S510 is to form the first metal circuit layer 20, wherein the first metal circuit layer 20 is coupled Connected to the lower surface of the photoelectric conversion element 30."

於本案的一實施例中,可以對第二圖案化光阻層72進行加工,根據實務需求調整光通訊模組的開口80的構型。In one embodiment of this case, the second patterned photoresist layer 72 can be processed to adjust the configuration of the opening 80 of the optical communication module according to practical needs.

於本發明較佳的實施例中,光通訊模組的第一態樣的製備方法、第二態樣的光通訊模組的製備方法及第三態樣的光通訊模組的製備方法中,光電轉換元件30的外型為正方體或長方體等對稱形狀,且光電轉換元件30的光圈位於光電轉換元件30的上表面的中心位置,讓光纖(圖中未顯示)插入開口80時,即會直接對準光電轉換元件30的光圈,但實際實施時不限於此,光電轉換元件30的外型亦可為其他形狀,而光電轉換元件30的光圈位置亦可根據實務需求調整位置。In the preferred embodiment of the present invention, in the preparation method of the first aspect of the optical communication module, the preparation method of the second aspect of the optical communication module and the preparation method of the third aspect of the optical communication module, The photoelectric conversion element 30 has a symmetrical shape such as a cube or a cuboid, and the aperture of the photoelectric conversion element 30 is located at the center of the upper surface of the photoelectric conversion element 30. When an optical fiber (not shown in the figure) is inserted into the opening 80, it will directly Align the aperture of the photoelectric conversion element 30, but the actual implementation is not limited to this. The shape of the photoelectric conversion element 30 can also be other shapes, and the position of the aperture of the photoelectric conversion element 30 can also be adjusted according to practical needs.

於本發明的一實施例中,第一態樣的光通訊模組的製備方法、第二態樣的光通訊模組的製備方法及第三態樣的光通訊模組的製備方法中,其中根據所使用的第一負型光阻劑40及第二負型光阻劑42的種類,透光基板10可為透明片或濾光片,其中透明片指能讓全波長光線皆穿透的透光片,舉例如透明玻璃片或透明塑膠片等,其中濾光片可為紫外光帶通片、可見光帶通片或紅外光帶通片等,但不限於此,亦可根據曝光所需的光波長進行調整過濾的光波長範圍。In an embodiment of the present invention, in the preparation method of the optical communication module of the first aspect, the preparation method of the optical communication module of the second aspect and the preparation method of the optical communication module of the third aspect, wherein According to the types of the first negative photoresist 40 and the second negative photoresist 42 used, the light-transmitting substrate 10 can be a transparent sheet or a filter, wherein a transparent sheet refers to one that can transmit light of all wavelengths. The light-transmitting sheet is, for example, a transparent glass sheet or a transparent plastic sheet. The filter may be an ultraviolet band-pass film, a visible light band-pass film, or an infrared band-pass film, but is not limited to this. It can also be used according to the exposure requirements The light wavelength is adjusted to filter the light wavelength range.

於本發明的一實施例中,其中第一負型光阻劑40及第二負型光阻劑42皆為苯環丁烯(Benzocyclobutene, BCB),其中透光基板10為紫外光帶通片,曝光光源60為汞燈。In one embodiment of the present invention, the first negative photoresist 40 and the second negative photoresist 42 are both benzocyclobutene (BCB), and the light-transmitting substrate 10 is a UV bandpass film , the exposure light source 60 is a mercury lamp.

於本發明的一實施例中,第一金屬線路層20的材質及第二金屬線路層22的材質可為金、銀、銅、鐵、鋁、鉬、鈦、鎢、鎳、鈷、釕或氧化銦錫。In an embodiment of the present invention, the material of the first metal circuit layer 20 and the material of the second metal circuit layer 22 can be gold, silver, copper, iron, aluminum, molybdenum, titanium, tungsten, nickel, cobalt, ruthenium or Indium tin oxide.

於本發明的一實施例中,光電轉換元件30可為雷射元件或光接收元件,其中雷射元件舉例可為垂直腔表面發射雷射(vertical-cavity surface-emitting laser, VCSEL)、雷射二極體(laser diode, LD)或光電二極體(photodiode, PD)等,其中光接收元件舉例可為光電二極體等。In one embodiment of the present invention, the photoelectric conversion element 30 can be a laser element or a light receiving element. Examples of the laser element can be a vertical-cavity surface-emitting laser (VCSEL), a laser A diode (laser diode, LD) or a photodiode (PD), etc., wherein the light receiving element may be a photodiode, etc.

於本發明的一實施例中,第一金屬線路層20的金屬線路的寬度為100 μm,厚度為2~5 μm,但實際實施時不限於此,亦可根據實務需求進行寬度及厚度的調整。In one embodiment of the present invention, the width of the metal circuit of the first metal circuit layer 20 is 100 μm, and the thickness is 2~5 μm. However, the actual implementation is not limited to this, and the width and thickness can also be adjusted according to practical needs. .

於本發明的一實施例中,第二金屬線路層22的金屬線路的寬度為100 μm,厚度為2~5 μm,但實際實施時不限於此,亦可根據實務需求進行寬度及厚度的調整。In one embodiment of the present invention, the width of the metal circuit of the second metal circuit layer 22 is 100 μm and the thickness is 2~5 μm. However, the actual implementation is not limited to this, and the width and thickness can also be adjusted according to practical needs. .

本發明的技術特徵在於藉由光電轉換元件本身進行遮光,取代現行以光蝕刻方法製備發射模組的方式中的高精度光罩的作用,因此得以節省下設計高精度光罩的時間及金錢的生產成本。The technical feature of the present invention is to shield light by the photoelectric conversion element itself, replacing the role of a high-precision mask in the current method of preparing an emission module by photoetching, thus saving time and money in designing a high-precision mask. production costs.

10:透光基板 20:第一金屬線路層 22:第二金屬線路層 30:光電轉換元件 40:第一負型光阻劑 42:第二負型光阻劑 50:間隔件 60:曝光光源 62:曝光光線 70:第一圖案化光阻層 72:第二圖案化光阻層 80:開口 S101~S109:步驟 S201~S208:步驟 S301~S309:步驟 S401~S411:步驟 S501~S510:步驟10: Translucent substrate 20: First metal circuit layer 22: Second metal circuit layer 30: Photoelectric conversion element 40:The first negative photoresist 42: Second negative photoresist 50: Spacer 60: Exposure light source 62: Exposure light 70: First patterned photoresist layer 72: Second patterned photoresist layer 80:Open your mouth S101~S109: Steps S201~S208: steps S301~S309: steps S401~S411: steps S501~S510: steps

圖1為光通訊模組的第一態樣的剖面示意圖。Figure 1 is a schematic cross-sectional view of a first aspect of an optical communication module.

圖2為第一態樣的光通訊模組的製備方法的步驟圖。FIG. 2 is a step diagram of a method for manufacturing an optical communication module according to a first aspect.

圖3為第一態樣的光通訊模組的製備方法中步驟S101的剖面示意圖。FIG. 3 is a schematic cross-sectional view of step S101 in the method of manufacturing an optical communication module of the first aspect.

圖4為第一態樣的光通訊模組的製備方法中步驟S102的剖面示意圖。FIG. 4 is a schematic cross-sectional view of step S102 in the method of manufacturing an optical communication module according to the first aspect.

圖5為第一態樣的光通訊模組的製備方法中步驟S103的剖面示意圖。FIG. 5 is a schematic cross-sectional view of step S103 in the method of manufacturing an optical communication module according to the first aspect.

圖6為第一態樣的光通訊模組的製備方法中步驟S104的剖面示意圖。FIG. 6 is a schematic cross-sectional view of step S104 in the method of manufacturing an optical communication module according to the first aspect.

圖7為第一態樣的光通訊模組的製備方法中步驟S105的剖面示意圖。FIG. 7 is a schematic cross-sectional view of step S105 in the method of manufacturing an optical communication module according to the first aspect.

圖8為第一態樣的光通訊模組的製備方法中步驟S106的剖面示意圖。FIG. 8 is a schematic cross-sectional view of step S106 in the method of manufacturing an optical communication module according to the first aspect.

圖9為第一態樣的光通訊模組的製備方法中步驟S107的剖面示意圖。FIG. 9 is a schematic cross-sectional view of step S107 in the method of manufacturing an optical communication module according to the first aspect.

圖10為第一態樣的光通訊模組的製備方法中步驟S108的剖面示意圖。FIG. 10 is a schematic cross-sectional view of step S108 in the method of manufacturing an optical communication module according to the first aspect.

圖11為光通訊模組的第二態樣的剖面示意圖。Figure 11 is a schematic cross-sectional view of a second aspect of the optical communication module.

圖12為光通訊模組的第三態樣的剖面示意圖。Figure 12 is a schematic cross-sectional view of a third aspect of the optical communication module.

圖13為第二態樣的光通訊模組的製備方法的步驟圖。Figure 13 is a step diagram of a method for manufacturing an optical communication module in a second aspect.

圖14為第三態樣的光通訊模組的製備方法的步驟圖。FIG. 14 is a step diagram of a method for manufacturing an optical communication module in a third aspect.

圖15為第四態樣的光通訊模組的剖面示意圖。Figure 15 is a schematic cross-sectional view of an optical communication module in a fourth aspect.

圖16為第四態樣的光通訊模組的製備方法的步驟圖。FIG. 16 is a step diagram of a method for manufacturing an optical communication module in a fourth aspect.

圖17為第五態樣的光通訊模組的剖面示意圖。Figure 17 is a schematic cross-sectional view of the fifth aspect of the optical communication module.

圖18為第五態樣的光通訊模組的製備方法的步驟圖。FIG. 18 is a step diagram of a method of manufacturing an optical communication module according to a fifth aspect.

10:透光基板 10: Translucent substrate

20:第一金屬線路層 20: First metal circuit layer

22:第二金屬線路層 22: Second metal circuit layer

30:光電轉換元件 30: Photoelectric conversion element

50:間隔件 50: Spacer

70:第一圖案化光阻層 70: First patterned photoresist layer

72:第二圖案化光阻層 72: Second patterned photoresist layer

80:開口 80:Open your mouth

Claims (13)

一種光通訊模組的製備方法,步驟依序包括: 提供一透光基板、一第一金屬線路層及一光電轉換元件,其中該第一金屬線路層形成於該透光基板的一上表面的部分區域,而該光電轉換元件配置於該透光基板的上方,並且該光電轉換元件的一下表面耦接該第一金屬線路層; 塗佈一第一負型光阻劑於該光電轉換元件的一周圍區域及該光電轉換元件的一上表面,其中該光電轉換元件的該周圍區域包括該第一金屬線路層的部分區域; 由該透光基板的下方朝上對該第一負型光阻劑曝光; 對該第一負型光阻劑顯影以形成一第一圖案化光阻層,該第一圖案化光阻層形成於該光電轉換元件的該周圍區域,並暴露該光電轉換元件的該上表面; 形成一第二金屬線路層於該光電轉換元件的該上表面的部分區域、該第一圖案化光阻層的一上表面及該第一圖案化光阻層的一側面,該第二金屬線路層耦接該光電轉換元件的該上表面; 全面塗佈一第二負型光阻劑以覆蓋該第一圖案化光阻層的該上表面、該光電轉換元件的該上表面外露部份及該第二金屬線路層的部分區域; 由該透光基板的下方朝上對該第一圖案化光阻層及該第二負型光阻劑曝光; 對該第二負型光阻劑顯影以形成一第二圖案化光阻層,且該第二圖案化光阻層相對於該光電轉換元件上方的區域形成一開口,該開口暴露該光電轉換元件的該上表面外露部份。 A method for preparing an optical communication module. The steps include: A light-transmitting substrate, a first metal circuit layer and a photoelectric conversion element are provided, wherein the first metal circuit layer is formed on a partial area of an upper surface of the light-transmitting substrate, and the photoelectric conversion element is arranged on the light-transmitting substrate above, and the lower surface of the photoelectric conversion element is coupled to the first metal circuit layer; Coating a first negative photoresist on a surrounding area of the photoelectric conversion element and an upper surface of the photoelectric conversion element, wherein the surrounding area of the photoelectric conversion element includes a partial area of the first metal circuit layer; Expose the first negative photoresist from the bottom of the light-transmissive substrate upward; The first negative photoresist is developed to form a first patterned photoresist layer. The first patterned photoresist layer is formed in the surrounding area of the photoelectric conversion element and exposes the upper surface of the photoelectric conversion element. ; A second metal circuit layer is formed on a partial area of the upper surface of the photoelectric conversion element, an upper surface of the first patterned photoresist layer and a side surface of the first patterned photoresist layer, the second metal circuit layer The layer is coupled to the upper surface of the photoelectric conversion element; Fully coating a second negative photoresist to cover the upper surface of the first patterned photoresist layer, the exposed portion of the upper surface of the photoelectric conversion element and a partial area of the second metal circuit layer; Expose the first patterned photoresist layer and the second negative photoresist from the bottom of the light-transmissive substrate upward; The second negative photoresist is developed to form a second patterned photoresist layer, and the second patterned photoresist layer forms an opening relative to the area above the photoelectric conversion element, and the opening exposes the photoelectric conversion element The exposed portion of the upper surface. 如請求項1所述的光通訊模組的製備方法,其中於完成「形成一第二金屬線路層於該光電轉換元件的該上表面的部分區域、該第一圖案化光阻層的一上表面及該第一圖案化光阻層的一側面,該第二金屬線路層耦接該光電轉換元件的該上表面」的步驟後,進一步包括「形成一間隔件於該光電轉換元件的該上表面的另一部分區域」的步驟。The method for preparing an optical communication module as claimed in claim 1, wherein after completion of "forming a second metal circuit layer on a partial area of the upper surface of the photoelectric conversion element and one of the first patterned photoresist layers The surface and one side of the first patterned photoresist layer, the second metal circuit layer is coupled to the upper surface of the photoelectric conversion element", and further includes "forming a spacer on the upper surface of the photoelectric conversion element. another area of the surface. 一種光通訊模組的製備方法,步驟依序包括: 提供一透光基板、一第一金屬線路層及一光電轉換元件,其中該第一金屬線路層形成於該透光基板的一上表面的部分區域,而該光電轉換元件配置於該透光基板的上方,並且該光電轉換元件的一下表面耦接該第一金屬線路層; 塗佈一第一負型光阻劑於該光電轉換元件的一周圍區域及該光電轉換元件的一上表面,其中該光電轉換元件的該周圍區域包括該第一金屬線路層的部分區域; 由該透光基板的下方朝上對該第一負型光阻劑曝光; 對該第一負型光阻劑顯影以形成一第一圖案化光阻層,該第一圖案化光阻層形成於該光電轉換元件的該周圍區域,並暴露該光電轉換元件的該上表面; 全面塗佈一第二負型光阻劑以覆蓋該第一圖案化光阻層的一上表面及該光電轉換元件的該上表面外露部份; 由該透光基板的下方朝上對該第一圖案化光阻層及該第二負型光阻劑曝光; 對該第二負型光阻劑顯影以形成一第二圖案化光阻層,且該第二圖案化光阻層相對於該光電轉換元件上方的區域形成一開口,該開口暴露該光電轉換元件的該上表面外露部分。 A method for preparing an optical communication module. The steps include: A light-transmitting substrate, a first metal circuit layer and a photoelectric conversion element are provided, wherein the first metal circuit layer is formed on a partial area of an upper surface of the light-transmitting substrate, and the photoelectric conversion element is arranged on the light-transmitting substrate above, and the lower surface of the photoelectric conversion element is coupled to the first metal circuit layer; Coating a first negative photoresist on a surrounding area of the photoelectric conversion element and an upper surface of the photoelectric conversion element, wherein the surrounding area of the photoelectric conversion element includes a partial area of the first metal circuit layer; Expose the first negative photoresist from the bottom of the light-transmissive substrate upward; The first negative photoresist is developed to form a first patterned photoresist layer. The first patterned photoresist layer is formed in the surrounding area of the photoelectric conversion element and exposes the upper surface of the photoelectric conversion element. ; Fully coating a second negative photoresist to cover an upper surface of the first patterned photoresist layer and the exposed portion of the upper surface of the photoelectric conversion element; Expose the first patterned photoresist layer and the second negative photoresist from the bottom of the light-transmissive substrate upward; The second negative photoresist is developed to form a second patterned photoresist layer, and the second patterned photoresist layer forms an opening relative to the area above the photoelectric conversion element, and the opening exposes the photoelectric conversion element The exposed portion of the upper surface. 如請求項3所述的光通訊模組的製備方法,其中於完成「對該第一負型光阻劑顯影以形成一第一圖案化光阻層,該第一圖案化光阻層形成於該光電轉換元件的該周圍區域,並暴露該光電轉換元件的該上表面」的步驟後,進一步包括「形成一間隔件於該光電轉換元件的該上表面的部分區域」的步驟。The method for preparing an optical communication module as described in claim 3, wherein after completing "developing the first negative photoresist to form a first patterned photoresist layer, the first patterned photoresist layer is formed on After the step of "exposing the surrounding area of the photoelectric conversion element and exposing the upper surface of the photoelectric conversion element", it further includes the step of "forming a spacer on a partial area of the upper surface of the photoelectric conversion element". 一種光通訊模組的製備方法,步驟依序包括: 提供一透光基板及一光電轉換元件,該光電轉換元件配置於該透光基板的一上表面; 塗佈一第一負型光阻劑於該光電轉換元件的一周圍區域及該光電轉換元件的一上表面; 由該透光基板的下方朝上對該第一負型光阻劑曝光; 對該第一負型光阻劑顯影以形成一第一圖案化光阻層,該第一圖案化光阻層形成於該光電轉換元件的該周圍區域,並暴露該光電轉換元件的該上表面; 形成一第二金屬線路層於該光電轉換元件的該上表面的部分區域、該第一圖案化光阻層的一上表面及該第一圖案化光阻層的一側面,該第二金屬線路層耦接該光電轉換元件的該上表面; 全面塗佈一第二負型光阻劑以覆蓋該第一圖案化光阻層的該上表面、該光電轉換元件的該上表面外露部分及該第二金屬線路層的部分區域; 由該透光基板的下方朝上對該第一圖案化光阻層及該第二負型光阻劑曝光; 對該第二負型光阻劑顯影以形成一第二圖案化光阻層,且該第二圖案化光阻層相對於該光電轉換元件上方的區域形成一開口,該開口暴露該光電轉換元件的該上表面外露部分。 A method for preparing an optical communication module. The steps include: Provide a light-transmitting substrate and a photoelectric conversion element, the photoelectric conversion element is arranged on an upper surface of the light-transmitting substrate; Coating a first negative photoresist on a surrounding area of the photoelectric conversion element and an upper surface of the photoelectric conversion element; Expose the first negative photoresist from the bottom of the light-transmissive substrate upward; The first negative photoresist is developed to form a first patterned photoresist layer. The first patterned photoresist layer is formed in the surrounding area of the photoelectric conversion element and exposes the upper surface of the photoelectric conversion element. ; A second metal circuit layer is formed on a partial area of the upper surface of the photoelectric conversion element, an upper surface of the first patterned photoresist layer and a side surface of the first patterned photoresist layer, the second metal circuit layer The layer is coupled to the upper surface of the photoelectric conversion element; Fully coating a second negative photoresist to cover the upper surface of the first patterned photoresist layer, the exposed portion of the upper surface of the photoelectric conversion element and a partial area of the second metal circuit layer; Expose the first patterned photoresist layer and the second negative photoresist from the bottom of the light-transmissive substrate upward; The second negative photoresist is developed to form a second patterned photoresist layer, and the second patterned photoresist layer forms an opening relative to the area above the photoelectric conversion element, and the opening exposes the photoelectric conversion element The exposed portion of the upper surface. 如請求項5所述的光通訊模組的製備方法,其中於完成「形成一第二金屬線路層於該光電轉換元件的該上表面的部分區域、該第一圖案化光阻層的一上表面及該第一圖案化光阻層的一側面,該第二金屬線路層耦接該光電轉換元件的該上表面」的步驟後,進一步包括「形成一間隔件於該光電轉換元件的該上表面的另一部分區域」的步驟。The method for preparing an optical communication module as described in claim 5, wherein after completion of "forming a second metal circuit layer on a partial area of the upper surface of the photoelectric conversion element and one of the first patterned photoresist layers The surface and one side of the first patterned photoresist layer, the second metal circuit layer is coupled to the upper surface of the photoelectric conversion element", and further includes "forming a spacer on the upper surface of the photoelectric conversion element. another area of the surface. 如請求項1、3或5所述的光通訊模組的製備方法,其中完成各個步驟後,進一步包括「移除透光基板」的步驟。The method for preparing an optical communication module as described in claim 1, 3 or 5 further includes a step of "removing the light-transmitting substrate" after completing each step. 一種光通訊模組的製備方法,步驟依序包括: 提供一透光基板及一光電轉換元件,該光電轉換元件配置於該透光基板的上方; 塗佈一第一負型光阻劑於該光電轉換元件的一周圍區域及該光電轉換元件的一上表面; 由該透光基板的下方朝上對該第一負型光阻劑曝光; 對該第一負型光阻劑顯影以形成一第一圖案化光阻層,該第一圖案化光阻層形成於該光電轉換元件的該周圍區域,並暴露該光電轉換元件的該上表面; 形成一第二金屬線路層於該光電轉換元件的該上表面的部分區域、該第一圖案化光阻層的一上表面及該第一圖案化光阻層的一側面,該第二金屬線路層耦接該光電轉換元件的該上表面; 全面塗佈一第二負型光阻劑以覆蓋該第一圖案化光阻層的該上表面、該光電轉換元件的該上表面外露部份及該第二金屬線路層的部分區域; 由該透光基板的下方朝上對該第一圖案化光阻層及該第二負型光阻劑曝光; 對該第二負型光阻劑顯影以形成一第二圖案化光阻層,且該第二圖案化光阻層相對於該光電轉換元件上方的區域形成一開口,該開口暴露該光電轉換元件的該上表面外露部份; 移除該透光基板; 形成一第一金屬線路層,該第一金屬線路層耦接該光電轉換元件的一下表面。 A method for preparing an optical communication module. The steps include: A light-transmitting substrate and a photoelectric conversion element are provided, and the photoelectric conversion element is arranged above the light-transmitting substrate; Coating a first negative photoresist on a surrounding area of the photoelectric conversion element and an upper surface of the photoelectric conversion element; Expose the first negative photoresist from the bottom of the light-transmissive substrate upward; The first negative photoresist is developed to form a first patterned photoresist layer. The first patterned photoresist layer is formed in the surrounding area of the photoelectric conversion element and exposes the upper surface of the photoelectric conversion element. ; A second metal circuit layer is formed on a partial area of the upper surface of the photoelectric conversion element, an upper surface of the first patterned photoresist layer and a side surface of the first patterned photoresist layer, the second metal circuit layer The layer is coupled to the upper surface of the photoelectric conversion element; Fully coating a second negative photoresist to cover the upper surface of the first patterned photoresist layer, the exposed portion of the upper surface of the photoelectric conversion element and a partial area of the second metal circuit layer; Expose the first patterned photoresist layer and the second negative photoresist from the bottom of the light-transmissive substrate upward; The second negative photoresist is developed to form a second patterned photoresist layer, and the second patterned photoresist layer forms an opening relative to the area above the photoelectric conversion element, and the opening exposes the photoelectric conversion element The exposed portion of the upper surface; remove the light-transmitting substrate; A first metal circuit layer is formed, and the first metal circuit layer is coupled to the lower surface of the photoelectric conversion element. 如請求項8所述的光通訊模組的製備方法,其中於完成「形成一第二金屬線路層於該光電轉換元件的該上表面的部分區域、該第一圖案化光阻層的一上表面及該第一圖案化光阻層的一側面,該第二金屬線路層耦接該光電轉換元件的該上表面」的步驟後,進一步包括「形成一間隔件於該光電轉換元件的該上表面的另一部分區域」的步驟。The method for preparing an optical communication module as described in claim 8, wherein after completion of "forming a second metal circuit layer on a partial area of the upper surface of the photoelectric conversion element and one of the first patterned photoresist layers The surface and one side of the first patterned photoresist layer, the second metal circuit layer is coupled to the upper surface of the photoelectric conversion element", and further includes "forming a spacer on the upper surface of the photoelectric conversion element. another area of the surface. 一種光通訊模組的製備方法,步驟依序包括: 提供一透光基板及一光電轉換元件,該光電轉換元件配置於該透光基板的上方; 塗佈一第一負型光阻劑於該光電轉換元件的一周圍區域及該光電轉換元件的一上表面; 由該透光基板的下方朝上對該第一負型光阻劑曝光; 對該第一負型光阻劑顯影以形成一第一圖案化光阻層,該第一圖案化光阻層形成於該光電轉換元件的該周圍區域,並暴露該光電轉換元件的該上表面; 全面塗佈一第二負型光阻劑以覆蓋該第一圖案化光阻層的一上表面及該光電轉換元件的該上表面外露部份; 由該透光基板的下方朝上對該第一圖案化光阻層及該第二負型光阻劑曝光; 對該第二負型光阻劑顯影以形成一第二圖案化光阻層,且該第二圖案化光阻層相對於該光電轉換元件上方的區域形成一開口,該開口暴露該光電轉換元件的該上表面外露部分。 A method for preparing an optical communication module. The steps include: A light-transmitting substrate and a photoelectric conversion element are provided, and the photoelectric conversion element is arranged above the light-transmitting substrate; Coating a first negative photoresist on a surrounding area of the photoelectric conversion element and an upper surface of the photoelectric conversion element; Expose the first negative photoresist from the bottom of the light-transmissive substrate upward; The first negative photoresist is developed to form a first patterned photoresist layer. The first patterned photoresist layer is formed in the surrounding area of the photoelectric conversion element and exposes the upper surface of the photoelectric conversion element. ; Fully coating a second negative photoresist to cover an upper surface of the first patterned photoresist layer and the exposed portion of the upper surface of the photoelectric conversion element; Expose the first patterned photoresist layer and the second negative photoresist from the bottom of the light-transmissive substrate upward; The second negative photoresist is developed to form a second patterned photoresist layer, and the second patterned photoresist layer forms an opening relative to the area above the photoelectric conversion element, and the opening exposes the photoelectric conversion element The exposed portion of the upper surface. 如請求項10所述的光通訊模組的製備方法,其中於完成「對該第一負型光阻劑顯影以形成一第一圖案化光阻層,該第一圖案化光阻層形成於該光電轉換元件的該周圍區域,並暴露該光電轉換元件的該上表面」的步驟後,進一步包括「形成一間隔件於該光電轉換元件的該上表面的部分區域」的步驟。The method for preparing an optical communication module as claimed in claim 10, wherein after completing "developing the first negative photoresist to form a first patterned photoresist layer, the first patterned photoresist layer is formed on After the step of "exposing the surrounding area of the photoelectric conversion element and exposing the upper surface of the photoelectric conversion element", it further includes the step of "forming a spacer on a partial area of the upper surface of the photoelectric conversion element". 如請求項1、3、5、8或10所述的光通訊模組的製備方法,其中該透光基板為透明片或濾光片。The method for preparing an optical communication module as described in claim 1, 3, 5, 8 or 10, wherein the light-transmitting substrate is a transparent sheet or a filter. 如請求項1、3、5、8或10所述的光通訊模組的製備方法,其中該光電轉換元件為雷射元件或光接收元件。The method for preparing an optical communication module as described in claim 1, 3, 5, 8 or 10, wherein the photoelectric conversion element is a laser element or a light receiving element.
TW111144688A 2022-11-18 2022-11-22 Method for manufacturing optical communication module TWI816608B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211445203.2A CN115763576A (en) 2022-11-18 2022-11-18 Method for manufacturing optical communication module
CN202211445203.2 2022-11-18

Publications (1)

Publication Number Publication Date
TWI816608B true TWI816608B (en) 2023-09-21

Family

ID=85373115

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111144688A TWI816608B (en) 2022-11-18 2022-11-22 Method for manufacturing optical communication module

Country Status (2)

Country Link
CN (1) CN115763576A (en)
TW (1) TWI816608B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090104565A1 (en) * 2007-10-19 2009-04-23 Matsushita Electric Works, Ltd. Method for forming photoelectric composite board
US20170012143A1 (en) * 2015-07-07 2017-01-12 Renesas Electronics Corporation Semiconductor device and method of manufacturing the same
US20200107436A1 (en) * 2018-09-28 2020-04-02 Apple Inc. Wafer level optical module

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090104565A1 (en) * 2007-10-19 2009-04-23 Matsushita Electric Works, Ltd. Method for forming photoelectric composite board
US20170012143A1 (en) * 2015-07-07 2017-01-12 Renesas Electronics Corporation Semiconductor device and method of manufacturing the same
US20200107436A1 (en) * 2018-09-28 2020-04-02 Apple Inc. Wafer level optical module

Also Published As

Publication number Publication date
CN115763576A (en) 2023-03-07

Similar Documents

Publication Publication Date Title
CN101859006B (en) Manufacturing method for optical electric combination module and optical electric combination module obtained thereby
KR100657117B1 (en) Integrated circuit device and method for manufacturing the same
KR101560404B1 (en) Optical/electrical hybrid substrate producing method
JPH10305620A (en) Light-emitting apparatus and recording apparatus using the same
JP5022795B2 (en) Semiconductor light receiving element and manufacturing method thereof
CN101509989A (en) Manufacturing method of opto-electric hybrid board and opto-electric hybrid board obtained thereby
US9360638B2 (en) Optical transmission body, method for manufacturing the same, and optical transmission module
JP2014203945A (en) Electronic device and manufacturing method therefor, and electronic apparatus
JP2011237503A (en) Photoelectric composite substrate and method of manufacturing the same
TWI816608B (en) Method for manufacturing optical communication module
JP5495896B2 (en) Manufacturing method of optoelectric wiring board
JP2017058561A (en) Optical connector and manufacturing method thereof
JP5208460B2 (en) Optical circuit device
JP2009175274A (en) Manufacturing method of optical waveguide device
US9166095B2 (en) Image sensor module and method of manufacturing the same
CN210804460U (en) Optical fingerprint module and terminal equipment
KR100813919B1 (en) optical connection block for PCB and method for fabrication thereof
JP5349192B2 (en) Optical wiring structure and optical module having the same
KR20130014887A (en) Light emitting device package and manufacturing method thereof
EP2613186B1 (en) Optical transmission structure, method of manufacturing same, and optical transmission module
JP3287871B2 (en) Printed circuit board manufacturing method
JP6140567B2 (en) Optical transmission board manufacturing method and optical transmission board
KR200188168Y1 (en) Photo mask
JP6672632B2 (en) Image sensor module
KR100639962B1 (en) Method for fabricating polymer waveguide for passive alignment to optical fiber in optical module