TWI813240B - 類比至數位轉換裝置與偏移校正方法 - Google Patents

類比至數位轉換裝置與偏移校正方法 Download PDF

Info

Publication number
TWI813240B
TWI813240B TW111112652A TW111112652A TWI813240B TW I813240 B TWI813240 B TW I813240B TW 111112652 A TW111112652 A TW 111112652A TW 111112652 A TW111112652 A TW 111112652A TW I813240 B TWI813240 B TW I813240B
Authority
TW
Taiwan
Prior art keywords
output
quantized
level
data
sampling
Prior art date
Application number
TW111112652A
Other languages
English (en)
Other versions
TW202341666A (zh
Inventor
汪鼎豪
韓昕翰
Original Assignee
創意電子股份有限公司
台灣積體電路製造股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 創意電子股份有限公司, 台灣積體電路製造股份有限公司 filed Critical 創意電子股份有限公司
Priority to TW111112652A priority Critical patent/TWI813240B/zh
Priority to JP2022082450A priority patent/JP2023152240A/ja
Priority to US17/817,636 priority patent/US11973511B2/en
Application granted granted Critical
Publication of TWI813240B publication Critical patent/TWI813240B/zh
Publication of TW202341666A publication Critical patent/TW202341666A/zh

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/10Calibration or testing
    • H03M1/1009Calibration
    • H03M1/1014Calibration at one point of the transfer characteristic, i.e. by adjusting a single reference value, e.g. bias or gain error
    • H03M1/1023Offset correction
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/1205Multiplexed conversion systems
    • H03M1/121Interleaved, i.e. using multiple converters or converter parts for one channel
    • H03M1/1215Interleaved, i.e. using multiple converters or converter parts for one channel using time-division multiplexing
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/06Continuously compensating for, or preventing, undesired influence of physical parameters
    • H03M1/0617Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence
    • H03M1/0634Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence by averaging out the errors, e.g. using sliding scale
    • H03M1/0636Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence by averaging out the errors, e.g. using sliding scale in the amplitude domain
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/124Sampling or signal conditioning arrangements specially adapted for A/D converters
    • H03M1/1245Details of sampling arrangements or methods
    • H03M1/126Multi-rate systems, i.e. adaptive to different fixed sampling rates

Abstract

一種類比至數位轉換裝置,包含N級第一類比至數位轉換器(ADC)、第二ADC、校正電路、資料恢復電路與輸出電路。N級第一ADC以第一取樣頻率時間交錯轉換輸入訊號為多級第一量化輸出。第二ADC以第二取樣頻率轉換輸入訊號為第二量化輸出。第一取樣頻率為第二取樣頻率的(N+1)/N倍。校正電路校正多級第一量化輸出與第二量化輸出以產生多級第三量化輸出與第四量化輸出。資料恢復電路以第二取樣頻率輸出多級第三量化輸出的一者為第五量化輸出,將第四量化輸出減去第五量化輸出以產生多個輸出資料。輸出電路依據多級第三量化輸出與多個輸出資料產生輸出訊號。

Description

類比至數位轉換裝置與偏移校正方法
本揭示文件有關一種類比至數位轉換技術,尤指一種防止遺失取樣結果的類比至數位轉換裝置與偏移校正方法。
類比至數位轉換器(ADC)廣泛應用於通訊系統、電子儀器以及各種電腦系統中。因為製程變異,ADC的輸出訊號可能會包含偏移誤差,例如當0V的訊號輸入ADC時,ADC的輸出訊號卻對應於非0V。在不同的ADC中,偏移的程度可能因使用情況或元件的隨機變異而有所不同,難以於出廠時統一校正,所以ADC通常會具備偏移自動校正功能。不過,當輸入ADC的訊號具有某些特定頻率時,ADC的偏移自動校正功能可能會錯誤地消除ADC的取樣結果。
本揭示文件提供一種類比至數位轉換裝置,其包含N級第一類比至數位轉換器(ADC)、第二ADC、第一校正電路、資料恢復電路與輸出電路。N級第一ADC具有第一取樣頻率,用於以時間交錯方式轉換輸入訊號為多級第一量化輸出,其中N為大於或等於2之正整數。第二ADC具有第二取樣頻率,用於轉換輸入訊號為第二量化輸出。第一取樣頻率為第二取樣頻率的(N+1)/N倍。第一校正電路用於校正多級第一量化輸出與第二量化輸出的偏移,以分別產生多級第三量化輸出與第四量化輸出。資料恢復電路耦接於第一校正電路,用於以第二取樣頻率輸出多級第三量化輸出的其中之一作為第五量化輸出,且用於將第四量化輸出減去第五量化輸出以產生多個輸出資料。輸出電路用於依據多級第三量化輸出與多個輸出資料產生輸出訊號。
本揭示文件提供一種偏移校正方法,其適用於類比至數位轉換裝置。類比至數位轉換裝置包含N級第一ADC與第二ADC。偏移校正方法包含以下流程:以時間交錯方式,利用N級第一ADC依據第一取樣頻率轉換輸入訊號為多級第一量化輸出,其中N為大於或等於2之正整數;利用第二ADC依據第二取樣頻率轉換輸入訊號為第二量化輸出,第一取樣頻率為第二取樣頻率的(N+1)/N倍;校正多級第一量化輸出與第二量化輸出的偏移,以分別產生多級第三量化輸出與第四量化輸出;以第二取樣頻率輸出多級第三量化輸出的其中之一作為第五量化輸出;將第四量化輸出減去第五量化輸出以產生多個輸出資料;以及依據多級第三量化輸出與多個輸出資料產生輸出訊號。
上述的類比至數位轉換裝置與偏移校正方法在輸入訊號之頻率等於第一ADC的取樣頻率的整數倍時,可以產生正確的輸出訊號,而不會遺失取樣結果。
以下將配合相關圖式來說明本揭示文件的實施例。在圖式中,相同的標號表示相同或類似的元件或方法流程。
第1圖為依據本揭示文件一實施例的類比至數位轉換裝置100簡化後的功能方塊圖。第2圖為第1圖中的多個時脈訊號在一些實施例中的波形示意圖。請同時參考第1圖與第2圖,類比至數位轉換裝置100包含多級第一類比至數位轉換器(ADC)110 0~110 3、第二ADC 120、第一校正電路130、資料恢復電路140以及輸出電路150。第一ADC 110 0~110 3用於分別依據多個第一時脈訊號CLKA 0~CLKA 3取樣輸入訊號SIN,以分別產生多級第一量化輸出QA 0~QA 3。在一些實施例中,類比至數位轉換裝置100還可進一步包含時間歪斜(time-skew)校正電路及/或增益校正電路,為簡潔起見,這些電路未繪示於第1圖中。
如第2圖所示,第一時脈訊號CLKA 0~CLKA 3為時間交錯(time-interleaved)的訊號。第一時脈訊號CLKA 0~CLKA 3中相鄰兩者之間具有一時間間隔,使得第一ADC 110 0~110 3會在不同的時間取樣輸入訊號SIN與執行類比至數位轉換。舉例來說,依據第一時脈訊號CLKA 0,第一ADC 110 0可以在取樣時間TM1取樣。依據第一時脈訊號CLKA 1,第一ADC 110 1可以在取樣時間TM2取樣。第一ADC 110 0~110 3用於交錯地取樣輸入訊號SIN,使得類比至數位轉換裝置100在一實施例中操作為時間交錯式類比至數位轉換器。在一實施例中,取樣時間TM1和取樣時間TM2的差異為類比至數位轉換裝置100的一個系統取樣周期TS,而系統取樣周期TS的倒數為類比至數位轉換裝置100的系統取樣頻率fs,亦即TS=1/fs。
第二ADC 120用於依據第二時脈訊號CLKB取樣輸入訊號SIN,以產生第二量化輸出QB。第一時脈訊號CLKA 0~CLKA 3的頻率高於第二時脈訊號CLKB的頻率,使得第一ADC 110 0~110 3的第一取樣頻率高於第二ADC 120的第二取樣頻率。第二ADC 120有助於提升第一ADC 110 0~110 3的取樣結果的正確度,詳細內容將於後續段落進一步說明。
在後續段落的實施例中,為了便於說明,第一取樣頻率(或第一時脈訊號CLKA 0~CLKA 3的頻率)假設為500MHz,第二取樣頻率(或第二時脈訊號CLKB的頻率)假設為400MHz。然而,本揭示文件的第一ADC 110 0~110 3的數量、第一取樣頻率(或第一時脈訊號CLKA 0~CLKA 3的頻率)與第二取樣頻率(或第二時脈訊號CLKB的頻率)並不限於前文與後續段落中的示例性實施例。在一些實施例中,當類比至數位轉換裝置100包含N級的第一ADC,第一取樣頻率(或第一時脈訊號CLKA 0~CLKA 3的頻率)為第二取樣頻率(或第二時脈訊號CLKB的頻率)的(N+1)/N倍,其中N為大於或等於2之正整數。換言之,第一取樣頻率為fs/N,第二取樣頻率為fs/(N+1)。
第一校正電路130耦接於第一ADC 110 0~110 3、第二ADC 120、資料恢復電路140與輸出電路150。第一校正電路130用於校正第一量化輸出QA 0~QA 3的偏移(offset)以產生多級第三量化輸出QC 0~QC 3,且用於校正第二量化輸出QB的偏移以產生第四量化輸出QD。第三量化輸出QC 0~QC 3會傳送至資料恢復電路140與輸出電路150。第四量化輸出QD會傳送至資料恢復電路140。
詳細而言,第一校正電路130包含多個第一子校正電路132 0~132 3與第二子校正電路134,其中第一子校正電路132 0~132 3分別耦接於第一ADC 110 0~110 3,第二子校正電路134耦接於第二ADC 120。第一子校正電路132 0~132 3具有相似的運作,為簡潔起見,以下僅以第一子校正電路132 0為例進行說明。第一子校正電路132 0用於平均第一量化輸出QA 0,以得到第一量化輸出QA 0的偏移校正量。接著,第一子校正電路132 0會將第一量化輸出QA 0減去其偏移校正量以產生第三量化輸出QC 0。另外,第二子校正電路134用於平均第二量化輸出QB,以得到第二量化輸出QB的偏移校正量。接著,第二子校正電路134會將第二量化輸出QB減去其偏移校正量以產生第四量化輸出QD。
在某些情況下,第一校正電路130可能會錯誤地校正第一量化輸出QA 0~QA 3。請參考第3圖,第3圖為根據本揭示文件一實施例的輸入訊號SIN的訊號成分的示意圖。輸入訊號SIN包含頻率為500MHz的目標訊號310,其中類比至數位轉換裝置100理想上用於依據目標訊號310產生數位的輸出訊號SOUT。在第3圖中,取樣時間TP1~TP21相鄰兩者之間的間隔為一個系統取樣周期TS。
當目標訊號310的頻率和第一ADC 110 0~110 3的第一取樣頻率相同(例如皆為500MHz),或是目標訊號310的頻率為第一取樣頻率的正整數倍時(例如,當第一ADC具有N級時,目標訊號310的頻率為fs×i/N,其中i為正整數),第一ADC 110 0~110 3會各自對目標訊號310連續取樣到相同的數值。在這種情況下,由於第一校正電路130是透過平均運算來取得偏移校正量,每個偏移校正量會相同於其所對應的第一量化輸出而非等於真正的偏移量,使得第一校正電路130錯誤地校正第一量化輸出QA 0~QA 3
例如,如第3圖所示,當第一ADC 110 0取樣目標訊號310時,目標訊號310皆大約為0.1V,使得第一量化輸出QA 0會維持對應於0.1V。據此,第一校正電路130會計算出第一量化輸出QA 0的偏移校正量對應於0.1V,使得第三量化輸出QC 0(亦即校正後的第一量化輸出QA 0)對應於0V。
又例如,當第一ADC 110 1取樣時,目標訊號310皆大約為0.9V,使得第一量化輸出QA 1會維持對應於0.9V。據此,第一校正電路130會計算出第一量化輸出QA 1的偏移校正量對應於0.9V,使得第三量化輸出QC 1(亦即校正後的第一量化輸出QA 1)對應於0V。
資料恢復電路140可以利用第二ADC 120的第四量化輸出QD恢復(或作為)被錯誤校正的第一量化輸出QA 0~QA 3,以產生輸出資料DO0~DO3。輸出電路150用於依據第三量化輸出QC 0~QC 3與輸出資料DO0~DO3產生數位的輸出訊號SOUT。在一實施例中,輸出電路150用於將第三量化輸出QC 0~QC 3分別加上輸出資料DO0~DO3。例如,第三量化輸出QC 0和輸出資料DO0的組合對應於第一ADC 110 0的取樣結果,第三量化輸出QC 1和輸出資料DO1的組合對應於第一ADC 110 1的取樣結果,依此類推。輸出電路150可以接著執行資料組合操作,以產生具有系統取樣頻率fs的輸出訊號SOUT。在一些實施例中,輸出電路150可由多工器電路實現,但本揭示文件不以此為限。
以下說明第四量化輸出QD可用於恢復第一量化輸出QA 0~QA 3的原理。藉由將第一取樣頻率設為第二ADC 120的第二取樣頻率的(N+1)/N倍,可使得第二ADC 120依序與第一ADC 110 0~110 3實質上在相同的時間取樣,進而使得第二ADC 120獲得第一ADC 110 0~110 3的取樣結果。例如,如第3圖所示,第一ADC 110 0和第二ADC 120會在取樣時間TP1同時取樣0.1V的目標訊號310,所以取樣時間TP1的第四量化輸出QD可用於恢復(或作為)取樣時間TP1的第一量化輸出QA 0;第一ADC 110 1和第二ADC 120會在取樣時間TP6同時取樣0.9V的目標訊號310,所以取樣時間TP6的第四量化輸出QD可用於恢復(或作為)取樣時間TP6的第一量化輸出QA1,依此類推。在一些第一ADC具有N級的實施例中,在第二ADC 120的連續兩次取樣中,第二ADC 120會先與N級第一ADC中的第K-1級第一ADC實質上同時取樣,再與第K級第一ADC實質上同時取樣,其中K為小於或等於N的正整數。
在一些實施例中,輸入訊號SIN還包含與目標訊號310不同頻率的其他串擾(crosstalk)訊號(例如串擾訊號320)。一般而言,這些串擾訊號為交流訊號,所以串擾訊號對第四量化輸出QD造成的影響可透過串聯平均濾波器來消除,例如第5圖中的第一平均濾波器5300~5303與第二平均濾波器5400~5403。例如,取樣時間TP1的第四量化輸出QD可先通過平均濾波器處理,接著才被用於恢復第一量化輸出QA0。又例如,取樣時間TP6的第四量化輸出QD可先通過另一平均濾波器處理,接著才被用於恢復第一量化輸出QA1。不過,當串擾訊號320的頻率為100MHz時(亦即當第一ADC具有N級,且串擾訊號320的頻率為fs×j/[N×(N+1)]時,其中j為正整數),串擾訊號320對於第四量化輸出QD的影響在某種程度上近似於直流訊號造成的影響,因而無法透過平均濾波器將串擾訊號320的成分自第四量化輸出QD中去除。
例如,如第3圖所示,當第二ADC 120在取樣時間TP1和取樣時間TP21取樣以恢復第一量化輸出QA0 時,串擾訊號320皆為約0.3V。因此,即使將這兩筆第四量化輸出QD取平均,串擾訊號320的成分仍會完整地保留而沒有被去除。
資料恢復電路140可用於解決上述問題。資料恢復電路140包含選擇電路142和處理電路144。資料恢復電路140用於(例如藉由選擇電路142)以第二取樣頻率輸出第三量化輸出QC0~QC3中的對應一者作為第五量化輸出QE。因此,第五量化輸出QE可理解為以第二取樣頻率對輸入訊號SIN取樣而得的量化輸出,且包含關於串擾訊號320(例如100MHz)的成分但不包含關於目標訊號310(例如500MHz)的成分,因關於目標訊號310的成分已被第一校正電路130去除。資料恢復電路140還用於將第四量化輸出QD減去第五量化輸出QE,以去除第四量化輸出QD中關於串擾訊號320(例如100MHz)的成分且保留關於目標訊號310(例如500MHz)的成分,進而產生多個輸出資料DO0~DO3。在一些實施例中,輸出資料DO0~DO3分別對應於第一ADC 1100~1103這四個通道對於目標訊號310(例如500MHz)的取樣結果。
以下將配合第4圖和第5圖進一步說明選擇電路142和處理電路144的運作。請參考第4圖,第4圖為依據本揭示文件一實施例的選擇電路142的運作示意圖。如前所述,取樣時間TP1~TP21相鄰兩者之間的間隔為一個系統取樣周期TS。選擇電路142用於接收第三量化輸出QC0~QC3,且用於每4個系統取樣周期TS(亦即當第一 ADC具有N級時,每N個系統取樣周期TS)輸出第三量化輸出QC0~QC3的其中之一作為第五量化輸出QE。如第4圖所示,選擇電路142會依次輸出取樣時間TP1的第三量化輸出QC0、取樣時間TP6的第三量化輸出QC1、取樣時間TP11的第三量化輸出QC2以及取樣時間TP16的第三量化輸出QC3
換言之,選擇電路142當前輸出的第三量化輸出的取樣時間與選擇電路142前一次輸出的第三量化輸出的取樣時間間隔5個系統取樣周期TS(亦即當第一ADC具有N級時,間隔N+1個系統取樣周期TS)。例如,如第4圖所示,在形成第五量化輸出QE的多個第三量化輸出中,第三量化輸出QC1(取樣時間TP6)和前一個第三量化輸出QC0(取樣時間TP1)相差5個系統取樣周期TS。
在一實施例中,選擇電路142可以包含栓鎖器電路或隨機存取記憶體,以儲存每4個系統取樣周期TS中的4個第三量化輸出QC0~QC3。選擇電路142還可以包含多工器,用於輸出這4個第三量化輸出QC0~QC3中對應的一者。
請再參考第1圖,在一些實施例中,資料恢復電路140還包含第二校正電路146。第二校正電路146耦接於選擇電路142,且用於校正選擇電路142輸出的第三量化輸出的偏移,以產生第五量化輸出QE。第二校正電路146的校正原理相似於前述的第一子校正電路1320~1323或第二子校正電路134,為簡潔起見,在此不重複贅述。
在一些實施例中,輸入訊號SIN包含具有第二取樣頻率的串擾訊號(例如400MHz的串擾訊號,未繪示於第3圖)。由第4圖可知,選擇電路142的輸出可理解為以第二取樣頻率對輸入訊號SIN取樣而得的量化輸出,這使得第二取樣頻率的串擾訊號會在選擇電路142的輸出中造成固定數值的直流成分。因此,第二校正電路146可用於透過平均運算,自選擇電路142的輸出中消除關於第二取樣頻率的串擾訊號的成分。在一些實施例中,若輸入訊號SIN未包含第二取樣頻率的串擾訊號,第二校正電路146可以省略。
接著請參考第5圖,第5圖為依據本揭示文件一實施例的處理電路144簡化後的功能方塊圖。處理電路144包含第一解多工器510、第二解多工器520、多個第一平均濾波器530 0~530 3、多個第二平均濾波器530 0~530 3以及多個第一運算電路550 0~550 3
第一解多工器510用於接收第五量化輸出QE,並用於將第五量化輸出QE中的資料依據取樣時間依序分配至第一解多工器510的多個輸出端X0~X3。例如,第一解多工器510可使用輸出端X0~X3分別輸出第4圖中取樣時間TP1的第三量化輸出QC 0、取樣時間TP6的第三量化輸出QC 1、取樣時間TP11的第三量化輸出QC 2以及取樣時間TP16的第三量化輸出QC 3,依此類推。
第一平均濾波器530 0~530 3分別耦接於輸出端X0~X3,且用於分別平均輸出端X0~X3的輸出訊號,以產生多個第一資料DA0~DA3。第一平均濾波器530 0~530 3用於自輸出端X0~X3的輸出訊號中消除前文中未提及的其他頻率的串擾訊號之資訊。
第二解多工器520用於接收第四量化輸出QD,並用於將第四量化輸出QE中的資料依據取樣時間依序分配至第二解多工器520的多個輸出端Y0~Y3。例如,請同時參考第3圖和第5圖,第二解多工器520可使用輸出端Y0~Y3分別輸出取樣時間TP1、TP6、TP11和TP16的第四量化輸出QD,依此類推。
第二平均濾波器540 0~540 3分別耦接於輸出端Y0~Y3,且用於分別平均輸出端Y0~Y3的輸出訊號,以產生多個第二資料DB0~DB3。第二平均濾波器540 0~540 3用於自輸出端Y0~Y3的輸出訊號消除前文中未提及的其他頻率的串擾訊號之資訊。
由上述可知,第一資料DA0~DA3對應的多個取樣時間(例如取樣時間TP1、TP6、TP11和TP16)分別實質上相同於第二資料DB0~DB3對應的多個取樣時間。在一些實施例中,第一平均濾波器530 0~530 3和第二平均濾波器540 0~540 3可以由移動平均濾波器來實現。在一些實施例中,若輸入訊號SIN未包含前述其他頻率的串擾訊號,第一平均濾波器530 0~530 3和第二平均濾波器540 0~540 3可以省略,第一解多工器510的輸出端X0~X3可直接輸出第一資料DA0~DA3,第二解多工器520的輸出端Y0~Y3可直接輸出第二資料DB0~DB3。
總而言之,第一資料DA0~DA3包含的資訊對應於串擾訊號320。第二資料DB0~DB3包含的資訊對應於目標訊號310與串擾訊號320。目標訊號310的頻率為500MHz(或是fs×i/N),串擾訊號320的頻率為100MHz(或是fs×j/[N×(N+1)])。
第一運算電路550 0~550 3用於將第二資料DB0~DB3分別減去第一資料DA0~DA3,以分別產生輸出資料DO0~DO3。因此,輸出資料DO0~DO3中的資訊會僅對應於目標訊號310。
第6圖為依據本揭示文件一實施例的第一子校正電路132 0簡化後的功能方塊圖。第一子校正電路132 0包含第三平均濾波器610和第二運算電路620。第三平均濾波器610用於平均第一量化輸出QA 0。第二運算電路620用於將第一量化輸出QA 0減去第三平均濾波器610的輸出(亦即平均後的第一量化輸出QA 0,或是第一量化輸出QA 0的偏移校正量),以產生第三量化輸出QC 0。在本實施例中,其他的第一子校正電路132 1~132 3與第二子校正電路134的元件、連接關係以及運作,皆適用於上述關於第6圖的第一子校正電路132 0的描述,為簡潔起見,在此不重複贅述。
綜上所述,在偏移校正的過程中,類比至數位轉換裝置100可以保證產生正確的輸出訊號SOUT,而不會在輸入訊號SIN之頻率等於第一ADC 110 0~110 3的第一取樣頻率的整數倍時遺失取樣結果。值得一提的是,類比至數位轉換裝置100也適用於目標訊號310的頻率非第一取樣頻率的整數倍的情況。在這種情況下,第一校正電路130不會錯誤地校正第一量化輸出QA 0~QA 3,使得第四量化輸出QD和第五量化輸出QE實質上為亂數,其數值會被第5圖的第一平均濾波器530 0~530 3和第二平均濾波器540 0~540 3消除。因此,第5圖的第一資料DA0~DA3和第二資料DB0~DB3可以皆對應於0V,使得輸出資料DO0~DO3對應於0V而不影響輸出訊號SOUT,輸出電路150相當於僅使用第三量化輸出QC 0~QC 3產生正確的輸出訊號SOUT。
第7圖為依據本揭示文件一實施例的偏移校正方法700的流程圖。前述多個實施例中的類比至數位轉換裝置100可用於執行偏移校正方法700。應理解的是,在此描述的任何方法可包含相較於流程圖所示較多或較少的步驟,且方法中的步驟可以任何合適的順序執行。
在步驟S710中,第一ADC 110 0~110 3依據第一取樣頻率,以時間交錯方式將輸入訊號SIN轉換為第一量化輸出QA 0~QA 3
在步驟S720中,第二ADC依據第二取樣頻率,將輸入訊號SIN轉換為第二量化輸出QB,其中第一取樣頻率為第二取樣頻率的(N+1)/N倍。
在步驟S730中,第一校正電路130校正第一量化輸出QA 0~QA 3的偏移以產生第三量化輸出QC 0~QC 3,且校正第二量化輸出QB的偏移,以產生第四量化輸出QD。
在步驟S740中,資料恢復電路140以第二取樣頻率輸出第三量化輸出QC 0~QC 3的其中之一作為第五量化輸出QE。
在步驟S750中,資料恢復電路140將第四量化輸出QD減去第五量化輸出QE以產生輸出資料DO0~DO3。
在步驟S760中,輸出電路150依據第三量化輸出QC 0~QC 3與輸出資料DO0~DO3產生輸出訊號SOUT。
在說明書及申請專利範圍中使用了某些詞彙來指稱特定的元件。然而,所屬技術領域中具有通常知識者應可理解,同樣的元件可能會用不同的名詞來稱呼。說明書及申請專利範圍並不以名稱的差異做為區分元件的方式,而是以元件在功能上的差異來做為區分的基準。在說明書及申請專利範圍所提及的「包含」為開放式的用語,故應解釋成「包含但不限定於」。另外,「耦接」在此包含任何直接及間接的連接手段。因此,若文中描述第一元件耦接於第二元件,則代表第一元件可通過電性連接或無線傳輸、光學傳輸等信號連接方式而直接地連接於第二元件,或者通過其他元件或連接手段間接地電性或信號連接至該第二元件。
在此所使用的「及/或」的描述方式,包含所列舉的其中之一或多個項目的任意組合。另外,除非說明書中特別指明,否則任何單數格的用語都同時包含複數格的涵義。
以上僅為本揭示文件的較佳實施例,在不脫離本揭示文件的範圍或精神的情況下,可以對本揭示文件的結構進行各種修飾和均等變化。綜上所述,凡在以下請求項的範圍內對於本揭示文件所做的修飾以及均等變化,皆為本揭示文件所涵蓋的範圍。
100:類比至數位轉換裝置 110 0~110 3:第一類比至數位轉換器 120:第二類比至數位轉換器 130:第一校正電路 132 0~132 3:第一子校正電路 134:第二子校正電路 140:資料恢復電路 142:選擇電路 144:處理電路 146:第二校正電路 150:輸出電路 CLKA 0~CLKA 3:第一時脈訊號 CLKB:第二時脈訊號 DO0~DO3:輸出資料 QA 0~QA 3:第一量化輸出 QB:第二量化輸出 QC 0~QC 3:第三量化輸出 QD:第四量化輸出 QE:第五量化輸出 SIN:輸入訊號 SOUT:輸出訊號 TS:系統取樣周期 fs:系統取樣頻率 TM1,TM2,TP1~TP21:取樣時間 310:目標訊號 320:串擾訊號 510:第一解多工器 520:第二解多工器 530 0~530 3:第一平均濾波器 540 0~540 3:第二平均濾波器 550 0~550 3:第一運算電路 DA0~DA3:第一資料 DB0~DB3:第二資料 X0~X3,Y0~Y3:輸出端 610:第三平均濾波器 620:第二運算電路 700:偏移校正方法 S710~S760:步驟
第1圖為依據本揭示文件一實施例的類比至數位轉換裝置簡化後的功能方塊圖。 第2圖為第1圖中的多個時脈訊號在一些實施例中的波形示意圖。 第3圖為根據本揭示文件一實施例的輸入訊號的訊號成分的示意圖。 第4圖為依據本揭示文件一實施例的選擇電路的運作示意圖。 第5圖為依據本揭示文件一實施例的處理電路簡化後的功能方塊圖。 第6圖為依據本揭示文件一實施例的第一子校正電路簡化後的功能方塊圖。 第7圖為依據本揭示文件一實施例的偏移校正方法的流程圖。
100:類比至數位轉換裝置
1100~1103:第一類比至數位轉換器
120:第二類比至數位轉換器
130:第一校正電路
1320~1323:第一子校正電路
134:第二子校正電路
140:資料恢復電路
142:選擇電路
144:處理電路
146:第二校正電路
150:輸出電路
CLKA0~CLKA3:第一時脈訊號
CLKB:第二時脈訊號
DO0~DO3:輸出資料
QA0~QA3:第一量化輸出
QB:第二量化輸出
QC0~QC3:第三量化輸出
QD:第四量化輸出
QE:第五量化輸出
SIN:輸入訊號
SOUT:輸出訊號

Claims (18)

  1. 一種類比至數位轉換裝置,包含:N級第一類比至數位轉換器(ADC),具有一第一取樣頻率,用於以一時間交錯方式轉換一輸入訊號為多級第一量化輸出,其中N為大於或等於2之正整數;一第二ADC,具有一第二取樣頻率,用於轉換該輸入訊號為一第二量化輸出,其中該第一取樣頻率為該第二取樣頻率的(N+1)/N倍;一第一校正電路,用於校正該多級第一量化輸出與該第二量化輸出的偏移,以分別產生多級第三量化輸出與一第四量化輸出;一資料恢復電路,耦接於該第一校正電路,用於以該第二取樣頻率輸出該多級第三量化輸出的其中之一作為一第五量化輸出,且用於將該第四量化輸出減去該第五量化輸出以產生多個輸出資料;以及一輸出電路,用於依據該多級第三量化輸出與該多個輸出資料產生一輸出訊號。
  2. 如請求項1所述之類比至數位轉換裝置,其中,在該第二ADC的連續兩次取樣中,該第二ADC先與該N級第一ADC中的一第K-1級第一ADC實質上同時取樣,再與該N級第一ADC中的一第K級第一ADC實質上同時取樣,其中K為小於或等於N的正整數。
  3. 如請求項1所述之類比至數位轉換裝置,其中,該類比至數位轉換裝置操作為一時間交錯式類比至數位轉換器且具有一系統取樣周期,其中該資料恢復電路包含:一選擇電路,用於接收該多級第三量化輸出,且用於每N個該系統取樣周期輸出該多級第三量化輸出的該其中之一作為該第五量化輸出,其中該選擇電路當前輸出的該多級第三量化輸出中的一者的取樣時間與該選擇電路前一個輸出的該多級第三量化輸出中的另一者的取樣時間間隔(N+1)個該系統取樣周期。
  4. 如請求項3所述之類比至數位轉換裝置,其中,該資料恢復電路還包含:一第二校正電路,耦接於該選擇電路,用於校正該多級第三量化輸出的該其中之一的偏移,以產生該第五量化輸出。
  5. 如請求項3所述之類比至數位轉換裝置,其中,該資料恢復電路還包含:一第二校正電路,耦接於該選擇電路,用於自該多級第三量化輸出的該其中之一中消除關連於一串擾訊號的成分,其中該串擾訊號的頻率實質相同於該第二取樣頻率。
  6. 如請求項1所述之類比至數位轉換裝置,其中,該資料恢復電路包含一處理電路,該處理電路包含:一第一解多工器,用於將該第五量化輸出分配為多個第一資料;一第二解多工器,用於將該第四量化輸出分配為多個第二資料;以及多個第一運算電路,用於將該多個第二資料分別減去該多個第一資料,以產生該多個輸出資料。
  7. 如請求項6所述之類比至數位轉換裝置,其中,該多個第一資料對應的多個取樣時間分別實質上相同於該多個第二資料對應的多個取樣時間。
  8. 如請求項6所述之類比至數位轉換裝置,其中,該處理電路還包含:多個第一平均濾波器,用於分別平均該第一解多工器的多個輸出以產生該多個第一資料;以及多個第二平均濾波器,用於分別平均該第二解多工器的多個輸出以產生該多個第二資料。
  9. 如請求項1所述之類比至數位轉換裝置,其中,該第一校正電路包含:多個第一子校正電路,分別耦接於該N級第一ADC,其中每個第一子校正電路包含: 一第三平均濾波器,用於平均該多級第一量化輸出的對應一者;以及一第二運算電路,用於將該多級第一量化輸出的該對應一者減去該第三平均濾波器的輸出,以產生該多級第三量化輸出的對應一者;以及一第二子校正電路,耦接於該第二ADC,且包含:一第四平均濾波器,用於平均該第二量化輸出;以及一第三運算電路,用於將該第二量化輸出減去該第四平均濾波器的輸出,以產生該第四量化輸出。
  10. 一種偏移校正方法,適用於一類比至數位轉換裝置,其中該類比至數位轉換裝置包含N級第一類比至數位轉換器(ADC)與一第二ADC,該方法包含:以一時間交錯方式,利用該N級第一ADC依據一第一取樣頻率轉換一輸入訊號為多級第一量化輸出,其中N為大於或等於2之正整數;利用該第二ADC依據一第二取樣頻率轉換該輸入訊號為一第二量化輸出,其中該第一取樣頻率為該第二取樣頻率的(N+1)/N倍;校正該多級第一量化輸出與該第二量化輸出的偏移,以分別產生多級第三量化輸出與一第四量化輸出;以該第二取樣頻率輸出該多級第三量化輸出的其中之一作為一第五量化輸出;將該第四量化輸出減去該第五量化輸出以產生多個輸出 資料;以及依據該多級第三量化輸出與該多個輸出資料產生一輸出訊號。
  11. 如請求項10所述之偏移校正方法,其中,在該第二ADC的連續兩次取樣中,該第二ADC先與該N級第一ADC中的一第K-1級第一ADC實質上同時取樣,再與該N級第一ADC中的一第K級第一ADC實質上同時取樣,其中K為小於或等於N的正整數。
  12. 如請求項10所述之偏移校正方法,其中,該類比至數位轉換裝置操作為一時間交錯式類比至數位轉換器且具有一系統取樣周期,其中以該第二取樣頻率輸出該多級第三量化輸出的該其中之一作為該第五量化輸出包含:每N個該系統取樣周期輸出該多級第三量化輸出的該其中之一作為該第五量化輸出,其中當前輸出的該多級第三量化輸出中的一者的取樣時間與前一個輸出的該多級第三量化輸出中的另一者的取樣時間間隔(N+1)個該系統取樣周期。
  13. 如請求項12所述之偏移校正方法,其中,每N個該系統取樣周期輸出該多級第三量化輸出的該其中之一作為該第五量化輸出包含: 校正該多級第三量化輸出的該其中之一的偏移,以產生該第五量化輸出。
  14. 如請求項12所述之偏移校正方法,其中,每N個該系統取樣周期輸出該多級第三量化輸出的該其中之一作為該第五量化輸出包含:自該多級第三量化輸出的該其中之一中消除關連於一串擾訊號的成分,其中該串擾訊號的頻率實質相同於該第二取樣頻率。
  15. 如請求項10所述之偏移校正方法,其中,將該第四量化輸出減去該第五量化輸出以產生該多個輸出資料包含:將該第五量化輸出分配為多個第一資料;將該第四量化輸出分配為多個第二資料;以及將該多個第二資料分別減去該多個第一資料,以得到該多個輸出資料。
  16. 如請求項15所述之偏移校正方法,其中,該多個第一資料對應的多個取樣時間分別實質上相同於該多個第二資料對應的多個取樣時間。
  17. 如請求項15所述之偏移校正方法,其中,分配該第五量化輸出所形成的多個訊號經過分別平均後形 成該多個第一資料,分配該第四量化輸出所形成的多個訊號經過分別平均後形成該多個第二資料。
  18. 如請求項10所述之偏移校正方法,其中,校正該多級第一量化輸出與該第二量化輸出的偏移包含:分別平均該多級第一量化輸出,以產生平均後的多級第一量化輸出;將該多級第一量化輸出分別減去該平均後的多級第一量化輸出,以產生該多級第三量化輸出;平均該第二量化輸出,以產生一平均後的第二量化輸出;以及將該第二量化輸出減去該平均後的第二量化輸出,以產生該第四量化輸出。
TW111112652A 2022-03-31 2022-03-31 類比至數位轉換裝置與偏移校正方法 TWI813240B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
TW111112652A TWI813240B (zh) 2022-03-31 2022-03-31 類比至數位轉換裝置與偏移校正方法
JP2022082450A JP2023152240A (ja) 2022-03-31 2022-05-19 アナログ-デジタル変換装置及びオフセット補正方法
US17/817,636 US11973511B2 (en) 2022-03-31 2022-08-04 Analog-to-digital converting device and method of offset calibration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW111112652A TWI813240B (zh) 2022-03-31 2022-03-31 類比至數位轉換裝置與偏移校正方法

Publications (2)

Publication Number Publication Date
TWI813240B true TWI813240B (zh) 2023-08-21
TW202341666A TW202341666A (zh) 2023-10-16

Family

ID=88192494

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111112652A TWI813240B (zh) 2022-03-31 2022-03-31 類比至數位轉換裝置與偏移校正方法

Country Status (3)

Country Link
US (1) US11973511B2 (zh)
JP (1) JP2023152240A (zh)
TW (1) TWI813240B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190379387A1 (en) * 2018-06-08 2019-12-12 Nxp B.V. Apparatus for determining calibration values of an adc
US10530379B1 (en) * 2019-02-22 2020-01-07 Xilinx, Inc. Circuit to calibrate chopping switch mismatch in time interleaved analog-to-digital converter
US11038516B1 (en) * 2020-05-29 2021-06-15 Intel Corporation Apparatus and method for analog-to-digital conversion
US20210199468A1 (en) * 2019-12-26 2021-07-01 Industrial Technology Research Institute Encoder and signal processing method using the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE330367T1 (de) * 2002-09-17 2006-07-15 Siemens Mobile Comm Spa Offsetspannungskompensationsverfahren für parallele zeitverschachtelte analog- digitalwandler sowie schaltung dafür
WO2015120315A1 (en) * 2014-02-06 2015-08-13 Massachusetts Institute Of Technology Reducing timing-skew errors in time-interleaved adcs
JP6612898B2 (ja) * 2015-05-29 2019-11-27 テレフオンアクチーボラゲット エルエム エリクソン(パブル) アナログ−デジタル変換器システム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190379387A1 (en) * 2018-06-08 2019-12-12 Nxp B.V. Apparatus for determining calibration values of an adc
US10530379B1 (en) * 2019-02-22 2020-01-07 Xilinx, Inc. Circuit to calibrate chopping switch mismatch in time interleaved analog-to-digital converter
US20210199468A1 (en) * 2019-12-26 2021-07-01 Industrial Technology Research Institute Encoder and signal processing method using the same
US11038516B1 (en) * 2020-05-29 2021-06-15 Intel Corporation Apparatus and method for analog-to-digital conversion

Also Published As

Publication number Publication date
US11973511B2 (en) 2024-04-30
US20230318612A1 (en) 2023-10-05
TW202341666A (zh) 2023-10-16
JP2023152240A (ja) 2023-10-16

Similar Documents

Publication Publication Date Title
US7482956B2 (en) Calibration apparatus for mismatches of time-interleaved analog-to-digital converter
US9685968B2 (en) A/D converter circuit and semiconductor integrated circuit
US7515084B1 (en) Analog to digital converter using asynchronous pulse technology
US10312927B1 (en) Calibration for time-interleaved analog-to-digital converters and signal generators therefor
KR101933575B1 (ko) 파이프라인형 아날로그 디지털 변환기에서 지연 시간 감소를 위해 수정된 동적 요소 정합
CN106685424A (zh) 用于模数转换器的微处理器辅助校准
US9685969B1 (en) Time-interleaved high-speed digital-to-analog converter (DAC) architecture with spur calibration
US9685970B1 (en) Analog-to-digital converting system and converting method
US10218373B1 (en) Analog-to-digital converter calibration system
KR20140015130A (ko) 아날로그-디지털 가속 변환 방법 및 시스템
KR20020079862A (ko) 파이프라인 아날로그 디지털 변환기를 위한 디지털 논리교정 회로
JP2011102798A (ja) 試験装置および電子デバイス
WO2017113305A1 (zh) 一种校正装置和方法
GB2543786A (en) Analog assisted multichannel digital post-correction for time-interleaved analog-to-digital converters
TWI813240B (zh) 類比至數位轉換裝置與偏移校正方法
CN101093997B (zh) Ad/da变换兼用装置
CN107359877B (zh) 超宽带信号的时间交织采样adc全数字盲补偿方法
CN116938239A (zh) 模拟至数字转换装置与偏移校正方法
CN114785343A (zh) 相移采样模块和确定滤波系数的方法
Nam et al. A 12.8-Gbaud ADC-based NRZ/PAM4 receiver with embedded tunable IIR equalization filter achieving 2.43-pJ/b in 65nm CMOS
EP4300829A1 (en) Signal shaping for compensation of metastable errors
US11177822B2 (en) System and method for background calibration of time interleaved ADC
Wei et al. Calibration of static nonlinearity mismatch errors in TIADC based on periodic time-varying adaptive method
TW201933785A (zh) 類比數位轉換器校準系統
Pan et al. An Adjustable Calibration Technique for Frequency Response Mismatches in TI-ADC System