以下對本發明之實施態樣詳細地進行說明,但本發明不受以下實施態樣之任何限定,可於本發明之目的之範圍內適當地加以變更而實施。 又,於本說明書中,「~」只要未特別說明,則表示以上至以下。 <聚矽烷化合物之製造方法> 第1態樣之聚矽烷化合物之製造方法包括:於硝醯基化合物之存在下使鹵矽烷化合物進行反應。 於聚矽烷化合物之製造中,通常可產生矽烷基自由基陽離子、及矽烷基自由基陰離子(Electronic Structure of Radical Anions and Cations of Polysilanes with Structural Defects Seki, Shu; Yoshida, Yoichi; Tagawa, Seiichi; Asai, Keisuke, Macromolecules, 1999, 32 (4), pp1080 - 1086)。 矽烷基自由基陰離子可藉由陰離子聚合而供於聚矽烷化合物之製造,另一方面,有空氣中之水(H2
O)或氧氣(O2
)選擇性地與矽烷基自由基陽離子進行反應而生成矽氧烷鍵(Si-O)、矽烷醇基(Si-OH)等副反應物之情形。本發明者等人發現:若使用含有包含此種矽氧烷鍵、矽烷醇基等副反應物之聚矽烷化合物之組合物而形成膜,則上述矽氧烷鍵、矽烷醇基等會導致微裂。 又,認為矽烷基自由基陽離子較矽烷基自由基陰離子容易發生芳基、烷基等取代基(尤其是芳基)之脫離,從而導致釋氣。 相對於此,推定於第1態樣之聚矽烷化合物之製造方法中,硝醯基化合物使矽烷基自由基陽離子進行電荷自旋而使矽烷基自由基陽離子減少,藉此可選擇性地促進矽烷基自由基陰離子之陰離子聚合。推定藉此可抑制導致微裂之矽氧烷鍵、矽烷醇基等副反應物之生成,又,亦可抑制釋氣之產生。 (硝醯基化合物) 作為上述硝醯基化合物,只要為能夠以氮氧自由基之形式穩定地存在之化合物,則無特別限定,較佳為包含下述通式(A)所表示之結構之化合物。 [化2](式(A)中,Ra1
、Ra2
、Ra3
及Ra4
分別獨立地為氫原子或有機基。Ra1
與Ra2
可相互鍵結而形成環。又,Ra3
與Ra4
可相互鍵結而形成環)。 於式(A)中,作為Ra1
~Ra4
所表示之有機基,可列舉碳原子數1~10之有機基,Ra1
、Ra2
、Ra3
及Ra4
較佳為分別獨立地為烷基或經雜原子取代之烷基。作為烷基,較佳為甲基、乙基、正丙基及異丙基。作為雜原子之較佳例,可列舉鹵素原子、氧原子、硫原子、及氮原子等。 作為硝醯基化合物之較佳之具體例,例如較佳為二-第三丁基氮氧化物、二-1,1-二甲基丙基氮氧化物、二-1,2-二甲基丙基氮氧化物、二-2,2-二甲基丙基氮氧化物,及下述式(A1)、(A2)、或(A3)所表示之化合物,更佳為下述式(A1)、(A2)、或(A3)所表示之化合物。 [化3]式(A1)、(A2)、及(A3)中,Ra5
表示氫原子、碳原子數1~12之烷基、羥基、胺基、羧基、氰基、經雜原子取代之烷基,或經由醚鍵、酯鍵、醯胺鍵或者胺基甲酸酯鍵而鍵結之1價有機基。 Ra6
表示2價或3價有機基。 n1及n2為滿足1≦n1+n2≦2之整數。 n3及n4為滿足1≦n3+n4≦2之整數。 n5及n6為滿足1≦n5+n6≦2之整數。 n7為2或3。 作為式(A1)所表示之化合物之較佳之具體例,可列舉下述化合物。下述式中,Ra7
分別獨立地表示可具有取代基之碳原子數1~20之烷基、可具有取代基之芳香族基、或可具有取代基之脂環式基。 [化4]作為式(A2)所表示之化合物之較佳之具體例,可列舉下述化合物。 [化5]作為式(A3)所表示之化合物之較佳之具體例,可列舉下述化合物。 [化6]作為進而較佳之硝醯基化合物,可列舉:2,2,6,6-四甲基哌啶1-烴氧基自由基(TEMPO)、4-羥基-2,2,6,6-四甲基哌啶1-烴氧基自由基、4-胺基-2,2,6,6-四甲基哌啶1-烴氧基自由基、4-羧基-2,2,6,6-四甲基哌啶1-烴氧基自由基、4-氰基-2,2,6,6-四甲基哌啶1-烴氧基自由基、4-甲基丙烯酸-2,2,6,6-四甲基哌啶1-烴氧基自由基、4-丙烯酸-2,2,6,6-四甲基哌啶1-烴氧基自由基、4-側氧基-2,2,6,6-四甲基哌啶1-烴氧基自由基、3-羧基-2,2,5,5-四甲基吡咯啶1-烴氧基自由基、4-乙醯胺-2,2,6,6-四甲基哌啶1-烴氧基自由基、4-(2-氯乙醯胺)-2,2,6,6-四甲基哌啶1-烴氧基自由基、4-羥基-2,2,6,6-四甲基哌啶苯甲酸1-烴氧酯自由基、4-異硫氰酸基-2,2,6,6-四甲基哌啶1-烴氧基自由基、4-(2-碘乙醯胺)-2,2,6,6-四甲基哌啶1-烴氧基自由基、及4-甲氧基-2,2,6,6-四甲基哌啶1-烴氧基自由基。 硝醯基化合物可單獨使用,亦可將2種以上組合而使用。 相對於鹵矽烷化合物,上述硝醯基化合物之使用量較佳為0.0001~10莫耳倍之範圍,更佳為0.0005~5莫耳倍之範圍,進而較佳為0.0008~1莫耳倍之範圍,尤佳為0.001~0.1莫耳倍之範圍。 (鹵矽烷化合物) 作為上述鹵矽烷化合物,較佳為下述式(1)所表示之化合物。 Xn
SiR4 - n
(1) (式中,n為2~4之整數,n個X分別獨立地為鹵素原子,(4-n)個R分別獨立地為氫原子、有機基或矽烷基)。 作為X所表示之鹵素原子,可列舉氟原子、氯原子、溴原子或碘原子,較佳為氯原子或溴原子,更佳為氯原子。 作為R所表示之有機基,可列舉:烷基[甲基、乙基、丙基、異丙基、丁基及第三丁基等碳原子數1~10之烷基(較佳為碳原子數1~6之烷基,尤其是碳數1~4之烷基等)]、環烷基(環己基等碳原子數5~8之環烷基,尤其是碳原子數5~6之環烷基)、烯基[乙烯基、丙烯基、丁烯基等碳原子數2~10之烯基(較佳為碳原子數2~6之烯基,尤其是碳數2~4之烯基等)]、環烯基[1-環戊烯基、1-環己烯基等碳原子數5~10之環烯基(較佳為碳原子數5~8之環烯基,尤其是碳數5~7之環烯基等)]、芳基(苯基、萘基等碳原子數6~10之芳基、)、芳烷基[苄基、苯乙基等C6-10
芳基-C1-6
烷基(C6-10
芳基-C1-4
烷基等)]、胺基、N-取代胺基(經上述烷基、環烷基、芳基、芳烷基、醯基等取代之N-單或二取代胺基等)等。上述烷基、環烷基、芳基或構成芳烷基之芳基等可具有1個或複數個取代基。作為此種取代基,可列舉上述例示之烷基(尤其是碳原子數1~6之烷基等)等。作為具有此種取代基之有機基,例如可列舉:甲苯基(甲基苯基)、二甲苯基(二甲基苯基)、乙基苯基、甲基萘基等C1-6
烷基-C6-10
芳基(較佳為單、二或三C1-4
烷基-C6-10
芳基,尤其是單或二C1-4
烷基苯基等)等。 矽烷基可列舉經上述烷基、環烷基、烯基、環烯基、芳基、芳烷基及烷氧基等取代之取代矽烷基。 於n為2之情形(二鹵矽烷化合物)時,作為R,較佳為烷基、芳基等烴基。亦可至少1個R為芳基。 先前,於矽烷基自由基陽離子具有直接鍵結於矽原子之烷基、芳基等有機基(尤其是芳基)之情形時,容易發生上述有機基之脫離,從而會導致釋氣。 相對於此,推定於第1態樣之聚矽烷化合物之製造方法中,即便於矽烷基自由基陽離子具有直接鍵結於矽原子之有機基之情形時(R為有機基(尤其是芳基)之情形時),上述硝醯基化合物亦使矽烷基自由基陽離子進行電荷自旋而矽烷基自由基陽離子減少,藉此不易發生有機基之脫離而可抑制釋氣之產生。 作為代表性二鹵矽烷化合物,例如可列舉:二烷基二鹵矽烷(二甲基二氯矽烷等二C1-10
烷基二鹵矽烷,較佳為二C1-6
烷基二鹵矽烷,進而較佳為二C1-4
烷基二鹵矽烷等)、單烷基單芳基二鹵矽烷(甲基苯基二氯矽烷等單C1-10
烷基單C6-12
芳基二鹵矽烷,較佳為單C1-6
烷基單C6-10
芳基二鹵矽烷,進而較佳為單C1-4
烷基單C6-8
芳基二鹵矽烷等)、二芳基二鹵矽烷(二苯基二氯矽烷等二C6-12
芳基二鹵矽烷,較佳為二C6-10
芳基二鹵矽烷,進而較佳為二C6-8
芳基二鹵矽烷等)等。作為二鹵矽烷化合物,較佳為二烷基二鹵矽烷或單烷基單芳基二鹵矽烷。二鹵矽烷化合物可單獨或將兩種以上組合而使用。 於n為3之情形(三鹵矽烷化合物)時,作為R,較佳為烷基、環烷基、可具有取代基之芳基、芳烷基等烴基,尤佳為烷基或芳基,更佳為芳基。 如上所述,於第1態樣之聚矽烷化合物之製造方法中,即便於矽烷基自由基陽離子具有直接鍵結於矽原子之有機基之情形時(R為有機基(尤其是芳基)之情形時),藉由上述硝醯基化合物之作用,亦不易發生有機基之脫離而可抑制釋氣之產生。 作為代表性三鹵矽烷化合物,可列舉:烷基三鹵矽烷(甲基三氯矽烷、丁基三氯矽烷、第三丁基三氯矽烷、己基三氯矽烷等C1-10
烷基三鹵矽烷,較佳為C1-6
烷基三鹵矽烷,進而較佳為C1-4
烷基三鹵矽烷等)、環烷基三鹵矽烷(環己基三鹵矽烷等單C6-10
環烷基三鹵矽烷等)、芳基三鹵矽烷(苯基三氯矽烷、甲苯基三氯矽烷、二甲苯基三氯矽烷等C6-12
芳基三鹵矽烷,較佳為C6-10
芳基三鹵矽烷,進而較佳為C6-8
芳基三鹵矽烷等)等。三鹵矽烷化合物較佳為烷基三鹵矽烷或芳基三鹵矽烷。 三鹵矽烷化合物可單獨或將兩種以上組合而使用。 作為n為4之情形時(四鹵矽烷化合物)之具體例,例如可列舉:四氯矽烷、二溴二氯矽烷、四溴矽烷等。四鹵矽烷化合物可單獨或將2種以上組合而使用。 再者,四鹵矽烷化合物可與單、二或三鹵矽烷化合物組合使用。 又,作為鹵矽烷化合物,亦可為單鹵矽烷化合物。作為代表性單鹵矽烷,例如可列舉:三烷基單鹵矽烷(三甲基氯矽烷等三C1-10
烷基單鹵矽烷,較佳為三C1-6
烷基單鹵矽烷,進而較佳為三C1-4
烷基單鹵矽烷等)、二烷基單芳基單鹵矽烷(二甲基苯基氯矽烷等二C1-10
烷基單C6-12
芳基單鹵矽烷,較佳為二C1-6
烷基單C6-10
芳基單鹵矽烷,進而較佳為二C1-4
烷基單C6-8
芳基單鹵矽烷等)、單烷基二芳基單鹵矽烷(甲基二苯基氯矽烷等單C1-10
烷基二C6-12
芳基單鹵矽烷,較佳為單C1-6
烷基二C6-10
芳基單鹵矽烷,進而較佳為單C1-4
烷基二C6-8
芳基單鹵矽烷等)、三芳基單鹵矽烷(三苯基氯矽烷等三C6-12
芳基單鹵矽烷,較佳為三C6-10
芳基單鹵矽烷,進而較佳為三C6-8
芳基單鹵矽烷等)等。單鹵矽烷化合物可單獨或將兩種以上組合而使用。 該等鹵矽烷化合物可單獨或將2種以上組合而使用。 鹵矽烷化合物較佳為包含選自二鹵矽烷化合物及三鹵矽烷化合物中之至少1種。 再者,於鹵矽烷化合物包含三鹵矽烷化合物及/或四鹵矽烷化合物之情形時,可生成網路狀(網狀或支鏈狀)之聚矽烷化合物。於獲得網路狀之聚矽烷化合物之情形時,作為代表性鹵矽烷(或其組合),可列舉:(a)烷基三鹵矽烷(例如烷基三鹵矽烷單獨、甲基三鹵矽烷與C2-10
烷基三鹵矽烷之組合、C2-10
烷基三鹵矽烷等)、(b)芳基三鹵矽烷(例如芳基三鹵矽烷單獨)、(c)芳基三鹵矽烷與二鹵矽烷(例如單烷基單芳基二鹵矽烷等)之組合等。 於鹵矽烷化合物中,相對於鹵矽烷總體,選自二鹵矽烷化合物及三鹵矽烷化合物中之至少1種之比例(使用比例)可為50莫耳%以上(例如60莫耳%以上),較佳可為70莫耳%以上(例如80莫耳%以上),進而較佳可為90莫耳%以上(例如95莫耳%以上)。 再者,於獲得網路狀之聚矽烷之情形等時,三鹵矽烷化合物之比例(使用比例)可為鹵矽烷化合物總體之30莫耳%以上(例如40莫耳%以上),較佳可為50莫耳%以上(例如60莫耳%以上),進而較佳可為70莫耳%以上(例如75莫耳%以上),尤其可為80莫耳%以上。 又,於將二鹵矽烷化合物與三鹵矽烷化合物組合之情形時,該等之比率可為二鹵矽烷化合物/三鹵矽烷化合物(莫耳比)=99/1~1/99,較佳可為90/10~2/98(例如85/15~2/98),進而較佳可為80/20~3/97(例如70/30~4/96),尤其可為60/40~5/95(例如50/50~7/93),通常亦可為50/50~5/95(例如45/55~7/93,較佳為40/60~10/90,進而較佳為30/70~88/12)。 鹵矽烷化合物較佳為純度儘可能高。例如,對於液體之鹵矽烷化合物,較佳為使用氫化鈣等乾燥劑進行乾燥,並進行蒸餾而使用,對於固體之鹵矽烷化合物,較佳為藉由再結晶法等進行精製而使用。 再者,原料混合物(反應液)中之鹵矽烷化合物之濃度(基質濃度)例如可為0.05~20 mol/l左右,較佳可為0.1~15 mol/l左右,進而較佳可為0.2~5 mol/l左右。 第1態樣之聚矽烷化合物之製造方法可應用包括使鹵矽烷化合物進行反應之下述(a)~(c)等聚矽烷化合物之製造方法。 (a)將鎂作為還原劑而使鹵矽烷化合物進行脫鹵素縮聚之方法(「鎂還原法」,WO98/29476號公報、日本專利特開2003-277507號公報中所記載之方法等) (b)於金屬鈉、金屬鋰、金屬鉀等(較佳為金屬鈉)鹼金屬之存在下使鹵矽烷化合物進行脫鹵素縮聚之方法(「Kipping法」,J. Am. Chem. Soc., 110, 124 (1988)、Macromolecules, 23, 3423 (1990)等) (c)藉由電極還原使鹵矽烷化合物進行脫鹵素縮聚之方法(J. Chem. Soc., Chem. Commun., 1161 (1990)、J. Chem. Soc., Chem. Commun. 897 (1992)等) 第1態樣之聚矽烷化合物之製造方法較佳為於硝醯基化合物與鎂之存在下使上述鹵矽烷化合物進行反應之鎂還原法、或者於硝醯基化合物與金屬鈉、金屬鋰、金屬鉀等(較佳為金屬鈉)鹼金屬之存在下使上述鹵矽烷化合物進行反應之Kipping法,更佳為於硝醯基化合物與鎂之存在下使上述鹵矽烷化合物進行反應之鎂還原法。 作為鎂,可為金屬鎂(鎂單質)之形態、鎂合金之形態,亦可為該等之混合物等(以下亦稱作「鎂成分」)。 鎂合金之種類並無特別限制,可例示慣用之鎂合金,例如包含鋁、鋅、稀土元素(鈧、釔等)等成分之鎂合金。 作為鎂成分之形狀,只要不損及鹵矽烷化合物之反應,則無特別限定,可例示粉粒狀(粉體、粒狀體等)、帶狀體、切割片狀體、塊狀體、棒狀體、板狀體(平板狀等)等,尤佳為粉體、粒狀體、帶狀體、切割片狀體等。鎂(例如粉粒狀之鎂)之平均粒徑例如可為1~10000 μm,較佳可為10~7000 μm,進而較佳可為15~5000 μm(例如20~3000 μm)。 鎂成分及鹼金屬可單獨使用,亦可將2種以上組合而使用。 鎂成分或鹼金屬之使用量係相對於鹵矽烷化合物之鹵素原子以鎂換算或鹼金屬換算計較佳為1~20當量,更佳為1.1~14當量,進而較佳為1.2~10當量,尤佳為1.2~5當量。 又,鎂成分或鹼金屬之使用量係相對於鹵矽烷化合物以莫耳數計且以鎂或鹼金屬計較佳為1~20倍,更佳為1.1~14倍,進而較佳為1.2~10倍,尤佳為1.2~5倍。 第1態樣之聚矽烷化合物之製造方法亦可於硝醯基化合物、及鎂成分或鹼金屬、與進一步之下述通式(Z1)所表示之有機金屬錯合物之存在下使上述鹵矽烷化合物進行反應。 Mp
Lp/q
(Z1) (上述通式(Z1)中,Mp
表示p價金屬陽離子,L表示q價有機配位基,p及q分別獨立地表示1以上之整數)。 作為構成p價金屬陽離子Mp
之金屬原子,可列舉:選自由鐵、銀、鋁、鉍、鈰、鈷、銅、鏑、鉺、銪、鎵、釓、鉿、鈥、銦、銥、鑭、鎦、錳、鉬、釹、鎳、鋨、鈀、鉕、鐠、鉑、錸、銠、釕、釤、鈧、錫、鋱、鈦、銩、釩、鉻、鉭、鐿、金、汞、鎢、釔、鋅及鋯所組成之群中之金屬。 作為p,較佳為1~4之整數,更佳為1~3之整數,進而較佳為2或3。 作為q,較佳為1~4之整數,更佳為1~3之整數,進而較佳為1或2。 作為q價有機配位基L,可列舉:β-二酮配位基、烯烴、共軛酮、腈、胺、羧根基配位基、一氧化碳、膦、亞膦酸酯(phosphinite)、亞膦酸二酯(phosphonite)、亞磷酸酯(phosphite)等有機配位基。q價有機配位基L亦可為螯合配位基。 作為上述有機金屬錯合物,較佳為下述通式(Z2)所表示之有機金屬錯合物。 [化7](上述通式(Z2)中,M表示選自由鐵、銀、鋁、鉍、鈰、鈷、銅、鏑、鉺、銪、鎵、釓、鉿、鈥、銦、銥、鑭、鎦、錳、鉬、釹、鎳、鋨、鈀、鉕、鐠、鉑、錸、銠、釕、釤、鈧、錫、鋱、鈦、銩、釩、鉻、鉭、鐿、金、汞、鎢、釔、鋅及鋯所組成之群中之金屬,Rz1
分別獨立地表示飽和烴基、不飽和烴基、芳香族烴基、芳烷基、烷氧基、芳氧基、芳烷氧基或芳氧烷基,Rz2
表示氫原子、飽和烴基、不飽和烴基、芳香族烴基或上述芳烷基。p表示1以上之整數)。 作為Rz1
及Rz2
所表示之飽和烴基,可列舉:甲基、乙基、丙基、異丙基、丁基、異丁基、第二丁基、第三丁基、戊基、己基、庚基、辛基、壬基、癸基、十一烷基、十二烷基、十四烷基、十六烷基、十八烷基、二十烷基、二十二烷基、2-十二烷基十六烷基、三十烷基、三十二烷基、四十烷基等碳數1~40之直鏈狀或支鏈狀烷基,以及該等經鹵素原子(氟原子、氯原子、溴原子、碘原子)、烷氧基(下文將記載者等)、矽烷基(下文將記載者等)等取代基之1種或2種以上取代而成之烷基,例如氯丙基、3,3,3-三氟丙基、3,3,4,4,5,5,6,6,6-九氟己基、十三氟-1,1,2,2-四氫辛基、十七氟-1,1,2,2-四氫癸基、3-(七氟異丙氧基)丙基、三甲基矽烷基甲基等;環丙基、環丁基、環戊基、環己基、雙環庚基、環辛基、金剛烷基等碳數3~18之單環或二環以上之多環之環狀飽和烴基,以及該等環狀飽和烴基經烷基(上述者等)、芳基(上述者等)等取代基之1種或2種以上取代而成者,例如4-第三丁基環己基、4-苯基環己基等;或具有上述環狀飽和烴基之烷基(上述者等),例如環己基甲基、金剛烷基乙基等。 作為Rz1
及Rz2
所表示之不飽和烴基,可列舉:乙烯基、乙炔基、烯丙基、1-丙烯基、炔丙基、丁烯基、戊烯基、己烯基、辛烯基、癸烯基、十二烷烯基、十八烷烯基等碳數2~18之直鏈狀或支鏈狀烯基、炔基,以及該等不飽和烴基經鹵素原子(上述者等)、烷氧基(下文將記載者等)、矽烷基(下文將記載者等)、芳基(下文將記載者等)之取代基之1種或2種以上取代而成者,例如2-三氟甲基乙烯基、2-三氟甲基乙炔基、3-甲氧基-1-丙烯基、3-甲氧基-1-丙炔基、2-三甲基矽烷基乙烯基、2-三甲基矽烷基乙炔基、2-苯基乙烯基、2-苯基乙炔基等;環丙烯基、環己烯基、環辛烯基等碳數3~18之環狀不飽和烴基;具有上述環狀不飽和烴基之烷基(上述者等),例如環己烯基乙基等。 作為Rz1
及Rz2
所表示之芳香族烴基,可列舉:苯基,及甲苯基、丁基苯基、丁氧基苯基等經烷基、烷氧基、胺基等之1種或2種以上取代而成之取代苯基等。 作為Rz1
及Rz2
所表示之芳烷基,可列舉苄基、苯乙基、甲基苯乙基、丁基苯乙基、苯基丙基、甲氧基苯基丙基等,作為雜芳烷基,可列舉吡啶基甲基、吡啶基乙基等。 作為Rz1
所表示之烷氧基,可列舉甲氧基、乙氧基、丙氧基、丁氧基、己氧基、辛氧基等碳數1~18之烷氧基,作為芳氧基,可列舉苯氧基、及甲苯氧基、丁基苯氧基等經烷基等取代基取代而成之取代苯氧基等。 作為Rz1
所表示之芳烷氧基,可列舉苄氧基、苯乙氧基等,作為芳氧烷基,可列舉苯氧基丙基、苯氧基丁基等。 作為Rz1
,較佳者係碳數為1~30之飽和烴基、芳香族烴基等,進而較佳者係碳數為1~15之烷基、苯基等,尤佳者係甲基。 作為Rz2
,較佳者係氫原子、碳數為1~18之飽和烴基、芳香族烴基等,進而較佳者係氫原子、碳數為1~10之烷基、苯基、苯基乙基等,尤佳者係氫原子。 p之較佳例係如上所示。 作為金屬錯合物,根據上述金屬M與Rz1
及Rz2
之組合而可列舉各種金屬錯合物。若例示具體例,則可列舉:乙醯丙酮銀(I)、三(乙醯丙酮)鋁(III)、三(2,2,6,6-四甲基-3,5-庚二酮)鋁(III)、三(2,2,6,6-四甲基-3,5-庚二酮)鉍(III)、三(乙醯丙酮)鈰(III)、雙(乙醯丙酮)鈷(II)、三(乙醯丙酮)鈷(III)、三(1,3-二苯基-1,3-丙二酮)鈷(III)、三(3-甲基-2,4-戊二酮)鈷(III)、三(3-苯基-2,4-戊二酮)鈷(III)、三(3-(1-苯基乙基)-2,4-戊二酮)鈷(III)、雙(苯甲醯丙酮)鈷(II)雙(六氟乙醯丙酮)鈷(II)、三(2,2,6,6-四甲基-3,5-庚二酮)鈷(III)、雙(乙醯丙酮)銅(II)、雙(2,2,6,6-四甲基-3,5-庚二酮)銅(II)、三(2,2,4,6,6-五甲基-3,5-庚二酮)鈷(III)、三(2,2,6,6-四甲基-4-(1-苯基乙基)-3,5-庚二酮)鈷(III)、三(2,2,6,6-四甲基-4-苯基-3,5-庚二酮)鈷(III)、雙(六氟乙醯丙酮)銅(II)、雙(三氟乙醯丙酮)銅(II)、三(乙醯丙酮)鏑(III)、三(乙醯丙酮)鉺(III)、三(2,2,6,6,-四甲基-3,5-庚二酮)鉺(III)、三(乙醯丙酮)銪(III)、雙(乙醯丙酮)鐵(II)、三(乙醯丙酮)鐵(III)、三(1,3-二苯基-1,3-丙二酮)鐵(III)、三(3-甲基-2,4-戊二酮)鐵(III)、三(3-苯基-2,4-戊二酮)鐵(III)、三(3-(1-苯基乙基)-2,4-戊二酮)鐵(III)、三(2,2,6,6-四甲基-3,5-庚二酮)鐵(III)、三(2,2,4,6,6-五甲基-3,5-庚二酮)鐵(III)、三(2,2,6,6-四甲基-4-(1-苯基乙基)-3,5-庚二酮)鐵(III)、三(2,2,6,6-四甲基-4-苯基-3,5-庚二酮)鐵(III)、四(乙醯丙酮)鉿(IV)、三(乙醯丙酮)鎵(III)、三(乙醯丙酮)釓(III)、三(乙醯丙酮)鈥(III)、三(乙醯丙酮)銦(III)、三(乙醯丙酮)銥(III)、三(乙醯丙酮)鑭(III)、三(乙醯丙酮)鎦(III)、雙(乙醯丙酮)錳(II)、三(乙醯丙酮)錳(III)、雙(六氟乙醯丙酮)錳(II)、雙(乙醯丙酮)二側氧基鉬(IV)、三(乙醯丙酮)釹(III)、三(2,2,6,6-四甲基-3,5-庚二酮)釹(III)、雙(乙醯丙酮)鎳(II)、雙(2,2,6,6-四甲基-3,5-庚二酮)鎳(II)、雙(六氟乙醯丙酮)鎳(II)、雙(1,3-二苯基-1,3-丙二酮)鎳(II)、雙(3-甲基-2,4-戊二酮)鎳(II)、雙(3-苯基-2,4-戊二酮)鎳(II)、雙(3-(1-苯基乙基)-2,4-戊二酮)鎳(II)、雙(2,2,4,6,6-五甲基-3,5-庚二酮)鎳(II)、雙(2,2,6,6-四甲基-4-(1-苯基乙基)-3,5-庚二酮)鎳(II)、雙(2,2,6,6-四甲基-4-苯基-3,5-庚二酮)鎳(II)、雙(乙醯丙酮)鈀(II)、雙(六氟乙醯丙酮)鈀(II)、雙(1,3-二苯基-1,3-丙二酮)鈀(II)、雙(3-甲基-2,4-戊二酮)鈀(II)、雙(3-苯基-2,4-戊二酮)鈀(II)、雙(3-(1-苯基乙基)-2,4-戊二酮)鈀(II)、雙(2,2,4,6,6-五甲基-3,5-庚二酮)鈀(II)、雙(2,2,6,6-四甲基-4-(1-苯基乙基)-3,5-庚二酮)鈀(II)、雙(2,2,6,6-四甲基-4-苯基-3,5-庚二酮)鈀(II)、三(乙醯丙酮)鉕(III)、三(乙醯丙酮)鐠(III)、三(六氟乙醯丙酮)鐠(III)、雙(乙醯丙酮)鉑(II)、三(乙醯丙酮)銠(III)、三(乙醯丙酮)釕(III)、三(乙醯丙酮)鈧(III)、三(六氟乙醯丙酮)鈧(III)、三(2,2,6,6-四甲基-3,5-庚二酮)鈧(III)、三(乙醯丙酮)釤(III)、三(2,2,6,6-四甲基-3,5-庚二酮)釤(III)、雙(乙醯丙酮)錫(II)、三(乙醯丙酮)鋱(III)、三(2,2,6,6-四甲基-3,5-庚二酮)鋱(III)、三(2,2,6,6-四甲基-3,5-庚二酮)銩(III)、三(乙醯丙酮)釩(III)、三(乙醯丙酮)釔(III)、三(六氟乙醯丙酮)釔(III)、三(2,2,6,6-四甲基-3,5-庚二酮)釔(III)、雙(乙醯丙酮)鋅(II)、雙(六氟乙醯丙酮)鋅(II)、雙(2,2,6,6-四甲基-3,5-庚二酮)鋅(II)、四(乙醯丙酮)鋯(IV)、四(2,2,6,6-四甲基-3,5-庚二酮)鋯(IV)、四(三氟乙醯丙酮)鋯(IV)等。 該等有機金屬錯合物可單獨或將2種以上組合而使用。作為有機金屬錯合物,可使用預先合成之金屬錯合物,亦可使用於系中製造者。 相對於鹵矽烷化合物,上述有機金屬錯合物之使用量較佳為0.001~10莫耳倍之範圍,更佳為0.001~1莫耳倍之範圍,尤佳為0.001~0.1莫耳倍之範圍。 (金屬鹵化物) 第1態樣之聚矽烷化合物之製造方法亦可於硝醯基化合物、及鎂或鹼金屬、與進一步之金屬鹵化物之存在下使上述鹵矽烷化合物進行反應。 作為金屬鹵化物,可列舉:多價金屬鹵化物,例如過渡金屬(例如釤等週期表3A族元素,鈦等週期表4A族元素,釩等週期表5A族元素,鐵、鎳、鈷、鈀等週期表8族元素,銅等週期表1B族元素,鋅等週期表2B族元素等)、週期表3B族金屬(鋁等)、週期表4B族金屬(錫等)等金屬之鹵化物(氯化物、溴化物或碘化物等)。構成金屬鹵化物之上述金屬之價數並無特別限制,較佳為2~4價,尤其是2或3價。該等金屬鹵化物可單獨或將兩種以上組合而使用。 作為金屬鹵化物,較佳為選自鐵、鋁、鋅、銅、錫、鎳、鈷、釩、鈦、鈀、釤等中之至少一種金屬之氯化物或溴化物。 作為此種金屬鹵化物,例如可例示:氯化物(FeCl2
、FeCl3
等氯化鐵;AlCl3
、ZnCl2
、SnCl2
、CoCl2
、VCl2
、TiCl4
、PdCl2
、SmCl2
等)、溴化物(FeBr2
、FeBr3
等溴化鐵等)、碘化物(SmI2
等)等。該等金屬鹵化物中,較佳為氯化物(例如氯化鐵(II)、氯化鐵(III)等氯化鐵,氯化鋅等)及溴化物。通常使用氯化鐵及/或氯化鋅,尤其是氯化鋅等。 作為金屬鹵化物之使用量,相對於鹵矽烷化合物,較佳為0.001~10莫耳倍之範圍,更佳為0.001~1莫耳倍之範圍,尤佳為0.001~0.1莫耳倍之範圍。 又,溶劑(反應液)中之金屬鹵化物之濃度通常為0.001~6 mol/L左右,較佳可為0.005~4 mol/L,進而較佳可為0.01~3 mol/L左右。 (非質子性溶劑) 第1態樣之聚矽烷化合物之製造方法中之硝醯基化合物之存在下的鹵矽烷化合物之反應較佳為於溶劑(反應溶劑)中進行,更佳為於非質子性溶劑中進行。 作為溶劑(反應溶劑)之非質子性溶劑中例如包含:醚類(1,4-二㗁烷、四氫呋喃、四氫吡喃、二乙醚、二異丙醚、1,2-二甲氧基乙烷、雙(2-甲氧基乙基)醚等環狀或鏈狀C4-6
醚)、碳酸酯類(碳酸丙二酯等)、腈類(乙腈、苯甲腈等)、醯胺類(二甲基甲醯胺、二甲基乙醯胺等)、亞碸類(二甲基亞碸等)、芳香族烴類(苯、甲苯、二甲苯等)、脂肪族烴類(例如己烷、環己烷、辛烷、環辛烷等鏈狀或環狀烴類)等。 該等非質子性溶劑可單獨或將兩種以上組合而以混合溶劑之形式使用。該等溶劑中,較佳為至少使用極性溶劑[例如醚類[例如四氫呋喃、1,2-二甲氧基乙烷、雙(2-甲氧基乙基)醚、1,4-二㗁烷等(尤其是四氫呋喃、1,2-二甲氧基乙烷)]。極性溶劑可單獨或將兩種以上組合而使用,亦可將極性溶劑與非極性溶劑組合。 於第1態樣之聚矽烷化合物之製造方法中,亦可進而包括:使上述反應後之液(反應液)與包含選自由鹼及酸所組成之群中的至少1種之水溶液接觸而進行精製,藉此獲得上述聚矽烷化合物。 藉由使上述聚矽烷化合物與鹼或酸接觸而進行精製處理,可將鹵素原子(例如鹵離子(氯化物離子等)、聚矽烷化合物中殘留之Si-Cl)等夾雜物去除,又,可促進聚矽烷化合物之低分子量化,可提高上述聚矽烷化合物之溶劑溶解性。 又,酸亦可發揮作為上述鹵矽烷化合物之反應之淬滅劑之功能。 又,藉由使上述聚矽烷化合物與下述金屬鹵化物接觸而進行精製處理,可將聚矽烷化合物中殘留之金屬原子(例如Mg、Zn等)去除。 處理溫度較佳為-50℃~溶劑之沸點左右,進而較佳為室溫~100℃。 又,作為所使用之鹼,只要為呈鹼性之化合物,則可使用各種,例如可使用:氫氧化鈉、氫氧化鉀、氫氧化鋇、氨、氫氧化四甲基銨、碳酸鈉、碳酸氫鈉、碳酸鉀、氫化鋰、氫化鈉、氫化鉀、氫化鈣等無機鹼類;甲基鋰、正丁基鋰、氯化甲基鎂、溴化乙基鎂等烷基金屬類;包含Cr、Ga、Fe(Fe(II)、Fe(III))、Cd、Co、Ni、Sn、Pb、Cu(Cu(II)、Cu(I))、Ag、Pd、Pt、Au等金屬(或金屬離子)之金屬鹵化物;甲醇鈉、乙醇鈉、第三丁醇鉀等烷醇鹽類;三乙基胺、二異丙基乙基胺、N,N-二甲基苯胺、吡啶、4-二甲胺基吡啶、二氮雜雙環十一烯(DBU)等有機鹼類。 作為所使用之酸,可使用各種,可使用氯化氫等無機酸。 此處,作為用於上述鹼或酸處理之溶劑,可使用各種,例如可使用選自以下溶劑中之1種以上:苯、甲苯、二甲苯等烴系溶劑,丙二醇單甲醚、丙二醇單乙醚等二醇系溶劑,二乙醚、二異丙醚、二丁醚、四氫呋喃、1,4-二㗁烷等醚系溶劑,丙酮、甲基乙基酮、甲基異丁基酮、甲基戊基酮、環戊酮、環己酮等酮系溶劑,乙醇、異丙醇、丁醇等醇系溶劑。 又,含環狀骨架之乙酸酯化合物亦可較佳地用作上述鹼性條件下之處理所使用之溶劑。 作為含環狀骨架之乙酸酯化合物,只要為不損及本發明之效果的具有環狀骨架之乙酸酯系溶劑,則無特別限制,較佳為下述式(S1)所表示之乙酸環烷基酯。 [化8](式(S1)中,Rs1
分別獨立地為烷基,p為1~6之整數,q為0~(p+1)之整數)。 作為Rs1
所表示之烷基,可列舉碳原子數1~3之烷基,可列舉甲基、乙基、正丙基、異丙基。 作為式(S1)所表示之乙酸環烷基酯之具體例,可列舉乙酸環丙酯、乙酸環丁酯、乙酸環戊酯、乙酸環己酯、乙酸環庚酯、及乙酸環辛酯。 該等中,就獲取容易性等觀點而言,較佳為乙酸環己酯。 亦可藉由酸處理將上述鹵矽烷化合物之反應淬滅。 作為所使用之酸,可使用各種,可使用氯化氫等無機酸。 根據第1態樣之聚矽烷化合物之製造方法,能以產率50%以上獲得聚矽烷化合物,較佳為產率70%以上。 <聚矽烷化合物> 根據第1態樣之聚矽烷化合物之製造方法,如上所述,可抑制矽氧烷鍵、矽烷醇基等副反應物之生成,故而可減少聚矽氧烷化合物中之矽氧烷鍵(Si-O)之存在量。 根據第1態樣之聚矽烷化合物之製造方法,可將下述(2X)相對於下述(1X)及(2X)之波峰面積之和的比、即下述式(3X)所表示之比率設為0.4以下,上述(1X)及(2X)之波峰面積係將聚矽烷化合物中之藉由X射線光電子光譜法所測得的於99 eV以上且104 eV以下之鍵能範圍內具有最大檢測波峰高度之光譜進行波峰分離而求出,上述比率較佳為0.35以下,更佳為0.3以下,進而較佳為0.2以下,尤佳為0.1以下,最佳為0.05以下。 (1X)・・・於鍵能為99.0 eV以上且99.5 eV以下之範圍內具有最大波峰高度之波峰之面積 (2X)・・・於鍵能為100 eV以上且104 eV以下之範圍內具有最大波峰高度之波峰之面積 (3X)・・・(2X)/[(1X)+(2X)] 測定波峰之強度(Intensity),關於上述(1X)及(2X)之於各鍵能範圍內進行波峰分離而求出之波峰之面積,根據(2X)之於鍵能為100 eV以上且104 eV以下之範圍內具有最大波峰高度之波峰之面積可知Si-O及Si-C之含有比例。又,根據(1X)之於鍵能為99.0 eV以上且99.5 eV以下之範圍內具有最大波峰高度之波峰之面積可知Si-Si之含有比例。 認為於聚矽烷化合物不僅包含Si-C還包含Si-O之情形時,於100 eV以上且104 eV以下之範圍內,於波峰分離後重疊出現2個具有最大波峰高度之波峰,但第2態樣之聚矽烷化合物較佳為於100 eV以上且104 eV以下之範圍內,於波峰分離後僅出現1個具有最大波峰高度之波峰,由於較理想為僅出現1個波峰,故而實質上不含Si-O鍵。 又,於先前之聚矽烷化合物不僅包含Si-C還包含Si-O之情形時,於100 eV以上且104 eV以下之範圍內,於波峰分離後重疊出現2個具有最大波峰高度之波峰,故而面積比變大,因此上述式所表示之比率超過0.4。 第2態樣之聚矽烷化合物係藉由以上所說明之第1態樣之製造方法所製造之聚矽烷化合物。 作為藉由第1態樣之製造方法所製造之第2態樣之聚矽烷化合物,例如可列舉Si原子數3~40之聚矽烷化合物,較佳為Si原子數5~30之聚矽烷化合物。 上述聚矽烷化合物較佳為選自由下述通式(T-1)及(T-2)所表示之聚矽烷化合物所組成之群中之至少1種。 (Rt10
Rt11
Rt12
Si)t1
(Rt13
Rt14
Si)t2
(Rt15
Si)t3
(Si)t4
(T-1) (上述通式中,Rt10
、Rt11
、Rt12
、Rt13
、Rt14
及Rt15
分別獨立地為氫原子、羥基或有機基。t1、t2、t3及t4分別獨立地為莫耳分率,為t1+t2+t3+t4=1、0≦t1≦1、0≦t2≦1、0≦t3≦1及0≦t4≦1)。 [化9](上述通式(T-2)中,Rt16
及Rt17
分別獨立地表示氫原子、羥基或有機基。U表示3~20之整數) 作為Rt10
~Rt17
所表示之有機基,可列舉與上文中作為R所表示之有機基所述之具體例及較佳例相同者。 作為Rt10
~Rt17
所表示之有機基,例如亦可藉由日本專利特開2003-261681號公報第0031段中所記載之方法導入任意之有機基。 作為上述聚矽烷化合物之質量平均分子量(Mw),只要不妨礙本發明之目的,則無特別限制,較佳為500~10000,更佳為1000~7000,進而較佳為2000~5000。 於本說明書中,質量平均分子量(Mw)係藉由凝膠滲透層析法(GPC)之聚苯乙烯換算所得之測定值。 <組合物> 第3態樣之組合物係包含藉由第1態樣之製造方法所製造之第2態樣之聚矽烷化合物的組合物。 又,就抑制釋氣產生及微裂產生之觀點而言,第3態樣之組合物較佳為進而含有上述硝醯基化合物。 作為使第3態樣之組合物進而含有上述硝醯基化合物之方法,只要不損及本發明之效果,則無特別限制,可藉由使第1態樣之製造方法中所使用之上述硝醯基化合物殘留於第3態樣之組合物中而達成,亦可藉由向包含第2態樣之聚矽烷化合物之組合物中添加上述硝醯基化合物而達成。 上述硝醯基化合物可單獨使用,亦可將2種以上組合而使用。 相對於第3態樣之組合物之溶劑以外之成分的合計質量,第3態樣之組合物中之上述硝醯基化合物之含量較佳為0.005質量%以上,更佳為0.009質量%以上。 又,相對於第3態樣之組合物之溶劑以外之成分的合計質量,第3態樣之組合物中之上述硝醯基化合物之含量較佳為2質量%以下,更佳為1質量%以下。 又,第3態樣之組合物可為熱硬化性組合物,亦可不為熱硬化性組合物。 又,第3態樣之組合物可為輻射敏感性組合物,亦可不為輻射敏感性組合物,可為藉由曝光而對顯影液可溶化之正型輻射敏感性組合物,亦可為藉由曝光而對顯影液不溶化之負型輻射敏感性組合物。 作為上述放射線之光源,可列舉:紫外線、準分子雷射光等活性能量射線;高壓水銀燈、超高壓水銀燈、氙氣燈、碳弧燈等發出紫外線之光源等。 (溶劑) 第3態樣之組合物較佳為含有溶劑。作為溶劑,可列舉:上述式(S1)所表示之乙酸環烷基酯等上述含環狀骨架之乙酸酯化合物; 甲醇、乙醇、丙醇、正丁醇等醇類; 乙二醇、二乙二醇、丙二醇、二丙二醇等多元醇類; 丙酮、甲基乙基酮、環己酮、甲基正戊基酮、甲基異戊基酮、2-庚酮等酮類; γ-丁內酯等含內酯環之有機溶劑; 乙二醇單乙酸酯、二乙二醇單乙酸酯、丙二醇單乙酸酯、或二丙二醇單乙酸酯等具有酯鍵之化合物,上述多元醇類或上述具有酯鍵之化合物之單甲醚、單乙醚、單丙醚、單丁醚等單烷基醚或單苯基醚等具有醚鍵之化合物等多元醇類之衍生物; 如二㗁烷般之環式醚類,或乳酸甲酯、乳酸乙酯、乙酸甲酯、乙酸乙酯、乙酸丁酯、丙酮酸甲酯、丙酮酸乙酯、甲氧基丙酸甲酯、乙氧基丙酸乙酯等酯類; 苯甲醚、乙基苄基醚、甲苯酚基甲基醚、二苯基醚、二苄基醚、苯乙醚、丁基苯基醚、乙基苯、二乙基苯、戊基苯、異丙基苯、甲苯、二甲苯、異丙基甲苯、均三甲苯等芳香族系有機溶劑; N,N,N',N'-四甲基脲、N,N,2-三甲基丙醯胺、N,N-二甲基乙醯胺、N,N-二甲基甲醯胺、N,N-二乙基乙醯胺、N,N-二乙基甲醯胺、1,3-二甲基-2-咪唑啶酮、N-甲基吡咯啶酮、N-乙基吡咯啶酮等含氮之有機溶劑。 其中,較佳為上述式(S1)所表示之乙酸環烷基酯、丙二醇單甲醚乙酸酯(PGMEA)、丙二醇單甲醚(PGME)、N,N,N',N'-四甲基脲(TMU)、及丁醇,更佳為乙酸環丙酯、乙酸環丁酯、乙酸環戊酯、乙酸環己酯、乙酸環庚酯或乙酸環辛酯,進而較佳為乙酸環己酯。 該等溶劑亦可將2種以上組合而使用。 關於第3態樣之組合物,就抑制微裂之方面而言,第3態樣之組合物之水分量較佳為1.0質量%以下,更佳為0.5質量%以下,進而較佳為0.3質量%以下,尤佳為未達0.3質量%。再者,溶劑中之水分量可藉由卡氏測定法進行測定。 第3態樣之組合物之水分大多情況下來自溶劑。因此,較佳為以第3態樣之組合物之水分量成為上述量之方式將溶劑進行脫水。 關於溶劑之使用量,於不妨礙本發明之目的之範圍內並無特別限定。就製膜性之方面而言,溶劑係以第3態樣之組合物之固形物成分濃度較佳為成為1~50質量%、更佳為成為10~40質量%之方式使用。 (其他成分) 第3態樣之組合物亦可包含第2態樣之聚矽烷化合物以外之聚矽烷。例如,就提高耐化學品性等方面而言,可列舉Mw較高之聚矽烷化合物(以下亦簡稱為「高分子量聚矽烷」),作為高分子量聚矽烷之Mw,例如為超過5000且100000以下,較佳為6000~60000左右。 就提高加工性之方面而言,第3態樣之組合物亦可包含聚矽烷化合物以外之含矽樹脂。作為聚矽烷化合物以外之含矽樹脂,可列舉聚矽氧烷樹脂、或具有聚矽烷結構(I-1)及聚矽氧烷結構(I-2)之聚矽烷-聚矽氧烷樹脂。作為聚矽烷化合物以外之含矽樹脂之Mw,較佳為500~20000,更佳為1000~10000,進而較佳為2000~8000。 再者,上述聚矽烷-聚矽氧烷樹脂例如可藉由如下方式而製造:於溶劑中且上述鹼性條件下對第2態樣之聚矽烷化合物進行處理後,使其與選自由以下物質所組成之群中之至少1種進行水解縮合反應:選自由下述通式(A-1-1)~(A-1-4)所表示之矽化合物所組成之群中的至少1種矽化合物以及上述矽化合物之水解物、縮合物及水解縮合物。 R1
R2
R3
SiX1
(A-1-1) R4
R5
SiX2 2
(A-1-2) R6
SiX3 3
(A-1-3) SiX4 4
(A-1-4) (上述通式中,X1
~X4
分別獨立地為水解性基,R1
、R2
、R3
、R4
、R5
及R6
分別獨立地為氫原子或有機基,該有機基中之氫原子亦可經鹵素原子取代)。 作為X1
~X4
所表示之水解性基,可列舉烷氧基、鹵素原子或異氰酸基(NCO)等,較佳為烷氧基。 作為上述烷氧基,可列舉碳原子數1~6之烷氧基,具體而言可列舉:甲氧基、乙氧基、正丙氧基、異丙氧基、正丁氧基、第三丁氧基、戊氧基等。 作為上述鹵素原子,可列舉氟原子、氯原子、溴原子或碘原子,較佳為氯原子。 作為R1
~R6
所表示之有機基,可列舉碳數1~30之有機基,可列舉:烷基[甲基、乙基、正丙基、異丙基、正丁基及第三丁基等碳原子數1~10之烷基(較佳為碳原子數1~6之烷基,尤其是碳數1~4之烷基等)]、環烷基(環己基等碳原子數5~8之環烷基,尤其是碳原子數5~6之環烷基)、烯基[乙烯基、丙烯基、丁烯基等碳原子數2~10之烯基(較佳為碳原子數2~6之烯基,尤其是碳數2~4之烯基等)]、環烯基[1-環戊烯基、1-環己烯基等碳原子數5~10之環烯基(較佳為碳原子數5~8之環烯基,尤其是碳數5~7之環烯基等)]、芳基(苯基、萘基等碳原子數6~10之芳基、)、芳烷基[苄基、苯乙基等C6-10
芳基-C1-6
烷基(C6-10
芳基-C1-4
烷基等)]、胺基、N-取代胺基(經上述烷基、環烷基、芳基、芳烷基、醯基等取代之N-單或二取代胺基等)等。上述烷基、環烷基、芳基或構成芳烷基之芳基等可具有1個或複數個取代基。作為此種取代基,可列舉上述例示之烷基(尤其是碳原子數1~6之烷基等)、上述例示之烷氧基等。作為具有此種取代基之有機基,例如可列舉:甲苯基、二甲苯基、乙基苯基、甲基萘基等C1-6
烷基-C6-10
芳基(較佳為單、二或三C1-4
烷基-C6-10
芳基,尤其是單或二C1-4
烷基苯基等);甲氧基苯基、乙氧基苯基、甲氧基萘基等C1-10
烷氧基C6-10
芳基(較佳為C1-6
烷氧基C6-10
芳基,尤其是C1-4
烷氧基苯基等)等。 又,上述通式(A-1-3)所表示之矽化合物亦可為下述式(A-3)所表示之矽化合物。 HOOC-U-Z-Y-Si(ORa
)3
(A-3) (上述通式(A-3)中,U表示藉由自芳香族環基或脂環基中對2個環碳原子各去掉1個氫原子而生成之2價基、或可具有支鏈及/或雙鍵之伸烷基,Z表示-NHCO-或-CONH-,Y表示單鍵、伸烷基、伸芳基或-RY1
-NH-RY2
-(式中,RY1
及RY2
分別獨立地表示伸烷基),Ra
分別獨立地表示烴基。其中,U及/或Y可具有選自由(甲基)丙烯酸基、乙烯基及環氧基所組成之群中之至少1種基作為取代基)。 作為上述U中之芳香族環,可列舉可具有碳數1~2之取代基的碳數6~10之芳香環(例如苯環、萘環、甲苯基、二甲苯基等)。 作為上述U中之脂環,可列舉:碳數5~10之脂環(例如可列舉單環環烷基、單環環烯基、二環式烷基、籠型烷基等,具體而言,例如為環戊烷環、環己烷環、環庚烷環、環辛烷環、環壬烷環、環癸烷環、二環戊二烯環、降𦯉烷環、降𦯉烯環、立方烷環、籃烷環等)。 作為上述U中之可具有支鏈及/或雙鍵之伸烷基,可列舉碳數1~4之伸烷基,例如可列舉:亞甲基、伸乙基、伸丙基、伸乙烯基、(2-辛烯基)伸乙基、(2,4,6-三甲基-2-壬烯基)伸乙基等伸烷基、具有雙鍵之伸烷基或具有碳數1~9之支鏈之伸烷基。 作為上述Y中之伸烷基,可列舉碳數1~6之伸烷基,例如可列舉:亞甲基、伸乙基、伸丙基、伸丁基等。作為上述Y中之伸芳基,較佳為碳數6~10者。作為此種伸芳基,例如可列舉:伸苯基(鄰、間或對等)、伸萘基(1,4-、1,5-、2,6-等)等。作為上述Y中之-RY1
-NH-RY2
-,具體而言,例如可列舉:-CH2
-NH-CH2
-、-(CH2
)2
-NH-(CH2
)2
-、-(CH2
)3
-NH-(CH2
)3
-、-CH2
-NH-(CH2
)2
-、-(CH2
)2
-NH-CH2
-、-(CH2
)2
-NH-(CH2
)3
-、-(CH2
)3
-NH-(CH2
)2
-、-CH2
-NH-(CH2
)3
-、-(CH2
)3
-NH-CH2
-等。 作為聚矽氧烷樹脂,可列舉選自由以下物質所組成之群中之至少1種:選自由上述通式(A-1-1)~(A-1-4)所表示之矽化合物所組成之群中的至少1種矽化合物之水解物、縮合物及水解縮合物。 上述第1態樣之聚矽烷化合物以外之樹脂(以下稱作其他Si樹脂)可單獨使用,亦可將複數種組合而使用。 於包含上述其他Si樹脂之情形時,第3態樣之組合物中之第1態樣之聚矽烷化合物與其他Si樹脂的調配比(質量比)只要視用途而適當地變更即可,例如為1:99~99:1,較佳為10:90~90:10。 第3態樣之組合物亦可包含1分子中具有2個以上之羥基或羧基之有機化合物作為對鹼性水溶液或溶液之溶解促進劑。作為此種有機化合物,可列舉下述所示之化合物。 [化10][化11][化12]再者,上述結構式中之E為氫原子、甲基或羥甲基,R15
為亞甲基、羰基或伸苯基,n為3以上且未達100之整數。na表示1~3之自然數,nb表示1以上之自然數,nc表示2~4之自然數,nd表示2以上之自然數。 上述結構式中可能存在鏡像異構物(enantiomer)或非鏡像異構物(diastereomer),各結構式係代表性地表示該等立體異構物全部。該等立體異構物可單獨使用,亦可以混合物之形式而使用。 上述有機化合物可單獨使用1種或將2種以上組合而使用。相對於第3態樣之組合物之除溶劑以外之固形物成分總量,其使用量較佳為0.001~50質量%,更佳為0.01~30質量%。 藉由添加此種有機化合物,而於在製造製程中之加工時將樹脂組合物膜去除之情形或對樹脂組合物賦予有微影性能之情形時,使用上述組合物而形成之膜之崩解加速而剝離變得容易。 為了提高穩定性,第3態樣之組合物中亦可包含碳數為1~30之一元或二元以上之有機酸。作為此時添加之酸,可列舉:甲酸、乙酸、丙酸、丁酸、戊酸、己酸、庚酸、辛酸、壬酸、癸酸、油酸、硬脂酸、亞麻油酸、次亞麻油酸、苯甲酸、鄰苯二甲酸、間苯二甲酸、對苯二甲酸、水楊酸、三氟乙酸、單氯乙酸、二氯乙酸、三氯乙酸、草酸、丙二酸、甲基丙二酸、乙基丙二酸、丙基丙二酸、丁基丙二酸、二甲基丙二酸、二乙基丙二酸、琥珀酸、甲基琥珀酸、戊二酸、己二酸、伊康酸、馬來酸、富馬酸、檸康酸、檸檬酸等。該等中,尤佳為草酸、馬來酸、甲酸、乙酸、丙酸、檸檬酸等。又,為了保持穩定性,亦可將2種以上之酸混合而使用。較佳為以換算成組合物之pH值而較佳為成為0≦pH值≦7、更佳為成為0.3≦pH值≦6.5、進而較佳為成為0.5≦pH值≦6之方式調配上述有機酸。 又,第3態樣之組合物亦可包含具有環狀醚作為取代基之一元或二元以上之醇、或醚化合物作為穩定劑。作為可使用之穩定劑,具體而言可列舉日本專利特開2009-126940號公報之(0180)~(0184)段落所記載之穩定劑。 第3態樣之組合物亦可包含水。藉由添加水,微影性能提高。第3態樣之組合物之溶劑成分中之水之含有率較佳為超過0質量%且未達50質量%,更佳為0.3~30質量%,進而較佳為0.5~20質量%。 第3態樣之組合物亦可包含光酸產生劑。作為可使用之光酸產生劑,具體而言可列舉日本專利特開2009-126940號公報之(0160)~(0179)段落所記載之光酸產生劑。 第3態樣之組合物視需要亦可包含界面活性劑。作為可使用之界面活性劑,具體而言可列舉日本專利特開2009-126940號公報之(0185)段落所記載之界面活性劑。 第3態樣之組合物亦可包含熱交聯促進劑。作為可使用之熱交聯促進劑,具體而言可列舉日本專利特開2007-302873號公報中所記載之熱交聯促進劑。作為熱交聯促進劑,例如可列舉磷酸鹽化合物或硼酸鹽化合物。作為此種磷酸鹽化合物,例如可列舉:磷酸銨、磷酸四甲基銨、磷酸四丁基銨等銨鹽;磷酸三苯基鋶等鋶鹽。又,作為此種硼酸鹽化合物,例如可列舉:硼酸銨、硼酸四甲基銨、硼酸四丁基銨等銨鹽;硼酸三苯基鋶等鋶鹽。 再者,上述熱交聯促進劑可單獨使用1種或將2種以上組合而使用。又,相對於上述組合物之除溶劑以外之固形物成分總量,熱交聯促進劑之添加量較佳為0.01~50質量%,更佳為0.1~40質量%。 第3態樣之組合物亦可包含其他各種硬化劑。 作為硬化劑,例如可列舉:布忍斯特酸;咪唑類;有機胺類;有機磷化合物及其錯合物;路易斯酸之有機胺錯合物;脒類;藉由光或熱而產生鹼成分之硬化劑等。 (用途) 第3態樣之組合物可用作形成保護各種基板(包括含金屬氧化物之膜、含各種金屬之膜)之保護膜或層間膜之用途。 作為上述各種基板,可列舉:半導體基板、液晶顯示器、有機發光顯示器(OLED)、電泳顯示器(電子紙)、觸控面板、彩色濾光片、背光裝置等顯示器材料之基板(包括含金屬氧化物之膜、含各種金屬之膜)、太陽電池之基板(包括含金屬氧化物之膜、含各種金屬之膜)、光感測器等光電轉換元件之基板(包括含金屬氧化物之膜、含各種金屬之膜)、光電元件之基板(包括含金屬氧化物之膜、含各種金屬之膜)。 <硬化物及具備上述硬化物之基板> 第4態樣之硬化物係第3態樣之組合物之硬化物。 第5態樣之基板係具備第4態樣之硬化物之基板。 作為形成第4態樣之硬化物之方法,只要不損及本發明之效果,則無特別限制,可列舉如下方法:視需要使用輥式塗佈機、反向塗佈機、棒式塗佈機等接觸轉印型塗佈裝置或旋轉器(旋轉式塗佈裝置)、淋幕式塗佈機等非接觸型塗佈裝置塗佈於任意之基板上。 作為基板,並無特別限制,例如可列舉:玻璃基板、石英基板、透明或半透明之樹脂基板(例如聚碳酸酯、聚對苯二甲酸乙二酯、聚醚碸、聚醯亞胺、聚醯胺醯亞胺等耐熱性材料等)、金屬、矽基板等。 亦可為半導體基板、液晶顯示器、有機發光顯示器(OLED)、電泳顯示器(電子紙)、觸控面板、彩色濾光片、背光裝置等顯示器材料之基板(包括含金屬氧化物之膜、含各種金屬之膜)、太陽電池之基板(包括含金屬氧化物之膜、含各種金屬之膜)、光感測器等光電轉換元件之基板(包括含金屬氧化物之膜、含各種金屬之膜)、光電元件之基板(包括含金屬氧化物之膜、含各種金屬之膜)等各種基板。 基板之厚度並無特別限定,可根據圖案形成體之使用態樣而適當地選擇。 上述塗佈後之塗膜較佳為進行乾燥(預烘烤)。乾燥方法並無特別限定,例如可列舉:(1)利用加熱板於80~120℃、較佳為90~100℃之溫度下乾燥60~120秒之方法;(2)於室溫下放置數小時~數日之方法;(3)放入至熱風加熱器或紅外線加熱器中數十分鐘~數小時而將溶劑去除之方法等。 上述乾燥後之塗膜可照射紫外線、準分子雷射光等活性能量射線而進行曝光,亦可不進行曝光。所照射之能量射線量並無特別限制,例如可列舉30~2000 mJ/cm2
左右。曝光步驟亦可代替下述焙燒步驟或與焙燒步驟一併進行。又,於曝光步驟中,例如亦可選擇性地對所形成之塗佈膜進行曝光,於包括選擇性曝光步驟之情形時,亦可包括顯影步驟。又,例如亦可對所形成之塗佈膜進行壓印微影。於進行壓印微影之情形時,例如可列舉包括如下步驟之方法: 將第3態樣之組合物塗佈於基板上而形成塗佈膜之步驟; 對塗佈膜按壓形成有特定圖案之凹凸結構之模具之步驟;及 進行曝光之步驟。 進行曝光之步驟係於將模具按壓至塗佈膜之狀態下對包含第3態樣之組合物之塗佈膜進行。藉由曝光進行硬化後,將上述模具剝離,藉此可獲得根據模具之形狀而經圖案化之第4態樣之硬化物。 就提高膜物性之方面而言,上述乾燥後、曝光後或顯影後之塗膜較佳為進行焙燒(後烘烤)。 焙燒溫度亦取決於下層基板或使用用途,例如為200~1000℃之範圍,較佳為200℃~500℃,更佳為200~250℃。焙燒氛圍並無特別限定,可為氮氣氛圍或氬氣氛圍等惰性氣體氛圍下、真空下、或減壓下。亦可為大氣下,亦可適當地控制氧氣濃度。焙燒時間只要適當地進行變更即可,為10分鐘~120分鐘左右。 第4態樣之硬化物較佳為保護上述各種基板(包括含金屬氧化物之膜、含各種金屬之膜)之保護膜。 於硬化物為膜之情形時,厚度較佳為10 nm~10000 nm,更佳為50~5000 nm,進而較佳為100~3000 nm。 <聚矽烷化合物之製造中之陰離子聚合選擇促進劑> 第6態樣之陰離子聚合選擇促進劑係含有包含上述通式(A)所表示之結構之硝醯基化合物的聚矽烷化合物之製造中之陰離子聚合選擇促進劑。 第6態樣之陰離子聚合選擇促進劑可使製造聚矽烷化合物時所產生之矽烷基自由基陽離子進行電荷自旋而轉變為矽烷基自由基陰離子,從而選擇性地促進矽烷基自由基陰離子之陰離子聚合。藉此,可抑制導致微裂之矽氧烷鍵、矽烷醇基等副反應物之生成,又,亦可抑制釋氣之產生。 作為包含上述通式(A)所表示之結構之硝醯基化合物的具體例及較佳例,如第1態樣之聚矽烷化合物之製造方法中所述。 相對於聚矽烷化合物製造中所使用之鹵矽烷化合物,第6態樣之陰離子聚合選擇促進劑之使用量較佳為0.0001~10莫耳倍之範圍,更佳為0.001~5莫耳倍之範圍,進而較佳為0.001~1莫耳倍之範圍,尤佳為0.001~0.1莫耳倍之範圍。 [實施例] 以下根據實施例更詳細地對本發明進行說明,但本發明不受該等實施例之限定。 [實施例1]聚矽烷化合物之製造 向安裝有三通活栓之內容積1000 ml之圓型燒瓶中加入粒狀(粒徑20~1000 μm)之鎂25 g、作為觸媒之三(乙醯丙酮)鐵(III)2.1 g、4-羥基-TEMPO(4-羥基-2,2,6,6-四甲基哌啶1-烴氧基自由基)0.61毫莫耳(0.10 g),於50℃下加熱減壓至1 mmHg(=133 kPa),將反應器(燒瓶)內部進行乾燥後,向反應器內導入乾燥氬氣,添加預先經鈉-二苯甲酮羰自由基乾燥之四氫呋喃(THF)500 ml,於25℃下攪拌約60分鐘。利用注射器向該反應混合物中添加預先藉由蒸餾而精製之甲基苯基二氯矽烷63.5 g(0.3 mol),於25℃下攪拌約24小時。反應結束後,向反應混合物中投入1 N(=1 mol/L)之鹽酸1000 ml,繼而利用甲苯500 ml進行萃取。利用純水200 ml將甲苯層洗淨10次,利用無水硫酸鎂將甲苯層乾燥後,將甲苯蒸餾去除,藉此獲得甲基苯基矽烷聚合物(質量平均分子量2000)28.4 g(產率63%)。 [實施例2~4以及比較例1及2]聚矽烷化合物之製造 如下述表1所示般變更鹵矽烷化合物之種類、有機金屬錯合物或金屬鹵化物之種類、硝醯基化合物之有無及所製造之聚矽烷化合物之種類,除此以外,以與實施例1相同之方式進行實施例2~4以及比較例1及2之聚矽烷化合物之製造。再者,實施例5除了添加硝醯基化合物以外,依照JACS, 110, 124 (1998)及Macromolecules, 23, 3423 (1990)中所記載之方法進行製造。 [表1]
[製備例1~4以及比較製備例1及2]組合物之製備 使上述實施例1~4以及比較例1及2中所獲得之各聚矽烷化合物以固形物成分濃度成為30質量%之方式溶解於表2所記載之種類之溶劑中,並利用孔徑0.1 μm之氟樹脂製之過濾器進行過濾,藉此製備製備例1~4以及比較製備例1及2之各組合物。 [覆膜之形成] 使用旋轉塗佈機將所獲得之各製備例及比較製備例之組合物塗佈於樣品基板上,形成可形成膜厚5.0 μm之覆膜的膜厚之塗佈膜。 於100℃下將塗佈膜預烘烤2分鐘後,使用立式烘烤爐(TS8000MB,東京應化工業股份有限公司製造)於350℃下將塗佈膜焙燒30分鐘,獲得膜厚5.0 μm之覆膜。 對於所形成之覆膜,依照下述方法對有無微裂及是否產生釋氣進行評價。 <微裂之評價> 使用光學顯微鏡(倍率100倍)觀察所形成之覆膜之放置24小時後之表面,評價微裂之有無。將結果示於表2。 <釋氣之評價> 又,根據升溫脫離氣體分析法(TDS)評價釋氣產生之程度。確認到使用比較製備例1及2之組合物所形成之覆膜之釋氣產生量多於使用含有實施例1~5之聚矽烷化合物之製備例1~5之組合物所形成之任一覆膜。 [表2]
由表2所示之結果表明:使用含有未使用硝醯基化合物而製造之比較例1及2之聚矽烷化合物的比較製備例1及2之組合物所形成之覆膜產生了微裂及釋氣。 另一方面,使用含有使用硝醯基化合物而製造之實施例1~5之聚矽烷化合物的製備例1~5之組合物所形成之覆膜均未見微裂,釋氣之產生亦得到抑制。Embodiments of the present invention will be described in detail below. However, the present invention is not limited to the following embodiments and can be implemented with appropriate modifications within the scope of the purpose of the present invention. In addition, in this specification, "~" means above to below unless otherwise specified. <Method for producing a polysilane compound> The method for producing a polysilane compound according to the first aspect includes reacting a halosilane compound in the presence of a nitrosilyl compound. In the manufacture of polysilane compounds, silyl radical cations and silyl radical anions (Electronic Structure of Radical Anions and Cations of Polysilanes with Structural Defects Seki, Shu; Yoshida, Yoichi; Tagawa, Seiichi; Asai, Keisuke, Macromolecules, 1999, 32 (4), pp1080 - 1086). Silyl radical anions can be used in the production of polysilane compounds through anionic polymerization. On the other hand, water (H 2 O) or oxygen (O 2 ) in the air selectively reacts with silyl radical cations. In this case, side reactants such as siloxane bonds (Si-O) and silanol groups (Si-OH) are generated. The present inventors discovered that when a film is formed using a composition containing a polysilane compound containing side reactants such as siloxane bonds, silanol groups, etc., the siloxane bonds, silanol groups, etc. cause microscopic crack. In addition, it is believed that silyl radical cations are more likely to detach substituents such as aryl groups and alkyl groups (especially aryl groups) than silyl radical anions, leading to outgassing. On the other hand, it is presumed that in the method for producing a polysilane compound according to the first aspect, the nitryl compound causes the silyl radical cations to perform charge spin and reduces the silyl radical cations, thereby selectively promoting the formation of silane. Anionic polymerization of radical anions. It is presumed that this can inhibit the formation of side reactants such as siloxane bonds and silanol groups that cause micro-cracks, and also inhibit the generation of outgassing. (Nitrogenyl compound) The nitrogenyl compound is not particularly limited as long as it is a compound that can stably exist in the form of a nitroxide radical. Preferably, it is a compound having a structure represented by the following general formula (A). compound. [Chemicalization 2] (In the formula (A), R a1 , R a2 , R a3 and R a4 are each independently a hydrogen atom or an organic group. R a1 and R a2 may be bonded to each other to form a ring. In addition, R a3 and R a4 may be mutually bonded. bond to form a ring). In the formula (A), examples of the organic groups represented by R a1 to R a4 include organic groups having 1 to 10 carbon atoms. It is preferred that R a1 , R a2 , R a3 and R a4 are each independently an alkane. group or an alkyl group substituted by a heteroatom. As the alkyl group, methyl, ethyl, n-propyl and isopropyl are preferred. Preferable examples of heteroatoms include halogen atoms, oxygen atoms, sulfur atoms, nitrogen atoms, and the like. Preferable specific examples of the nitrogen compound include di-tert-butyl oxynitride, di-1,1-dimethylpropyl oxynitride, and di-1,2-dimethylpropyl oxynitride. nitrogen oxide, di-2,2-dimethylpropyl nitrogen oxide, and compounds represented by the following formula (A1), (A2), or (A3), more preferably the following formula (A1) , (A2), or a compound represented by (A3). [Chemical 3] In formulas (A1), (A2), and (A3), R a5 represents a hydrogen atom, an alkyl group having 1 to 12 carbon atoms, a hydroxyl group, an amino group, a carboxyl group, a cyano group, an alkyl group substituted with a heteroatom, or A monovalent organic group bonded via an ether bond, ester bond, amide bond or urethane bond. R a6 represents a divalent or trivalent organic group. n1 and n2 are integers satisfying 1≦n1+n2≦2. n3 and n4 are integers satisfying 1≦n3+n4≦2. n5 and n6 are integers satisfying 1≦n5+n6≦2. n7 is 2 or 3. Preferable specific examples of the compound represented by formula (A1) include the following compounds. In the following formula, R a7 each independently represents an alkyl group having 1 to 20 carbon atoms which may have a substituent, an aromatic group which may have a substituent, or an alicyclic group which may have a substituent. [Chemical 4] Preferable specific examples of the compound represented by formula (A2) include the following compounds. [Chemistry 5] Preferable specific examples of the compound represented by formula (A3) include the following compounds. [Chemical 6] Further preferred nitrogen compounds include: 2,2,6,6-tetramethylpiperidine 1-alkoxy radical (TEMPO), 4-hydroxy-2,2,6,6-tetramethyl Piperidine 1-alkoxy radical, 4-amino-2,2,6,6-tetramethylpiperidine 1-alkoxy radical, 4-carboxy-2,2,6,6-tetramethyl Methylpiperidine 1-alkoxy radical, 4-cyano-2,2,6,6-tetramethylpiperidine 1-alkoxy radical, 4-methacrylic acid-2,2,6, 6-Tetramethylpiperidine 1-alkoxy radical, 4-acrylic acid-2,2,6,6-tetramethylpiperidine 1-alkoxy radical, 4-side oxy-2,2, 6,6-Tetramethylpiperidine 1-alkoxy radical, 3-carboxy-2,2,5,5-tetramethylpyrrolidine 1-alkoxy radical, 4-acetamide-2, 2,6,6-Tetramethylpiperidine 1-alkoxy radical, 4-(2-chloroacetamide)-2,2,6,6-tetramethylpiperidine 1-alkoxy radical , 4-hydroxy-2,2,6,6-tetramethylpiperidine benzoate 1-alkoxy ester free radical, 4-isothiocyanato-2,2,6,6-tetramethylpiperidine 1 -Alkoxyl radical, 4-(2-iodoacetamide)-2,2,6,6-tetramethylpiperidine 1-alkoxyl radical, and 4-methoxy-2,2, 6,6-tetramethylpiperidine 1-alkoxy radical. A nitrogenyl compound can be used individually or in combination of 2 or more types. Relative to the halosilane compound, the usage amount of the above-mentioned nitryl compound is preferably in the range of 0.0001 to 10 molar times, more preferably in the range of 0.0005 to 5 molar times, and further preferably in the range of 0.0008 to 1 molar times. , especially preferably in the range of 0.001 to 0.1 mol times. (Halosilane compound) As the above-mentioned halosilane compound, a compound represented by the following formula (1) is preferred. X n SiR 4 - n (1) (In the formula, n is an integer from 2 to 4, n Xs are independently halogen atoms, (4-n) R are independently hydrogen atoms, organic groups or silane groups ). Examples of the halogen atom represented by Examples of the organic group represented by R include alkyl groups [alkyl groups having 1 to 10 carbon atoms (preferably carbon atoms) such as methyl, ethyl, propyl, isopropyl, butyl, and tert-butyl. Alkyl groups with 1 to 6 carbon atoms, especially alkyl groups with 1 to 4 carbon atoms, etc.)], cycloalkyl groups (cycloalkyl groups with 5 to 8 carbon atoms such as cyclohexyl, especially cycloalkyl groups with 5 to 6 carbon atoms) Alkyl), alkenyl [vinyl, propenyl, butenyl and other alkenyl groups with 2 to 10 carbon atoms (preferably alkenyl groups with 2 to 6 carbon atoms, especially alkenyl groups with 2 to 4 carbon atoms) etc.)], cycloalkenyl [1-cyclopentenyl, 1-cyclohexenyl and other cycloalkenyl groups with 5 to 10 carbon atoms (preferably cycloalkenyl groups with 5 to 8 carbon atoms, especially carbon Cycloalkenyl groups with 5 to 7 carbon atoms, etc.)], aryl groups (aryl groups with 6 to 10 carbon atoms such as phenyl and naphthyl groups), aralkyl groups [C 6-10 aryl groups such as benzyl and phenethyl groups -C 1-6 alkyl (C 6-10 aryl-C 1-4 alkyl, etc.)], amino group, N-substituted amino group (via the above alkyl group, cycloalkyl group, aryl group, aralkyl group, N-mono- or disubstituted amino groups substituted by acyl groups, etc.), etc. The alkyl group, cycloalkyl group, aryl group or aryl group constituting the aralkyl group may have one or a plurality of substituents. Examples of such substituents include the alkyl groups exemplified above (especially alkyl groups having 1 to 6 carbon atoms, etc.). Examples of the organic group having such a substituent include C 1-6 alkyl groups such as tolyl (methylphenyl), xylyl (dimethylphenyl), ethylphenyl, and methylnaphthyl. -C 6-10 aryl group (preferably mono-, di- or tri-C 1-4 alkyl-C 6-10 aryl group, especially mono- or di-C 1-4 alkyl phenyl group, etc.). Examples of the silyl group include substituted silyl groups substituted by the above-mentioned alkyl group, cycloalkyl group, alkenyl group, cycloalkenyl group, aryl group, aralkyl group, alkoxy group, and the like. When n is 2 (dihalosilane compound), R is preferably a hydrocarbon group such as an alkyl group or an aryl group. At least one R may be an aryl group. Previously, when the silyl radical cation had an organic group (especially an aryl group) such as an alkyl group or aryl group that was directly bonded to the silicon atom, detachment of the above-mentioned organic group easily occurred, leading to outgassing. On the other hand, it is presumed that in the method for producing a polysilane compound of the first aspect, even when the silyl radical cation has an organic group directly bonded to a silicon atom (R is an organic group (especially an aryl group) In this case), the above-mentioned nitroxyl compound also causes the silyl radical cations to carry out charge spin and the silyl radical cations are reduced, thereby making it difficult for the organic radicals to detach and inhibit the generation of outgassing. Representative dihalosilane compounds include, for example, di-C 1-10 alkyl dihalosilane such as dialkyl dihalosilane (dimethyldichlorosilane), preferably di-C 1-6 alkyl dihalosilane. , more preferably di-C 1-4 alkyl dihalosilane, etc.), monoalkyl monoaryl dihalosilane (mono-C 1-10 alkyl mono-C 6-12 aryl such as methylphenyl dichlorosilane) Dihalosilane, preferably mono-C 1-6 alkyl mono-C 6-10 aryl dihalosilane, more preferably mono-C 1-4 alkyl mono-C 6-8 aryl dihalosilane, etc.), dihalosilane Aryldihalosilane (diphenyldichlorosilane and other di-C 6-12 aryldihalosilane, preferably di-C 6-10 aryldihalosilane, further preferably di-C 6-8 aryldihalosilane Halosilane, etc.) etc. As the dihalosilane compound, dialkyldihalosilane or monoalkylmonoaryldihalosilane is preferred. The dihalosilane compounds can be used alone or in combination of two or more. When n is 3 (trihalosilane compound), R is preferably a hydrocarbon group such as an alkyl group, a cycloalkyl group, an optionally substituted aryl group, or an aralkyl group, and particularly preferably an alkyl group or an aryl group. More preferably, it is an aryl group. As described above, in the method for producing a polysilane compound according to the first aspect, when the silyl radical cation has an organic group directly bonded to a silicon atom (R is an organic group (especially an aryl group)) (In this case), through the action of the above-mentioned nitrogen compound, the detachment of organic radicals is less likely to occur and the generation of outgassing can be suppressed. Representative trihalosilane compounds include C 1-10 alkyl trihalogens such as alkyltrihalosilane (methyltrichlorosilane, butyltrichlorosilane, tert-butyltrichlorosilane, hexyltrichlorosilane, etc.) Silane, preferably C 1-6 alkyl trihalosilane, further preferably C 1-4 alkyl trihalosilane, etc.), cycloalkyl trihalosilane (cyclohexyl trihalosilane, etc. single C 6-10 ring Alkyl trihalosilane, etc.), aryl trihalosilane (phenyl trichlorosilane, tolyl trichlorosilane, xylyl trichlorosilane, etc. C 6-12 aryl trihalosilane, preferably C 6-10 Aryltrihalosilane, more preferably C 6-8 aryltrihalosilane, etc.). The trihalosilane compound is preferably an alkyl trihalosilane or an aryl trihalosilane. The trihalosilane compounds can be used alone or in combination of two or more. Specific examples of the case where n is 4 (tetrahalosilane compounds) include tetrachlorosilane, dibromodichlorosilane, tetrabromosilane, and the like. A tetrahalosilane compound can be used individually or in combination of 2 or more types. Furthermore, tetrahalosilane compounds may be used in combination with mono-, di- or trihalosilane compounds. In addition, the halosilane compound may be a monohalosilane compound. Representative monohalosilanes include, for example, tri-C 1-10 alkyl monohalosilane such as trialkyl monohalosilane (trimethylchlorosilane), and preferably tri-C 1-6 alkyl monohalosilane. Preferred are tri-C 1-4 alkyl monohalosilane, etc.), dialkyl monoaryl monohalosilane (dimethylphenyl chlorosilane, etc. di-C 1-10 alkyl mono-C 6-12 aryl monohalogen Silane, preferably di-C 1-6 alkyl mono-C 6-10 aryl monohalosilane, more preferably di-C 1-4 alkyl mono-C 6-8 aryl monohalosilane, etc.), monoalkyl Diaryl monohalosilane (methyldiphenylchlorosilane and other mono-C 1-10 alkyl di-C 6-12 aryl monohalosilane, preferably mono-C 1-6 alkyl di-C 6-10 aryl Monohalosilanes, more preferably mono-C 1-4 alkyl di-C 6-8 aryl monohalosilanes, etc.), triaryl monohalosilanes (tri-C 6-12 aryl monohalosilanes such as triphenyl chlorosilane) , preferably tris C 6-10 aryl monohalosilane, further preferably tris C 6-8 aryl monohalosilane, etc.). The monohalosilane compounds can be used alone or in combination of two or more. These halosilane compounds can be used individually or in combination of 2 or more types. The halosilane compound preferably contains at least one selected from dihalosilane compounds and trihalosilane compounds. Furthermore, when the halosilane compound contains a trihalosilane compound and/or a tetrahalosilane compound, a network-like (net-like or branched) polysilane compound can be generated. When a network-like polysilane compound is obtained, representative halosilanes (or combinations thereof) include: (a) alkyl trihalosilane (for example, alkyl trihalosilane alone, methyl trihalosilane and Combinations of C 2-10 alkyl trihalosilane, C 2-10 alkyl trihalosilane, etc.), (b) aryl trihalosilane (for example, aryl trihalosilane alone), (c) aryl trihalosilane Combination with dihalosilane (such as monoalkyl monoaryl dihalosilane, etc.), etc. In the halosilane compound, the ratio (usage ratio) of at least one selected from dihalosilane compounds and trihalosilane compounds may be 50 mol% or more (for example, 60 mol% or more) relative to the total halosilane compound, It is preferably 70 mol% or more (for example, 80 mol% or more), and further preferably 90 mol% or more (for example, 95 mol% or more). Furthermore, in the case of obtaining a network-like polysilane, the ratio (usage ratio) of the trihalosilane compound may be 30 mol% or more (for example, 40 mol% or more) of the total halosilane compounds, and preferably It is 50 mol% or more (for example, 60 mol% or more), more preferably, it is 70 mol% or more (for example, 75 mol% or more), especially 80 mol% or more. Furthermore, when a dihalosilane compound and a trihalosilane compound are combined, the ratio may be dihalosilane compound/trihalosilane compound (molar ratio) = 99/1 to 1/99, preferably It can be 90/10~2/98 (for example, 85/15~2/98), more preferably, it can be 80/20~3/97 (for example, 70/30~4/96), especially it can be 60/40~5 /95 (for example, 50/50~7/93), usually 50/50~5/95 (for example, 45/55~7/93, preferably 40/60~10/90, further preferably 30 /70~88/12). The halosilane compound is preferably as pure as possible. For example, a liquid halosilane compound is preferably dried using a desiccant such as calcium hydride and distilled before use, while a solid halosilane compound is preferably purified by a recrystallization method or the like before use. Furthermore, the concentration (matrix concentration) of the halosilane compound in the raw material mixture (reaction liquid) can be, for example, about 0.05 to 20 mol/l, preferably about 0.1 to 15 mol/l, and still more preferably 0.2 to 0.2 mol/l. About 5 mol/l. The method for producing a polysilane compound according to the first aspect can be applied to the method for producing a polysilane compound including the following (a) to (c) by reacting a halosilane compound. (a) A method of dehalogenating and condensing a halogenated silane compound using magnesium as a reducing agent ("magnesium reduction method", methods described in WO98/29476, Japanese Patent Application Laid-Open No. 2003-277507, etc.) (b ) A method of dehalogenating and condensing a halogenated silane compound in the presence of an alkali metal such as metallic sodium, metallic lithium, metallic potassium (preferably metallic sodium) ("Kipping method", J. Am. Chem. Soc., 110, 124 (1988), Macromolecules, 23, 3423 (1990), etc.) (c) Method for dehalogenating and condensing silane compounds by electrode reduction (J. Chem. Soc., Chem. Commun., 1161 (1990), J. Chem. Soc., Chem. Commun. 897 (1992), etc.) The method for producing the polysilane compound of the first aspect preferably involves reacting the above-mentioned halosilane compound in the presence of a nitryl compound and magnesium. Reduction method, or Kipping method in which the above-mentioned halogenated silane compound is reacted in the presence of an alkali metal such as metallic sodium, metallic lithium, metallic potassium, etc. (preferably metallic sodium), and more preferably a nitryl compound The magnesium reduction method involves reacting the above halosilane compound with the presence of magnesium. Magnesium may be in the form of metallic magnesium (magnesium element), a magnesium alloy, or a mixture thereof (hereinafter also referred to as "magnesium component"). The type of magnesium alloy is not particularly limited, and examples thereof include commonly used magnesium alloys, such as magnesium alloys containing components such as aluminum, zinc, and rare earth elements (scandium, yttrium, etc.). The shape of the magnesium component is not particularly limited as long as it does not impair the reaction of the halosilane compound. Examples thereof include powdery form (powder, granular form, etc.), strip form, cut sheet form, block form, and rod. Shaped bodies, plate-shaped bodies (flat plates, etc.), etc., particularly preferably powders, granular bodies, strip-shaped bodies, cut sheet-shaped bodies, etc. The average particle diameter of magnesium (for example, powdered magnesium) can be, for example, 1 to 10000 μm, preferably 10 to 7000 μm, and more preferably 15 to 5000 μm (for example, 20 to 3000 μm). The magnesium component and the alkali metal may be used alone or in combination of two or more types. The usage amount of the magnesium component or the alkali metal is preferably 1 to 20 equivalents, more preferably 1.1 to 14 equivalents, and even more preferably 1.2 to 10 equivalents, in terms of magnesium conversion or alkali metal conversion, relative to the halogen atom of the halosilane compound. Preferably, it is 1.2 to 5 equivalents. In addition, the usage amount of the magnesium component or the alkali metal is preferably 1 to 20 times, more preferably 1.1 to 14 times, still more preferably 1.2 to 10 times in terms of moles relative to the halosilane compound. times, preferably 1.2 to 5 times. The method for producing a polysilane compound according to the first aspect may also include the above-mentioned halogen in the presence of a nitrogenyl compound, a magnesium component or an alkali metal, and an organic metal complex represented by the following general formula (Z1). Silane compounds react. M p L p/q (Z1) (In the above general formula (Z1), M p represents a p-valent metal cation, L represents a q-valent organic ligand, and p and q each independently represent an integer of 1 or more). As the metal atoms constituting the p-valent metal cation M p , there can be enumerated: selected from iron, silver, aluminum, bismuth, cerium, cobalt, copper, dysprosium, erbium, europium, gallium, gallium, hafnium, 鈥, indium, iridium, lanthanum , gallium, manganese, molybdenum, neodymium, nickel, osmium, palladium, cadmium, chromium, platinum, rhenium, rhodium, ruthenium, samarium, scandium, tin, phosphorus, titanium, gallium, vanadium, chromium, tantalum, ytterbium, gold, mercury , tungsten, yttrium, zinc and zirconium composed of metals in the group. As p, an integer of 1 to 4 is preferable, an integer of 1 to 3 is more preferable, and 2 or 3 is even more preferable. As q, an integer of 1 to 4 is preferred, an integer of 1 to 3 is more preferred, and 1 or 2 is even more preferred. Examples of the q-valent organic ligand L include: β-diketone ligand, olefin, conjugated ketone, nitrile, amine, carboxyl ligand, carbon monoxide, phosphine, phosphinite, and phosphine Organic ligands such as acid diester (phosphonite) and phosphite (phosphite). The q-valent organic ligand L can also be a chelating ligand. As the above-mentioned organometallic complex, an organometallic complex represented by the following general formula (Z2) is preferred. [Chemical 7] (In the above general formula (Z2), M represents a group selected from iron, silver, aluminum, bismuth, cerium, cobalt, copper, dysprosium, erbium, europium, gallium, hafnium, indium, iridium, lanthanum, gallium, and manganese , molybdenum, neodymium, nickel, osmium, palladium, cadmium, platinum, rhenium, rhodium, ruthenium, samarium, scandium, tin, phosphorus, titanium, gallium, vanadium, chromium, tantalum, ytterbium, gold, mercury, tungsten, yttrium Metals in the group consisting of zinc and zirconium, R z1 independently represents a saturated hydrocarbon group, an unsaturated hydrocarbon group, an aromatic hydrocarbon group, an aralkyl group, an alkoxy group, an aryloxy group, an aralkyloxy group or an aryloxyalkyl group. , R z2 represents a hydrogen atom, a saturated hydrocarbon group, an unsaturated hydrocarbon group, an aromatic hydrocarbon group or the above-mentioned aralkyl group. p represents an integer of 1 or more). Examples of the saturated hydrocarbon group represented by R z1 and R z2 include: methyl, ethyl, propyl, isopropyl, butyl, isobutyl, second butyl, third butyl, pentyl, hexyl, Heptyl, octyl, nonyl, decyl, undecyl, dodecyl, tetradecyl, hexadecyl, octadecyl, eicosyl, behenyl, 2- Dodecyl hexadecyl, triacontyl, triacontyl, tetradecyl and other straight-chain or branched alkyl groups with 1 to 40 carbon atoms, and these halogen atoms (fluorine atoms , chlorine atom, bromine atom, iodine atom), alkoxy group (to be described below, etc.), silyl group (to be described below, etc.) and other substituents. An alkyl group substituted with one or two or more substituents, such as chlorine Propyl, 3,3,3-trifluoropropyl, 3,3,4,4,5,5,6,6,6-nonafluorohexyl, tridecafluoro-1,1,2,2-tetrahydro Octyl, heptadecafluoro-1,1,2,2-tetrahydrodecyl, 3-(heptafluoroisopropoxy)propyl, trimethylsilylmethyl, etc.; cyclopropyl, cyclobutyl, Cyclopentyl, cyclohexyl, bicycloheptyl, cyclooctyl, adamantyl and other monocyclic or bicyclic or above polycyclic cyclic saturated hydrocarbon groups with 3 to 18 carbon atoms, as well as these cyclic saturated hydrocarbon groups through alkyl groups (the above, etc.), aryl (the above, etc.) and other substituents substituted with one or more than two types, such as 4-tert-butylcyclohexyl, 4-phenylcyclohexyl, etc.; or having the above ring Alkyl groups of saturated hydrocarbon groups (the above, etc.), such as cyclohexylmethyl, adamantylethyl, etc. Examples of the unsaturated hydrocarbon group represented by R z1 and R z2 include vinyl, ethynyl, allyl, 1-propenyl, propargyl, butenyl, pentenyl, hexenyl, and octenyl. , decenyl, dodecenyl, octadecenyl and other linear or branched alkenyl and alkynyl groups with 2 to 18 carbon atoms, as well as these unsaturated hydrocarbon groups via halogen atoms (the above, etc.) , an alkoxy group (to be described below, etc.), a silyl group (to be described below, etc.), an aryl group (to be described below, etc.), one or two or more substituents are substituted, such as 2-tris Fluoromethylvinyl, 2-trifluoromethylethynyl, 3-methoxy-1-propenyl, 3-methoxy-1-propynyl, 2-trimethylsilylvinyl, 2- Trimethylsilyl ethynyl, 2-phenylethynyl, 2-phenylethynyl, etc.; cyclopropenyl, cyclohexenyl, cyclooctenyl and other cyclic unsaturated hydrocarbon groups with 3 to 18 carbon atoms; having The alkyl group of the above-mentioned cyclic unsaturated hydrocarbon group (the above-mentioned ones, etc.), for example, cyclohexenylethyl group, etc. Examples of the aromatic hydrocarbon group represented by R z1 and R z2 include phenyl, and one or two of tolyl, butylphenyl, butoxyphenyl, etc. via an alkyl group, alkoxy group, amino group, etc. Substituted phenyl groups formed by more than one substitution, etc. Examples of the aralkyl group represented by R z1 and R z2 include benzyl, phenethyl, methylphenylethyl, butylphenylethyl, phenylpropyl, methoxyphenylpropyl, etc. Examples of the aralkyl group include pyridylmethyl, pyridylethyl, and the like. Examples of the alkoxy group represented by R z1 include alkoxy groups having 1 to 18 carbon atoms such as methoxy, ethoxy, propoxy, butoxy, hexyloxy, and octyloxy groups. Examples of the aryloxy group include , examples include phenoxy, and substituted phenoxy groups such as tolyloxy and butylphenoxy groups substituted with substituents such as alkyl groups. Examples of the aralkoxy group represented by R z1 include benzyloxy group, phenethoxy group, etc., and examples of the aryloxyalkyl group include phenoxypropyl group, phenoxybutyl group, and the like. R z1 is preferably a saturated hydrocarbon group, aromatic hydrocarbon group, etc. having 1 to 30 carbon atoms, more preferably an alkyl group, phenyl group, etc. having 1 to 15 carbon atoms, and particularly preferably a methyl group. R z2 is preferably a hydrogen atom, a saturated hydrocarbon group having 1 to 18 carbon atoms, an aromatic hydrocarbon group, etc., and further preferably a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, a phenyl group, or a phenylethyl group. The radicals are preferably hydrogen atoms. Preferred examples of p are as shown above. As the metal complex, various metal complexes can be cited based on the combination of the above-mentioned metal M and R z1 and R z2 . Specific examples include: silver acetyl acetonate (I), tris (acetyl acetonate) aluminum (III), tris (2,2,6,6-tetramethyl-3,5-heptanedione) Aluminum(III), tris(2,2,6,6-tetramethyl-3,5-heptanedione)bismuth(III), tris(acetylacetone)cerium(III), bis(acetylacetone)cobalt (II), tris(acetylacetone)cobalt(III), tris(1,3-diphenyl-1,3-propanedione)cobalt(III), tris(3-methyl-2,4-pentane) Dione)cobalt(III), tris(3-phenyl-2,4-pentanedione)cobalt(III), tris(3-(1-phenylethyl)-2,4-pentanedione)cobalt (III), bis(benzoylacetone)cobalt(II), bis(hexafluoroacetylacetone)cobalt(II), tris(2,2,6,6-tetramethyl-3,5-heptanedione) Cobalt(III), bis(acetylacetone)copper(II), bis(2,2,6,6-tetramethyl-3,5-heptanedione)copper(II), tris(2,2,4 ,6,6-pentamethyl-3,5-heptanedione)cobalt(III), tris(2,2,6,6-tetramethyl-4-(1-phenylethyl)-3,5 -Heptanedione)cobalt(III), tris(2,2,6,6-tetramethyl-4-phenyl-3,5-heptanedione)cobalt(III), bis(hexafluoroacetylacetone) Copper(II), bis(trifluoroacetylacetone)copper(II), tris(acetylacetone)dysprosium(III), tris(acetylacetone)erbium(III), tris(2,2,6,6, -Tetramethyl-3,5-heptanedione)erbium(III), tris(acetylacetone)europium(III), bis(acetylacetone)iron(II), tris(acetylacetone)iron(III) , tris(1,3-diphenyl-1,3-propanedione)iron(III), tris(3-methyl-2,4-pentanedione)iron(III), tris(3-phenyl) -2,4-pentanedione)iron(III), tris(3-(1-phenylethyl)-2,4-pentanedione)iron(III), tris(2,2,6,6- Tetramethyl-3,5-heptanedione)iron(III), tris(2,2,4,6,6-pentamethyl-3,5-heptanedione)iron(III), tris(2, 2,6,6-Tetramethyl-4-(1-phenylethyl)-3,5-heptanedione)iron(III), tris(2,2,6,6-tetramethyl-4- Phenyl-3,5-heptanedione) iron (III), tetrakis (acetyl acetone) hafnium (IV), tris (acetyl acetone) gallium (III), tris (acetyl acetone) gallium (III), tris (acetyl acetone) indium (III), tris (acetyl acetone) iridium (III), tris (acetyl acetone) lanthanum (III), tris (acetyl acetone) iridium (III) (III), Bis(acetyl acetone)manganese(II), Tris(acetyl acetone)manganese(III), Bis(hexafluoroacetyl acetone)manganese(II), Bis(acetyl acetone) dioxymolybdenum (IV), tris(acetyl acetone) neodymium(III), tris(2,2,6,6-tetramethyl-3,5-heptanedione) neodymium(III), bis(acetyl acetone) nickel( II), bis(2,2,6,6-tetramethyl-3,5-heptanedione)nickel(II), bis(hexafluoroacetylacetone)nickel(II), bis(1,3-di Phenyl-1,3-propanedione)nickel(II), bis(3-methyl-2,4-pentanedione)nickel(II), bis(3-phenyl-2,4-pentanedione) ) Nickel(II), bis(3-(1-phenylethyl)-2,4-pentanedione)nickel(II), bis(2,2,4,6,6-pentamethyl-3, 5-heptanedione)nickel(II), bis(2,2,6,6-tetramethyl-4-(1-phenylethyl)-3,5-heptanedione)nickel(II), bis (2,2,6,6-Tetramethyl-4-phenyl-3,5-heptanedione)nickel(II), bis(acetylacetone)palladium(II), bis(hexafluoroacetylacetone) Palladium(II), bis(1,3-diphenyl-1,3-propanedione)palladium(II), bis(3-methyl-2,4-pentanedione)palladium(II), bis( 3-phenyl-2,4-pentanedione)palladium(II), bis(3-(1-phenylethyl)-2,4-pentanedione)palladium(II), bis(2,2, 4,6,6-pentamethyl-3,5-heptanedione)palladium(II), bis(2,2,6,6-tetramethyl-4-(1-phenylethyl)-3, 5-heptanedione)palladium(II), bis(2,2,6,6-tetramethyl-4-phenyl-3,5-heptanedione)palladium(II), tris(acetylacetone)cadmium (III), tris(acetyl acetone) chelate(III), tris(hexafluoroacetyl acetone) chelate(III), bis(acetyl acetone) platinum(II), tris(acetyl acetone) rhodium(III), Tris(acetyl acetone)ruthenium(III), tris(acetyl acetone)scandium(III), tris(hexafluoroacetyl acetone)scandium(III), tris(2,2,6,6-tetramethyl-3 , 5-heptanedione) scandium (III), tris (acetyl acetone) samarium (III), tris (2,2,6,6-tetramethyl-3,5-heptanedione) samarium (III), Bis(acetyl acetone)tin(II), tris(acetyl acetone)tin(III), tris(2,2,6,6-tetramethyl-3,5-heptanedione)trian(III), tris(acetyl acetone)tin(III) (2,2,6,6-tetramethyl-3,5-heptanedione)quinol(III), tris(acetylacetone)vanadium(III), tris(acetylacetone)yttrium(III), tris( Hexafluoroacetyl acetone) yttrium (III), tris (2,2,6,6-tetramethyl-3,5-heptanedione) yttrium (III), bis (acetyl acetone) zinc (II), bis(acetyl acetone) (Hexafluoroacetyl acetone) zinc (II), bis (2,2,6,6-tetramethyl-3,5-heptanedione) zinc (II), tetrakis (acetyl acetone) zirconium (IV), Tetrakis (2,2,6,6-tetramethyl-3,5-heptanedione) zirconium (IV), tetrakis (trifluoroacetyl acetone) zirconium (IV), etc. These organic metal complexes can be used individually or in combination of 2 or more types. As the organometallic complex, a metal complex synthesized in advance can be used, or one produced in a system can be used. Relative to the halosilane compound, the usage amount of the above-mentioned organometallic complex is preferably in the range of 0.001 to 10 mol times, more preferably in the range of 0.001 to 1 mol times, and particularly preferably in the range of 0.001 to 0.1 mol times. . (Metal Halide) The method for producing a polysilane compound according to the first aspect may also react the above-mentioned halosilane compound in the presence of a nitrosilyl compound, magnesium or an alkali metal, and a further metal halide. Examples of metal halides include: polyvalent metal halides, such as transition metals (e.g., samarium and other periodic table group 3A elements, periodic table group 4A elements such as titanium, periodic table group 5A elements such as vanadium, iron, nickel, cobalt, palladium Halides of metals such as elements from group 8 of the periodic table, elements from group 1B of the periodic table such as copper, elements from group 2B of the periodic table such as zinc, etc.), metals from group 3B of the periodic table (aluminum, etc.), metals from group 4B of the periodic table (tin, etc.) ( chloride, bromide or iodide, etc.). The valence of the above-mentioned metals constituting the metal halide is not particularly limited, but is preferably 2 to 4 valences, especially 2 or 3 valences. These metal halides can be used alone or in combination of two or more. The metal halide is preferably a chloride or bromide of at least one metal selected from the group consisting of iron, aluminum, zinc, copper, tin, nickel, cobalt, vanadium, titanium, palladium, samarium, and the like. Examples of such metal halides include chlorides (ferric chlorides such as FeCl 2 and FeCl 3 ; AlCl 3 , ZnCl 2 , SnCl 2 , CoCl 2 , VCl 2 , TiCl 4 , PdCl 2 , SmCl 2 , etc.), Bromide (iron bromide such as FeBr 2 and FeBr 3 , etc.), iodide (SmI 2, etc.), etc. Among these metal halides, chlorides (such as ferric chlorides such as iron (II) chloride and iron (III) chloride, zinc chloride, etc.) and bromides are preferred. Ferric chloride and/or zinc chloride are usually used, especially zinc chloride and the like. The usage amount of the metal halide is preferably in the range of 0.001 to 10 mol times, more preferably in the range of 0.001 to 1 mol times, and particularly preferably in the range of 0.001 to 0.1 mol times relative to the halosilane compound. In addition, the concentration of the metal halide in the solvent (reaction liquid) is usually about 0.001 to 6 mol/L, preferably about 0.005 to 4 mol/L, and further preferably about 0.01 to 3 mol/L. (Aprotic solvent) In the method for producing a polysilane compound according to the first aspect, the reaction of the halosilane compound in the presence of the nitrosilyl compound is preferably carried out in a solvent (reaction solvent), and more preferably in an aprotic solvent in a solvent. Aprotic solvents as solvents (reaction solvents) include, for example, ethers (1,4-dioxane, tetrahydrofuran, tetrahydropyran, diethyl ether, diisopropyl ether, 1,2-dimethoxyethyl Alkanes, bis(2-methoxyethyl) ether and other cyclic or chain C 4-6 ethers), carbonates (propylene carbonate, etc.), nitriles (acetonitrile, benzonitrile, etc.), amide Hydrocarbons (dimethylformamide, dimethylacetamide, etc.), styrenes (dimethylsyanide, etc.), aromatic hydrocarbons (benzene, toluene, xylene, etc.), aliphatic hydrocarbons (e.g. Hexane, cyclohexane, octane, cyclooctane and other chain or cyclic hydrocarbons), etc. These aprotic solvents can be used alone or in combination of two or more to form a mixed solvent. Among these solvents, it is preferable to use at least polar solvents [such as ethers [such as tetrahydrofuran, 1,2-dimethoxyethane, bis(2-methoxyethyl) ether, 1,4-dioxane etc. (especially tetrahydrofuran, 1,2-dimethoxyethane)]. A polar solvent may be used individually or in combination of 2 or more types, and a polar solvent and a nonpolar solvent may be combined. The method for producing a polysilane compound according to the first aspect may further include contacting the liquid after the reaction (reaction liquid) with an aqueous solution containing at least one selected from the group consisting of a base and an acid. Purification, thereby obtaining the above-mentioned polysilane compound. By contacting the above-mentioned polysilane compound with an alkali or acid for purification treatment, inclusions such as halogen atoms (for example, halide ions (chloride ions, etc.), Si-Cl remaining in the polysilane compound) can be removed, and inclusions such as Promoting the low molecular weight of the polysilane compound can improve the solvent solubility of the polysilane compound. In addition, the acid may also function as a quencher for the reaction of the halosilane compound. Furthermore, by bringing the above-mentioned polysilane compound into contact with a metal halide described below and performing a purification treatment, the remaining metal atoms (for example, Mg, Zn, etc.) in the polysilane compound can be removed. The treatment temperature is preferably -50°C to about the boiling point of the solvent, and more preferably room temperature to 100°C. In addition, as the base used, various compounds can be used as long as they are alkaline. For example, sodium hydroxide, potassium hydroxide, barium hydroxide, ammonia, tetramethylammonium hydroxide, sodium carbonate, carbonic acid can be used. Inorganic bases such as sodium hydride, potassium carbonate, lithium hydride, sodium hydride, potassium hydride, calcium hydride; alkyl metals such as methyllithium, n-butyllithium, methylmagnesium chloride, ethylmagnesium bromide; including Cr , Ga, Fe(Fe(II), Fe(III)), Cd, Co, Ni, Sn, Pb, Cu(Cu(II), Cu(I)), Ag, Pd, Pt, Au and other metals (or Metal ions) metal halides; alkoxides such as sodium methoxide, sodium ethoxide, potassium tert-butoxide; triethylamine, diisopropylethylamine, N,N-dimethylaniline, pyridine, 4 -Dimethylaminopyridine, diazabicycloundecene (DBU) and other organic bases. Various acids can be used, and inorganic acids such as hydrogen chloride can be used. Here, various solvents can be used for the alkali or acid treatment. For example, one or more solvents selected from the following solvents can be used: hydrocarbon solvents such as benzene, toluene, and xylene, propylene glycol monomethyl ether, and propylene glycol monoethyl ether. Diol solvents such as diethyl ether, diisopropyl ether, dibutyl ether, tetrahydrofuran, 1,4-dioxane and other ether solvents, acetone, methyl ethyl ketone, methyl isobutyl ketone, methyl pentyl ketone, etc. Ketone solvents such as ketone, cyclopentanone, and cyclohexanone, and alcohol solvents such as ethanol, isopropanol, butanol, etc. In addition, an acetate compound containing a cyclic skeleton can also be preferably used as a solvent used in the above-mentioned treatment under alkaline conditions. The acetate compound containing a cyclic skeleton is not particularly limited as long as it is an acetate solvent having a cyclic skeleton that does not impair the effects of the present invention. Preferably, it is acetic acid represented by the following formula (S1). Cycloalkyl esters. [Chemical 8] (In the formula (S1), R s1 is each independently an alkyl group, p is an integer from 1 to 6, and q is an integer from 0 to (p+1)). Examples of the alkyl group represented by R s1 include alkyl groups having 1 to 3 carbon atoms, and examples include methyl, ethyl, n-propyl, and isopropyl. Specific examples of the cycloalkyl acetate represented by formula (S1) include cyclopropyl acetate, cyclobutyl acetate, cyclopentyl acetate, cyclohexyl acetate, cycloheptyl acetate, and cyclooctyl acetate. Among these, cyclohexyl acetate is preferred from the viewpoint of ease of acquisition. The reaction of the above halosilane compound can also be quenched by acid treatment. Various acids can be used, and inorganic acids such as hydrogen chloride can be used. According to the manufacturing method of the polysilane compound of the first aspect, the polysilane compound can be obtained with a yield of 50% or more, preferably a yield of 70% or more. <Polysilane compound> According to the method for producing a polysiloxane compound according to the first aspect, as described above, the formation of side reactants such as siloxane bonds and silanol groups can be suppressed, thereby reducing the silicon content in the polysiloxane compound. The amount of oxyalkane bonds (Si-O) present. According to the manufacturing method of the polysilane compound of the first aspect, the ratio of the following (2X) to the sum of the peak areas of the following (1X) and (2X), that is, the ratio represented by the following formula (3X) can be Set to 0.4 or less. The peak areas of the above (1X) and (2X) are the polysilane compounds with maximum detection in the bond energy range of 99 eV and above and 104 eV and below as measured by X-ray photoelectron spectroscopy. The spectrum of the peak height is obtained by separating the peaks. The ratio is preferably 0.35 or less, more preferably 0.3 or less, further preferably 0.2 or less, particularly preferably 0.1 or less, and most preferably 0.05 or less. (1X)・・・The area of the peak with the maximum peak height in the range of bond energy above 99.0 eV and below 99.5 eV (2X)・・・The maximum peak height in the range of bond energy above 100 eV and below 104 eV The area of the peak of the peak height (3X)・・・(2X)/[(1X)+(2X)] Measure the intensity of the peak (Intensity). Regarding the above (1X) and (2X), perform it within each bond energy range. The area of the peak obtained by separating the peaks can be used to determine the content ratio of Si-O and Si-C based on (2X), the area of the peak with the maximum peak height in the range of bond energy 100 eV or more and 104 eV or less. In addition, the content ratio of Si-Si can be known from the area of the peak with the maximum peak height in the range of bond energy 99.0 eV or more and 99.5 eV or less (1X). It is considered that when the polysilane compound contains not only Si-C but also Si-O, two peaks with the maximum peak height overlap after peak separation in the range of 100 eV or more and 104 eV or less, but the second state Such a polysilane compound is preferably in the range of 100 eV or more and 104 eV or less. After the peak separation, only one peak with the maximum peak height appears. Since it is ideal that only one peak appears, it does not substantially contain Si-O bond. Furthermore, in the case where the previous polysilane compound contains not only Si-C but also Si-O, two peaks with the maximum peak height overlap and appear after the peak separation in the range of 100 eV or more and 104 eV or less, so The area ratio becomes larger, so the ratio expressed by the above formula exceeds 0.4. The polysilane compound of the second aspect is a polysilane compound produced by the production method of the first aspect described above. Examples of the polysilane compound of the second aspect produced by the production method of the first aspect include polysilane compounds having 3 to 40 Si atoms, and preferably polysilane compounds having 5 to 30 Si atoms. The polysilane compound is preferably at least one selected from the group consisting of polysilane compounds represented by the following general formulas (T-1) and (T-2). (R t10 R t11 R t12 Si) t1 (R t13 R t14 Si) t2 (R t15 Si) t3 (Si) t4 (T-1) (In the above general formula, R t10 , R t11 , R t12 , R t13 , R t14 and R t15 are independently hydrogen atoms, hydroxyl groups or organic groups. t1, t2, t3 and t4 are independently molar fractions, which are t1+t2+t3+t4=1, 0≦t1≦1, 0≦t2≦1 , 0≦t3≦1 and 0≦t4≦1). [Chemical 9] (In the above general formula (T-2), R t16 and R t17 each independently represent a hydrogen atom, a hydroxyl group or an organic group. U represents an integer of 3 to 20) Examples of the organic groups represented by R t10 to R t17 include The same specific examples and preferred examples as described above as the organic group represented by R. As the organic group represented by R t10 to R t17 , for example, any organic group can be introduced by the method described in paragraph 0031 of Japanese Patent Application Laid-Open No. 2003-261681. The mass average molecular weight (Mw) of the polysilane compound is not particularly limited as long as it does not hinder the object of the present invention, but is preferably 500 to 10,000, more preferably 1,000 to 7,000, and even more preferably 2,000 to 5,000. In this specification, the mass average molecular weight (Mw) is a value measured in polystyrene conversion by gel permeation chromatography (GPC). <Composition> The composition of the third aspect is a composition containing the polysilane compound of the second aspect produced by the production method of the first aspect. Furthermore, from the viewpoint of suppressing the generation of outgassing and microcracks, the composition of the third aspect preferably further contains the above-mentioned nitrogenyl compound. The composition of the third aspect further contains the above-mentioned nitrate compound. There is no particular limitation as long as the effect of the present invention is not impaired. The method of making the above-mentioned nitrate compound used in the production method of the first aspect can be used. This can be achieved by leaving the nitryl compound remaining in the composition of the third aspect, or by adding the above-mentioned nitryl compound to the composition containing the polysilane compound of the second aspect. The above-mentioned nitrogenyl compound may be used alone or in combination of two or more types. The content of the nitroxyl compound in the composition of the third aspect is preferably 0.005 mass% or more, more preferably 0.009 mass% or more, relative to the total mass of components other than the solvent in the composition of the third aspect. Furthermore, the content of the nitroxyl compound in the composition of the third aspect is preferably 2 mass% or less, more preferably 1 mass%, relative to the total mass of components other than the solvent in the composition of the third aspect. the following. Furthermore, the composition of the third aspect may or may not be a thermosetting composition. In addition, the composition of the third aspect may be a radiation-sensitive composition, or may not be a radiation-sensitive composition. It may be a positive-type radiation-sensitive composition that dissolves the developer by exposure, or it may be a radiation-sensitive composition. Negative radiation-sensitive compositions that are insolubilized by exposure to developing solutions. Examples of the light source of the above-mentioned radiation include active energy rays such as ultraviolet rays and excimer laser light; light sources that emit ultraviolet rays such as high-pressure mercury lamps, ultra-high-pressure mercury lamps, xenon lamps, and carbon arc lamps. (Solvent) The composition of the third aspect preferably contains a solvent. Examples of the solvent include the above-mentioned cyclic skeleton-containing acetate compounds such as cycloalkyl acetate represented by the above formula (S1); alcohols such as methanol, ethanol, propanol, and n-butanol; ethylene glycol, dihydrogen Polyols such as ethylene glycol, propylene glycol, and dipropylene glycol; Ketones such as acetone, methyl ethyl ketone, cyclohexanone, methyl n-amyl ketone, methyl isopentyl ketone, and 2-heptanone; γ-butanone Lactones and other organic solvents containing lactone rings; compounds with ester bonds such as ethylene glycol monoacetate, diethylene glycol monoacetate, propylene glycol monoacetate, or dipropylene glycol monoacetate, the above-mentioned polyvalent Derivatives of alcohols or polyols such as monomethyl ether, monoethyl ether, monopropyl ether, monobutyl ether and other monoalkyl ethers of the above-mentioned compounds with ester bonds or compounds with ether bonds such as monophenyl ether; such as Methane-like cyclic ethers, or methyl lactate, ethyl lactate, methyl acetate, ethyl acetate, butyl acetate, methyl pyruvate, ethyl pyruvate, methyl methoxypropionate, ethoxy Esters such as ethyl propionate; anisole, ethyl benzyl ether, cresolyl methyl ether, diphenyl ether, dibenzyl ether, phenylethyl ether, butyl phenyl ether, ethyl benzene, dibenzoyl ether, etc. Aromatic organic solvents such as ethylbenzene, amylbenzene, cumene, toluene, xylene, cumene, and mesitylene; N,N,N',N'-tetramethylurea, N, N,2-trimethylpropionamide, N,N-dimethylacetamide, N,N-dimethylformamide, N,N-diethylacetamide, N,N-diethyl Nitrogen-containing organic solvents such as methylformamide, 1,3-dimethyl-2-imidazolidinone, N-methylpyrrolidone, N-ethylpyrrolidone, etc. Among them, preferred are cycloalkyl acetate represented by the above formula (S1), propylene glycol monomethyl ether acetate (PGMEA), propylene glycol monomethyl ether (PGME), N,N,N',N'-tetramethyl urea (TMU), and butanol, more preferably cyclopropyl acetate, cyclobutyl acetate, cyclopentyl acetate, cyclohexyl acetate, cycloheptyl acetate or cyclooctyl acetate, further preferably cyclohexyl acetate ester. These solvents can also be used in combination of 2 or more types. Regarding the composition of the third aspect, in terms of suppressing microcracking, the moisture content of the composition of the third aspect is preferably 1.0 mass% or less, more preferably 0.5 mass% or less, and still more preferably 0.3 mass%. % or less, preferably less than 0.3% by mass. In addition, the water content in the solvent can be measured by the Karnofsky method. The moisture of the composition of the third aspect comes from the solvent in most cases. Therefore, it is preferable to dehydrate the solvent so that the water content of the composition of the third aspect becomes the above-mentioned amount. The amount of solvent used is not particularly limited as long as it does not hinder the purpose of the present invention. In terms of film-forming properties, the solvent is used so that the solid content concentration of the composition of the third aspect is preferably 1 to 50 mass %, more preferably 10 to 40 mass %. (Other components) The composition of the third aspect may also contain polysilane other than the polysilane compound of the second aspect. For example, in terms of improving chemical resistance, polysilane compounds with a relatively high Mw (hereinafter also referred to as "high molecular weight polysilane") can be used. The Mw of the high molecular weight polysilane is, for example, more than 5,000 and 100,000 or less. , preferably about 6,000 to 60,000. In order to improve processability, the composition of the third aspect may also contain a silicon-containing resin other than the polysilane compound. Examples of silicon-containing resins other than polysiloxane compounds include polysiloxane resins or polysiloxane-polysiloxane resins having a polysiloxane structure (I-1) and a polysiloxane structure (I-2). The Mw of the silicon-containing resin other than the polysilane compound is preferably 500 to 20,000, more preferably 1,000 to 10,000, and still more preferably 2,000 to 8,000. Furthermore, the above-mentioned polysilane-polysiloxane resin can be produced, for example, by treating the polysilane compound of the second aspect in a solvent under the above-mentioned alkaline conditions, and then mixing it with a substance selected from the following: At least one of the group consisting of at least one silicon selected from the group consisting of silicon compounds represented by the following general formulas (A-1-1) to (A-1-4) undergoes a hydrolysis condensation reaction: compounds and hydrolysates, condensates and hydrolysis condensates of the above-mentioned silicon compounds. R 1 R 2 R 3 SiX 1 (A-1-1) R 4 R 5 SiX 2 2 (A-1-2) R 6 SiX 3 3 (A-1-3) SiX 4 4 (A-1-4 ) (In the above general formula, X 1 to X 4 are each independently a hydrolyzable group, R 1 , R 2 , R 3 , R 4 , R 5 and R 6 are each independently a hydrogen atom or an organic group. The hydrogen atoms in can also be replaced by halogen atoms). Examples of the hydrolyzable group represented by X 1 to X 4 include an alkoxy group, a halogen atom or an isocyanato group (NCO), and an alkoxy group is preferred. Examples of the alkoxy group include alkoxy groups having 1 to 6 carbon atoms. Specific examples include: methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n-butoxy group, and third group. Butoxy, pentoxy, etc. Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom or an iodine atom, and a chlorine atom is preferred. Examples of the organic groups represented by R 1 to R 6 include organic groups having 1 to 30 carbon atoms. Examples include alkyl groups [methyl, ethyl, n-propyl, isopropyl, n-butyl and tert-butyl]. alkyl groups with 1 to 10 carbon atoms (preferably alkyl groups with 1 to 6 carbon atoms, especially alkyl groups with 1 to 4 carbon atoms, etc.)], cycloalkyl groups (cyclohexyl, etc. with 5 carbon atoms) ~8 cycloalkyl groups, especially cycloalkyl groups with 5 to 6 carbon atoms), alkenyl groups [vinyl, propenyl, butenyl and other alkenyl groups with 2 to 10 carbon atoms (preferably cycloalkyl groups with 5 to 6 carbon atoms) Alkenyl groups with 2 to 6 carbon atoms, especially alkenyl groups with 2 to 4 carbon atoms, etc.)], cycloalkenyl groups [1-cyclopentenyl, 1-cyclohexenyl, etc. cycloalkenyl groups with 5 to 10 carbon atoms ( Preferred are cycloalkenyl groups with 5 to 8 carbon atoms, especially cycloalkenyl groups with 5 to 7 carbon atoms, etc.)], aryl groups (aryl groups with 6 to 10 carbon atoms, such as phenyl and naphthyl groups, etc.), Aralkyl [benzyl, phenethyl, etc. C 6-10 aryl-C 1-6 alkyl (C 6-10 aryl-C 1-4 alkyl, etc.)], amino group, N-substituted amino group (N-mono- or disubstituted amino groups substituted by the above-mentioned alkyl groups, cycloalkyl groups, aryl groups, aralkyl groups, acyl groups, etc.), etc. The alkyl group, cycloalkyl group, aryl group or aryl group constituting the aralkyl group may have one or a plurality of substituents. Examples of such substituents include the alkyl groups exemplified above (especially alkyl groups having 1 to 6 carbon atoms, etc.), the alkoxy groups exemplified above, and the like. Examples of organic groups having such substituents include C 1-6 alkyl-C 6-10 aryl groups such as tolyl, xylyl, ethylphenyl, and methylnaphthyl groups (preferably mono, Two or three C 1-4 alkyl-C 6-10 aryl, especially mono or two C 1-4 alkylphenyl, etc.); methoxyphenyl, ethoxyphenyl, methoxynaphthyl etc. C 1-10 alkoxy C 6-10 aryl group (preferably C 1-6 alkoxy C 6-10 aryl group, especially C 1-4 alkoxy phenyl group, etc.), etc. Furthermore, the silicon compound represented by the general formula (A-1-3) may be a silicon compound represented by the following formula (A-3). HOOC-UZY-Si(OR a ) 3 (A-3) (In the above general formula (A-3), U represents that the two ring carbon atoms are removed from the aromatic ring group or the alicyclic group. A divalent group generated from a hydrogen atom, or an alkylene group that may have a branched chain and/or a double bond, Z represents -NHCO- or -CONH-, Y represents a single bond, an alkylene group, an aryl group or -R Y1 -NH-R Y2 - (in the formula, R Y1 and R Y2 each independently represent an alkylene group), R a each independently represents a hydrocarbon group. Among them, U and/or Y may have a group selected from (meth)acrylic acid group, At least one of the group consisting of vinyl and epoxy groups serves as a substituent). Examples of the aromatic ring in U include an aromatic ring having 6 to 10 carbon atoms (for example, benzene ring, naphthalene ring, tolyl group, xylyl group, etc.) which may have a substituent having 1 to 2 carbon atoms. Examples of the alicyclic ring in U include alicyclic rings having 5 to 10 carbon atoms (for example, monocyclic cycloalkyl groups, monocyclic cycloalkenyl groups, bicyclic alkyl groups, cage alkyl groups, etc., specifically , such as cyclopentane ring, cyclohexane ring, cycloheptane ring, cyclooctane ring, cyclononane ring, cyclodecane ring, dicyclopentadiene ring, nor𦯉ane ring, nor𦯉ene ring, Cubane ring, basalane ring, etc.). Examples of the alkylene group in U mentioned above that may have a branched chain and/or a double bond include an alkylene group having 1 to 4 carbon atoms. Examples include: methylene, ethylene, propylene, and vinylidene. , (2-octenyl)ethylidene, (2,4,6-trimethyl-2-nonenyl)ethylidene and other alkylene groups, alkylene groups with double bonds or carbon numbers from 1 to 9 branched alkylene group. Examples of the alkylene group in Y include an alkylene group having 1 to 6 carbon atoms. Examples thereof include methylene, ethylene, propylene, butylene, and the like. The aryl group in Y above is preferably one having 6 to 10 carbon atoms. Examples of such aryl groups include phenylene groups (ortho, meta or para, etc.), naphthylene groups (1,4-, 1,5-, 2,6-, etc.). Specific examples of -R Y1 -NH-R Y2 - among the above Y include: -CH 2 -NH-CH 2 -, -(CH 2 ) 2 -NH-(CH 2 ) 2 -, - (CH 2 ) 3 -NH-(CH 2 ) 3 -, -CH 2 -NH-(CH 2 ) 2 -, -(CH 2 ) 2 -NH-CH 2 -, -(CH 2 ) 2 -NH- (CH 2 ) 3 -, -(CH 2 ) 3 -NH-(CH 2 ) 2 -, -CH 2 -NH-(CH 2 ) 3 -, -(CH 2 ) 3 -NH-CH 2 -, etc. Examples of the polysiloxane resin include at least one selected from the group consisting of silicon compounds represented by the above general formulas (A-1-1) to (A-1-4). Hydrolysates, condensates and hydrolysis condensates of at least one silicon compound in the group. Resins other than the polysilane compound of the first aspect (hereinafter referred to as other Si resins) may be used alone or in combination of a plurality of types. When the above-mentioned other Si resin is included, the blending ratio (mass ratio) of the polysilane compound of the first aspect and the other Si resin in the composition of the third aspect may be appropriately changed depending on the use, for example 1:99~99:1, preferably 10:90~90:10. The composition of the third aspect may also include an organic compound having two or more hydroxyl groups or carboxyl groups in one molecule as a dissolution accelerator for an alkaline aqueous solution or solution. Examples of such organic compounds include the compounds shown below. [Chemical 10] [Chemical 11] [Chemical 12] Furthermore, E in the above structural formula is a hydrogen atom, a methyl group or a hydroxymethyl group, R 15 is a methylene group, a carbonyl group or a phenyl group, and n is an integer of 3 or more and less than 100. na represents a natural number from 1 to 3, nb represents a natural number above 1, nc represents a natural number from 2 to 4, and nd represents a natural number above 2. Enantiomers or diastereomers may exist in the above structural formulas, and each structural formula represents all of these stereoisomers representatively. These stereoisomers can be used individually or in the form of mixtures. The above-mentioned organic compounds can be used individually by 1 type or in combination of 2 or more types. The usage amount is preferably 0.001 to 50% by mass, more preferably 0.01 to 30% by mass relative to the total amount of solid components excluding the solvent of the composition of the third aspect. By adding such an organic compound, when the film of the resin composition is removed during processing in the manufacturing process or when the resin composition is given photolithographic properties, the disintegration of the film formed by using the above composition Speed up and peeling becomes easy. In order to improve stability, the composition of the third aspect may also contain a monovalent or divalent or higher organic acid with a carbon number of 1 to 30. Examples of acids to be added at this time include formic acid, acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, enanthic acid, caprylic acid, nonanoic acid, capric acid, oleic acid, stearic acid, linoleic acid, linoleic acid, Sesoleic acid, benzoic acid, phthalic acid, isophthalic acid, terephthalic acid, salicylic acid, trifluoroacetic acid, monochloroacetic acid, dichloroacetic acid, trichloroacetic acid, oxalic acid, malonic acid, methylpropanol Diacid, ethylmalonic acid, propylmalonic acid, butylmalonic acid, dimethylmalonic acid, diethylmalonic acid, succinic acid, methylsuccinic acid, glutaric acid, adipic acid , itaconic acid, maleic acid, fumaric acid, citraconic acid, citric acid, etc. Among these, oxalic acid, maleic acid, formic acid, acetic acid, propionic acid, citric acid, etc. are particularly preferred. In addition, in order to maintain stability, two or more types of acids may be mixed and used. It is preferable to prepare the above-mentioned organic compound in such a way that the pH value of the composition is converted to 0≦pH≦7, more preferably 0.3≦pH≦6.5, and still more preferably 0.5≦pH≦6. acid. Furthermore, the composition of the third aspect may also contain a monovalent or divalent or higher alcohol or ether compound having a cyclic ether as a substituent as a stabilizer. Specific examples of stabilizers that can be used include those described in paragraphs (0180) to (0184) of Japanese Patent Application Laid-Open No. 2009-126940. The composition of the third aspect may also contain water. By adding water, lithographic performance is improved. The content of water in the solvent component of the composition of the third aspect is preferably more than 0% by mass and less than 50% by mass, more preferably 0.3 to 30% by mass, and still more preferably 0.5 to 20% by mass. The composition of the third aspect may also include a photoacid generator. Specific examples of photoacid generators that can be used include those described in paragraphs (0160) to (0179) of Japanese Patent Application Laid-Open No. 2009-126940. The composition of the third aspect may also contain a surfactant if necessary. Specific examples of surfactants that can be used include those described in paragraph (0185) of Japanese Patent Application Laid-Open No. 2009-126940. The composition of the third aspect may also include a thermal cross-linking accelerator. Specific examples of usable thermal cross-linking accelerators include those described in Japanese Patent Application Laid-Open No. 2007-302873. Examples of the thermal crosslinking accelerator include phosphate compounds and borate compounds. Examples of such phosphate compounds include ammonium salts such as ammonium phosphate, tetramethylammonium phosphate, and tetrabutylammonium phosphate; and sulfonium salts such as triphenylsulfonium phosphate. Examples of such borate compounds include ammonium salts such as ammonium borate, tetramethylammonium borate, and tetrabutylammonium borate; and sulfonium salts such as triphenylsulfonate borate. In addition, the said thermal crosslinking accelerator can be used individually by 1 type or in combination of 2 or more types. Moreover, the added amount of the thermal crosslinking accelerator is preferably 0.01 to 50 mass%, more preferably 0.1 to 40 mass%, relative to the total solid content of the composition excluding the solvent. The composition of the third aspect may also contain various other hardeners. Examples of the hardening agent include: Brnoster acids; imidazoles; organic amines; organic phosphorus compounds and their complexes; organic amine complexes of Lewis acids; amidines; alkali components generated by light or heat Hardener, etc. (Applications) The composition of the third aspect can be used to form protective films or interlayer films that protect various substrates (including films containing metal oxides and films containing various metals). Examples of the above various substrates include semiconductor substrates, liquid crystal displays, organic light-emitting displays (OLED), electrophoretic displays (electronic paper), touch panels, color filters, backlight devices and other display material substrates (including metal oxide-containing substrates). Films, films containing various metals), solar cell substrates (including films containing metal oxides, films containing various metals), substrates of photoelectric conversion elements such as photo sensors (including films containing metal oxides, films containing Films of various metals), substrates of photovoltaic components (including films containing metal oxides, films containing various metals). <Cured product and substrate provided with the above-mentioned cured product> The cured product of the fourth aspect is a cured product of the composition of the third aspect. The substrate of the fifth aspect is a substrate having the hardened material of the fourth aspect. The method of forming the hardened material of the fourth aspect is not particularly limited as long as the effect of the present invention is not impaired. Examples include the following methods: using a roll coater, a reverse coater, or a rod coater as necessary. Apply to any substrate using a contact transfer coating device such as a machine or a non-contact coating device such as a rotator (rotary coating device) or curtain coater. The substrate is not particularly limited, and examples thereof include: glass substrate, quartz substrate, transparent or translucent resin substrate (such as polycarbonate, polyethylene terephthalate, polyether styrene, polyimide, polyimide, etc.) Heat-resistant materials such as amide, amide, and imine), metals, silicon substrates, etc. It can also be used as substrates for semiconductor substrates, liquid crystal displays, organic light-emitting displays (OLED), electrophoretic displays (electronic paper), touch panels, color filters, backlight devices and other display materials (including films containing metal oxides, films containing various Metal films), solar cell substrates (including films containing metal oxides, films containing various metals), substrates of photoelectric conversion elements such as photo sensors (including films containing metal oxides, films containing various metals) , Optoelectronic component substrates (including films containing metal oxides, films containing various metals) and other various substrates. The thickness of the substrate is not particularly limited, and can be appropriately selected depending on the usage of the pattern forming body. The coating film after the above coating is preferably dried (pre-baked). The drying method is not particularly limited, and examples include: (1) drying for 60 to 120 seconds using a heating plate at a temperature of 80 to 120°C, preferably 90 to 100°C; (2) leaving it at room temperature for several seconds Methods that can take hours to several days; (3) methods of placing it in a hot air heater or infrared heater for tens of minutes to several hours to remove the solvent, etc. The dried coating film may be exposed by irradiation with active energy rays such as ultraviolet rays or excimer laser light, or may not be exposed. The amount of energy rays to be irradiated is not particularly limited, but may be about 30 to 2000 mJ/cm 2 , for example. The exposure step can also be performed in place of or together with the baking step described below. Moreover, in the exposure step, for example, the formed coating film may be selectively exposed. When the selective exposure step is included, a development step may also be included. Furthermore, for example, the formed coating film may be subjected to imprint lithography. In the case of imprint lithography, for example, a method may include the following steps: a step of applying the composition of the third aspect on a substrate to form a coating film; pressing the coating film to form a specific pattern The steps of molding the concave-convex structure; and the steps of exposure. The step of exposing is performed on the coating film containing the composition of the third aspect while pressing the mold against the coating film. After curing by exposure, the mold is peeled off to obtain a cured product of the fourth aspect patterned according to the shape of the mold. In order to improve the physical properties of the film, it is preferable that the coating film after drying, exposure or development is baked (post-baked). The baking temperature also depends on the underlying substrate or usage. For example, it is in the range of 200 to 1000°C, preferably 200 to 500°C, and more preferably 200 to 250°C. The baking atmosphere is not particularly limited, and may be an inert gas atmosphere such as a nitrogen atmosphere or an argon atmosphere, a vacuum, or a reduced pressure. It can also be under the atmosphere, and the oxygen concentration can be appropriately controlled. The baking time may be appropriately changed, and is approximately 10 minutes to 120 minutes. The cured product of the fourth aspect is preferably a protective film that protects the above-mentioned various substrates (including films containing metal oxides and films containing various metals). When the hardened material is a film, the thickness is preferably 10 nm to 10000 nm, more preferably 50 to 5000 nm, and further preferably 100 to 3000 nm. <Anionic polymerization selective accelerator in the production of polysilane compounds> The anionic polymerization selective accelerator of the sixth aspect is used in the production of a polysilane compound containing a nitryl compound having a structure represented by the above general formula (A). Selective accelerator for anionic polymerization. The anionic polymerization selective accelerator of the sixth aspect can cause the silyl radical cations generated during the production of polysilane compounds to undergo charge spin and convert them into silyl radical anions, thereby selectively promoting the anion of the silyl radical anions. polymerization. This can inhibit the formation of side reactants such as siloxane bonds and silanol groups that cause micro-cracks, and also inhibit the generation of outgassing. Specific examples and preferred examples of the nitroxyl compound containing the structure represented by the general formula (A) are as described in the method for producing a polysilane compound according to the first aspect. The usage amount of the anionic polymerization selective accelerator of the sixth aspect is preferably in the range of 0.0001 to 10 molar times, more preferably in the range of 0.001 to 5 molar times relative to the halosilane compound used in the production of the polysilane compound. , more preferably in the range of 0.001 to 1 molar times, particularly preferably in the range of 0.001 to 0.1 molar times. [Examples] The present invention will be described in more detail below based on examples, but the present invention is not limited to these examples. [Example 1] Production of polysilane compound: 25 g of granular (particle diameter 20 to 1000 μm) magnesium and triacetyl acetone as a catalyst were added to a round flask with an internal volume of 1000 ml equipped with a three-way stopcock. ) Iron (III) 2.1 g, 4-hydroxy-TEMPO (4-hydroxy-2,2,6,6-tetramethylpiperidine 1-alkoxy radical) 0.61 mmol (0.10 g), at 50 Heat and reduce the pressure to 1 mmHg (=133 kPa) at ℃, dry the inside of the reactor (flask), introduce dry argon gas into the reactor, and add tetrahydrofuran (tetrahydrofuran) that has been dried with sodium-benzophenone carbonyl radicals in advance. THF) 500 ml, stir at 25°C for about 60 minutes. 63.5 g (0.3 mol) of methylphenyldichlorosilane previously purified by distillation was added to the reaction mixture using a syringe, and the mixture was stirred at 25° C. for about 24 hours. After the reaction, 1000 ml of 1 N (=1 mol/L) hydrochloric acid was added to the reaction mixture, and then extracted with 500 ml of toluene. Wash the toluene layer 10 times with 200 ml of pure water, dry the toluene layer with anhydrous magnesium sulfate, and then distill the toluene away to obtain 28.4 g of methylphenylsilane polymer (mass average molecular weight 2000) (yield 63 %). [Examples 2 to 4 and Comparative Examples 1 and 2] The polysilane compound was produced as shown in Table 1 below by changing the type of halosilane compound, the type of organometallic complex or metal halide, and the presence or absence of the nitrile compound. The polysilane compounds of Examples 2 to 4 and Comparative Examples 1 and 2 were produced in the same manner as Example 1 except for the type of polysilane compound to be produced. In addition, Example 5 was produced according to the method described in JACS, 110, 124 (1998) and Macromolecules, 23, 3423 (1990), except for adding the nitrogenyl compound. [Table 1] [Preparation Examples 1 to 4 and Comparative Preparation Examples 1 and 2] The composition was prepared so that the solid content concentration of each polysilane compound obtained in the above Examples 1 to 4 and Comparative Examples 1 and 2 was 30% by mass. Each composition of Preparation Examples 1 to 4 and Comparative Preparation Examples 1 and 2 was prepared by dissolving it in a solvent of the type described in Table 2 and filtering it through a fluororesin filter with a pore size of 0.1 μm. [Formation of coating film] The obtained compositions of each preparation example and comparative preparation example were coated on the sample substrate using a spin coater to form a coating film with a thickness capable of forming a coating film with a film thickness of 5.0 μm. After prebaking the coating film at 100°C for 2 minutes, a vertical baking oven (TS8000MB, manufactured by Tokyo Oka Industry Co., Ltd.) was used to bake the coating film at 350°C for 30 minutes to obtain a film thickness of 5.0 μm. The coating. The formed coating was evaluated for the presence or absence of microcracks and the occurrence of outgassing according to the following method. <Evaluation of microcracks> Use an optical microscope (magnification: 100 times) to observe the surface of the formed coating after leaving it for 24 hours, and evaluate the presence or absence of microcracks. The results are shown in Table 2. <Evaluation of outgassing> In addition, the degree of outgassing generation was evaluated based on the temperature rise desorption gas analysis method (TDS). It was confirmed that the outgassing amount of the coatings formed using the compositions of Comparative Preparation Examples 1 and 2 was greater than that of any coating formed using the compositions of Preparation Examples 1 to 5 containing the polysilane compounds of Examples 1 to 5. membrane. [Table 2] The results shown in Table 2 show that the coatings formed using the compositions of Comparative Preparation Examples 1 and 2 containing the polysilane compounds of Comparative Examples 1 and 2 produced without using a nitrogen compound produced microcracks and release. angry. On the other hand, no microcracks were observed in the films formed using the compositions of Preparation Examples 1 to 5 containing the polysilane compounds of Examples 1 to 5 produced using a nitrogen compound, and the generation of outgassing was also suppressed. .