JP2018109112A - Method for producing polysilane compound, composition, cured product and substrate, and anionic polymerization selective accelerator - Google Patents

Method for producing polysilane compound, composition, cured product and substrate, and anionic polymerization selective accelerator Download PDF

Info

Publication number
JP2018109112A
JP2018109112A JP2016257102A JP2016257102A JP2018109112A JP 2018109112 A JP2018109112 A JP 2018109112A JP 2016257102 A JP2016257102 A JP 2016257102A JP 2016257102 A JP2016257102 A JP 2016257102A JP 2018109112 A JP2018109112 A JP 2018109112A
Authority
JP
Japan
Prior art keywords
group
compound
polysilane
polysilane compound
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016257102A
Other languages
Japanese (ja)
Other versions
JP6916619B2 (en
Inventor
和也 染谷
Kazuya Someya
和也 染谷
国宏 野田
Kunihiro Noda
国宏 野田
博樹 千坂
Hiroki Chisaka
博樹 千坂
大 塩田
Masaru Shioda
大 塩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Ohka Kogyo Co Ltd
Original Assignee
Tokyo Ohka Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Ohka Kogyo Co Ltd filed Critical Tokyo Ohka Kogyo Co Ltd
Priority to JP2016257102A priority Critical patent/JP6916619B2/en
Priority to PCT/JP2017/046744 priority patent/WO2018124112A1/en
Priority to TW106146242A priority patent/TWI811203B/en
Publication of JP2018109112A publication Critical patent/JP2018109112A/en
Application granted granted Critical
Publication of JP6916619B2 publication Critical patent/JP6916619B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02118Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer carbon based polymeric organic or inorganic material, e.g. polyimides, poly cyclobutene or PVC
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/60Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule in which all the silicon atoms are connected by linkages other than oxygen atoms
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/14Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • H05B33/04Sealing arrangements, e.g. against humidity

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Optics & Photonics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Silicon Polymers (AREA)
  • Electroluminescent Light Sources (AREA)
  • Formation Of Insulating Films (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide: a method for producing a polysilane compound which is capable of suppressing the occurrence of outgassing and microcracking in a film containing the polysilane compound; and an anionic polymerization selective accelerator that is used in the production of the polysilane compound, and a composition, a cured product and a substrate, each of which contains the polysilane compound.SOLUTION: A method for producing a polysilane compound comprises a step for the reaction of a halosilane compound in the presence of a nitroxy compound. An anionic polymerization selective accelerator is used in the production of a polysilane compound, and contains a nitroxy compound having a structure represented by general formula (A). (In formula (A), each of R, R, R, and Rindependently represent a hydrogen atom or an organic group; Rand Rmay combine with each other to form a ring; and Rand Rmay combine with each other to form a ring.)SELECTED DRAWING: None

Description

本発明は、ポリシラン化合物、組成物、硬化物及び基板の製造方法、並びにポリシラン化合物の製造におけるアニオン重合選択的促進剤に関する。   The present invention relates to a polysilane compound, a composition, a cured product, a method for producing a substrate, and an anionic polymerization selective accelerator in the production of a polysilane compound.

ポリシラン化合物は、セラミックス前駆体、光電子材料(例えば、フォトレジスト、有機感光体などの光電子写真材料、光導波路などの光伝送材料、光メモリなどの光記録材料、エレクトロルミネッセンス素子用材料)、種々の素子における層間絶縁膜、LED素子や有機EL素子のような発光素子の封止材料、半導体基板への不純物拡散用の塗布膜、及び半導体プロセス用のギャップフィル材料等の用途で使用されている。   Polysilane compounds include ceramic precursors, photoelectron materials (for example, photoelectrophotographic materials such as photoresists and organic photoreceptors, optical transmission materials such as optical waveguides, optical recording materials such as optical memories, and electroluminescent element materials), various elements. Are used in applications such as interlayer insulating films, sealing materials for light emitting elements such as LED elements and organic EL elements, coating films for diffusing impurities into semiconductor substrates, and gap fill materials for semiconductor processes.

このようなポリシラン化合物の製造方法として、例えば、特許文献1には、リチウム化合物及び特定の金属ハロゲン化物の存在下、ハロシラン化合物に金属マグネシウムを反応させてポリシランを生成させる反応系において、反応後に残存する固体成分である活性金属マグネシウムに新たに上記原料(リチウム化合物、金属ハロゲン化物、及びハロシラン化合物)を添加して反応させ、ポリシランを生成するポリシランの製造方法が開示されている。   As a method for producing such a polysilane compound, for example, in Patent Document 1, in a reaction system in which a metal magnesium is reacted with a halosilane compound in the presence of a lithium compound and a specific metal halide to form polysilane, the polysilane compound remains after the reaction. A method for producing polysilane is disclosed in which polysilane is produced by adding and reacting the above raw materials (lithium compound, metal halide, and halosilane compound) to active metal magnesium which is a solid component.

特許第4559642号公報Japanese Patent No. 4559642

ポリシラン化合物を含有する組成物を用いて膜を形成すると、マイクロクラック及びアウトガスが生じることがあった。
本発明は、上記従来技術の問題点に鑑み、ポリシラン化合物を含む膜におけるアウトガス発生及びマイクロクラック発生を抑制することができるポリシラン化合物の製造方法、該ポリシラン化合物を含む組成物、硬化物及び基板並びにポリシラン化合物の製造におけるアニオン重合選択的促進剤の提供を目的とする。
When a film is formed using a composition containing a polysilane compound, microcracks and outgas may occur.
The present invention has been made in view of the above-described problems of the prior art, and includes a method for producing a polysilane compound capable of suppressing outgas generation and microcrack generation in a film containing a polysilane compound, a composition containing the polysilane compound, a cured product, and a substrate. An object is to provide an anionic polymerization selective accelerator in the production of a polysilane compound.

本発明者らは、ポリシラン化合物の製造方法において、ニトロキシ化合物の存在下においてハロシラン化合物を反応させることによりアウトガス発生及びマイクロクラック発生を抑制し得ることを見出し、本発明を完成するに至った。   The present inventors have found that in the method for producing a polysilane compound, the outgas generation and the generation of microcracks can be suppressed by reacting the halosilane compound in the presence of a nitroxy compound, and the present invention has been completed.

本発明の第1の態様は、
ニトロキシ化合物の存在下においてハロシラン化合物を反応させることを含むポリシラン化合物の製造方法である。
The first aspect of the present invention is:
A method for producing a polysilane compound comprising reacting a halosilane compound in the presence of a nitroxy compound.

本発明の第2の態様は、第1の態様の製造方法で得られたポリシラン化合物である。
本発明の第3の態様は、第2の態様のポリシラン化合物を含む組成物である。
本発明の第4の態様は、第3の態様の組成物の硬化物である。
本発明の第5の態様は、第4の態様の硬化物を備える基板である。
本発明の第6の態様は、下記一般式(A)で表される構造を含むニトロキシ化合物を含む、ポリシラン化合物の製造におけるアニオン重合選択的促進剤である。

Figure 2018109112
(式(A)中、Ra1、Ra2、Ra3、及びRa4は、それぞれ独立に、水素原子、又は有機基である。Ra1とRa2とは、互いに結合して環を形成してもよい。また、Ra3とRa4とは、互いに結合して環を形成してもよい。) The second aspect of the present invention is a polysilane compound obtained by the production method of the first aspect.
The third aspect of the present invention is a composition comprising the polysilane compound of the second aspect.
The fourth aspect of the present invention is a cured product of the composition of the third aspect.
5th aspect of this invention is a board | substrate provided with the hardened | cured material of 4th aspect.
The sixth aspect of the present invention is an anionic polymerization selective accelerator in the production of a polysilane compound containing a nitroxy compound containing a structure represented by the following general formula (A).
Figure 2018109112
(In the formula (A), R a1 , R a2 , R a3 and R a4 are each independently a hydrogen atom or an organic group. R a1 and R a2 are bonded to each other to form a ring. R a3 and R a4 may be bonded to each other to form a ring.)

本発明の第7の態様は、ポリシラン化合物を含む組成物の製造方法であって、上記ポリシラン化合物が第1の態様の方法によって製造される、方法である。
本発明の第8の態様は、組成物の硬化物の製造方法であって、上記組成物が第7の態様の方法によって製造される、方法である。
本発明の第9の態様は、硬化物を備える基板の製造方法であって、上記硬化物が第8の態様の方法によって製造される、方法である。
A seventh aspect of the present invention is a method for producing a composition containing a polysilane compound, wherein the polysilane compound is produced by the method of the first aspect.
The eighth aspect of the present invention is a method for producing a cured product of the composition, wherein the composition is produced by the method of the seventh aspect.
A ninth aspect of the present invention is a method for manufacturing a substrate including a cured product, wherein the cured product is manufactured by the method of the eighth aspect.

本発明によれば、ポリシラン化合物を含む膜におけるアウトガス発生及びマイクロクラック発生を抑制することができるポリシラン化合物の製造方法、該ポリシラン化合物を含む組成物、硬化物及び基板並びにポリシラン化合物の製造におけるアニオン重合選択的促進剤を提供することができる。   According to the present invention, a method for producing a polysilane compound capable of suppressing outgas generation and microcrack generation in a film containing a polysilane compound, a composition containing the polysilane compound, a cured product and a substrate, and anionic polymerization in the production of the polysilane compound A selective accelerator can be provided.

以下、本発明の実施態様について詳細に説明するが、本発明は、以下の実施態様に何ら限定されるものではなく、本発明の目的の範囲内において、適宜変更を加えて実施することができる。
また、本明細書において、「〜」は特に断りがなければ以上から以下を表す。
Hereinafter, embodiments of the present invention will be described in detail. However, the present invention is not limited to the following embodiments, and can be implemented with appropriate modifications within the scope of the object of the present invention. .
Moreover, in this specification, "-" represents the following from the above unless there is particular notice.

<ポリシラン化合物の製造方法>
第1の態様に係るポリシラン化合物の製造方法は、ニトロキシ化合物の存在下においてハロシラン化合物を反応させることを含む。
<Production method of polysilane compound>
The method for producing a polysilane compound according to the first aspect includes reacting a halosilane compound in the presence of a nitroxy compound.

ポリシラン化合物の製造において、一般に、シリルラジカルカチオンと、シリルラジカルアニオンとが生じ得る(Electronic Structure of Radical Anions and Cations of Polysilanes with Structural Defects Seki,Shu;Yoshida,Yoichi;Tagawa,Seiichi;Asai,Keisuke,Macromolecules,1999,32(4),pp1080−1086)。
シリルラジカルアニオンはアニオン重合によりポリシラン化合物の製造に供し得る一方、空気中の水(HO)又は酸素(O)はシリルラジカルカチオンと選択的に反応し、シロキサン結合(Si−O)、シラノール基(Si−OH)等の副反応物を生成することがあった。このようなシロキサン結合、シラノール基等の副反応物を含むポリシラン化合物を含有する組成物を用いて膜を形成すると、上記シロキサン結合、シラノール基等がマイクロクラックの原因になることを本発明者らは見出した。
また、シリルラジカルカチオンはシリルラジカルアニオンよりも、アリール基、アルキル基等の置換基(特に、アリール基)の脱離が生じ易く、アウトガスの原因になると考えられる。
これに対し、第1の態様に係るポリシラン化合物の製造方法においては、ニトロキシ化合物がシリルラジカルカチオンをスピンチャージしてシリルラジカルカチオンを減少させることにより、シリルラジカルアニオンによるアニオン重合を選択的に促進することができると推定される。これにより、マイクロクラックの原因となるシロキサン結合、シラノール基等の副反応物の生成を抑制することができ、また、アウトガスの発生も抑制することができると推定される。
In the production of polysilane compounds, in general, silyl radical cations and silyl radical anions can be generated (Electronic Structure of Radial Anions and Cations of Polysilicones with Structural Defects Seki, Shiw; 1999, 32 (4), pp 1080-1086).
While the silyl radical anion can be used for the production of a polysilane compound by anionic polymerization, water (H 2 O) or oxygen (O 2 ) in the air selectively reacts with the silyl radical cation to form a siloxane bond (Si—O), By-products such as silanol groups (Si—OH) may be generated. When the film is formed using such a composition containing a polysilane compound containing a side reaction product such as a siloxane bond and a silanol group, the present inventors have found that the siloxane bond and the silanol group cause microcracks. Found.
In addition, silyl radical cations are more likely to cause elimination of substituents (particularly aryl groups) such as aryl groups and alkyl groups than silyl radical anions, which may cause outgassing.
In contrast, in the method for producing a polysilane compound according to the first aspect, the nitroxy compound spin-charges the silyl radical cation to reduce the silyl radical cation, thereby selectively promoting anionic polymerization by the silyl radical anion. Is estimated to be possible. Thereby, it is presumed that generation of by-products such as siloxane bonds and silanol groups causing micro cracks can be suppressed, and generation of outgas can also be suppressed.

(ニトロキシ化合物)
上記ニトロキシ化合物としては、ニトロキシドラジカルとして安定に存在し得る化合物であれば特に限定されないが、下記一般式(A)で表される構造を含む化合物であることが好ましい。

Figure 2018109112
(式(A)中、Ra1、Ra2、Ra3、及びRa4は、各々独立に、水素原子、又は有機基である。Ra1とRa2とは、互いに結合して環を形成してもよい。また、Ra3とRa4とは、互いに結合して環を形成してもよい。)
式(A)において、Ra1〜Ra4で表される有機基としては、炭素原子数1〜10の有機基が挙げられ、Ra1、Ra2、Ra3、及びRa4は、それぞれ独立に、アルキル基又はヘテロ原子で置換されたアルキル基であることが好ましい。アルキル基としては、メチル基、エチル基、n−プロピル基、及びイソプロピル基が好ましい。ヘテロ原子の好適な例としては、ハロゲン原子、酸素原子、硫黄原子、及び窒素原子等が挙げられる。 (Nitroxy compounds)
Although it will not specifically limit if it is a compound which can exist stably as a nitroxide radical as said nitroxy compound, It is preferable that it is a compound containing the structure represented by the following general formula (A).
Figure 2018109112
(In formula (A), R a1 , R a2 , R a3 and R a4 are each independently a hydrogen atom or an organic group. R a1 and R a2 are bonded to each other to form a ring. R a3 and R a4 may be bonded to each other to form a ring.)
In the formula (A), examples of the organic group represented by R a1 to R a4 include an organic group having 1 to 10 carbon atoms, and R a1 , R a2 , R a3 , and R a4 are each independently , An alkyl group or an alkyl group substituted with a hetero atom is preferable. As the alkyl group, a methyl group, an ethyl group, an n-propyl group, and an isopropyl group are preferable. Preferable examples of the hetero atom include a halogen atom, an oxygen atom, a sulfur atom, and a nitrogen atom.

ニトロキシ化合物の好適な具体例としては、例えば、ジ−tert−ブチルニトロキシド、ジ−1,1−ジメチルプロピルニトロキシド、ジ−1,2−ジメチルプロピルニトロキシド、ジ−2,2−ジメチルプロピルニトロキシド、及び下記式(A1)、(A2)、又は(A3)で表される化合物が好ましく、下記式(A1)、(A2)、又は(A3)で表される化合物がより好ましい。   Suitable specific examples of the nitroxy compound include, for example, di-tert-butyl nitroxide, di-1,1-dimethylpropyl nitroxide, di-1,2-dimethylpropyl nitroxide, di-2,2-dimethylpropyl nitroxide, and A compound represented by the following formula (A1), (A2), or (A3) is preferred, and a compound represented by the following formula (A1), (A2), or (A3) is more preferred.

Figure 2018109112
Figure 2018109112

式(A1)、(A2)、及び(A3)中、Ra5は、水素原子、炭素原子数1〜12のアルキル基、水酸基、アミノ基、カルボキシ基、シアノ基、ヘテロ原子で置換されたアルキル基、又はエーテル結合、エステル結合、アミド結合、若しくはウレタン結合を介して結合した1価の有機基を表す。
a6は、2価又は3価の有機基を表す。
n1及びn2は、1≦n1+n2≦2を満たす整数である。
n3及びn4は、1≦n3+n4≦2を満たす整数である。
n5及びn6は、1≦n5+n6≦2を満たす整数である。
n7は、2又は3である。
In formulas (A1), (A2), and (A3), R a5 is a hydrogen atom, an alkyl group having 1 to 12 carbon atoms, a hydroxyl group, an amino group, a carboxy group, a cyano group, or an alkyl substituted with a heteroatom. Or a monovalent organic group bonded through an ether bond, an ester bond, an amide bond, or a urethane bond.
R a6 represents a divalent or trivalent organic group.
n1 and n2 are integers satisfying 1 ≦ n1 + n2 ≦ 2.
n3 and n4 are integers satisfying 1 ≦ n3 + n4 ≦ 2.
n5 and n6 are integers satisfying 1 ≦ n5 + n6 ≦ 2.
n7 is 2 or 3.

式(A1)で表される化合物の好適な具体例としては、下記の化合物が挙げられる。下記式中、Ra7は、それぞれ独立に、置換基を有してもよい炭素原子数1〜20のアルキル基、置換基を有してもよい芳香族基、又は置換基を有してもよい脂環式基を表す。

Figure 2018109112
Preferable specific examples of the compound represented by the formula (A1) include the following compounds. In the following formulae, each R a7 may independently have an alkyl group having 1 to 20 carbon atoms which may have a substituent, an aromatic group which may have a substituent, or a substituent. Represents a good alicyclic group.
Figure 2018109112

式(A2)で表される化合物の好適な具体例としては、下記の化合物が挙げられる。

Figure 2018109112
Preferable specific examples of the compound represented by the formula (A2) include the following compounds.
Figure 2018109112

式(A3)で表される化合物の好適な具体例としては、下記の化合物が挙げられる。

Figure 2018109112
Preferable specific examples of the compound represented by the formula (A3) include the following compounds.
Figure 2018109112

さらに好ましいニトロキシ化合物としては、2,2,6,6−テトラメチルピペリジン1−オキシル フリーラジカル(TEMPO)、4−ヒドロキシ−2,2,6,6−アテトラメチルピペリジン1−オキシル フリーラジカル、4−アミノ−2,2,6,6−テトラメチルピペリジン1−オキシル フリーラジカル、4−カルボキシ−2,2,6,6−テトラメチルピペリジン1−オキシル フリーラジカル、4−シアノ−2,2,6,6−テトラメチルピペリジン1−オキシル フリーラジカル、4−メタクリル酸−2,2,6,6−テトラメチルピペリジン1−オキシル フリーラジカル、4−アクリル酸−2,2,6,6−テトラメチルピペリジン1−オキシル フリーラジカル、4−オキソ−2,2,6,6−テトラメチルピペリジン1−オキシル フリーラジカル、3−カルボキシ−2,2,5,5−テトラメチルピロリジン1−オキシル フリーラジカル、4−アセトアミド−2,2,6,6−テトラメチルピペリジン1−オキシル フリーラジカル、4−(2−クロロアセトアミド)−2,2,6,6−テトラメチルピペリジン1−オキシル フリーラジカル、4−ヒドロキシ−2,2,6,6−テトラメチルピペリジン1−オキシルベンゾアート フリーラジカル、4−イソチオシアナト−2,2,6,6−テトラメチルピペリジン1−オキシル フリーラジカル、4−(2−ヨードアセトアミド)−2,2,6,6−テトラメチルピペリジン1−オキシル フリーラジカル、及び4−メトキシ−2,2,6,6−テトラメチルピペリジン1−オキシル フリーラジカルが挙げられる。
ニトロキシ化合物は、単独で用いてもよく、2種以上を組み合わせて用いてもよい。
More preferable nitroxy compounds include 2,2,6,6-tetramethylpiperidine 1-oxyl free radical (TEMPO), 4-hydroxy-2,2,6,6-atetramethylpiperidine 1-oxyl free radical, 4 -Amino-2,2,6,6-tetramethylpiperidine 1-oxyl free radical, 4-carboxy-2,2,6,6-tetramethylpiperidine 1-oxyl free radical, 4-cyano-2,2,6 , 6-Tetramethylpiperidine 1-oxyl free radical, 4-methacrylic acid-2,2,6,6-tetramethylpiperidine 1-oxyl free radical, 4-acrylic acid-2,2,6,6-tetramethylpiperidine 1-oxyl free radical, 4-oxo-2,2,6,6-tetramethylpiperidine 1- Oxyl free radical, 3-carboxy-2,2,5,5-tetramethylpyrrolidine 1-oxyl free radical, 4-acetamido-2,2,6,6-tetramethylpiperidine 1-oxyl free radical, 4- (2 -Chloroacetamido) -2,2,6,6-tetramethylpiperidine 1-oxyl free radical, 4-hydroxy-2,2,6,6-tetramethylpiperidine 1-oxylbenzoate free radical, 4-isothiocyanato-2 , 2,6,6-tetramethylpiperidine 1-oxyl free radical, 4- (2-iodoacetamido) -2,2,6,6-tetramethylpiperidine 1-oxyl free radical, and 4-methoxy-2,2 , 6,6-tetramethylpiperidine 1-oxyl free radical .
A nitroxy compound may be used independently and may be used in combination of 2 or more type.

上記ニトロキシ化合物の使用量は、ハロシラン化合物に対して、0.0001〜10モル倍の範囲が好ましく、より好ましくは0.0005〜5モル倍の範囲、更に好ましくは0.0008〜1モル倍の範囲、特に好ましくは0.001〜0.1モル倍の範囲である。   The amount of the nitroxy compound used is preferably in the range of 0.0001 to 10 mol times, more preferably in the range of 0.0005 to 5 mol times, still more preferably 0.0008 to 1 mol times based on the halosilane compound. The range is particularly preferably 0.001 to 0.1 mole times.

(ハロシラン化合物)
上記ハロシラン化合物としては下記式(1)で表される化合物であることが好ましい。

SiR4−n (1)

(式中、nは2〜4の整数であり、n個のXは、各々独立に、ハロゲン原子であり、(4−n)個のRは、各々独立に、水素原子、有機基又はシリル基である。)
(Halosilane compound)
The halosilane compound is preferably a compound represented by the following formula (1).

X n SiR 4-n (1)

(Wherein n is an integer of 2 to 4, n Xs are each independently a halogen atom, and (4-n) Rs are each independently a hydrogen atom, an organic group or a silyl group. Group.)

Xで表されるハロゲン原子としては、フッ素原子、塩素原子、臭素原子又はヨウ素原子が挙げられ、塩素原子又は臭素原子が好ましく、塩素原子がより好ましい。   Examples of the halogen atom represented by X include a fluorine atom, a chlorine atom, a bromine atom or an iodine atom, a chlorine atom or a bromine atom is preferred, and a chlorine atom is more preferred.

Rで表される有機基としては、アルキル基[メチル、エチル、プロピル、イソプロピル、ブチル及びt−ブチル基などの炭素原子数1〜10のアルキル基(好ましくは炭素原子数1〜6のアルキル基、特に炭素数1〜4のアルキル基など)]、シクロアルキル基(シクロヘキシル基などの炭素原子数5〜8のシクロアルキル基、特に炭素原子数5〜6のシクロアルキル基)、アルケニル基[エテニル基、プロペニル基、ブテニル基などの炭素原子数2〜10のアルケニル基(好ましくは炭素原子数2〜6のアルケニル基、特に炭素数2〜4のアルケニル基など)]、シクロアルケニル基[1−シクロペンテニル基、1−シクロヘキセニル基等の炭素原子数5〜10のシクロアルケニル基(好ましくは炭素原子数5〜8のシクロアルケニル基、特に炭素数5〜7のシクロアルケニル基など)]、アリール基(フェニル、ナフチル基などの炭素原子数6〜10のアリール基、)、アラルキル基[ベンジル、フェネチル基などのC6−10アリール−C1−6アルキル基(C6−10アリール−C1−4アルキル基など)]、アミノ基、N−置換アミノ基(上記アルキル基、シクロアルキル基、アリール基、アラルキル基、アシル基などで置換されたN−モノ又はジ置換アミノ基など)などが挙げられる。上記アルキル基、シクロアルキル基、アリール基又はアラルキル基を構成するアリール基などは、1又は複数の置換基を有していてもよい。このような置換基としては、上記例示のアルキル基(特に炭素原子数1〜6のアルキル基など)などが挙げられる。このような置換基を有する有機基としては、例えば、トリル基(メチルフェニル基)、キシレニル基(ジメチルフェニル基)、エチルフェニル基、メチルナフチル基などのC1−6アルキル−C6−10アリール基(好ましくはモノ、ジ又はトリC1−4アルキル−C6−10アリール基、特にモノ又はジC1−4アルキルフェニル基など)などが挙げられる。 Examples of the organic group represented by R include alkyl groups [alkyl groups having 1 to 10 carbon atoms such as methyl, ethyl, propyl, isopropyl, butyl and t-butyl groups (preferably alkyl groups having 1 to 6 carbon atoms). , Especially an alkyl group having 1 to 4 carbon atoms)], a cycloalkyl group (a cycloalkyl group having 5 to 8 carbon atoms such as a cyclohexyl group, particularly a cycloalkyl group having 5 to 6 carbon atoms), an alkenyl group [ethenyl. Group, propenyl group, butenyl group and the like alkenyl group having 2 to 10 carbon atoms (preferably alkenyl group having 2 to 6 carbon atoms, particularly alkenyl group having 2 to 4 carbon atoms)], cycloalkenyl group [1- A cycloalkenyl group having 5 to 10 carbon atoms such as a cyclopentenyl group and a 1-cyclohexenyl group (preferably a cycloalkenyl group having 5 to 8 carbon atoms, Such cycloalkenyl group having 5 to 7 carbon atoms)], the aryl group (phenyl, aryl group having 6 to 10 carbon atoms such as naphthyl group), aralkyl group [a benzyl, C 6-10 aryl, such as phenethyl group - C 1-6 alkyl group (such as C 6-10 aryl-C 1-4 alkyl group)], amino group, N-substituted amino group (the above alkyl group, cycloalkyl group, aryl group, aralkyl group, acyl group, etc.) Substituted N-mono or disubstituted amino groups, etc.). The aryl group constituting the alkyl group, cycloalkyl group, aryl group or aralkyl group may have one or more substituents. Examples of such a substituent include the above-exemplified alkyl groups (particularly alkyl groups having 1 to 6 carbon atoms). Examples of the organic group having such a substituent include C 1-6 alkyl-C 6-10 aryl such as tolyl group (methylphenyl group), xylenyl group (dimethylphenyl group), ethylphenyl group, and methylnaphthyl group. A group (preferably a mono, di or tri C 1-4 alkyl-C 6-10 aryl group, especially a mono or di C 1-4 alkylphenyl group) and the like.

シリル基は、上記アルキル基、シクロアルキル基、アルケニル基、シクロアルケニル基、アリール基、アラルキル基及びアルコキシ基などで置換された置換シリル基が挙げられる。   Examples of the silyl group include substituted silyl groups substituted with the above alkyl group, cycloalkyl group, alkenyl group, cycloalkenyl group, aryl group, aralkyl group, alkoxy group and the like.

nが2の場合(ジハロシラン化合物)において、Rとしては、アルキル基、アリール基などの炭化水素基が好ましい。少なくとも1つのRが、アリール基であってもよい。
従来は、シリルラジカルカチオンがアルキル基、アリール基等の有機基(特にアリール基)をケイ素原子に直結して有する場合、上記有機基の脱離が生じ易くアウトガスの原因となり得た。
これに対し、第1の態様に係るポリシラン化合物の製造方法においては、シリルラジカルカチオンが有機基をケイ素原子に直結して有する場合(Rが有機基(特にアリール基)の場合)であっても、上記ニトロキシ化合物がシリルラジカルカチオンをスピンチャージしてシリルラジカルカチオンが減少することにより、有機基の脱離が生じ難くアウトガスの発生を抑制することができると推定される。
In the case where n is 2 (dihalosilane compound), R is preferably a hydrocarbon group such as an alkyl group or an aryl group. At least one R may be an aryl group.
Conventionally, when the silyl radical cation has an organic group such as an alkyl group or an aryl group (particularly an aryl group) directly connected to a silicon atom, the organic group is likely to be detached and may cause outgassing.
On the other hand, in the method for producing a polysilane compound according to the first aspect, even when the silyl radical cation has an organic group directly connected to a silicon atom (when R is an organic group (particularly an aryl group)). It is presumed that the nitroxy compound spin-charges the silyl radical cation to reduce the silyl radical cation, so that the organic group is hardly detached and the outgas generation can be suppressed.

代表的なジハロシラン化合物としては、例えば、ジアルキルジハロシラン(ジメチルジクロロシランなどのジC1−10アルキルジハロシラン、好ましくはジC1−6アルキルジハロシラン、さらに好ましくはジC1−4アルキルジハロシランなど)、モノアルキルモノアリールジハロシラン(メチルフェニルジクロロシランなどのモノC1−10アルキルモノC6−12アリールジハロシラン、好ましくはモノC1−6アルキルモノC6−10アリールジハロシラン、さらに好ましくはモノC1−4アルキルモノC6−8アリールジハロシランなど)、ジアリールジハロシラン(ジフェニルジクロロシランなどのジC6−12アリールジハロシラン、好ましくはジC6−10アリールジハロシラン、さらに好ましくはジC6−8アリールジハロシランなど)などが挙げられる。ジハロシラン化合物としてはジアルキルジハロシラン又はモノアルキルモノアリールジハロシランが好ましい。ジハロシラン化合物は、単独で又は二種以上組み合わせて使用できる。 As a typical dihalosilane compound, for example, dialkyldihalosilane (diC 1-10 alkyldihalosilane such as dimethyldichlorosilane, preferably diC 1-6 alkyldihalosilane, more preferably diC 1-4 Alkyl dihalosilanes), monoalkyl monoaryl dihalosilanes (mono C 1-10 alkyl mono C 6-12 aryl dihalosilanes such as methylphenyldichlorosilane, preferably mono C 1-6 alkyl mono C 6-10 aryl) Dihalosilanes, more preferably mono-C 1-4 alkyl mono-C 6-8 aryl dihalosilanes, etc., diaryl dihalosilanes (di-C 6-12 aryl dihalosilanes such as diphenyldichlorosilane, preferably di-C 6 -10 aryl dihalo silane, more preferably di C 6-8 A Rujiharoshiran, etc.), and the like. As the dihalosilane compound, dialkyldihalosilane or monoalkylmonoaryldihalosilane is preferable. A dihalosilane compound can be used individually or in combination of 2 or more types.

nが3の場合(トリハロシラン化合物)において、Rとしては、アルキル基、シクロアルキル基、置換基を有していてもよいアリール基、アラルキル基などの炭化水素基が好ましく、特にアルキル基又はアリール基が好ましく、アリール基がより好ましい。
上述のように、第1の態様に係るポリシラン化合物の製造方法においては、シリルラジカルカチオンが有機基をケイ素原子に直結して有する場合(Rが有機基(特にアリール基)の場合)であっても、上記ニトロキシ化合物の作用により、有機基の脱離が生じ難くアウトガスの発生を抑制することができる。
In the case where n is 3 (trihalosilane compound), R is preferably a hydrocarbon group such as an alkyl group, a cycloalkyl group, an aryl group which may have a substituent, or an aralkyl group, particularly an alkyl group or an aryl group. Group is preferred, and an aryl group is more preferred.
As described above, in the method for producing a polysilane compound according to the first aspect, the silyl radical cation has an organic group directly connected to a silicon atom (when R is an organic group (particularly an aryl group)). However, due to the action of the nitroxy compound, the elimination of the organic group is difficult to occur and the outgas generation can be suppressed.

代表的なトリハロシラン化合物としては、アルキルトリハロシラン(メチルトリクロロシラン、ブチルトリクロロシラン、t−ブチルトリクロロシラン、ヘキシルトリクロロシランなどのC1−10アルキルトリハロシラン、好ましくはC1−6アルキルトリハロシラン、さらに好ましくはC1−4アルキルトリハロシランなど)、シクロアルキルトリハロシラン(シクロヘキシルトリハロシランなどのモノC6−10シクロアルキルトリハロシランなど)、アリールトリハロシラン(フェニルトリクロロシラン、トリルトリクロロシラン、キシリルトリクロロシランなどのC6−12アリールトリハロシラン、好ましくはC6−10アリールトリハロシラン、さらに好ましくはC6−8アリールトリハロシランなど)などが挙げられる。トリハロシラン化合物には、アルキルトリハロシラン又はアリールトリハロシランが好ましい。
トリハロシラン化合物は、単独で又は二種以上組み合わせて使用できる。
Typical trihalosilane compounds include alkyltrihalosilanes (C 1-10 alkyltrihalosilanes such as methyltrichlorosilane, butyltrichlorosilane, t-butyltrichlorosilane, hexyltrichlorosilane, preferably C 1-6 alkyltrihalosilanes, More preferably C 1-4 alkyltrihalosilane, etc., cycloalkyltrihalosilane (mono C 6-10 cycloalkyltrihalosilane such as cyclohexyltrihalosilane), aryltrihalosilane (phenyltrichlorosilane, tolyltrichlorosilane, xylyltrichlorosilane) C 6-12 aryltrihalosilane, preferably C 6-10 aryltrihalosilane, more preferably C 6-8 aryltrihalosilane). . The trihalosilane compound is preferably alkyltrihalosilane or aryltrihalosilane.
A trihalosilane compound can be used individually or in combination of 2 or more types.

nが4の場合(テトラハロシラン化合物)の具体例としては、例えば、テトラクロロシラン、ジブロモジクロロシラン、テトラブロモシランなどが挙げられる。テトラハロシラン化合物は単独で又は2種以上組み合わせてもよい。
なお、テトラハロシラン化合物は、モノ、ジ又はトリハロシラン化合物と組み合わせて使用することが好ましい。
Specific examples of when n is 4 (tetrahalosilane compound) include, for example, tetrachlorosilane, dibromodichlorosilane, and tetrabromosilane. The tetrahalosilane compounds may be used alone or in combination of two or more.
The tetrahalosilane compound is preferably used in combination with a mono-, di- or trihalosilane compound.

また、ハロシラン化合物としてはモノハロシラン化合物であってもよい。代表的なモノハロシランとしては、例えば、トリアルキルモノハロシラン(トリメチルクロロシランなどのトリC1−10アルキルモノハロシラン、好ましくはトリC1−6アルキルモノハロシラン、さらに好ましくはトリC1−4アルキルモノハロシランなど)、ジアルキルモノアリールモノハロシラン(ジメチルフェニルクロロシランなどのジC1−10アルキルモノC6−12アリールモノハロシラン、好ましくはジC1−6アルキルモノC6−10アリールモノハロシラン、さらに好ましくはジC1−4アルキルモノC6−8アリールモノハロシランなど)、モノアルキルジアリールモノハロシラン(メチルジフェニルクロロシランなどのモノC1−10アルキルジC6−12アリールモノハロシラン、好ましくはモノC1−6アルキルジC6−10アリールモノハロシラン、さらに好ましくはモノC1−4アルキルジC6−8アリールモノハロシランなど)、トリアリールモノハロシラン(トリフェニルクロロシランなどのトリC6−12アリールモノハロシラン、好ましくはトリC6−10アリールモノハロシラン、さらに好ましくはトリC6−8アリールモノハロシランなど)などが挙げられる。モノハロシラン化合物は、単独で又は二種以上組合せて使用できる。 The halosilane compound may be a monohalosilane compound. Representative monohalosilanes include, for example, trialkylmonohalosilanes (tri-C 1-10 alkyl monohalosilanes such as trimethylchlorosilane, preferably tri-C 1-6 alkyl monohalosilanes, more preferably tri-C 1-4 alkyls. Monohalosilanes, etc.), dialkyl monoaryl monohalosilanes (diC 1-10 alkyl mono C 6-12 aryl monohalosilanes such as dimethylphenylchlorosilane, preferably diC 1-6 alkyl mono C 6-10 aryl monohalo silane, more preferably such di C 1-4 alkyl mono- C 6-8 aryl monohaloalkyl silane), mono C 1-10 alkyl di C 6-12 aryl monohaloalkyl silane such as monoalkyl diaryl monohaloalkyl silane (methyl diphenyl chlorosilane, preferably mono C 1 6 alkyl di C 6-10 aryl monohaloalkyl silane, more preferably such mono C 1-4 alkyl di C 6-8 aryl monohaloalkyl silane), tri C 6-12 aryl monohaloalkyl such triaryl monohaloalkyl silane (triphenyl chlorosilane Silane, preferably tri-C 6-10 aryl monohalosilane, more preferably tri-C 6-8 aryl monohalosilane). A monohalosilane compound can be used individually or in combination of 2 or more types.

これらのハロシラン化合物は、単独で又は2種以上組み合わせて使用できる。   These halosilane compounds can be used alone or in combination of two or more.

ハロシラン化合物は、ジハロシラン化合物及びトリハロシラン化合物から選択された少なくとも1種を含んでいることが好ましい。   The halosilane compound preferably contains at least one selected from dihalosilane compounds and trihalosilane compounds.

なお、ハロシラン化合物が、トリハロシラン化合物及び/又はテトラハロシラン化合物を含む場合、ネットワーク状(網目状又は分岐鎖状)のポリシラン化合物を生成し得る。ネットワーク状のポリシラン化合物を得る場合、代表的なハロシラン(又はその組み合わせ)としては、(a)アルキルトリハロシラン(例えば、アルキルトリハロシラン単独、メチルトリハロシランとC2−10アルキルトリハロシランとの組み合わせ、C2−10アルキルトリハロシランなど)、(b)アリールトリハロシラン(例えば、アリールトリハロシラン単独)、(c)アリールトリハロシランとジハロシラン(例えば、モノアルキルモノアリールジハロシランなど)との組み合わせなどが挙げられる。 In addition, when a halosilane compound contains a trihalosilane compound and / or a tetrahalosilane compound, a network-like (network-like or branched) polysilane compound can be generated. When obtaining a network-like polysilane compound, representative halosilanes (or combinations thereof) include (a) alkyltrihalosilanes (for example, alkyltrihalosilanes alone, combinations of methyltrihalosilanes and C2-10 alkyltrihalosilanes, C 2-10 alkyltrihalosilane, etc.), (b) aryltrihalosilane (eg, aryltrihalosilane alone), (c) combination of aryltrihalosilane and dihalosilane (eg, monoalkylmonoaryldihalosilane), etc. Can be mentioned.

ハロシラン化合物において、ジハロシラン化合物及びトリハロシラン化合物から選択された少なくとも1種の割合(使用割合)は、ハロシラン全体に対して、50モル%以上(例えば、60モル%以上)、好ましくは70モル%以上(例えば、80モル%以上)、さらに好ましくは90モル%以上(例えば、95モル%以上)であってもよい。   In the halosilane compound, the ratio (use ratio) of at least one selected from dihalosilane compounds and trihalosilane compounds is 50 mol% or more (for example, 60 mol% or more), preferably 70 mol% or more, based on the entire halosilane. (For example, 80 mol% or more), more preferably 90 mol% or more (for example, 95 mol% or more).

なお、ネットワーク状のポリシランを得る場合などにおいて、トリハロシラン化合物の割合(使用割合)は、ハロシラン化合物全体の30モル%以上(例えば、40モル%以上)、好ましくは50モル%以上(例えば、60モル%以上)、さらに好ましくは70モル%以上(例えば、75モル%以上)、特に80モル%以上であってもよい。   In the case of obtaining a network-like polysilane, the proportion (use ratio) of the trihalosilane compound is 30 mol% or more (for example, 40 mol% or more), preferably 50 mol% or more (for example, 60 mol%) of the entire halosilane compound. Mol% or more), more preferably 70 mol% or more (for example, 75 mol% or more), particularly 80 mol% or more.

また、ジハロシラン化合物とトリハロシラン化合物とを組み合わせる場合、これらの割合は、ジハロシラン化合物/トリハロシラン化合物(モル比)=99/1〜1/99、好ましくは90/10〜2/98(例えば、85/15〜2/98)、さらに好ましくは80/20〜3/97(例えば、70/30〜4/96)、特に60/40〜5/95(例えば、50/50〜7/93)であってもよく、通常50/50〜5/95(例えば、45/55〜7/93、好ましくは40/60〜10/90、さらに好ましくは30/70〜88/12)であってもよい。   Moreover, when combining a dihalosilane compound and a trihalosilane compound, these ratios are dihalosilane compound / trihalosilane compound (molar ratio) = 99/1 to 1/99, preferably 90/10 to 2/98 (for example, 85 / 15 to 2/98), more preferably 80/20 to 3/97 (for example 70/30 to 4/96), in particular 60/40 to 5/95 (for example 50/50 to 7/93). It may be 50 / 50-5 / 95 (for example, 45 / 55-7 / 93, preferably 40 / 60-10 / 90, more preferably 30 / 70-88 / 12). .

ハロシラン化合物は、できるだけ高純度であることが好ましい。例えば、液体のハロシラン化合物については、水素化カルシウムなどの乾燥剤を用いて乾燥し、蒸留して使用することが好ましく、固体のハロシラン化合物については、再結晶法などにより、精製して使用することが好ましい。   The halosilane compound is preferably as pure as possible. For example, liquid halosilane compounds are preferably dried and dried using a desiccant such as calcium hydride, and solid halosilane compounds are purified and used by recrystallization or the like. Is preferred.

なお、原料混合物(反応液)中のハロシラン化合物の濃度(基質濃度)は、例えば、0.05〜20mol/l程度、好ましくは0.1〜15mol/l程度、さらに好ましくは0.2〜5mol/l程度であってもよい。   In addition, the density | concentration (substrate concentration) of the halosilane compound in a raw material mixture (reaction liquid) is about 0.05-20 mol / l, for example, Preferably it is about 0.1-15 mol / l, More preferably, it is 0.2-5 mol / L may be sufficient.

第1の態様に係るポリシラン化合物の製造方法は、ハロシラン化合物を反応させることを含む下記(a)〜(c)などのポリシラン化合物の製造手法を適用し得る。
(a)マグネシウムを還元剤としてハロシラン化合物を脱ハロゲン縮重合させる方法(「マグネシウム還元法」、WO98/29476号公報、特開2003−277507号公報に記載の方法など)
(b)金属ナトリウム、金属リチウム、金属カリウムなど(好ましくは金属ナトリウム)のアルカリ金属の存在下でハロシラン化合物を脱ハロゲン縮重合させる方法(「キッピング法」、J.Am.Chem.Soc.,110,124(1988)、Macromolecules,23,3423(1990)など)
(c)電極還元によりハロシラン化合物を脱ハロゲン縮重合させる方法(J.Chem.Soc.,Chem.Commun.,1161(1990)、J.Chem.Soc.,Chem.Commun.897(1992)など)
第1の態様に係るポリシラン化合物の製造方法は、ニトロキシ化合物とともに、マグネシウムの存在下において上記ハロシラン化合物を反応させるマグネシウム還元法、又は
ニトロキシ化合物とともに、金属ナトリウム、金属リチウム、金属カリウムなど(好ましくは金属ナトリウム)のアルカリ金属の存在下において上記ハロシラン化合物を反応させるキッピング法であることが好ましく、ニトロキシ化合物とともに、マグネシウムの存在下において上記ハロシラン化合物を反応させるマグネシウム還元法であることがより好ましい。
The method for producing a polysilane compound according to the first aspect may apply a method for producing a polysilane compound such as the following (a) to (c) including reacting a halosilane compound.
(A) A method of dehalogenating polycondensation of a halosilane compound using magnesium as a reducing agent (“magnesium reduction method”, a method described in WO 98/29476, JP 2003-277507 A, etc.)
(B) A method of dehalogenating polycondensation of a halosilane compound in the presence of an alkali metal such as metallic sodium, metallic lithium, metallic potassium, etc. (preferably metallic sodium) (“Kipping method”, J. Am. Chem. Soc., 110 , 124 (1988), Macromolecules, 23, 3423 (1990), etc.)
(C) Dehalogenation condensation polymerization of halosilane compounds by electrode reduction (J. Chem. Soc., Chem. Commun., 1161 (1990), J. Chem. Soc., Chem. Commun. 897 (1992), etc.)
The method for producing the polysilane compound according to the first aspect includes a magnesium reduction method in which the halosilane compound is reacted in the presence of magnesium together with a nitroxy compound, or a metal sodium, metal lithium, metal potassium, etc. (preferably metal A kipping method in which the halosilane compound is reacted in the presence of an alkali metal (sodium) is preferred, and a magnesium reduction method in which the halosilane compound is reacted in the presence of magnesium together with a nitroxy compound is more preferred.

マグネシウムとしては、金属マグネシウム(マグネシウム単体)の形態、マグネシウム合金の形態であってもよく、これらの混合物などであってもよい(以下、「マグネシウム成分」ともいう。)。
マグネシウム合金の種類は特に制限されず、慣用のマグネシウム合金、例えば、アルミニウム、亜鉛、希土類元素(スカンジウム、イットリウムなど)などの成分を含むマグネシウム合金が例示できる。
マグネシウム成分の形状としては、ハロシラン化合物の反応を損なわない限り特に限定されないが、粉粒状(粉体、粒状体など)、リボン状体、切削片状体、塊状体、棒状体、板状体(平板状など)などが例示され、特に、粉体、粒状体、リボン状体、切削片状体などであることが好ましい。マグネシウム(例えば、粉粒状のマグネシウム)の平均粒径は、例えば、1〜10000μm、好ましくは10〜7000μm、さらに好ましくは15〜5000μm(例えば、20〜3000μm)であってもよい。
マグネシウム成分及びアルカリ金属は、単独で用いてもよく、2種以上を組み合わせて用いてもよい。
Magnesium may be in the form of metallic magnesium (magnesium alone), a magnesium alloy, or a mixture thereof (hereinafter also referred to as “magnesium component”).
The kind of magnesium alloy is not particularly limited, and examples thereof include conventional magnesium alloys such as magnesium alloys containing components such as aluminum, zinc, rare earth elements (scandium, yttrium, etc.).
The shape of the magnesium component is not particularly limited as long as it does not impair the reaction of the halosilane compound, but is in the form of powder (powder, granule, etc.), ribbon, cut piece, lump, rod, plate ( Flat form etc.) etc. are illustrated, and it is preferable that they are a powder, a granular material, a ribbon-like body, a cutting piece-like body etc. especially. The average particle diameter of magnesium (for example, granular magnesium) may be, for example, 1 to 10000 μm, preferably 10 to 7000 μm, and more preferably 15 to 5000 μm (for example, 20 to 3000 μm).
A magnesium component and an alkali metal may be used independently and may be used in combination of 2 or more type.

マグネシウム成分又はアルカリ金属の使用量は、ハロシラン化合物のハロゲン原子に対して、マグネシウム換算又はアルカリ金属換算で、1〜20当量であることが好ましく、1.1〜14当量であることがより好ましく、1.2〜10当量であることが更に好ましく、1.2〜5当量であることが特に好ましい。
また、マグネシウム成分又はアルカリ金属の使用量は、ハロシラン化合物に対してモル数でマグネシウム又はアルカリ金属として1〜20倍であることが好ましく、1.1〜14倍であることがより好ましく、1.2〜10倍であることが更に好ましく、1.2〜5倍であることが特に好ましい。
The amount of the magnesium component or alkali metal used is preferably 1 to 20 equivalents, more preferably 1.1 to 14 equivalents, in terms of magnesium or alkali metal, relative to the halogen atom of the halosilane compound. More preferably, it is 1.2-10 equivalent, and it is especially preferable that it is 1.2-5 equivalent.
Further, the amount of the magnesium component or alkali metal used is preferably 1 to 20 times, more preferably 1.1 to 14 times as magnesium or alkali metal in terms of the number of moles relative to the halosilane compound. 2 to 10 times is more preferable, and 1.2 to 5 times is particularly preferable.

第1の態様に係るポリシラン化合物の製造方法は、ニトロキシ化合物、及びマグネシウム成分又はアルカリ金属とともに、更に下記一般式(Z1)で表される有機金属錯体の存在下において上記ハロシラン化合物を反応させてもよい。

p/q (Z1)

(上記一般式(Z1)中、Mは、p価の金属カチオンを表し、Lはq価の有機配位子を表し、p及びqは各々独立に1以上の整数を表す。)
In the method for producing a polysilane compound according to the first aspect, the halosilane compound may be reacted with the nitroxy compound and the magnesium component or the alkali metal in the presence of an organometallic complex represented by the following general formula (Z1). Good.

M p L p / q (Z1)

(In the general formula (Z1), M p represents a p-valent metal cation, L represents a q-valent organic ligand, and p and q each independently represents an integer of 1 or more.)

p価の金属カチオンMを構成する金属原子としては、鉄、銀、アルミニウム、ビスマス、セリウム、コバルト、銅、ジスプロシウム、エルビウム、ユーロピウム、ガリウム、ガドリニウム、ハフニウム、ホルミウム、インジウム、イリジウム、ランタン、ルテチウム、マンガン、モリブデン、ネオジム、ニッケル、オスミウム、パラジウム、プロメチウム、プラセオジム、白金、レニウム、ロジウム、ルテニウム、サマリウム、スカンジウム、スズ、テルビウム、チタン、ツリウム、バナジウム、クロム、タンタル、イッテルビウム、金、水銀タングステン、イットリウム、亜鉛及びジルコニウムよりなる群から選択される金属が挙げられる。
pとしては、1〜4の整数であることが好ましく、1〜3の整数であることがより好ましく、2又は3であることが更に好ましい。
qとしては、1〜4の整数であることが好ましく、1〜3の整数であることがより好ましく、1又は2であることが更に好ましい。
q価の有機配位子Lとしては、β−ジケトナト配位子、オレフィン、共役ケトン、ニトリル、アミン、カルボキシラト配位子、一酸化炭素、ホスフィン、ホスフィナイト、ホスホナイト、ホスファイト等の有機配位子が挙げられる。q価の有機配位子Lはキレート配位子であってもよい。
The metal atoms constituting the p-valent metal cation M p, iron, silver, aluminum, bismuth, cerium, cobalt, copper, dysprosium, erbium, europium, gallium, gadolinium, hafnium, holmium, indium, iridium, lanthanum, lutetium , Manganese, molybdenum, neodymium, nickel, osmium, palladium, promethium, praseodymium, platinum, rhenium, rhodium, ruthenium, samarium, scandium, tin, terbium, titanium, thulium, vanadium, chromium, tantalum, ytterbium, gold, mercury tungsten, Examples include metals selected from the group consisting of yttrium, zinc and zirconium.
p is preferably an integer of 1 to 4, more preferably an integer of 1 to 3, and still more preferably 2 or 3.
q is preferably an integer of 1 to 4, more preferably an integer of 1 to 3, and still more preferably 1 or 2.
As the q-valent organic ligand L, organic coordination such as β-diketonato ligand, olefin, conjugated ketone, nitrile, amine, carboxylate ligand, carbon monoxide, phosphine, phosphinite, phosphonite, phosphite, etc. A child. The q-valent organic ligand L may be a chelate ligand.

上記有機金属錯体としては、下記一般式(Z2)で表される有機金属錯体であることが好ましい。

Figure 2018109112
(上記一般式(Z2)中、Mは、鉄、銀、アルミニウム、ビスマス、セリウム、コバルト、銅、ジスプロシウム、エルビウム、ユーロピウム、ガリウム、ガドリニウム、ハフニウム、ホルミウム、インジウム、イリジウム、ランタン、ルテチウム、マンガン、モリブデン、ネオジム、ニッケル、オスミウム、パラジウム、プロメチウム、プラセオジム、白金、レニウム、ロジウム、ルテニウム、サマリウム、スカンジウム、スズ、テルビウム、チタン、ツリウム、バナジウム、クロム、タンタル、イッテルビウム、金、水銀タングステン、イットリウム、亜鉛及びジルコニウムよりなる群から選択される金属を表し、Rz1は、各々独立して、飽和炭化水素基、不飽和炭化水素基、芳香族炭化水素基、アラルキル基、アルコキシ基、アリールオキシ基、アラルキルオキシ基又はアリールオキシアルキル基を表し、Rz2は、水素原子、飽和炭化水素基、不飽和炭化水素基、芳香族炭化水素基又はアラ上記ルキル基を表わす。pは1以上の整数を表す。) The organometallic complex is preferably an organometallic complex represented by the following general formula (Z2).
Figure 2018109112
(In the general formula (Z2), M represents iron, silver, aluminum, bismuth, cerium, cobalt, copper, dysprosium, erbium, europium, gallium, gadolinium, hafnium, holmium, indium, iridium, lanthanum, lutetium, manganese, Molybdenum, neodymium, nickel, osmium, palladium, promethium, praseodymium, platinum, rhenium, rhodium, ruthenium, samarium, scandium, tin, terbium, titanium, thulium, vanadium, chromium, tantalum, ytterbium, gold, mercury tungsten, yttrium, zinc And R z1 each independently represents a saturated hydrocarbon group, an unsaturated hydrocarbon group, an aromatic hydrocarbon group, an aralkyl group, an alkoxy group, an aryl group, or an aryl group selected from the group consisting of zirconium and zirconium. Represents an oxy group, an aralkyloxy group or an aryloxyalkyl group, and R z2 represents a hydrogen atom, a saturated hydrocarbon group, an unsaturated hydrocarbon group, an aromatic hydrocarbon group, or an aralkyl group, and p is 1 or more. Represents an integer.)

z1及びRz2で表わされる飽和炭化水素基としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、s−ブチル基、t−ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、テトラデシル基、ヘキサデシル基、オクタデシル基、イコシル基、ドコシル基、2−ドデシルヘキサデシル基、トリアコンチル基、ドトリアコンチル基、テトラコンチル基などの炭素数1〜40の直鎖状または分岐状アルキル基、さらに、これらがハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨード原子)、アルコキシ基(下記に記載するものなど)、シリル基(下記に記載するものなど)などの置換基の1種または2種以上で置換されたアルキル基、たとえばクロロプロピル基、3,3,3−トリフルオロプロピル基、3,3,4,4,5,5,6,6,6−ノナフルオロヘキシル基、トリデカフルオロ−1,1,2,2−テトラヒドロオクチル基、ヘプタデカフルオロ−1,1,2,2−テトラヒドロデシル基、3−(ヘプタフルオロイソプロポキシ)プロピル基、トリメチルシリルメチル基など;シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、ビシクロヘプチル基、シクロオクチル基、アダマンチル基などの炭素数3〜18の単環または2環以上の多環の環状飽和炭化水素基、さらにこれら環状飽和炭化水素基がアルキル基(上記したものなど)、アリール基(上記したものなど)などの置換基の1種または2種以上で置換されたもの、例えば、4−t−ブチルシクロヘキシル基、4−フェニルシクロへキシル基など;または上記環状飽和炭化水素基を有するアルキル基(上記したものなど)、たとえばシクロヘキシルメチル基、アダマンチルエチル基などが挙げられる。 Examples of the saturated hydrocarbon group represented by R z1 and R z2 include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, s-butyl group, t-butyl group, pentyl group, hexyl group, heptyl. Group, octyl group, nonyl group, decyl group, undecyl group, dodecyl group, tetradecyl group, hexadecyl group, octadecyl group, icosyl group, docosyl group, 2-dodecylhexadecyl group, triacontyl group, dotriacontyl group, tetracontyl group, etc. A linear or branched alkyl group of 1 to 40, further, a halogen atom (a fluorine atom, a chlorine atom, a bromine atom, an iodo atom), an alkoxy group (such as those described below), a silyl group (described below) Alkyl groups substituted with one or more substituents, such as those described), for example Chloropropyl group, 3,3,3-trifluoropropyl group, 3,3,4,4,5,5,6,6,6-nonafluorohexyl group, tridecafluoro-1,1,2,2- Tetrahydrooctyl group, heptadecafluoro-1,1,2,2-tetrahydrodecyl group, 3- (heptafluoroisopropoxy) propyl group, trimethylsilylmethyl group, etc .; cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, bicyclo C3-C18 monocyclic or bicyclic or higher polycyclic saturated hydrocarbon groups such as heptyl group, cyclooctyl group, adamantyl group, etc., and these cyclic saturated hydrocarbon groups are alkyl groups (such as those described above), Substituted with one or more substituents such as an aryl group (such as those described above), such as 4-t-butyl Examples thereof include a cyclohexyl group, a 4-phenylcyclohexyl group and the like; or an alkyl group having the above cyclic saturated hydrocarbon group (such as those described above), such as a cyclohexylmethyl group and an adamantylethyl group.

z1及びRz2で表わされる不飽和炭化水素基としては、ビニル基、エチニル基、アリル基、1−プロペニル基、プロパルギル基、ブテニル基、ペンテニル基、ヘキセニル基、オクテニル基、デカニル基、ドデカニル基、オクタデカニル基などの炭素数2〜18の直鎖状または分岐状アルケニル基、アルキニル基、さらに、これらの不飽和炭化水素基が、ハロゲン原子(上記したものなど)、アルコキシ基(下記に記載するものなど)、シリル基(下記に記載するものなど)、アリール基(下記に記載するものなど)の置換基の1種または2種以上で置換されたもの、たとえば、2−トリフルオロメチルエテニル基、2−トリフルオロメチルエチニル基、3−メトキシ−1−プロペニル基、3−メトキシ−1−プロピニル基、2−トリメチルシリルエテニル基、2−トリメチルシリルエチニル基、2−フェニルエテニル基、2−フェニルエチニル基など;シクロプロペニル基、シクロヘキセニル基、シクロオクテニル基などの炭素数3〜18の環状不飽和炭化水素基;上記環状不飽和炭化水素基を有するアルキル基(上記したものなど)、たとえばシクロヘキセニルエチル基などが挙げられる。 Examples of the unsaturated hydrocarbon group represented by R z1 and R z2 include vinyl group, ethynyl group, allyl group, 1-propenyl group, propargyl group, butenyl group, pentenyl group, hexenyl group, octenyl group, decanyl group, dodecanyl group In addition, a linear or branched alkenyl group having 2 to 18 carbon atoms such as an octadecanyl group, an alkynyl group, and an unsaturated hydrocarbon group thereof may be a halogen atom (such as those described above) or an alkoxy group (described below). ), Silyl groups (such as those described below), aryl groups (such as those described below) substituted with one or more substituents such as 2-trifluoromethylethenyl Group, 2-trifluoromethylethynyl group, 3-methoxy-1-propenyl group, 3-methoxy-1-propynyl group, 2-trimethyl Rusilylethenyl group, 2-trimethylsilylethynyl group, 2-phenylethenyl group, 2-phenylethynyl group, etc .; C3-C18 cyclic unsaturated hydrocarbon group such as cyclopropenyl group, cyclohexenyl group, cyclooctenyl group; Examples thereof include an alkyl group having an unsaturated hydrocarbon group (such as those described above), such as a cyclohexenylethyl group.

z1及びRz2で表わされる芳香族炭化水素基としては、フェニル基、および、トリル基、ブチルフェニル基、ブトキシフェニル基などのアルキル基、アルコキシ基、アミノ基などの1種または2種以上で置換された置換フェニル基などが挙げられる。 Examples of the aromatic hydrocarbon group represented by R z1 and R z2 include one or more of a phenyl group, an alkyl group such as a tolyl group, a butylphenyl group, and a butoxyphenyl group, an alkoxy group, and an amino group. Examples include substituted phenyl groups.

z1及びRz2で表わされるアラルキル基としては、ベンジル基、フェネチル基、メチルフェネチル基、ブチルフェネチル基、フェニルプロピル基、メトキシフェニルプロピル基などが挙げられ、ヘテロアラルキル基としては、ピリジルメチル基、ピリジルエチル基などが挙げられる。 Examples of the aralkyl group represented by R z1 and R z2 include a benzyl group, a phenethyl group, a methylphenethyl group, a butylphenethyl group, a phenylpropyl group, a methoxyphenylpropyl group, and the heteroaralkyl group includes a pyridylmethyl group, A pyridylethyl group etc. are mentioned.

z1で表わされるアルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ヘキシルオキシ基、オクチルオキシ基などの炭素数1〜18のアルコキシ基が挙げられ、アリールオキシ基としては、フェノキシ基、およびトリルオキシ基、ブチルフェノキシ基などアルキル基などの置換基で置換された置換フェノキシ基などが挙げられる。 Examples of the alkoxy group represented by R z1 include alkoxy groups having 1 to 18 carbon atoms such as a methoxy group, an ethoxy group, a propoxy group, a butoxy group, a hexyloxy group, an octyloxy group, and the aryloxy group includes a phenoxy group. And a substituted phenoxy group substituted with a substituent such as an alkyl group such as a tolyloxy group and a butylphenoxy group.

z1で表わされるアラルキルオキシ基としては、ベンジロキシ基、フェネチロキシ基などが挙げられ、アリールオキシアルキル基としては、フェノキシプロピル基、フェノキシブチル基などが挙げられる。 Examples of the aralkyloxy group represented by R z1 include a benzyloxy group and a phenethyloxy group, and examples of the aryloxyalkyl group include a phenoxypropyl group and a phenoxybutyl group.

z1として好ましいものは、炭素数が1〜30の飽和炭化水素基、芳香族炭化水素基などであり、さらに好ましいものは、炭素数が1〜15のアルキル基、フェニル基などであり、特に好ましいものは、メチル基である。 R z1 is preferably a saturated hydrocarbon group having 1 to 30 carbon atoms, an aromatic hydrocarbon group, or the like, and more preferably an alkyl group having 1 to 15 carbon atoms, a phenyl group, or the like. Preferred is a methyl group.

z2として好ましいものは、水素原子、炭素数が1〜18の飽和炭化水素基、芳香族炭化水素基などであり、さらに好ましいものは、水素原子、炭素数が1〜10のアルキル基、フェニル基、フェニルエチル基などであり、特に好ましいものは、水素原子である。
pの好ましい例としては上述の通りである。
R z2 is preferably a hydrogen atom, a saturated hydrocarbon group having 1 to 18 carbon atoms, an aromatic hydrocarbon group, or the like, and more preferably a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, phenyl Group, phenylethyl group and the like, and particularly preferred is a hydrogen atom.
Preferred examples of p are as described above.

金属錯体としては、上記の金属MとRz1及びRz2の組み合わせにより種々の金属錯体が挙げられる。具体例を例示すると、アセチルアセトナト銀(I)、トリス(アセチルアセトナト)アルミニウム(III)、トリス(2,2,6,6−テトラメチル−3,5−ヘプタンジオナト)アルミニウム(III)、トリス(2,2,6,6−テトラメチル−3,5−ヘプタンジオナト)ビスマス(III)、トリス(アセチルアセトナト)セリウム(III)、ビス(アセチルアセトナト)コバルト(II)、トリス(アセチルアセトナト)コバルト(III)、トリス(1,3−ジフェニル−1,3−プロパンジオナト)コバルト(III)、トリス(3−メチル−2,4−ペンタンジオナト)コバルト(III)、トリス(3−フェニル−2,4−ペンタンジオナト)コバルト(III)、トリス(3−(1−フェニルエチル)−2,4−ペンタンジオナト)コバルト(III)、ビス(ベンゾイルアセトン)コバルト(II)ビス(ヘキサフルオロアセチルアセトナト)コバルト(II)、トリス(2,2,6,6−テトラメチル−3,5−ヘプタンジオナト)コバルト(III)、ビス(アセチルアセトナト)銅(II)、ビス(2,2,6,6−テトラメチル−3,5−ヘプタジオナト)銅(II)、トリス(2,2,4,6,6−ペンタメチル−3,5−ヘプタンジオナト)コバルト(III)、トリス(2,2,6,6−テトラメチル−4−(1−フェニルエチル)−3,5−ヘプタンジオナト)コバルト(III)、トリス(2,2,6,6−テトラメチル−4−フェニル−3,5−ヘプタンジオナト)コバルト(III)、ビス(ヘキサフルオロアセチルアセトナト)銅(II)、ビス(トリフルオロアセチルアセトナト)銅(II)、トリス(アセチルアセトナト)ジスプロシウム(III)、トリス(アセチルアセトナト)エルビウム(III)、トリス(2,2,6,6,−テトラメチル−3,5−ヘプタンジオナト)エルビウム(III)、トリス(アセチルアセトナト)ユーロピウム(III)、ビス(アセチルアセトナト)鉄(II)、トリス(アセチルアセトナト)鉄(III)、トリス(1,3−ジフェニル−1,3−プロパンジオナト)鉄(III)、トリス(3−メチル−2,4−ペンタンジオナト)鉄(III)、トリス(3−フェニル−2,4−ペンタンジオナト)鉄(III)、トリス(3−(1−フェニルエチル)−2,4−ペンタンジオナト)鉄(III)、トリス(2,2,6,6−テトラメチル−3,5−ヘプタンジオナト)鉄(III)、トリス(2,2,4,6,6−ペンタメチル−3,5−ヘプタンジオナト)鉄(III)、トリス(2,2,6,6−テトラメチル−4−(1−フェニルエチル)−3,5−ヘプタンジオナト)鉄(III)、トリス(2,2,6,6−テトラメチル−4−フェニル−3,5−ヘプタンジオナト)鉄(III)、テトラキス(アセチルアセトナト)ハフニウム(IV)、トリス(アセチルアセトナト)ガリウム(III)、トリス(アセチルアセトナト)ガドリニウム(III)、トリス(アセチルアセトナト)ホルミウム(III)、トリス(アセチルアセトナト)インジウム(III)、トリス(アセチルアセトナト)イリジウム(III)、トリス(アセチルアセトナト)ランタン(III)、トリス(アセチルアセトナト)ルテチウム(III)、ビス(アセチルアセトナト)マンガン(II)、トリス(アセチルアセトナト)マンガン(III)、ビス(ヘキサフルオロアセチルアセトナト)マンガン(II)、ビス(アセチルアセトナト)ジオキソモリブデン(IV)、トリス(アセチルアセトナト)ネオジム(III)、トリス(2,2,6,6−テトラメチル−3,5−ヘプタジオナト)ネオジム(III)、ビス(アセチルアセトナト)ニッケル(II)、ビス(2,2,6,6−テトラメチル−3,5−ヘプタジオナト)ニッケル(II)、ビス(ヘキサフルオロアセチルアセトナト)ニッケル(II)、ビス(1,3−ジフェニル−1,3−プロパンジオナト)ニッケル(II)、ビス(3−メチル−2,4−ペンタンジオナト)ニッケル(II)、ビス(3−フェニル−2,4−ペンタンジオナト)ニッケル(II)、ビス(3−(1−フェニルエチル)−2,4−ペンタンジオナト)ニッケル(II)、ビス(2,2,4,6,6−ペンタメチル−3,5−ヘプタンジオナト)ニッケル(II)、ビス(2,2,6,6−テトラメチル−4−(1−フェニルエチル)−3,5−ヘプタンジオナト)ニッケル(II)、ビス(2,2,6,6−テトラメチル−4−フェニル−3,5−ヘプタンジオナト)ニッケル(II)、ビス(アセチルアセトナト)パラジウム(II)、ビス(ヘキサフルオロアセチルアセトナト)パラジウム(II)、ビス(1,3−ジフェニル−1,3−プロパンジオナト)パラジウム(II)、ビス(3−メチル−2,4−ペンタンジオナト)パラジウム(II)、ビス(3−フェニル−2,4−ペンタンジオナト)パラジウム(II)、ビス(3−(1−フェニルエチル)−2,4−ペンタンジオナト)パラジウム(II)、ビス(2,2,4,6,6−ペンタメチル−3,5−ヘプタンジオナト)パラジウム(II)、ビス(2,2,6,6−テトラメチル−4−(1−フェニルエチル)−3,5−ヘプタンジオナト)パラジウム(II)、ビス(2,2,6,6−テトラメチル−4−フェニル−3,5−ヘプタンジオナト)パラジウム(II)、トリス(アセチルアセトナト)プロメチウム(III)、トリス(アセチルアセトナト)プラセオジム(III)、トリス(ヘキサフルオロアセチルアセトナト)プラセオジム(III)、ビス(アセチルアセトナト)白金(II)、トリス(アセチルアセトナト)ロジウム(III)、トリス(アセチルアセトナト)ルテニウム(III)、トリス(アセチルアセトナト)スカンジウム(III)、トリス(ヘキサフルオロアセチルアセトナト)スカンジウム(III)、トリス(2,2,6,6−テトラメチル−3,5−ヘプタジオナト)スカンジウム(III)、トリス(アセチルアセトナト)サマリウム(III)、トリス(2,2,6,6−テトラメチル−3,5−ヘプタンジオナト)サマリウム(III)、ビス(アセチルアセトナト)スズ(II)、トリス(アセチルアセトナト)テルビウム(III)、トリス(2,2,6,6−テトラメチル−3,5−ヘプタンジオナト)テルビウム(III)、トリス(2,2,6,6−テトラメチル−3,5−ヘプタンジオナト)ツリウム(III)、トリス(アセチルアセトナト)バナジウム(III)、トリス(アセチルアセトナト)イットリウム(III)、トリス(ヘキサフルオロアセチルアセトナト)イットリウム(III)、トリス(2,2,6,6−テトラメチル−3,5−ヘプタンジオナト)イットリウム(III)、ビス(アセチルアセトナト)亜鉛(II)、ビス(ヘキサフルオロアセチルアセトナト)亜鉛(II)、ビス(2,2,6,6−テトラメチル−3,5−ヘプタンジオナト)亜鉛(II)、テトラキス(アセチルアセトナト)ジルコニウム(IV)、テトラキス(2,2,6,6−テトラメチル−3,5−ヘプタンジオナト)ジルコニウム(IV)、テトラキス(トリフルオロアセチルアセトナト)ジルコニウム(IV)などが挙げられる。
これら有機金属錯体は、単独または2種以上を組み合わせて使用できる。有機金属錯体として、あらかじめ合成した金属錯体を使用してもよく、系中で製造したものを使用してもよい。
As a metal complex, various metal complexes are mentioned by the combination of said metal M, Rz1, and Rz2 . Illustrative examples include acetylacetonato silver (I), tris (acetylacetonato) aluminum (III), tris (2,2,6,6-tetramethyl-3,5-heptanedionato) aluminum (III), tris (2,2,6,6-tetramethyl-3,5-heptanedionato) bismuth (III), tris (acetylacetonato) cerium (III), bis (acetylacetonato) cobalt (II), tris (acetylacetonato ) Cobalt (III), Tris (1,3-diphenyl-1,3-propanedionato) cobalt (III), Tris (3-methyl-2,4-pentanedionato) cobalt (III), Tris (3- Phenyl-2,4-pentanedionato) cobalt (III), tris (3- (1-phenylethyl) -2,4-pe Tandionato) cobalt (III), bis (benzoylacetone) cobalt (II) bis (hexafluoroacetylacetonato) cobalt (II), tris (2,2,6,6-tetramethyl-3,5-heptanedionato) cobalt ( III), bis (acetylacetonato) copper (II), bis (2,2,6,6-tetramethyl-3,5-heptadionato) copper (II), tris (2,2,4,6,6- Pentamethyl-3,5-heptanedionato) cobalt (III), tris (2,2,6,6-tetramethyl-4- (1-phenylethyl) -3,5-heptaneedionato) cobalt (III), tris (2, 2,6,6-tetramethyl-4-phenyl-3,5-heptanedionato) cobalt (III), bis (hexafluoroacetylacetonate Copper (II), bis (trifluoroacetylacetonato) copper (II), tris (acetylacetonato) dysprosium (III), tris (acetylacetonato) erbium (III), tris (2,2,6,6, -Tetramethyl-3,5-heptanedionato) erbium (III), tris (acetylacetonato) europium (III), bis (acetylacetonato) iron (II), tris (acetylacetonato) iron (III), tris ( 1,3-diphenyl-1,3-propanedionato) iron (III), tris (3-methyl-2,4-pentanedionato) iron (III), tris (3-phenyl-2,4-pentanedio) Nato) iron (III), tris (3- (1-phenylethyl) -2,4-pentanedionato) iron (III), tris (2,2 , 6,6-tetramethyl-3,5-heptanedionato) iron (III), tris (2,2,4,6,6-pentamethyl-3,5-heptaneedionato) iron (III), tris (2,2, 6,6-tetramethyl-4- (1-phenylethyl) -3,5-heptanedionato) iron (III), tris (2,2,6,6-tetramethyl-4-phenyl-3,5-heptaneedionato) Iron (III), tetrakis (acetylacetonato) hafnium (IV), tris (acetylacetonato) gallium (III), tris (acetylacetonato) gadolinium (III), tris (acetylacetonato) holmium (III), tris (Acetylacetonato) indium (III), tris (acetylacetonato) iridium (III), tris (acetylacetate) Nato) lanthanum (III), tris (acetylacetonato) lutetium (III), bis (acetylacetonato) manganese (II), tris (acetylacetonato) manganese (III), bis (hexafluoroacetylacetonato) manganese ( II), bis (acetylacetonato) dioxomolybdenum (IV), tris (acetylacetonato) neodymium (III), tris (2,2,6,6-tetramethyl-3,5-heptadionato) neodymium (III) Bis (acetylacetonato) nickel (II), bis (2,2,6,6-tetramethyl-3,5-heptadionato) nickel (II), bis (hexafluoroacetylacetonato) nickel (II), bis (1,3-diphenyl-1,3-propanedionato) nickel (II), bis 3-methyl-2,4-pentanedionato) nickel (II), bis (3-phenyl-2,4-pentandionato) nickel (II), bis (3- (1-phenylethyl) -2,4 -Pentandionato) nickel (II), bis (2,2,4,6,6-pentamethyl-3,5-heptanedionate) nickel (II), bis (2,2,6,6-tetramethyl-4- (1-phenylethyl) -3,5-heptanedionato) nickel (II), bis (2,2,6,6-tetramethyl-4-phenyl-3,5-heptaneedionato) nickel (II), bis (acetylacetate) Nato) palladium (II), bis (hexafluoroacetylacetonato) palladium (II), bis (1,3-diphenyl-1,3-propanedionato) palladium (II), bis (3-methyl-2,4-pentanedionato) palladium (II), bis (3-phenyl-2,4-pentandionato) palladium (II), bis (3- (1-phenylethyl) -2, 4-Pentandionato) palladium (II), bis (2,2,4,6,6-pentamethyl-3,5-heptanedionate) palladium (II), bis (2,2,6,6-tetramethyl-4) -(1-phenylethyl) -3,5-heptanedionato) palladium (II), bis (2,2,6,6-tetramethyl-4-phenyl-3,5-heptaneedionato) palladium (II), tris (acetyl) Acetonato) promethium (III), tris (acetylacetonato) praseodymium (III), tris (hexafluoroacetylacetonato) praseodymium (III) Bis (acetylacetonato) platinum (II), tris (acetylacetonato) rhodium (III), tris (acetylacetonato) ruthenium (III), tris (acetylacetonato) scandium (III), tris (hexafluoroacetylacetate) Nato) scandium (III), tris (2,2,6,6-tetramethyl-3,5-heptadionato) scandium (III), tris (acetylacetonato) samarium (III), tris (2,2,6, 6-tetramethyl-3,5-heptanedionato) samarium (III), bis (acetylacetonato) tin (II), tris (acetylacetonato) terbium (III), tris (2,2,6,6-tetramethyl -3,5-heptanedionato) terbium (III), tris (2 2,6,6-tetramethyl-3,5-heptanedionato) thulium (III), tris (acetylacetonato) vanadium (III), tris (acetylacetonato) yttrium (III), tris (hexafluoroacetylacetonato) Yttrium (III), tris (2,2,6,6-tetramethyl-3,5-heptanedionato) yttrium (III), bis (acetylacetonato) zinc (II), bis (hexafluoroacetylacetonato) zinc ( II), bis (2,2,6,6-tetramethyl-3,5-heptanedionato) zinc (II), tetrakis (acetylacetonato) zirconium (IV), tetrakis (2,2,6,6-tetramethyl) -3,5-heptanedionato) zirconium (IV), tetrakis (trifluoro) Acetylacetonato) zirconium (IV) and the like.
These organometallic complexes can be used alone or in combination of two or more. As the organometallic complex, a metal complex synthesized in advance may be used, or a metal complex produced in the system may be used.

上記有機金属錯体の使用量は、ハロシラン化合物に対して、0.001〜10モル倍の範囲が好ましく、より好ましくは0.001〜1モル倍の範囲、特に好ましくは0.001〜0.1モル倍の範囲である。   The amount of the organometallic complex used is preferably in the range of 0.001 to 10 mol times, more preferably in the range of 0.001 to 1 mol times, particularly preferably 0.001 to 0.1 mol, relative to the halosilane compound. It is the range of mole times.

(金属ハロゲン化物)
第1の態様に係るポリシラン化合物の製造方法は、ニトロキシ化合物、及びマグネシウム又はアルカリ金属とともに、更に金属ハロゲン化物の存在下において上記ハロシラン化合物を反応させてもよい。
金属ハロゲン化物としては、多価金属ハロゲン化物、例えば、遷移金属(例えば、サマリウムなどの周期表3A族元素、チタンなどの周期表4A族元素、バナジウムなどの周期表5A族元素、鉄、ニッケル、コバルト、パラジウムなどの周期表8族元素、銅などの周期表1B族元素、亜鉛などの周期表2B族元素など)、周期表3B族金属(アルミニウムなど)、周期表4B族金属(スズなど)などの金属のハロゲン化物(塩化物、臭化物又はヨウ化物など)が挙げられる。金属ハロゲン化物を構成する上記金属の価数は、特に制限されないが、好ましくは2〜4価、特に2又は3価である。これらの金属ハロゲン化物は、単独で又は二種以上組み合わせて使用できる。
(Metal halide)
In the method for producing a polysilane compound according to the first aspect, the halosilane compound may be reacted with a nitroxy compound and magnesium or an alkali metal in the presence of a metal halide.
Examples of the metal halide include polyvalent metal halides such as transition metals (for example, periodic table group 3A elements such as samarium, periodic table group 4A elements such as titanium, periodic table group 5A elements such as vanadium, iron, nickel, Periodic table group 8 elements such as cobalt and palladium, periodic table group 1B elements such as copper, periodic table group 2B elements such as zinc), periodic table group 3B metals (such as aluminum), periodic table group 4B metals (such as tin) Metal halides such as chloride, bromide or iodide. The valence of the metal constituting the metal halide is not particularly limited, but is preferably 2 to 4, more preferably 2 or 3. These metal halides can be used alone or in combination of two or more.

金属ハロゲン化物としては、鉄、アルミニウム、亜鉛、銅、スズ、ニッケル、コバルト、バナジウム、チタン、パラジウム、サマリウムなどから選択された少なくとも一種の金属の塩化物又は臭化物が好ましい。   The metal halide is preferably a chloride or bromide of at least one metal selected from iron, aluminum, zinc, copper, tin, nickel, cobalt, vanadium, titanium, palladium, samarium and the like.

このような金属ハロゲン化物としては、例えば、塩化物(FeCl、FeClなどの塩化鉄;AlCl、ZnCl、SnCl、CoCl、VCl、TiCl、PdCl、SmClなど)、臭化物(FeBr、FeBrなどの臭化鉄など)、ヨウ化物(SmIなど)などが例示できる。これらの金属ハロゲン化物のうち、塩化物(例えば、塩化鉄(II)、塩化鉄(III)などの塩化鉄、塩化亜鉛など)及び臭化物が好ましい。通常、塩化鉄及び/又は塩化亜鉛、特に塩化亜鉛などが使用される。 Examples of such metal halides include chlorides (iron chloride such as FeCl 2 and FeCl 3 ; AlCl 3 , ZnCl 2 , SnCl 2 , CoCl 2 , VCl 2 , TiCl 4 , PdCl 2 , and SmCl 2 ). Examples thereof include bromides (such as iron bromide such as FeBr 2 and FeBr 3 ) and iodides (such as SmI 2 ). Of these metal halides, chlorides (for example, iron chlorides such as iron (II) chloride and iron (III), zinc chloride, etc.) and bromides are preferred. Usually, iron chloride and / or zinc chloride, especially zinc chloride and the like are used.

金属ハロゲン化物の使用量としては、ハロシラン化合物に対して、0.001〜10モル倍の範囲が好ましく、より好ましくは0.001〜1モル倍の範囲、特に好ましくは0.001〜0.1モル倍の範囲である。   The amount of the metal halide used is preferably in the range of 0.001 to 10 mol times, more preferably in the range of 0.001 to 1 mol times, particularly preferably 0.001 to 0.1 mol, relative to the halosilane compound. It is the range of mole times.

また、溶媒(反応液)中の金属ハロゲン化物の濃度は、通常、0.001〜6モル/L程度であり、好ましくは0.005〜4モル/L、さらに好ましくは0.01〜3モル/L程度であってもよい。   The concentration of the metal halide in the solvent (reaction solution) is usually about 0.001 to 6 mol / L, preferably 0.005 to 4 mol / L, more preferably 0.01 to 3 mol. It may be about / L.

(非プロトン性溶媒)
第1の態様に係るポリシラン化合物の製造方法におけるニトロキシ化合物の存在下におけるハロシラン化合物の反応は、溶媒(反応溶媒)中で行うことが好ましく、非プロトン性溶媒中で行うことがより好ましい。
溶媒(反応溶媒)としての非プロトン性溶媒には、例えば、エーテル類(1,4−ジオキサン、テトラヒドロフラン、テトラヒドロピラン、ジエチルエーテル、ジイソプロピルエーテル、1,2−ジメトキシエタン、ビス(2−メトキシエチル)エーテルなどの環状又は鎖状C4−6エーテル)、カーボネート類(プロピレンカーボネートなど)、ニトリル類(アセトニトリル、ベンゾニトリルなど)、アミド類(ジメチルホルムアミド、ジメチルアセトアミドなど)、スルホキシド類(ジメチルスルホキシドなど)、芳香族炭化水素類(ベンゼン、トルエン、キシレンなど)、脂肪族炭化水素類(例えば、ヘキサン、シクロヘキサン、オクタン、シクロオクタンなどの鎖状又は環状炭化水素類)などが含まれる。
(Aprotic solvent)
The reaction of the halosilane compound in the presence of the nitroxy compound in the method for producing the polysilane compound according to the first aspect is preferably performed in a solvent (reaction solvent), more preferably in an aprotic solvent.
Examples of the aprotic solvent as the solvent (reaction solvent) include ethers (1,4-dioxane, tetrahydrofuran, tetrahydropyran, diethyl ether, diisopropyl ether, 1,2-dimethoxyethane, bis (2-methoxyethyl). Cyclic or linear C4-6 ethers such as ether), carbonates (such as propylene carbonate), nitriles (acetonitrile, benzonitrile, etc.), amides (dimethylformamide, dimethylacetamide, etc.), sulfoxides (such as dimethyl sulfoxide), Aromatic hydrocarbons (benzene, toluene, xylene, etc.), aliphatic hydrocarbons (for example, chain or cyclic hydrocarbons such as hexane, cyclohexane, octane, cyclooctane) and the like are included.

これらの非プロトン性溶媒は、単独で又は二種以上組み合わせて混合溶媒として使用できる。これらの溶媒のうち、少なくとも極性溶媒[例えば、エーテル類[例えば、テトラヒドロフラン、1,2−ジメトキシエタン、ビス(2−メトキシエチル)エーテル、1,4−ジオキサンなど(特に、テトラヒドロフラン、1,2−ジメトキシエタン)]を使用するのが好ましい。極性溶媒は、単独で又は二種以上組み合わせて用いてもよく、極性溶媒と非極性溶媒とを組み合わせてもよい。   These aprotic solvents can be used alone or in combination of two or more as a mixed solvent. Among these solvents, at least polar solvents [for example, ethers [for example, tetrahydrofuran, 1,2-dimethoxyethane, bis (2-methoxyethyl) ether, 1,4-dioxane, etc. (especially tetrahydrofuran, 1,2- Dimethoxyethane)] is preferably used. A polar solvent may be used individually or in combination of 2 or more types, and may combine a polar solvent and a nonpolar solvent.

第1の態様に係るポリシラン化合物の製造方法において、塩基及び酸よりなる群から選択される少なくとも1種を含む水溶液に、上記反応後の液(反応液)を接触させて精製することにより上記ポリシラン化合物を得ることを更に含んでいてもよい。
上記ポリシラン化合物を塩基又は酸に接触させて精製処理することにより、ハロゲン原子(例えば、ハロゲンイオン(塩化物イオン等)、ポリシラン化合物中に残存するSi−Cl)等の夾雑物を除去することができ、また、ポリシラン化合物の低分子量化を促進することができ、上記ポリシラン化合物の溶剤溶解性を向上することができる。
また、酸は、上記ハロシラン化合物の反応のクエンチャーとしても機能し得る。
また、上記ポリシラン化合物を下記金属ハロゲン化物に接触させて精製処理することにより、ポリシラン化合物中に残存する金属原子(例えば、Mg、Zn等)を除去することができる。
処理温度は−50℃〜溶媒の沸点程度が好ましく、室温〜100℃がさらに好ましい。
In the method for producing a polysilane compound according to the first aspect, the polysilane is purified by bringing the solution after the reaction (reaction solution) into contact with an aqueous solution containing at least one selected from the group consisting of a base and an acid. It may further comprise obtaining the compound.
By purifying the polysilane compound in contact with a base or acid, impurities such as halogen atoms (for example, halogen ions (chloride ions, etc.) and Si—Cl remaining in the polysilane compound) can be removed. In addition, the molecular weight reduction of the polysilane compound can be promoted, and the solvent solubility of the polysilane compound can be improved.
The acid can also function as a quencher for the reaction of the halosilane compound.
Moreover, the metal atom (for example, Mg, Zn, etc.) remaining in the polysilane compound can be removed by bringing the polysilane compound into contact with the following metal halide for purification.
The treatment temperature is preferably from −50 ° C. to the boiling point of the solvent, more preferably from room temperature to 100 ° C.

また、使用する塩基としては、塩基性を呈する化合物であれば種々用いることができるが、例えば、水酸化ナトリウム、水酸化カリウム、水酸化バリウム、アンモニア、水酸化テトラメチルアンモニウム、炭酸ナトリウム、炭酸水素ナトリウム、炭酸カリウム、水素化リチウム、水素化ナトリウム、水素化カリウム、水素化カルシウム等の無機塩基類、メチルリチウム、n−ブチルリチウム、塩化メチルマグネシウム、臭化エチルマグネシウム等のアルキル金属類、Cr、Ga、Fe(Fe(II)、Fe(III))、Cd、Co、Ni、Sn、Pb、Cu(Cu(II)、Cu(I))、Ag、Pd、Pt、Auなどの金属(又は金属イオン)で構成される金属ハロゲン化物、ナトリウムメトキシド、ナトリウムエトキシド、カリウムt−ブトキシド等のアルコキシド類、トリエチルアミン、ジイソプロピルエチルアミン、N,N−ジメチルアニリン、ピリジン、4−ジメチルアミノピリジン、ジアザビシクロウンデセン(DBU)等の有機塩基類を用いることができる。
使用する酸としては種々用いることができるが、塩化水素等の無機酸を用いることができる。
Various bases can be used as long as they are basic compounds. For example, sodium hydroxide, potassium hydroxide, barium hydroxide, ammonia, tetramethylammonium hydroxide, sodium carbonate, hydrogen carbonate. Inorganic bases such as sodium, potassium carbonate, lithium hydride, sodium hydride, potassium hydride, calcium hydride, alkyl metals such as methyl lithium, n-butyl lithium, methyl magnesium chloride, ethyl magnesium bromide, Cr, Metals such as Ga, Fe (Fe (II), Fe (III)), Cd, Co, Ni, Sn, Pb, Cu (Cu (II), Cu (I)), Ag, Pd, Pt, Au, etc. (or Metal halide), sodium methoxide, sodium ethoxide, potassium t Alkoxides such as butoxide, triethylamine, diisopropylethylamine, N, N-dimethylaniline, pyridine, 4-dimethylaminopyridine, may be used diazabicycloundecene (DBU) organic bases such as.
Various acids can be used as the acid to be used, and inorganic acids such as hydrogen chloride can be used.

ここで、上記塩基又は酸処理に用いる溶剤としては種々用いることができるが、例えば、ベンゼン、トルエン、キシレン等の炭化水素系溶剤、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル等のグリコール系溶剤、ジエチルエーテル、ジイソプロピルエーテル、ジブチルエーテル、テトラヒドロフラン、1,4−ジオキサン等のエーテル系溶剤、アセトン、メチルエチルケトン、メチルイソブチルケトン、メチルアミルケトン、シクロペンタノン、シクロヘキサノン等のケトン系溶剤、エタノール、イソプロピルアルコール、ブタノール等のアルコール系溶剤から選ばれる1種以上を用いることができる。   Here, various solvents can be used as the base or acid treatment, for example, hydrocarbon solvents such as benzene, toluene and xylene, glycol solvents such as propylene glycol monomethyl ether and propylene glycol monoethyl ether, Ether solvents such as diethyl ether, diisopropyl ether, dibutyl ether, tetrahydrofuran, 1,4-dioxane, ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, methyl amyl ketone, cyclopentanone, cyclohexanone, ethanol, isopropyl alcohol, One or more selected from alcohol solvents such as butanol can be used.

また、環状骨格含アセテート化合物も上記塩基性条件下での処理に用いる溶剤として好ましく用いることができる。
環状骨格含アセテート化合物としては、本発明の効果を損なわない環状骨格を有するアセテート系溶剤である限り特に制限はないが、下記式(S1)で表されるシクロアルキルアセテートであることが好ましい。

Figure 2018109112
(式(S1)中、Rs1は、それぞれ独立に、アルキル基であり、pは1〜6の整数であり、qは0〜(p+1)の整数である。)
s1で表されるアルキル基としては炭素原子数1〜3のアルキル基が挙げられ、メチル基、エチル基、n−プロピル基、i−プロピル基が挙げられる。 In addition, an acetate compound containing a cyclic skeleton can also be preferably used as a solvent used for the treatment under the above basic conditions.
The acetate compound containing a cyclic skeleton is not particularly limited as long as it is an acetate solvent having a cyclic skeleton that does not impair the effects of the present invention, but is preferably a cycloalkyl acetate represented by the following formula (S1).
Figure 2018109112
(In formula (S1), R s1 is each independently an alkyl group, p is an integer of 1 to 6, and q is an integer of 0 to (p + 1).)
Examples of the alkyl group represented by R s1 include alkyl groups having 1 to 3 carbon atoms, such as a methyl group, an ethyl group, an n-propyl group, and an i-propyl group.

式(S1)で表されるシクロアルキルアセテートの具体例としては、シクロプロピルアセテート、シクロブチルアセテート、シクロペンチルアセテート、シクロヘキシルアセテート、シクロヘプチルアセテート、及びシクロオクチルアセテートが挙げられる。
これらの中では、入手容易性等の観点から、シクロヘキシルアセテートが好ましい。
Specific examples of the cycloalkyl acetate represented by the formula (S1) include cyclopropyl acetate, cyclobutyl acetate, cyclopentyl acetate, cyclohexyl acetate, cycloheptyl acetate, and cyclooctyl acetate.
Among these, cyclohexyl acetate is preferable from the viewpoint of availability.

酸処理により上記ハロシラン化合物の反応をクエンチしてもよい。
使用する酸としては種々用いることができるが、塩化水素等の無機酸を用いることができる。
The reaction of the halosilane compound may be quenched by acid treatment.
Various acids can be used as the acid to be used, and inorganic acids such as hydrogen chloride can be used.

第1の態様に係るポリシラン化合物の製造方法によれば、ポリシラン化合物を収率50%以上で得ることができ、収率70%以上であることが好ましい。   According to the method for producing a polysilane compound according to the first aspect, the polysilane compound can be obtained in a yield of 50% or more, and the yield is preferably 70% or more.

<ポリシラン化合物>
第1の態様に係るポリシラン化合物の製造方法によれば、上述のように、シロキサン結合、シラノール基等の副反応物の生成を抑制することができることから、ポリシロキサン化合物中のシロキサン結合(Si−O)の存在量を低減することができる。
第1の態様に係るポリシラン化合物の製造方法によれば、ポリシラン化合物中のX線光電子分光法により測定される99eV以上104eV以下の結合エネルギー範囲に最大検出ピーク高さを有するスペクトルをピーク分離して求められる下記(1X)及び(2X)のピークの面積の和に対する下記(2X)の比である、下記式(3X)で表される割合を0.4以下とすることができ、0.35以下であることが好ましく、0.3以下がより好ましく、0.2以下がさらに好ましく、0.1以下であることが特に好ましく、0.05以下であることが最も好ましい。

(1X)・・・結合エネルギーが99.0eV以上99.5eV以下の範囲に最大ピーク高さを有するピークの面積
(2X)・・・結合エネルギーが100eV以上104eV以下の範囲に最大ピーク高さを有するピークの面積
(3X)・・・(2X)/[(1X)+(2X)]
<Polysilane compound>
According to the method for producing a polysilane compound according to the first aspect, as described above, generation of by-products such as a siloxane bond and a silanol group can be suppressed. Therefore, a siloxane bond (Si— The abundance of O) can be reduced.
According to the method for producing a polysilane compound according to the first aspect, a spectrum having a maximum detection peak height in a binding energy range of 99 eV or more and 104 eV or less measured by X-ray photoelectron spectroscopy in the polysilane compound is separated. The ratio represented by the following formula (3X), which is the ratio of the following (2X) to the sum of the areas of the following (1X) and (2X) peaks obtained, can be 0.4 or less, and 0.35 Is preferably 0.3 or less, more preferably 0.2 or less, particularly preferably 0.1 or less, and most preferably 0.05 or less.

(1X): The area of the peak having the maximum peak height in the range where the binding energy is 99.0 eV or more and 99.5 eV or less (2X): The maximum peak height is set in the range where the binding energy is 100 eV or more and 104 eV or less. Peak area (3X) ... (2X) / [(1X) + (2X)]

ピークの強度(Intensity)を測定し、上記(1X)及び(2X)の各結合エネルギー範囲でピーク分離して求められるピークの面積について、(2X)の結合エネルギーが100eV以上104eV以下の範囲に最大ピーク高さを有するピークの面積から、Si−O及びSi−Cの含有割合がわかる。また、(1X)の結合エネルギーが99.0eV以上99.5eV以下の範囲に最大ピーク高さを有するピークの面積から、Si−Siの含有割合がわかる。   The peak area obtained by measuring the intensity of the peak (Intensity) and separating the peaks in the above (1X) and (2X) binding energy ranges, the maximum (2X) binding energy is in the range of 100 eV to 104 eV. From the area of the peak having the peak height, the content ratio of Si—O and Si—C can be seen. In addition, the content ratio of Si—Si is found from the area of the peak having the maximum peak height in the range where the bond energy of (1X) is 99.0 eV or more and 99.5 eV or less.

ポリシラン化合物がSi−Cだけでなく、Si−Oを含む場合、100eV以上104eV以下の範囲にはピーク分離後、2つの最大ピーク高さを有するピークが重なって表れるが、第2の態様に係るポリシラン化合物は、100eV以上104eV以下の範囲にはピーク分離後、1つの最大ピーク高さを有するピークしか現れないことが好ましく、理想的には1つのピークしか現れないことから、実質的にSi−O結合は含まれないと考えられる。
また、従来のポリシラン化合物がSi−Cだけでなく、Si−Oを含む場合、100eV以上104eV以下の範囲にはピーク分離後、最大ピーク高さを有するピークが2つ重なって表れるため面積比は大きくなるため、上記式で表される割合が0.4を超える。
When the polysilane compound contains not only Si—C but also Si—O, peaks having two maximum peak heights appear in the range of 100 eV or more and 104 eV or less after peak separation, but according to the second aspect In the polysilane compound, it is preferable that only a peak having one maximum peak height appears after peak separation in the range of 100 eV or more and 104 eV or less, and ideally only one peak appears. O-bonds are not considered to be included.
In addition, when the conventional polysilane compound contains not only Si—C but also Si—O, the area ratio is 100 pV or more and 104 eV or less because, after peak separation, two peaks having the maximum peak height appear. Therefore, the ratio represented by the above formula exceeds 0.4.

第2の態様に係るポリシラン化合物は、以上説明した第1の態様に係る製造方法により製造されたポリシラン化合物である。
第1の態様に係る製造方法により製造された第2の態様に係るポリシラン化合物としては、例えば、Si原子数3〜40のポリシラン化合物が挙げられ、Si原子数5〜30のポリシラン化合物であることが好ましい。
上記ポリシラン化合物は、下記一般式(T−1)及び(T−2)で表されるポリシラン化合物よりなる群から選択される少なくとも1種であることが好ましい。

(Rt10t11t12Si)t1(Rt13t14Si)t2(Rt15Si)t3(Si)t4 (T−1)
(上記一般式中、Rt10、Rt11、Rt12、Rt13、Rt14及びRt15は、それぞれ独立に、水素原子、水酸基又は有機基である。t1、t2、t3及びt4は、それぞれ独立に、モル分率であり、t1+t2+t3+t4=1、0≦t1≦1、0≦t2≦1、0≦t3≦1及び0≦t4≦1である。)

Figure 2018109112
(上記一般式(T−2)中、Rt16及びRt17は、それぞれ独立に、水素原子、水酸基又は有機基を表す。Uは3〜20の整数を表す。)、
t10〜Rt17で表される有機基としては、Rで表される有機基として前述した具体例及び好ましい例と同様のものが挙げられる。
t10〜Rt17で表される有機基としては、例えば、特開2003−261681号公報段落0031に記載の方法により任意の有機基を導入することもできる。 The polysilane compound according to the second aspect is a polysilane compound produced by the production method according to the first aspect described above.
Examples of the polysilane compound according to the second aspect manufactured by the manufacturing method according to the first aspect include polysilane compounds having 3 to 40 Si atoms, and are polysilane compounds having 5 to 30 Si atoms. Is preferred.
The polysilane compound is preferably at least one selected from the group consisting of polysilane compounds represented by the following general formulas (T-1) and (T-2).

(R t10 R t11 R t12 Si) t1 (R t13 R t14 Si) t2 (R t15 Si) t3 (Si) t4 (T-1)
(In the above general formula, R t10 , R t11 , R t12 , R t13 , R t14 and R t15 are each independently a hydrogen atom, a hydroxyl group or an organic group. T1, t2, t3 and t4 are each independently The molar fraction is t1 + t2 + t3 + t4 = 1, 0 ≦ t1 ≦ 1, 0 ≦ t2 ≦ 1, 0 ≦ t3 ≦ 1, and 0 ≦ t4 ≦ 1.)
Figure 2018109112
(In the general formula (T-2), R t16 and R t17 each independently represents a hydrogen atom, a hydroxyl group or an organic group. U represents an integer of 3 to 20).
Examples of the organic group represented by R t10 to R t17 include the same examples as the specific examples and preferred examples described above as the organic group represented by R.
As the organic group represented by R t10 to R t17 , any organic group can be introduced by, for example, the method described in paragraph 0031 of JP-A No. 2003-261681.

上記ポリシラン化合物の質量平均分子量(Mw)としては、本発明の目的を阻害しない限り特に制限はないが、500〜10000が好ましく、1000〜7000がより好ましく、2000〜5000が更に好ましい。
本明細書において質量平均分子量(Mw)はゲルパーミエーションクロマトグラフィ(GPC)のポリスチレン換算による測定値である。
The mass average molecular weight (Mw) of the polysilane compound is not particularly limited as long as the object of the present invention is not impaired, but is preferably 500 to 10,000, more preferably 1000 to 7000, and further preferably 2000 to 5000.
In the present specification, the mass average molecular weight (Mw) is a value measured by gel permeation chromatography (GPC) in terms of polystyrene.

<組成物>
第3の態様に係る組成物は、第1の態様に係る製造方法により製造された第2の態様に係るポリシラン化合物を含む組成物である。
<Composition>
The composition which concerns on a 3rd aspect is a composition containing the polysilane compound which concerns on the 2nd aspect manufactured by the manufacturing method which concerns on a 1st aspect.

また、アウトガス発生及びマイクロクラック発生を抑制する観点から、第3の態様に係る組成物は、上記ニトロキシ化合物を更に含有することが好ましい。
第3の態様に係る組成物に、上記ニトロキシ化合物を更に含有させる方法としては、本発明の効果を損なわない限り特に制限はないが、第1の態様に係る製造方法において使用した上記ニトロキシ化合物を第3の態様に係る組成物に残存させることによって達成するものであってもよいし、第2の態様に係るポリシラン化合物を含む組成物に上記ニトロキシ化合物を添加することによって達成するものであってもよい。
上記ニトロキシ化合物は、単独で用いてもよく、2種以上を組み合わせて用いてもよい。
Moreover, it is preferable that the composition which concerns on a 3rd aspect further contains the said nitroxy compound from a viewpoint of suppressing generation | occurrence | production of an outgas and a microcrack.
The method according to the third aspect further includes the nitroxy compound as long as the effects of the present invention are not impaired, but the nitroxy compound used in the production method according to the first aspect is not limited. It may be achieved by remaining in the composition according to the third aspect, or may be achieved by adding the nitroxy compound to the composition containing the polysilane compound according to the second aspect. Also good.
The said nitroxy compound may be used independently and may be used in combination of 2 or more type.

第3の態様に係る組成物中の上記ニトロキシ化合物の含有量は、第3の態様に係る組成物の溶剤以外の成分の質量の合計に対して、0.005質量%以上が好ましく、0.009質量%以上がより好ましい。
また、第3の態様に係る組成物中の上記ニトロキシ化合物の含有量は第3の態様に係る組成物の溶剤以外の成分の質量の合計に対して、2質量%以下が好ましく、1質量%以下がより好ましい。
The content of the nitroxy compound in the composition according to the third aspect is preferably 0.005% by mass or more based on the total mass of components other than the solvent of the composition according to the third aspect. 009 mass% or more is more preferable.
Further, the content of the nitroxy compound in the composition according to the third aspect is preferably 2% by mass or less, preferably 1% by mass with respect to the total mass of components other than the solvent of the composition according to the third aspect. The following is more preferable.

また、第3の態様に係る組成物は熱硬化性組成物であってもよいし、熱硬化性組成物ではなくてもよい。
また、第3の態様に係る組成物は感放射線性組成物であってもよいし感放射線性組成物ではなくてもよく、露光により現像液に対して可溶化するポジ型の感放射線性組成物であってもよいし、露光により現像液に対して不溶化するネガ型の感放射線性組成物であってもよい。
上記放射線の光源としては、紫外線、エキシマレーザー光等の活性エネルギー線、高圧水銀灯、超高圧水銀灯、キセノンランプ、カーボンアーク灯等の紫外線を発する光源等が挙げられる。
Further, the composition according to the third aspect may be a thermosetting composition or may not be a thermosetting composition.
The composition according to the third aspect may be a radiation-sensitive composition or not a radiation-sensitive composition, and is a positive-type radiation-sensitive composition that is solubilized in a developer upon exposure. Or a negative radiation-sensitive composition that becomes insoluble in a developer upon exposure.
Examples of the radiation light source include an active energy ray such as ultraviolet light and excimer laser light, a light source that emits ultraviolet light such as a high pressure mercury lamp, an ultrahigh pressure mercury lamp, a xenon lamp, and a carbon arc lamp.

(溶剤)
第3の態様に係る組成物は、溶剤を含有することが好ましい。溶剤としては、上記式(S1)で表されるシクロアルキルアセテート等の上記環状骨格含アセテート化合物、
メタノール、エタノール、プロパノール、n−ブタノール等のアルコール類;
エチレングリコール、ジエチレングリコール、プロピレングリコール、ジプロピレングリコール等の多価アルコール類;
アセトン、メチルエチルケトン、シクロヘキサノン、メチル−n−アミルケトン、メチルイソアミルケトン、2−ヘプタノン等のケトン類;
γ−ブチロラクトン等のラクトン環含有有機溶媒;
エチレングリコールモノアセテート、ジエチレングリコールモノアセテート、プロピレングリコールモノアセテート、又はジプロピレングリコールモノアセテート等のエステル結合を有する化合物、前記多価アルコール類又は前記エステル結合を有する化合物のモノメチルエーテル、モノエチルエーテル、モノプロピルエーテル、モノブチルエーテル等のモノアルキルエーテル又はモノフェニルエーテル等のエーテル結合を有する化合物等の多価アルコール類の誘導体;
ジオキサンのような環式エーテル類や、乳酸メチル、乳酸エチル、酢酸メチル、酢酸エチル、酢酸ブチル、ピルビン酸メチル、ピルビン酸エチル、メトキシプロピオン酸メチル、エトキシプロピオン酸エチル等のエステル類;
アニソール、エチルベンジルエーテル、クレジルメチルエーテル、ジフェニルエーテル、ジベンジルエーテル、フェネトール、ブチルフェニルエーテル、エチルベンゼン、ジエチルベンゼン、アミルベンゼン、イソプロピルベンゼン、トルエン、キシレン、シメン、メシチレン等の芳香族系有機溶剤;
N,N,N’,N’−テトラメチルウレア、N,N,2−トリメチルプロピオンアミド、N,N−ジメチルアセトアミド、N,N−ジメチルホルムアミド、N,N−ジエチルアセトアミド、N,N−ジエチルホルムアミド、1,3−ジメチル−2−イミダゾリジノン、N−メチルピロリドン、N−エチルピロリドン等の窒素含有有機溶媒;
が挙げられる。
(solvent)
The composition according to the third aspect preferably contains a solvent. Examples of the solvent include the above-mentioned cyclic skeleton acetate-containing compounds such as cycloalkyl acetate represented by the above formula (S1),
Alcohols such as methanol, ethanol, propanol, n-butanol;
Polyhydric alcohols such as ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol;
Ketones such as acetone, methyl ethyl ketone, cyclohexanone, methyl-n-amyl ketone, methyl isoamyl ketone, 2-heptanone;
a lactone ring-containing organic solvent such as γ-butyrolactone;
Compounds having an ester bond such as ethylene glycol monoacetate, diethylene glycol monoacetate, propylene glycol monoacetate, dipropylene glycol monoacetate, monomethyl ether, monoethyl ether, monopropyl of the polyhydric alcohols or the compound having an ester bond Derivatives of polyhydric alcohols such as ether, monoalkyl ether such as monobutyl ether or compounds having an ether bond such as monophenyl ether;
Cyclic ethers such as dioxane and esters such as methyl lactate, ethyl lactate, methyl acetate, ethyl acetate, butyl acetate, methyl pyruvate, ethyl pyruvate, methyl methoxypropionate, ethyl ethoxypropionate;
Aromatic organic solvents such as anisole, ethyl benzyl ether, cresyl methyl ether, diphenyl ether, dibenzyl ether, phenetole, butyl phenyl ether, ethylbenzene, diethylbenzene, amylbenzene, isopropylbenzene, toluene, xylene, cymene, mesitylene;
N, N, N ′, N′-tetramethylurea, N, N, 2-trimethylpropionamide, N, N-dimethylacetamide, N, N-dimethylformamide, N, N-diethylacetamide, N, N-diethyl Nitrogen-containing organic solvents such as formamide, 1,3-dimethyl-2-imidazolidinone, N-methylpyrrolidone, N-ethylpyrrolidone;
Is mentioned.

中でも、上記式(S1)で表されるシクロアルキルアセテート、プロピレングリコールモノメチルエーテルアセテート(PGMEA)、プロピレングリコールモノメチルエーテル(PGME)、N,N,N’,N’−テトラメチルウレア(TMU)、及びブタノールが好ましく、シクロプロピルアセテート、シクロブチルアセテート、シクロペンチルアセテート、シクロヘキシルアセテート、シクロヘプチルアセテート又はシクロオクチルアセテートがより好ましく、シクロヘキシルアセテートが更に好ましい。
これらの溶剤は、2種以上組み合わせて使用してもよい。
Among them, the cycloalkyl acetate represented by the above formula (S1), propylene glycol monomethyl ether acetate (PGMEA), propylene glycol monomethyl ether (PGME), N, N, N ′, N′-tetramethylurea (TMU), and Butanol is preferable, cyclopropyl acetate, cyclobutyl acetate, cyclopentyl acetate, cyclohexyl acetate, cycloheptyl acetate or cyclooctyl acetate is more preferable, and cyclohexyl acetate is more preferable.
Two or more of these solvents may be used in combination.

第3の態様に係る組成物が、マイクロクラックを抑制する点で、第3の態様に係る組成物の水分量は1.0質量%以下であることが好ましく、0.5質量%以下であることがより好ましく、0.3質量%以下であることがさらに好ましく、0.3質量%未満であることが特に好ましい。なお、溶媒中の水分量はカールフィッシャー測定法により、測定することができる。
第3の態様に係る組成物の水分は、溶剤に由来する場合が多い。このため、第3の態様に係る組成物の水分量が上記の量となるように、溶剤が脱水されているのが好ましい。
The water content of the composition according to the third aspect is preferably 1.0% by mass or less and 0.5% by mass or less in that the composition according to the third aspect suppresses microcracks. More preferably, it is more preferably 0.3% by mass or less, and particularly preferably less than 0.3% by mass. The water content in the solvent can be measured by the Karl Fischer measurement method.
The water content of the composition according to the third aspect is often derived from a solvent. For this reason, it is preferable that the solvent is dehydrated so that the water content of the composition according to the third aspect is the above amount.

溶剤の使用量は、本発明の目的を阻害しない範囲で特に限定されない。製膜性の点から、溶剤は、第3の態様に係る組成物の固形分濃度が、好ましくは1〜50質量%、より好ましくは10〜40質量%となるように用いられる。   The usage-amount of a solvent is not specifically limited in the range which does not inhibit the objective of this invention. From the viewpoint of film forming property, the solvent is used so that the solid content concentration of the composition according to the third aspect is preferably 1 to 50% by mass, more preferably 10 to 40% by mass.

(その他の成分)
第3の態様に係る組成物は、第2の態様に係るポリシラン化合物以外のポリシランを含んでもよい。例えば、薬品耐性向上等の点で、Mwの高いポリシラン化合物(以下、単に「高分子量ポリシラン」ともいう。)が挙げられ、高分子量ポリシランのMwとしては、例えば5000超100000以下であり、好ましくは6000〜60000程度である。
(Other ingredients)
The composition according to the third aspect may include a polysilane other than the polysilane compound according to the second aspect. For example, a polysilane compound having a high Mw (hereinafter also simply referred to as “high molecular weight polysilane”) in terms of improving chemical resistance and the like, and the Mw of the high molecular weight polysilane is, for example, more than 5,000 and less than 100,000, preferably It is about 6000-60000.

第3の態様に係る組成物は、加工性向上の点で、ポリシラン化合物以外のケイ素含有樹脂を含んでいてもよい。ポリシラン化合物以外のケイ素含有樹脂としては、ポリシロキサン樹脂又はポリシラン構造(I−1)とポリシロキサン構造(I−2)とを有するポリシラン−ポリシロキサン樹脂が挙げられる。ポリシラン化合物以外のケイ素含有樹脂のMwとしては、500〜20000が好ましく、1000〜10000がより好ましく、2000〜8000が更に好ましい。
なお、上記ポリシラン−ポリシロキサン樹脂は、例えば、第2の態様に係るポリシラン化合物を、溶剤中、上述した塩基性条件下で処理した後に、下記一般式(A−1−1)〜(A−1−4)で表されるケイ素化合物よりなる群から選択される少なくとも1種のケイ素化合物並びに上記ケイ素化合物の加水分解物、縮合物及び加水分解縮合物よりなる群から選択される少なくとも1種とを加水分解縮合反応させることにより製造することができる。
SiX (A−1−1)
SiX (A−1−2)
SiX (A−1−3)
SiX (A−1−4)
(上記一般式中、X〜Xは、それぞれ独立に、加水分解性基であり、R、R、R、R、R及びRは、それぞれ独立に、水素原子又は有機基であり、該有機基中の水素原子はハロゲン原子で置換されていてもよい。)
The composition according to the third aspect may contain a silicon-containing resin other than the polysilane compound in terms of improving processability. Examples of the silicon-containing resin other than the polysilane compound include a polysiloxane resin or a polysilane-polysiloxane resin having a polysilane structure (I-1) and a polysiloxane structure (I-2). As Mw of silicon-containing resin other than a polysilane compound, 500-20000 are preferable, 1000-10000 are more preferable, and 2000-8000 are still more preferable.
In addition, the said polysilane polysiloxane resin is the following general formula (A-1-1)-(A-) after processing the polysilane compound which concerns on a 2nd aspect in the solvent on the basic conditions mentioned above, for example. 1-4) at least one silicon compound selected from the group consisting of silicon compounds and at least one selected from the group consisting of hydrolysates, condensates and hydrolysis condensates of the above silicon compounds; Can be produced by hydrolytic condensation reaction.
R 1 R 2 R 3 SiX 1 (A-1-1)
R 4 R 5 SiX 2 2 (A-1-2)
R 6 SiX 3 3 (A-1-3)
SiX 4 4 (A-1-4)
(In the above general formula, X 1 to X 4 are each independently a hydrolyzable group, and R 1 , R 2 , R 3 , R 4 , R 5 and R 6 are each independently a hydrogen atom or An organic group, and a hydrogen atom in the organic group may be substituted with a halogen atom.)

〜Xで表される加水分解性基としては、アルコキシ基、ハロゲン原子又はイソシアネート基(NCO)等が挙げられ、アルコキシ基であることが好ましい。
上記アルコキシ基としては、炭素原子数1〜6のアルコキシ基が挙げられ、具体的には、メトキシ基、エトキシ基、n−プロポキシ基、i−プロポキシ基、n−ブトキシ基、t−ブトキシ基、ペントキシ基等が挙げられる。
上記ハロゲン原子としては、フッ素原子、塩素原子、臭素原子又はヨウ素原子が挙げられ、塩素原子が好ましい。
Examples of the hydrolyzable group represented by X 1 to X 4 include an alkoxy group, a halogen atom or an isocyanate group (NCO), and an alkoxy group is preferable.
As said alkoxy group, a C1-C6 alkoxy group is mentioned, Specifically, a methoxy group, an ethoxy group, n-propoxy group, i-propoxy group, n-butoxy group, t-butoxy group, Examples include a pentoxy group.
As said halogen atom, a fluorine atom, a chlorine atom, a bromine atom, or an iodine atom is mentioned, A chlorine atom is preferable.

〜Rで表される有機基としては、炭素数1〜30の有機基が挙げられ、アルキル基[メチル、エチル、n−プロピル、i−プロピル、n−ブチル基及びt−ブチル基などの炭素原子数1〜10のアルキル基(好ましくは炭素原子数1〜6のアルキル基、特に炭素数1〜4のアルキル基など)]、シクロアルキル基(シクロヘキシル基などの炭素原子数5〜8のシクロアルキル基、特に炭素原子数5〜6のシクロアルキル基)、アルケニル基[エテニル基、プロペニル基、ブテニル基などの炭素原子数2〜10のアルケニル基(好ましくは炭素原子数2〜6のアルケニル基、特に炭素数2〜4のアルケニル基など)]、シクロアルケニル基[1−シクロペンテニル基、1−シクロヘキセニル基等の炭素原子数5〜10のシクロアルケニル基(好ましくは炭素原子数5〜8のシクロアルケニル基、特に炭素数5〜7のシクロアルケニル基など)]、アリール基(フェニル、ナフチル基などの炭素原子数6〜10のアリール基、)、アラルキル基[ベンジル、フェネチル基などのC6−10アリール−C1−6アルキル基(C6−10アリール−C1−4アルキル基など)]、アミノ基、N−置換アミノ基(上記アルキル基、シクロアルキル基、アリール基、アラルキル基、アシル基などで置換されたN−モノ又はジ置換アミノ基など)などが挙げられる。上記アルキル基、シクロアルキル基、アリール基又はアラルキル基を構成するアリール基などは、1又は複数の置換基を有していてもよい。このような置換基としては、上記例示のアルキル基(特に炭素原子数1〜6のアルキル基など)、上記例示のアルコキシ基などが挙げられる。このような置換基を有する有機基としては、例えば、トリル、キシレニル、エチルフェニル、メチルナフチル基などのC1−6アルキル−C6−10アリール基(好ましくはモノ、ジ又はトリC1−4アルキル−C6−10アリール基、特にモノ又はジC1−4アルキルフェニル基など);メトキシフェニル、エトキシフェニル、メトキシナフチル基などのC1−10アルコキシC6−10アリール基(好ましくはC1−6アルコキシC6−10アリール基、特にC1−4アルコキシフェニル基など)などが挙げられる。 Examples of the organic group represented by R 1 to R 6 include an organic group having 1 to 30 carbon atoms, and an alkyl group [methyl, ethyl, n-propyl, i-propyl, n-butyl group, and t-butyl group. An alkyl group having 1 to 10 carbon atoms (preferably an alkyl group having 1 to 6 carbon atoms, particularly an alkyl group having 1 to 4 carbon atoms)], a cycloalkyl group (5 to 5 carbon atoms such as a cyclohexyl group). 8 cycloalkyl groups, particularly cycloalkyl groups having 5 to 6 carbon atoms), alkenyl groups [alkenyl groups having 2 to 10 carbon atoms such as ethenyl group, propenyl group and butenyl group (preferably having 2 to 6 carbon atoms) Alkenyl groups, especially alkenyl groups having 2 to 4 carbon atoms, etc.]], cycloalkenyl groups [1-cyclopentenyl groups, 1-cyclohexenyl groups, etc., having 5 to 10 carbon atoms. A group (preferably a cycloalkenyl group having 5 to 8 carbon atoms, particularly a cycloalkenyl group having 5 to 7 carbon atoms)], an aryl group (an aryl group having 6 to 10 carbon atoms such as phenyl or naphthyl group), Aralkyl groups [C 6-10 aryl-C 1-6 alkyl groups such as benzyl and phenethyl groups (C 6-10 aryl-C 1-4 alkyl groups)], amino groups, N-substituted amino groups (the above alkyl groups) , A cycloalkyl group, an aryl group, an aralkyl group, an N-mono- or di-substituted amino group substituted with an acyl group, and the like. The aryl group constituting the alkyl group, cycloalkyl group, aryl group or aralkyl group may have one or more substituents. Examples of such a substituent include the above-exemplified alkyl groups (particularly, alkyl groups having 1 to 6 carbon atoms), the above-exemplified alkoxy groups, and the like. Examples of the organic group having such a substituent include C 1-6 alkyl-C 6-10 aryl groups such as tolyl, xylenyl, ethylphenyl, and methylnaphthyl groups (preferably mono, di, or tri C 1-4). Alkyl-C 6-10 aryl groups, particularly mono- or di-C 1-4 alkylphenyl groups); C 1-10 alkoxy C 6-10 aryl groups such as methoxyphenyl, ethoxyphenyl, methoxynaphthyl groups (preferably C 1 -6 alkoxy C 6-10 aryl group, especially C 1-4 alkoxyphenyl group and the like.

また、上記一般式(A−1−3)で表されるケイ素化合物は、下記式(A−3)で表されるケイ素化合物であってもよい。

HOOC−U−Z−Y−Si(OR (A−3)

(上記一般式(A−3)中、Uは、芳香族環基又は脂環基から2個の環炭素原子のそれぞれ1個の水素原子を除去することにより生成する2価の基又は分岐鎖及び/若しくは二重結合を有していても良いアルキレン基を表し、Zは−NHCO−又は−CONH−を表し、Yは、単結合、アルキレン基、アリーレン基又は−RY1−NH−RY2−(式中、RY1及びRY2はそれぞれ独立にアルキレン基を表す。)を表し、Rはそれぞれ独立に炭化水素基を表す。ただし、U及び/又はYは、(メタ)アクリル基、ビニル基及びエポキシ基からなる群より選ばれる少なくとも1種の基を置換基として有していてもよい。)
Further, the silicon compound represented by the general formula (A-1-3) may be a silicon compound represented by the following formula (A-3).

HOOC-U-Z-Y-Si (OR a ) 3 (A-3)

(In the general formula (A-3), U represents a divalent group or branched chain formed by removing one hydrogen atom of each of two ring carbon atoms from an aromatic ring group or an alicyclic group. And / or an alkylene group which may have a double bond, Z represents —NHCO— or —CONH—, and Y represents a single bond, an alkylene group, an arylene group or —R Y1 —NH—R Y2. -(Wherein R Y1 and R Y2 each independently represents an alkylene group), and R a each independently represents a hydrocarbon group, provided that U and / or Y is a (meth) acryl group, (It may have at least one group selected from the group consisting of a vinyl group and an epoxy group as a substituent.)

上記Uにおける芳香族環としては、炭素数1〜2の置換基を有していてもよい炭素数6〜10の芳香環(例えば、ベンゼン環、ナフタレン環、トリル基、キシリル基等)を挙げることができる。
上記Uにおける脂環としては、炭素数5〜10の脂環(例えば、単環シクロアルキル基、単環シクロアルケニル基、2環式アルキル基、篭型アルキル基等が挙げられ、具体的には、例えば、シクロペンタン環、シクロヘキサン環、シクロヘプタン環、シクロオクタン環、シクロノナン環、シクロデカン環、ジシクロペンタジエン環、ノルボルナン環、ノルボルネン環、キュバン環、バスケタン環等)を挙げることができる。
上記Uにおける分岐鎖及び/若しくは二重結合を有していても良いアルキレン基としては、炭素数1〜4のアルキレン基が挙げられ、例えば、メチレン基、エチレン基、プロピレン基、ビニレン基、(2−オクテニル)エチレン基、(2,4,6−トリメチル−2−ノネニル)エチレン基等のアルキレン基、二重結合を有するアルキレン基又は炭素数1〜9の分岐鎖を有するアルキレン基を挙げることができる。
Examples of the aromatic ring in U include an aromatic ring having 6 to 10 carbon atoms which may have a substituent having 1 to 2 carbon atoms (for example, a benzene ring, a naphthalene ring, a tolyl group, a xylyl group, etc.). be able to.
Examples of the alicyclic ring in U include an alicyclic group having 5 to 10 carbon atoms (for example, a monocyclic cycloalkyl group, a monocyclic cycloalkenyl group, a bicyclic alkyl group, a cage alkyl group, and the like. For example, a cyclopentane ring, a cyclohexane ring, a cycloheptane ring, a cyclooctane ring, a cyclononane ring, a cyclodecane ring, a dicyclopentadiene ring, a norbornane ring, a norbornene ring, a cubane ring, and a basuketan ring.
Examples of the alkylene group that may have a branched chain and / or a double bond in U include an alkylene group having 1 to 4 carbon atoms, such as a methylene group, an ethylene group, a propylene group, a vinylene group, ( Examples include alkylene groups such as 2-octenyl) ethylene group, (2,4,6-trimethyl-2-nonenyl) ethylene group, alkylene groups having a double bond, or alkylene groups having 1 to 9 carbon atoms. Can do.

上記Yにおけるアルキレン基としては、炭素数1〜6のアルキレン基が挙げられ、例えば、メチレン基、エチレン基、プロピレン基、ブチレン基等を挙げることができる。上記Yにおけるアリーレン基としては、炭素数6〜10のものが好ましい。このようなものとしては、例えば、フェニレン基(オルト、メタ又はパラ等)、ナフチレン基(1,4−、1,5−、2,6−等)等を挙げることができる。上記Yにおける−RY1−NH−RY2−としては、具体的には、例えば、−CH−NH−CH−、−(CH−NH−(CH−、−(CH−NH−(CH−、−CH−NH−(CH−、−(CH−NH−CH−、−(CH−NH−(CH−、−(CH−NH−(CH−、−CH−NH−(CH−、−(CH−NH−CH−等を挙げることができる。 As said alkylene group in Y, a C1-C6 alkylene group is mentioned, For example, a methylene group, ethylene group, a propylene group, a butylene group etc. can be mentioned. As said arylene group in Y, a C6-C10 thing is preferable. As such a thing, a phenylene group (ortho, meta, para, etc.), a naphthylene group (1,4-, 1,5-, 2,6-, etc.) etc. can be mentioned, for example. Specific examples of —R Y1 —NH—R Y2 — in Y include, for example, —CH 2 —NH—CH 2 —, — (CH 2 ) 2 —NH— (CH 2 ) 2 —, — ( CH 2) 3 -NH- (CH 2 ) 3 -, - CH 2 -NH- (CH 2) 2 -, - (CH 2) 2 -NH-CH 2 -, - (CH 2) 2 -NH- ( CH 2 ) 3 —, — (CH 2 ) 3 —NH— (CH 2 ) 2 —, —CH 2 —NH— (CH 2 ) 3 —, — (CH 2 ) 3 —NH—CH 2 — and the like. be able to.

ポリシロキサン樹脂としては、上記一般式(A−1−1)〜(A−1−4)で表されるケイ素化合物よりなる群から選択される少なくとも1種のケイ素化合物の加水分解物、縮合物及び加水分解縮合物よりなる群から選択される少なくとも1種が挙げられる。   The polysiloxane resin is a hydrolyzate or condensate of at least one silicon compound selected from the group consisting of silicon compounds represented by the general formulas (A-1-1) to (A-1-4). And at least one selected from the group consisting of hydrolysis condensates.

上記の第1の態様に係るポリシラン化合物以外の樹脂(以下、他のSi樹脂)は、単独でも複数種を組み合わせて用いてもよい。
上記他のSi樹脂を含む場合、第3の態様に係る組成物における第1の態様に係るポリシラン化合物と他のSi樹脂の配合比(質量比)は、用途に応じて適宜変更すればよく、例えば、1:99〜99:1であり、好ましくは10:90〜90:10である。
Resins other than the polysilane compound according to the first aspect (hereinafter referred to as other Si resins) may be used singly or in combination.
When the other Si resin is included, the blending ratio (mass ratio) of the polysilane compound according to the first aspect and the other Si resin in the composition according to the third aspect may be appropriately changed according to the application. For example, it is 1:99 to 99: 1, preferably 10:90 to 90:10.

第3の態様に係る組成物は、アルカリ性の水溶液又は溶液への溶解促進剤として、1分子中に2個以上の水酸基又はカルボキシル基を有する有機化合物を含んでいてもよい。このような有機化合物として、下記に示す化合物を挙げることができる。

Figure 2018109112
Figure 2018109112
Figure 2018109112
The composition which concerns on a 3rd aspect may contain the organic compound which has a 2 or more hydroxyl group or carboxyl group in 1 molecule as a solubility promoter to alkaline aqueous solution or a solution. Examples of such an organic compound include the following compounds.
Figure 2018109112
Figure 2018109112
Figure 2018109112

なお、上記構造式中のEは水素原子、メチル基、又はヒドロキシメチル基であり、R15はメチレン基、カルボニル基、又はフェニレン基であり、nは3以上100未満の整数である。naは1〜3の自然数を示し、nbは1以上の自然数を示し、ncは2〜4の自然数を示し、ndは2以上の自然数を示す。
上記構造式にはエナンチオ異性体(enantiomer)やジアステレオ異性体(diastereomer)が存在し得るが、各構造式はこれらの立体異性体のすべてを代表して表す。これらの立体異性体は単独で用いてもよいし、混合物として用いてもよい。
E in the above structural formula is a hydrogen atom, a methyl group or a hydroxymethyl group, R 15 is a methylene group, a carbonyl group or a phenylene group, and n is an integer of 3 or more and less than 100. na represents a natural number of 1 to 3, nb represents a natural number of 1 or more, nc represents a natural number of 2 to 4, and nd represents a natural number of 2 or more.
The structural formula may include enantiomers and diastereoisomers, and each structural formula represents all of these stereoisomers. These stereoisomers may be used alone or as a mixture.

上記有機化合物は1種類を単独で又は2種類以上を組み合わせて用いることができる。この使用量は、第3の態様に係る組成物の溶剤を除いた固形分全量に対して、好ましくは0.001〜50質量%、より好ましくは0.01〜30質量%である。
このような有機化合物を添加することで、製造プロセスにおける加工の際に樹脂組成物膜を除去する場合又は樹脂組成物にリソグラフィー性能を付与した場合に上記組成物を用いて形成された膜の崩壊が加速され剥離が容易になる。
The said organic compound can be used individually by 1 type or in combination of 2 or more types. The amount used is preferably 0.001 to 50% by mass, more preferably 0.01 to 30% by mass, based on the total solid content excluding the solvent of the composition according to the third aspect.
By adding such an organic compound, when the resin composition film is removed during processing in the manufacturing process or when lithography performance is imparted to the resin composition, the film formed using the composition is collapsed. Is accelerated and peeling becomes easy.

第3の態様に係る組成物には、安定性を向上させるため、炭素数が1〜30の1価又は2価以上の有機酸を含んでいてもよい。このとき添加する酸としては、ギ酸、酢酸、プロピオン酸、ブタン酸、ペンタン酸、ヘキサン酸、ヘプタン酸、オクタン酸、ノナン酸、デカン酸、オレイン酸、ステアリン酸、リノール酸、リノレン酸、安息香酸、フタル酸、イソフタル酸、テレフタル酸、サリチル酸、トリフルオロ酢酸、モノクロロ酢酸、ジクロロ酢酸、トリクロロ酢酸、シュウ酸、マロン酸、メチルマロン酸、エチルマロン酸、プロピルマロン酸、ブチルマロン酸、ジメチルマロン酸、ジエチルマロン酸、コハク酸、メチルコハク酸、グルタル酸、アジピン酸、イタコン酸、マレイン酸、フマル酸、シトラコン酸、クエン酸等が挙げられる。これらの中でも特に、シュウ酸、マレイン酸、ギ酸、酢酸、プロピオン酸、クエン酸等が好ましい。また、安定性を保つため、2種類以上の酸を混合して使用してもよい。上記有機酸を組成物のpHに換算して、好ましくは0≦pH≦7、より好ましくは0.3≦pH≦6.5、さらに好ましくは0.5≦pH≦6となるように配合することがよい。   The composition according to the third aspect may contain a monovalent or divalent or higher organic acid having 1 to 30 carbon atoms in order to improve stability. Acids added at this time include formic acid, acetic acid, propionic acid, butanoic acid, pentanoic acid, hexanoic acid, heptanoic acid, octanoic acid, nonanoic acid, decanoic acid, oleic acid, stearic acid, linoleic acid, linolenic acid, benzoic acid , Phthalic acid, isophthalic acid, terephthalic acid, salicylic acid, trifluoroacetic acid, monochloroacetic acid, dichloroacetic acid, trichloroacetic acid, oxalic acid, malonic acid, methylmalonic acid, ethylmalonic acid, propylmalonic acid, butylmalonic acid, dimethylmalonic acid Diethyl malonic acid, succinic acid, methyl succinic acid, glutaric acid, adipic acid, itaconic acid, maleic acid, fumaric acid, citraconic acid, citric acid and the like. Among these, oxalic acid, maleic acid, formic acid, acetic acid, propionic acid, citric acid and the like are particularly preferable. In order to maintain stability, two or more kinds of acids may be mixed and used. The organic acid is blended so that it is preferably 0 ≦ pH ≦ 7, more preferably 0.3 ≦ pH ≦ 6.5, and even more preferably 0.5 ≦ pH ≦ 6, in terms of the pH of the composition. It is good.

また、第3の態様に係る組成物は、安定剤として環状エーテルを置換基として有する1価又は2価以上のアルコール、又はエーテル化合物を含んでいてもよい。用いることができる安定剤として、具体的には、特開2009−126940号公報(0180)〜(0184)段落に記載されている安定剤が挙げられる。   Moreover, the composition which concerns on a 3rd aspect may contain the monovalent | monohydric or bivalent or more alcohol or ether compound which has cyclic ether as a substituent as a stabilizer. Specific examples of the stabilizer that can be used include the stabilizers described in paragraphs (0180) to (0184) of JP2009-126940A.

第3の態様に係る組成物は、水を含んでいてもよい。水を添加することで、リソグラフィー性能が向上する。第3の態様に係る組成物の溶剤成分における水の含有率は0質量%を超え50質量%未満が好ましく、より好ましくは0.3〜30質量%、さらに好ましくは0.5〜20質量%である。   The composition according to the third aspect may contain water. Lithography performance is improved by adding water. The content of water in the solvent component of the composition according to the third aspect is preferably more than 0% by mass and less than 50% by mass, more preferably 0.3 to 30% by mass, still more preferably 0.5 to 20% by mass. It is.

第3の態様に係る組成物は、光酸発生剤を含んでいてもよい。用いることができる光酸発生剤として、具体的には、特開2009−126940号公報(0160)〜(0179)段落に記載されている光酸発生剤が挙げられる。   The composition according to the third aspect may contain a photoacid generator. Specific examples of the photoacid generator that can be used include the photoacid generators described in paragraphs (0160) to (0179) of JP2009-126940A.

第3の態様に係る組成物は、必要に応じて界面活性剤を含んでいてもよい。用いることができる界面活性剤として、具体的には、特開2009−126940号公報(0185)段落に記載されている界面活性剤が挙げられる。   The composition which concerns on a 3rd aspect may contain surfactant as needed. Specific examples of the surfactant that can be used include surfactants described in paragraph (0185) of JP2009-126940A.

第3の態様に係る組成物は、熱架橋促進剤を含んでいてもよい。用いることができる熱架橋促進剤として、具体的には、特開2007−302873号公報に記載されている熱架橋促進剤が挙げられる。熱架橋促進剤として、例えば、リン酸塩化合物やホウ酸塩化合物が挙げられる。このようなリン酸塩化合物としては、例えばリン酸アンモニウム、リン酸テトラメチルアンモニウム、リン酸テトラブチルアンモニウム等のアンモニウム塩、リン酸トリフェニルスルホニウム等のスルホニウム塩が挙げられる。また、このようなホウ酸塩化合物としては、例えばホウ酸アンモニウム、ホウ酸テトラメチルアンモニウム、ホウ酸テトラブチルアンモニウム等のアンモニウム塩、ホウ酸トリフェニルスルホニウム等のスルホニウム塩が挙げられる。
なお、上記熱架橋促進剤は1種類を単独で又は2種類以上を組み合わせて用いることができる。また、熱架橋促進剤の添加量は、上記組成物の溶剤を除いた固形分全量に対して、好ましくは0.01〜50質量%、より好ましくは0.1〜40質量%である。
The composition according to the third aspect may contain a thermal crosslinking accelerator. Specific examples of thermal crosslinking accelerators that can be used include thermal crosslinking accelerators described in JP-A-2007-302873. Examples of the thermal crosslinking accelerator include phosphate compounds and borate compounds. Examples of such phosphate compounds include ammonium salts such as ammonium phosphate, tetramethylammonium phosphate, and tetrabutylammonium phosphate, and sulfonium salts such as triphenylsulfonium phosphate. Examples of such borate compounds include ammonium salts such as ammonium borate, tetramethylammonium borate, tetrabutylammonium borate, and sulfonium salts such as triphenylsulfonium borate.
In addition, the said thermal crosslinking accelerator can be used individually by 1 type or in combination of 2 or more types. The amount of the thermal crosslinking accelerator added is preferably 0.01 to 50% by mass, more preferably 0.1 to 40% by mass, based on the total amount of the solid content excluding the solvent of the composition.

第3の態様に係る組成物は、その他の種々の硬化剤を含んでいてもよい。
硬化剤としては、例えば、ブレンステッド酸;イミダゾール類;有機アミン類;有機リン化合物及びその複合体;ルイス酸の有機アミン錯体;アミジン類;光又は熱により塩基成分を発生する硬化剤等が挙げられる。
The composition which concerns on a 3rd aspect may contain the other various hardening | curing agent.
Examples of the curing agent include Bronsted acids; imidazoles; organic amines; organic phosphorus compounds and complexes thereof; organic amine complexes of Lewis acids; amidines; curing agents that generate a base component by light or heat. It is done.

(用途)
第3の態様に係る組成物は、各種基板(金属酸化物含有膜、各種金属含有膜を含む。)を保護する保護膜又は層間膜を形成する用途として使用し得る。
上記各種基板としては、半導体基板、液晶ディスプレイ、有機発光ディスプレイ(OLED)、電気泳動ディスプレイ(電子ペーパー)、タッチパネル、カラーフィルター、バックライトなどのディスプレイ材料の基板(金属酸化物含有膜、各種金属含有膜を含む。)、太陽電池の基板(金属酸化物含有膜、各種金属含有膜を含む。)、光センサ等の光電変換素子の基板(金属酸化物含有膜、各種金属含有膜を含む。)、光電素子の基板(金属酸化物含有膜、各種金属含有膜を含む。)が挙げられる。
(Use)
The composition which concerns on a 3rd aspect can be used as a use which forms the protective film or interlayer film which protects various board | substrates (a metal oxide containing film and various metal containing films are included).
Examples of the various substrates include semiconductor substrates, liquid crystal displays, organic light emitting displays (OLEDs), electrophoretic displays (electronic paper), touch panels, color filters, backlights, and other display material substrates (metal oxide-containing films, various metal-containing materials). Including a film), a substrate for a solar cell (including a metal oxide-containing film and various metal-containing films), a substrate for a photoelectric conversion element such as an optical sensor (including a metal oxide-containing film and various metal-containing films). And substrates of photoelectric devices (including metal oxide-containing films and various metal-containing films).

<硬化物及び上記硬化物を備える基板>
第4の態様に係る硬化物は、第3の態様の組成物の硬化物である。
第5の態様に係る基板は、第4の態様の硬化物を備える基板である。
第4の態様に係る硬化物を形成する方法としては本発明の効果を損なわない限り特に制限はないが、必要に応じ任意の基板上に、ロールコータ、リバースコータ、バーコータ等の接触転写型塗布装置やスピンナー(回転式塗布装置)、カーテンフローコータ等の非接触型塗布装置を用いて塗布する方法が挙げられる。
基板としては特に制限はないが、例えば、ガラス基板、石英基板、透明又は半透明の樹脂基板(例えば、ポリカーボネート、ポリエチレンテレフタレート、ポリエーテルスルフォン、ポリイミド、ポリアミドイミド等の耐熱性の材料等)、金属、シリコン基板等が挙げられる。
半導体基板、液晶ディスプレイ、有機発光ディスプレイ(OLED)、電気泳動ディスプレイ(電子ペーパー)、タッチパネル、カラーフィルター、バックライトなどのディスプレイ材料の基板(金属酸化物含有膜、各種金属含有膜を含む。)、太陽電池の基板(金属酸化物含有膜、各種金属含有膜を含む。)、光センサ等の光電変換素子の基板(金属酸化物含有膜、各種金属含有膜を含む。)、光電素子の基板(金属酸化物含有膜、各種金属含有膜を含む。)等の各種基板であってもよい。
基板の厚さは、特に限定されるものではなく、パターン形成体の使用態様に応じて適宜選択することができる。
<Substrate provided with cured product and the cured product>
The cured product according to the fourth aspect is a cured product of the composition of the third aspect.
The board | substrate which concerns on a 5th aspect is a board | substrate provided with the hardened | cured material of a 4th aspect.
The method for forming the cured product according to the fourth aspect is not particularly limited as long as the effect of the present invention is not impaired, but contact transfer type coating such as roll coater, reverse coater, bar coater, etc. on any substrate as necessary. Examples thereof include a coating method using a non-contact type coating apparatus such as an apparatus, a spinner (rotary coating apparatus), or a curtain flow coater.
Although there is no restriction | limiting in particular as a board | substrate, For example, a glass substrate, a quartz substrate, a transparent or translucent resin substrate (For example, heat-resistant materials, such as a polycarbonate, a polyethylene terephthalate, a polyether sulfone, a polyimide, a polyamide imide, etc.), a metal And a silicon substrate.
Semiconductor substrates, liquid crystal displays, organic light emitting displays (OLED), electrophoretic displays (electronic paper), substrates for display materials such as touch panels, color filters, backlights (including metal oxide-containing films and various metal-containing films), Substrates for solar cells (including metal oxide-containing films and various metal-containing films), substrates for photoelectric conversion elements such as optical sensors (including metal oxide-containing films and various metal-containing films), substrates for photoelectric elements ( Various substrates such as metal oxide-containing films and various metal-containing films may be used.
The thickness of a board | substrate is not specifically limited, According to the usage condition of a pattern formation body, it can select suitably.

上記塗布後の塗膜は乾燥(プリベーク)することが好ましい。乾燥方法は、特に限定されず、例えば、(1)ホットプレートにて80〜120℃、好ましくは90〜100℃の温度にて60〜120秒間乾燥させる方法、(2)室温にて数時間〜数日間放置する方法、(3)温風ヒータや赤外線ヒータ中に数十分間〜数時間入れて溶剤を除去する方法等が挙げられる。   The coated film after application is preferably dried (pre-baked). The drying method is not particularly limited. For example, (1) a method of drying on a hot plate at 80 to 120 ° C., preferably 90 to 100 ° C. for 60 to 120 seconds, (2) several hours at room temperature Examples include a method of leaving for several days, and (3) a method of removing the solvent by putting it in a warm air heater or an infrared heater for several tens of minutes to several hours.

上記乾燥後の塗膜は、紫外線、エキシマレーザー光等の活性エネルギー線を照射して露光してもしなくてもよい。照射するエネルギー線量は特に制限はないが、例えば30〜2000mJ/cm程度が挙げられる。露光する工程は、後述の焼成する工程の代わり又は焼成する工程ともに行ってもよい。また、露光する工程では、例えば、形成された塗布膜を選択的に露光してもよく、選択的露光工程を含む場合は、現像する工程を含んでいてもよい。また、例えば、形成された塗布膜に対し、インプリントリソグラフィーを行ってもよい。インプリントリソグラフィーを行う場合は、例えば;
第3の態様の組成物を基板上に塗布して、塗布膜を形成する工程と、
所定のパターンの凹凸構造が形成されたモールドを塗布膜に対し押圧する工程と、
露光する工程と、を含む方法が挙げられる。
露光する工程は、モールドが塗布膜に押圧された状態で、第3の態様の組成物からなる塗布膜に対して行われる。露光による硬化後、前記モールドを剥離することで、モールドの形状に応じてパターニングされた第4の態様に係る硬化物を得ることができる。
The dried coating film may or may not be exposed to irradiation with active energy rays such as ultraviolet rays and excimer laser light. Although there is no restriction | limiting in particular in the energy dose to irradiate, For example, about 30-2000 mJ / cm < 2 > is mentioned. You may perform the process of exposing together with the process of baking instead of the process of baking mentioned later. Further, in the exposure step, for example, the formed coating film may be selectively exposed, and in the case of including a selective exposure step, a developing step may be included. Further, for example, imprint lithography may be performed on the formed coating film. When performing imprint lithography, for example;
Applying the composition of the third aspect on a substrate to form a coating film;
A step of pressing a mold having a concavo-convex structure of a predetermined pattern against a coating film;
And a step of exposing.
The exposing step is performed on the coating film made of the composition of the third aspect in a state where the mold is pressed against the coating film. After the curing by exposure, the cured product according to the fourth aspect patterned according to the shape of the mold can be obtained by peeling the mold.

上記乾燥後、露光後又は現像後の塗膜は、膜物性を高める点で焼成(ポストベーク)することが好ましい。
焼成温度は下層基板や使用用途にもよるが、例えば、200〜1000℃の範囲であり、200℃〜500℃が好ましく、200〜250℃であることがより好ましい。焼成雰囲気は特に限定されず、窒素雰囲気又はアルゴン雰囲気等の不活性ガス雰囲下、真空下、又は減圧下であってもよい。大気下であってもよいし、酸素濃度を適宜コントロールしてもよい。焼成時間は、適宜変更すればよく、10分〜120分程度である。
The dried, exposed or developed coating film is preferably baked (post-baked) from the viewpoint of improving film properties.
The firing temperature depends on the lower substrate and the intended use, but is, for example, in the range of 200 to 1000 ° C, preferably 200 to 500 ° C, and more preferably 200 to 250 ° C. The firing atmosphere is not particularly limited, and may be an inert gas atmosphere such as a nitrogen atmosphere or an argon atmosphere, a vacuum, or a reduced pressure. It may be under air or the oxygen concentration may be controlled appropriately. The firing time may be appropriately changed and is about 10 minutes to 120 minutes.

第4の態様に係る硬化物は、上記各種基板(金属酸化物含有膜、各種金属含有膜を含む。)を保護する保護膜であることが好ましい。   The cured product according to the fourth aspect is preferably a protective film that protects the various substrates (including metal oxide-containing films and various metal-containing films).

硬化物が膜である場合、厚さは、10nm〜10000nmであることが好ましく、50〜5000nmであることがより好ましく、100〜3000nmであることが更に好ましい。   When the cured product is a film, the thickness is preferably 10 nm to 10000 nm, more preferably 50 to 5000 nm, and still more preferably 100 to 3000 nm.

<ポリシラン化合物の製造におけるアニオン重合選択的促進剤>
第6の態様に係るアニオン重合選択的促進剤は、上記一般式(A)で表される構造を含むニトロキシ化合物を含む、ポリシラン化合物の製造におけるアニオン重合選択的促進剤である。
第6の態様に係るアニオン重合選択的促進剤は、ポリシラン化合物製造時に生じるシリルラジカルカチオンをスピンチャージしてシリルラジカルアニオンに変換し、シリルラジカルアニオンによるアニオン重合を選択的に促進することができる。これにより、マイクロクラックの原因となるシロキサン結合、シラノール基等の副反応物の生成を抑制することができ、また、アウトガスの発生も抑制することができる。
<Anionic polymerization selective accelerator in production of polysilane compound>
The anionic polymerization selective accelerator according to the sixth aspect is an anionic polymerization selective accelerator in the production of a polysilane compound containing a nitroxy compound containing the structure represented by the general formula (A).
The anionic polymerization selective accelerator according to the sixth aspect can selectively accelerate the anionic polymerization by the silyl radical anion by spin-charging the silyl radical cation generated during the production of the polysilane compound to convert it into a silyl radical anion. Thereby, generation | occurrence | production of side reactions, such as a siloxane bond and a silanol group which causes a microcrack, can be suppressed, and generation | occurrence | production of outgas can also be suppressed.

上記一般式(A)で表される構造を含むニトロキシ化合物の具体例及び好ましい例としては、第1の態様に係るポリシラン化合物の製造方法において前述した通りである。
第6の態様に係るアニオン重合選択的促進剤の使用量は、ポリシラン化合物製造に用いるハロシラン化合物に対して、0.0001〜10モル倍の範囲が好ましく、より好ましくは0.001〜5モル倍の範囲、更に好ましくは0.001〜1モル倍の範囲、特に好ましくは0.001〜0.1モル倍の範囲である。
Specific examples and preferred examples of the nitroxy compound containing the structure represented by the general formula (A) are as described above in the method for producing a polysilane compound according to the first aspect.
The amount of the anionic polymerization selective accelerator according to the sixth aspect is preferably in the range of 0.0001 to 10 mol times, more preferably 0.001 to 5 mol times, relative to the halosilane compound used for the production of the polysilane compound. More preferably, it is the range of 0.001-1 mol times, Most preferably, it is the range of 0.001-0.1 mol times.

以下に、実施例に基づいて本発明をより詳細に説明するが、本発明はこれらの実施例によって限定されるものではない。   Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited to these examples.

〔実施例1〕ポリシラン化合物の製造
三方コックを装着した内容積1000mlの丸型フラスコに、粒状(粒径20〜1000μm)のマグネシウム25gと、触媒としてトリス(アセチルアセトナト)鉄(III)2.1g、4−ヒドロキシ−TEMPO(4−ヒドロキシ−2,2,6,6−テトラメチルピペリジン1−オキシル フリーラジカル)0.61ミリモル(0.10g)を仕込み、50℃で1mmHg(=133kPa)に加熱減圧して、反応器(フラスコ)内部を乾燥した後、乾燥アルゴンガスを反応器内に導入し、予めナトリウム−ベンゾフェノンケチルで乾燥したテトラヒドロフラン(THF)500mlを加え、25℃で約60分間撹拌した。この反応混合物に、予め蒸留により精製したメチルフェニルジクロロシラン63.5g(0.3mol)をシリンジで加え、25℃で約24時間撹拌した。反応終了後、反応混合物に1N(=1モル/L)の塩酸1000mlを投入し、さらにトルエン500mlで抽出した。トルエン層を純水200mlで10回洗浄し、トルエン層を無水硫酸マグネシウムで乾燥した後、トルエンを留去することにより、メチルフェニルシラン重合体(質量平均分子量2000)を28.4g得た(収率63%)。
[Example 1] Production of polysilane compound In a round flask with an internal volume of 1000 ml equipped with a three-way cock, 25 g of granular (particle size 20 to 1000 μm) magnesium and tris (acetylacetonato) iron (III) as a catalyst. 1 g, 4-hydroxy-TEMPO (4-hydroxy-2,2,6,6-tetramethylpiperidine 1-oxyl free radical) 0.61 mmol (0.10 g) is charged and 1 mmHg (= 133 kPa) at 50 ° C. After heating and reducing the pressure and drying the inside of the reactor (flask), dry argon gas was introduced into the reactor, 500 ml of tetrahydrofuran (THF) previously dried with sodium-benzophenone ketyl was added, and the mixture was stirred at 25 ° C. for about 60 minutes. did. To this reaction mixture, 63.5 g (0.3 mol) of methylphenyldichlorosilane purified in advance by distillation was added by a syringe and stirred at 25 ° C. for about 24 hours. After completion of the reaction, 1000 ml of 1N (= 1 mol / L) hydrochloric acid was added to the reaction mixture, followed by extraction with 500 ml of toluene. The toluene layer was washed 10 times with 200 ml of pure water, the toluene layer was dried over anhydrous magnesium sulfate, and then toluene was distilled off to obtain 28.4 g of methylphenylsilane polymer (mass average molecular weight 2000) (yield). Rate 63%).

〔実施例2〜4並びに比較例1及び2〕ポリシラン化合物の製造
ハロシラン化合物の種類、有機金属錯体又は金属ハロゲン化物の種類、ニトロキシ化合物の有無及び製造されるポリシラン化合物の種類を下記表1に示すように変更する以外は実施例1と同様にして実施例2〜4並びに比較例1及び2のポリシラン化合物の製造を行った。なお実施例5は、ニトロキシ化合物を添加する以外は、JACS、110、124(1998)及びMacromolecules、23、3423(1990)に記載の方法に準じて製造を行った。

Figure 2018109112
[Examples 2 to 4 and Comparative Examples 1 and 2] Production of polysilane compounds Table 1 shows the types of halosilane compounds, the types of organometallic complexes or metal halides, the presence or absence of nitroxy compounds, and the types of polysilane compounds produced. The polysilane compounds of Examples 2 to 4 and Comparative Examples 1 and 2 were produced in the same manner as in Example 1 except that the above was changed. In addition, Example 5 manufactured according to the method as described in JACS, 110,124 (1998) and Macromolecules, 23,3423 (1990) except adding a nitroxy compound.

Figure 2018109112

〔調製例1〜4並びに比較調製例1及び2〕組成物の調製
上記実施例1〜4並びに比較例1及び2で得られた各ポリシラン化合物を、表2に記載の種類の溶剤に固形分濃度が30質量%となるように溶解させ、孔径0.1μmのフッ素樹脂製のフィルターで濾過することによって、調製例1〜4並びに比較調製例1及び2の各組成物を調製した。
[Preparation Examples 1 to 4 and Comparative Preparation Examples 1 and 2] Preparation of Compositions Each of the polysilane compounds obtained in Examples 1 to 4 and Comparative Examples 1 and 2 were mixed in a solvent of the type described in Table 2 with a solid content. The compositions of Preparation Examples 1 to 4 and Comparative Preparation Examples 1 and 2 were prepared by dissolving so as to have a concentration of 30% by mass and filtering with a fluororesin filter having a pore size of 0.1 μm.

〔被膜の形成〕
サンプル基板上に、得られた各調製例及び比較調製例の組成物をスピンコーターを用いて塗布して、膜厚5.0μmの被膜を形成可能な膜厚の塗布膜を形成した。
塗布膜を100℃で2分間プリベークした後、縦型ベーク炉(TS8000MB、東京応化工業株式会社製)を用いて、塗布膜を350℃で30分間焼成して、膜厚5.0μmの被膜を得た。
形成された被膜について、下記方法に従って、マイクロクラックの有無及びアウトガス発生の有無について評価した。
[Formation of film]
On the sample substrate, the composition of each of the obtained preparation examples and comparative preparation examples was applied using a spin coater to form a coating film having a film thickness capable of forming a film having a film thickness of 5.0 μm.
After pre-baking the coating film at 100 ° C. for 2 minutes, the coating film is baked at 350 ° C. for 30 minutes using a vertical baking furnace (TS8000MB, manufactured by Tokyo Ohka Kogyo Co., Ltd.) to form a coating film having a thickness of 5.0 μm. Obtained.
The formed film was evaluated for the presence or absence of microcracks and the occurrence of outgas according to the following method.

<マイクロクラックの評価>
形成された被膜の24時間放置後の表面を光学顕微鏡(倍率100倍)を用いて観察し、マイクロクラックの有無を評価した。結果を表2に示す。
<Evaluation of microcracks>
The surface of the formed coating after standing for 24 hours was observed using an optical microscope (magnification 100 times) to evaluate the presence or absence of microcracks. The results are shown in Table 2.

<アウトガスの評価>
また、昇温脱離ガス分析法(TDS)に基づいてアウトガス発生の程度を評価した。比較調製例1及び2の組成物を用いて形成された被膜はアウトガスの発生量は、実施例1〜5のポリシラン化合物を含有する調製例1〜5の組成物を用いて形成されたいずれの被膜に対しても、多く確認された。
<Evaluation of outgas>
Further, the degree of outgas generation was evaluated based on the temperature programmed desorption gas analysis method (TDS). The film formed using the compositions of Comparative Preparation Examples 1 and 2 has an outgas generation amount of any of the compositions of Preparation Examples 1 to 5 containing the polysilane compounds of Examples 1 to 5. Many were also confirmed for the coating.

Figure 2018109112
Figure 2018109112

表2に示した結果から明らかなように、ニトロキシ化合物を用いずに製造された比較例1及び2のポリシラン化合物を含有する比較調製例1及び2の組成物を用いて形成された被膜はマイクロクラック及びアウトガスが発生した。
一方、ニトロキシ化合物を用いて製造された実施例1〜5のポリシラン化合物を含有する調製例1〜5の組成物を用いて形成された被膜はいずれもマイクロクラックは見られず、アウトガスの発生も抑制されていた。
As is apparent from the results shown in Table 2, the film formed using the composition of Comparative Preparation Examples 1 and 2 containing the polysilane compound of Comparative Examples 1 and 2 produced without using the nitroxy compound was microscopic. Cracks and outgassing occurred.
On the other hand, none of the films formed using the compositions of Preparation Examples 1 to 5 containing the polysilane compounds of Examples 1 to 5 manufactured using the nitroxy compound show any microcracks, and the outgassing is also generated. It was suppressed.

Claims (11)

ニトロキシ化合物の存在下においてハロシラン化合物を反応させることを含むポリシラン化合物の製造方法。   A method for producing a polysilane compound, comprising reacting a halosilane compound in the presence of a nitroxy compound. 前記ニトロキシ化合物が、下記一般式(A)で表される構造を含む化合物である、請求項1に記載の製造方法。
Figure 2018109112
(式(A)中、Ra1、Ra2、Ra3、及びRa4は、各々独立に、水素原子、又は有機基である。Ra1とRa2とは、互いに結合して環を形成してもよい。また、Ra3とRa4とは、互いに結合して環を形成してもよい。)
The manufacturing method of Claim 1 whose said nitroxy compound is a compound containing the structure represented by the following general formula (A).
Figure 2018109112
(In formula (A), R a1 , R a2 , R a3 and R a4 are each independently a hydrogen atom or an organic group. R a1 and R a2 are bonded to each other to form a ring. R a3 and R a4 may be bonded to each other to form a ring.)
更に、アルカリ金属又はマグネシウムの存在下において前記ハロシラン化合物を反応させる、請求項1又は2に記載の製造方法。   Furthermore, the manufacturing method of Claim 1 or 2 with which the said halosilane compound is made to react in presence of an alkali metal or magnesium. 前記ハロシラン化合物が下記式(1)で表される化合物である、請求項1〜3のいずれか1項に記載の製造方法。

SiR4−n (1)

(式中、nは2〜4の整数であり、n個のXは、各々独立に、ハロゲン原子であり、(4−n)個のRは、各々独立に、水素原子、有機基又はシリル基である。)
The manufacturing method of any one of Claims 1-3 whose said halosilane compound is a compound represented by following formula (1).

X n SiR 4-n (1)

(Wherein n is an integer of 2 to 4, n Xs are each independently a halogen atom, and (4-n) Rs are each independently a hydrogen atom, an organic group or a silyl group. Group.)
更に、下記一般式(B)で表される有機金属錯体の存在下において前記ハロシラン化合物を反応させる、請求項1〜5のいずれか1項に記載の製造方法。
Figure 2018109112
(上記一般式(B)中、Mは、鉄、銀、アルミニウム、ビスマス、セリウム、コバルト、銅、ジスプロシウム、エルビウム、ユーロピウム、ガリウム、ガドリニウム、ハフニウム、ホルミウム、インジウム、イリジウム、ランタン、ルテチウム、マンガン、モリブデン、ネオジム、ニッケル、オスミウム、パラジウム、プロメチウム、プラセオジム、白金、レニウム、ロジウム、ルテニウム、サマリウム、スカンジウム、スズ、テルビウム、チタン、ツリウム、バナジウム、クロム、タンタル、イッテルビウム、金、水銀タングステン、イットリウム、亜鉛及びジルコニウムよりなる群から選択される金属を表し、Rb1は、各々独立して、飽和炭化水素基、不飽和炭化水素基、芳香族炭化水素基、アラルキル基、アルコキシ基、アリールオキシ基、アラルキルオキシ基又はアリールオキシアルキル基を表し、Rb2は、水素原子、飽和炭化水素基、不飽和炭化水素基、芳香族炭化水素基又はアラルキル基を表わす。pは1以上の整数を表す。)
Furthermore, the said halosilane compound is made to react in presence of the organometallic complex represented with the following general formula (B), The manufacturing method of any one of Claims 1-5.
Figure 2018109112
(In the above general formula (B), M is iron, silver, aluminum, bismuth, cerium, cobalt, copper, dysprosium, erbium, europium, gallium, gadolinium, hafnium, holmium, indium, iridium, lanthanum, lutetium, manganese, Molybdenum, neodymium, nickel, osmium, palladium, promethium, praseodymium, platinum, rhenium, rhodium, ruthenium, samarium, scandium, tin, terbium, titanium, thulium, vanadium, chromium, tantalum, ytterbium, gold, mercury tungsten, yttrium, zinc And R b1 each independently represents a saturated hydrocarbon group, an unsaturated hydrocarbon group, an aromatic hydrocarbon group, an aralkyl group, an alkoxy group, an aryl group, or an aryl group. Represents a xyl group, an aralkyloxy group or an aryloxyalkyl group, and R b2 represents a hydrogen atom, a saturated hydrocarbon group, an unsaturated hydrocarbon group, an aromatic hydrocarbon group or an aralkyl group, and p represents an integer of 1 or more. Represents.)
ポリシラン化合物を含む組成物の製造方法であって、前記ポリシラン化合物が請求項1〜5のいずれか1項に記載の方法によって製造される、方法。   It is a manufacturing method of the composition containing a polysilane compound, Comprising: The said polysilane compound is manufactured by the method of any one of Claims 1-5. 前記組成物がニトロキシ化合物を更に含む、請求項6に記載の方法。   The method of claim 6, wherein the composition further comprises a nitroxy compound. 組成物の硬化物の製造方法であって、前記組成物が請求項6又は7に記載の方法によって製造される、方法。   A method for producing a cured product of a composition, wherein the composition is produced by the method according to claim 6 or 7. 硬化物を備える基板の製造方法であって、前記硬化物が請求項8に記載の方法によって製造される、方法。   The manufacturing method of a board | substrate provided with hardened | cured material, Comprising: The said hardened | cured material is manufactured by the method of Claim 8. 下記一般式(A)で表される構造を含むニトロキシ化合物を含む、ポリシラン化合物の製造におけるアニオン重合選択的促進剤。
Figure 2018109112
(式(A)中、Ra1、Ra2、Ra3、及びRa4は、それぞれ独立に、水素原子、又は有機基である。Ra1とRa2とは、互いに結合して環を形成してもよい。また、Ra3とRa4とは、互いに結合して環を形成してもよい。)
An anionic polymerization selective accelerator in the production of a polysilane compound, comprising a nitroxy compound containing a structure represented by the following general formula (A).
Figure 2018109112
(In the formula (A), R a1 , R a2 , R a3 and R a4 are each independently a hydrogen atom or an organic group. R a1 and R a2 are bonded to each other to form a ring. R a3 and R a4 may be bonded to each other to form a ring.)
ポリシラン化合物製造時に生じるシリルラジカルカチオンをスピンチャージする、請求項12に記載の促進剤。   The accelerator according to claim 12, wherein the silyl radical cation generated during production of the polysilane compound is spin-charged.
JP2016257102A 2016-12-28 2016-12-28 Methods for producing polysilane compounds, compositions, cured products and substrates, and anionic polymerization selective accelerators. Active JP6916619B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016257102A JP6916619B2 (en) 2016-12-28 2016-12-28 Methods for producing polysilane compounds, compositions, cured products and substrates, and anionic polymerization selective accelerators.
PCT/JP2017/046744 WO2018124112A1 (en) 2016-12-28 2017-12-26 Method for producing polysilane compound, composition, cured product and substrate, and anionic polymerization selective accelerator
TW106146242A TWI811203B (en) 2016-12-28 2017-12-28 Production method of polysilane compound, composition, cured product and substrate, and selective accelerator for anionic polymerization

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016257102A JP6916619B2 (en) 2016-12-28 2016-12-28 Methods for producing polysilane compounds, compositions, cured products and substrates, and anionic polymerization selective accelerators.

Publications (2)

Publication Number Publication Date
JP2018109112A true JP2018109112A (en) 2018-07-12
JP6916619B2 JP6916619B2 (en) 2021-08-11

Family

ID=62710941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016257102A Active JP6916619B2 (en) 2016-12-28 2016-12-28 Methods for producing polysilane compounds, compositions, cured products and substrates, and anionic polymerization selective accelerators.

Country Status (3)

Country Link
JP (1) JP6916619B2 (en)
TW (1) TWI811203B (en)
WO (1) WO2018124112A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006316197A (en) * 2005-05-13 2006-11-24 Nitto Kasei Co Ltd Process for producing polysilanes

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2574012B2 (en) * 1987-10-09 1997-01-22 三井石油化学工業株式会社 Method for producing polysilane compound
JP2001354772A (en) * 2000-06-09 2001-12-25 Dow Corning Asia Ltd Process for producing 1,3-disilacyclobutane compound, process for producing poloysilylene methylene and process for producing crosslinked polysilylene methylene
JP4840548B2 (en) * 2000-09-25 2011-12-21 Jsr株式会社 Film forming composition and insulating film forming material
JP4205354B2 (en) * 2002-03-20 2009-01-07 大阪瓦斯株式会社 Method for producing polysilane copolymer
JP3839416B2 (en) * 2003-04-17 2006-11-01 独立行政法人科学技術振興機構 Nitro compound detection element material and nitro compound detection method
JP4866050B2 (en) * 2005-10-13 2012-02-01 日本曹達株式会社 Production method of polysilane
TWI491675B (en) * 2012-04-20 2015-07-11 Asahi Kasei E Materials Corp Polyoxometallic compositions containing freejunction groups

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006316197A (en) * 2005-05-13 2006-11-24 Nitto Kasei Co Ltd Process for producing polysilanes

Also Published As

Publication number Publication date
WO2018124112A1 (en) 2018-07-05
TW201833193A (en) 2018-09-16
TWI811203B (en) 2023-08-11
JP6916619B2 (en) 2021-08-11

Similar Documents

Publication Publication Date Title
JP6698147B2 (en) Silicon-containing resin composition
US7491782B1 (en) Polysilane compositions, methods for their synthesis and films formed therefrom
TWI267703B (en) Radiation-curing resin composition and preservation method thereof, forming method of curing film, forming method and operating method of pattern, electronic device and optical wave guide
JP5698070B2 (en) Positive photosensitive composition and cured product thereof
US9638998B2 (en) Silane composition and cured film thereof, and method for forming negative resist pattern using same
TWI809095B (en) Sensitive energy composition, cured product, and pattern forming method
KR20130045172A (en) Positive photosensitive composition
JP5479993B2 (en) Positive photosensitive composition and permanent resist
TWI546338B (en) A photohardenable resin composition and a novel siloxane compound
KR101677095B1 (en) Composition for alignment control of organic el light-emitting material, alignment control film of organic el light-emitting material, organic el device and method for manufacturing the same
US11718717B2 (en) Resin composition, method for producing resin composition, film formation method, and cured product
JP6989525B2 (en) Method for producing polysilane compound, composition, membrane, and substrate
JP7413369B2 (en) Silicon-containing polymer, film-forming composition, method for forming a silicon-containing polymer film, method for forming a silica-based film, and method for producing a silicon-containing polymer
TW201232182A (en) Positive photosensitive resin composition and permanent resist
JP6916619B2 (en) Methods for producing polysilane compounds, compositions, cured products and substrates, and anionic polymerization selective accelerators.
JP4380229B2 (en) New compounds and their uses
JP5666266B2 (en) Positive photosensitive resin composition and permanent resist
JP2020189973A (en) Silicon-containing polymer, film-forming composition, method for forming silicon-containing polymer coating, method for forming silica-based coating, and production method for silicon-containing polymer
JP2006016596A (en) Silicon-containing compound, composition containing the compound and insulating material
JP2006036889A (en) Method for producing cured product of hydrolyzable metal compound and cured product of hydrolyzable metal compound
KR20220088719A (en) A silicon compound, a reactive material, a resin composition, a photosensitive resin composition, a cured film, the manufacturing method of a cured film, a pattern cured film, and the manufacturing method of a pattern cured film
JP2017165843A (en) Polysilane and intermediate thereof and process for producing them

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200526

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210706

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210716

R150 Certificate of patent or registration of utility model

Ref document number: 6916619

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150