TWI810997B - 監測量測配方之方法及其相關度量衡方法、電腦程式及設備 - Google Patents

監測量測配方之方法及其相關度量衡方法、電腦程式及設備 Download PDF

Info

Publication number
TWI810997B
TWI810997B TW111124398A TW111124398A TWI810997B TW I810997 B TWI810997 B TW I810997B TW 111124398 A TW111124398 A TW 111124398A TW 111124398 A TW111124398 A TW 111124398A TW I810997 B TWI810997 B TW I810997B
Authority
TW
Taiwan
Prior art keywords
parameter
interest
reliability
value
measurement signals
Prior art date
Application number
TW111124398A
Other languages
English (en)
Other versions
TW202311849A (zh
Inventor
朱利奧 博特加爾
馬提恩 瓊恩
Original Assignee
荷蘭商Asml荷蘭公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 荷蘭商Asml荷蘭公司 filed Critical 荷蘭商Asml荷蘭公司
Publication of TW202311849A publication Critical patent/TW202311849A/zh
Application granted granted Critical
Publication of TWI810997B publication Critical patent/TWI810997B/zh

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/706835Metrology information management or control
    • G03F7/706839Modelling, e.g. modelling scattering or solving inverse problems
    • G03F7/706841Machine learning
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70491Information management, e.g. software; Active and passive control, e.g. details of controlling exposure processes or exposure tool monitoring processes
    • G03F7/705Modelling or simulating from physical phenomena up to complete wafer processes or whole workflow in wafer productions
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/70616Monitoring the printed patterns
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/70616Monitoring the printed patterns
    • G03F7/70633Overlay, i.e. relative alignment between patterns printed by separate exposures in different layers, or in the same layer in multiple exposures or stitching
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/706843Metrology apparatus

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

本發明揭示一種判定描述度量衡信號及/或自其導出的所關注值之一參數之一可靠性的一可靠性度量的方法及相關設備。該方法包含獲得:用於自一量測信號推斷用於一所關注參數之一值的一經訓練推斷模型、及一或多個量測信號及/或使用該經訓練推斷模型自該一或多個量測信號導出的一所關注參數之各別一或多個值。判定用於該一或多個量測信號及/或一所關注參數之各別一或多個值的至少一個可靠性度量值,該可靠性度量描述一或多個量測信號及/或一所關注參數之各別一或多個值相對於與該經訓練推斷模型相關聯的一準確預測空間之一可靠性。

Description

監測量測配方之方法及其相關度量衡方法、電腦程式及設備
本發明係關於可用於例如在藉由微影技術進行裝置製造中執行度量衡的度量衡設備及方法。本發明進一步係關於用於在微影製程中監測諸如疊對之所關注參數之此類方法。
微影設備為將所要圖案施加至基板上(通常施加至基板之目標部分上)之機器。微影設備可用於(例如)積體電路(IC)之製造中。在彼情況下,圖案化裝置(其替代地稱作光罩或倍縮光罩)可用於生成待形成於IC之個別層上的電路圖案。此圖案可轉印至基板(例如矽晶圓)上之目標部分(例如包括晶粒之部分、一個晶粒或若干晶粒)上。通常經由成像至提供於基板上之輻射敏感材料(抗蝕劑)層上而進行圖案之轉印。一般而言,單一基板將含有經順次地圖案化之相鄰目標部分之網路。
在微影程序中,需要頻繁地對所產生結構進行量測(例如)以用於程序控制及驗證。用於進行此等量測之各種工具為吾人所知,包括常常用以量測臨界尺寸(CD)之掃描電子顯微鏡,及用以量測疊對(裝置中兩個層之對準準確度)之特殊化工具。近來,已開發供微影領域中使用之各種形式之散射計。此等裝置將輻射光束導向至目標上且量測散射輻射之一 或多個屬性--例如,依據波長而變化的在單一反射角下之強度;依據反射角而變化的在一或多個波長下之強度;或依據反射角而變化的偏振--以獲得可供判定目標之所關注屬性之繞射「光譜」。
已知散射計之實例包括US2006033921A1及US2010201963A1中所描述之類型的角解析散射計。由此等散射計使用之目標為相對大(例如,40μm乘40μm)光柵,且量測光束產生小於光柵之光點(亦即,光柵填充不足)。可在國際專利申請案US20100328655A1及US2011069292A1中找到暗場成像度量衡之實例,該等國際專利申請案之文件的之全文係特此以引用方式併入。公開專利申請案US20110027704A、US20110043791A、US2011102753A1、US20120044470A、US20120123581A、US20130258310A、US20130271740A及WO2013178422A1中已描述該技術之進一步開發。此等目標可小於照明光點且可由晶圓上之產品結構圍繞。可使用複合光柵目標而在一個影像中量測多個光柵。所有此等申請案之內容亦以引用之方式併入本文中。
已知一種度量衡方法,其中權重經施加至度量衡信號以將此信號轉換至諸如疊對之所關注值之參數。此權重可使用經訓練模型來判定。將需要改良權重及/或模型之監測以評估其是否仍提供所關注值之參數的可靠推斷。
本發明在第一態樣中提供判定描述度量衡信號及/或自其導出的所關注值之一參數之一可靠性的一可靠性度量的方法,該方法包含;獲得用於自一量測信號推斷用於所關注參數之一值的一經訓練推斷模型; 獲得一或多個量測信號及/或使用該經訓練推斷模型自該一或多個量測信號導出的一所關注參數之各別一或多個值;及判定用於該一或多個量測信號及/或一所關注參數之各別一或多個值之至少一個可靠性度量值,該可靠性度量描述一或多個量測信號及/或一所關注參數之各別一或多個值相對於與該經訓練推斷模型相關聯的一準確預測空間的一可靠性。
本發明又進一步提供一種電腦程式產品,其包含用於致使一處理器執行該第一態樣之該方法之機器可讀指令,以及相關度量衡設備及微影系統。
下文參考隨附圖式來詳細地描述本發明之其他特徵及優勢,以及本發明之各種實施例之結構及操作。應注意,本發明不限於本文中所描述之特定實施例。本文中僅出於說明性目的來呈現此等實施例。基於本文中含有之教示,額外實施例對於熟習相關技術者而言將顯而易見。
0(N):零階射線/實線
0(13N):零階射線/實線
0(S):零階射線/實線
0(13S):零階射線/實線
11:源
12:透鏡
12a:透鏡
12b:透鏡
12c:透鏡
13:孔徑板
13N:孔徑板
13S:孔徑板
15:光束分裂器
16:物鏡
17:第二光束分裂器
19:第一感測器
21:孔徑光闌
22:光學系統
23:感測器
400:訓練階段
410:步驟
420:步驟
430:監測階段
440:步驟
450:步驟
500:步驟
510:步驟
520:步驟
530:步驟
AD:調整器
AS:對準感測器
B:輻射光束
BD:光束遞送系統
BK:烘烤板
C:目標部分
CD:臨界尺寸
CH:冷卻板
CO:聚光器
CP:訓練或校準階段
DE:顯影器
EXP:曝光站
IL:照明系統
IF:位置感測器
IN:積光器
I/O1:輸入/輸出埠
I/O2:輸入/輸出埠
LA:微影設備
LACU:微影控制單元
LB:裝載盤
LC:微影單元
LS:位準感測器
M1:光罩對準標記
M2:光罩對準標記
MA:圖案化裝置
MEA:量測站
MET:度量衡系統
MT:圖案化裝置支撐件/度量衡設備
O:光軸
P1:基板對準標記
P2:基板對準標記
PS:投影系統
PM:第一定位器
PP:生產階段
PU:處理器
PW:第二定位器
RF:參考框架
RO:機器人
SC:旋塗器
SCS:監督控制系統
SO:輻射源
T:目標結構
TCU:塗佈顯影系統控制單元
W:基板
WT:基板台
WTa:基板台
WTb:基板台
+1(13N):第一階射線/點鏈線
-1(13S):第一階射線/雙點鏈線
現在將參看隨附示意圖而僅作為實例來描述本發明之實施例,在該等示意圖中,對應元件符號指示對應部分,且在該等示意圖中:圖1描繪微影設備;圖2描繪其中可使用根據本發明之檢測設備的微影製造單元(lithographic cell)或叢集;圖3(包含圖3(a)及圖3(b))示意性地說明經調適以執行角度解析散射量測及暗場成像檢測方法之檢測設備;圖4為描述根據一實施例之一種用於量化對稱程序變化(或不對稱程序變化)之方法的流程圖;圖5為描述根據一實施例之一種用於估計用於一疊對量測之可信度度 量之方法的流程圖;且圖6為描述根據一實施例之配方更新諮詢方法的流程圖。
在詳細地描述本發明之實施例之前,有指導性的係呈現可供實施本發明之實施例之實例環境。
圖1示意性地描繪微影設備LA。該設備包括:照明系統(照明器)IL,其經組態以調節輻射光束B(例如,UV輻射或DUV輻射);圖案化裝置支撐件或支撐結構(例如,光罩台)MT,其經建構以支撐圖案化裝置(例如,光罩)MA,且連接至經組態以根據某些參數來準確地定位圖案化裝置之第一定位器PM;兩個基板台(例如,晶圓台)WTa及WTb,其各自經建構以固持基板(例如,抗蝕劑塗佈晶圓)W,且各自連接至經組態以根據某些參數來準確地定位基板之第二定位器PW;及投影系統(例如,折射投影透鏡系統)PS,其經組態以將由圖案化裝置MA賦予至輻射光束B之圖案投影至基板W之目標部分C(例如,包括一或多個晶粒)上。參考框架RF連接各種組件,且充當用於設定及量測圖案化裝置及基板之位置以及圖案化裝置及基板上之特徵的位置之參考。
照明光學系統可包括用於導向、塑形或控制輻射的各種類型之光學組件,諸如折射、反射、磁性、電磁、靜電或其他類型之光學組件,或其任何組合。
圖案化裝置支撐件以取決於圖案化裝置之定向、微影設備之設計及其他條件(諸如,圖案化裝置是否被固持於真空環境中)之方式來固持圖案化裝置。圖案化裝置支撐件可採取許多形式;圖案化裝置支撐件可確保圖案化裝置(例如)相對於投影系統處於所要位置。
本文所使用之術語「圖案化裝置」應被廣泛地解譯為係指可用以在輻射光束之橫截面中向輻射光束賦予圖案以便在基板之目標部分中產生圖案的任何裝置。應注意,舉例而言,若被賦予至輻射光束之圖案包括相移特徵或所謂輔助特徵,則該圖案可不確切地對應於基板之目標部分中之所要圖案。通常,被賦予至輻射光束之圖案將對應於目標部分中所產生之裝置(諸如,積體電路)中之特定功能層。
如此處所描繪,設備屬於透射類型(例如,採用透射圖案化裝置)。替代地,該設備可屬於反射類型(例如,採用上文所提及之類型之可程式化鏡面陣列,或採用反射光罩)。圖案化裝置之實例包括光罩、可程式化鏡面陣列及可程式化LCD面板。可認為本文中對術語「倍縮光罩」或「光罩」之任何使用皆與更一般術語「圖案化裝置」同義。術語「圖案化裝置」亦可被解譯為係指以數位形式儲存用於控制此可程式化圖案化裝置之圖案資訊的裝置。
本文所使用之術語「投影系統」應被廣泛地解釋為涵蓋適於所使用之曝光輻射或適於諸如浸潤液體之使用或真空之使用之其他因素的任何類型之投影系統,包括折射、反射、反射折射、磁性、電磁及靜電光學系統,或其任何組合。可認為本文中對術語「投影透鏡」之任何使用均與更通用之術語「投影系統」同義。
微影設備亦可屬於以下類型:其中基板之至少一部分可由具有相對較高的折射率之液體(例如,水)覆蓋,以便填充投影系統與基板之間的空間。亦可將浸潤液體施加至微影設備中之其他空間,例如,光罩與投影系統之間的空間。浸潤技術在此項技術中被熟知用於增大投影系統之數值孔徑。
在操作中,照明器IL自輻射源SO接收輻射光束。舉例而言,當源為準分子雷射時,源與微影設備可為分離實體。在此等情況下,不認為源形成微影設備之部件,且輻射光束係憑藉包括(例如)合適導向鏡面及/或光束擴展器之光束遞送系統BD而自源SO傳遞至照明器IL。在其他情況下,舉例而言,當源為水銀燈時,源可為微影設備之整體部件。源SO及照明器IL連同光束遞送系統BD在需要時可被稱作輻射系統。
照明器IL可(例如)包括用於調整輻射光束之角強度分佈之調整器AD、積光器IN及聚光器CO。照明器可用以調節輻射光束,以在其橫截面中具有所要均勻性及強度分佈。
輻射光束B入射於被固持於圖案化裝置支撐件MT上之圖案化裝置MA上,且係由該圖案化裝置而圖案化。在已橫穿圖案化裝置(例如,光罩)MA的情況下,輻射光束B傳遞通過投影系統PS,投影系統PS將該光束聚焦至基板W之目標部分C上。憑藉第二定位器PW及位置感測器IF(例如干涉裝置、線性編碼器、2D編碼器或電容式感測器),可準確地移動基板台WTa或WTb,例如以便使不同目標部分C定位於輻射光束B之路徑中。類似地,第一定位器PM及另一位置感測器(其未在圖1中被明確地描繪)可用以(例如)在自光罩庫之機械擷取之後或在掃描期間相對於輻射光束B之路徑來準確地定位圖案化裝置(例如,倍縮光罩/光罩)MA。
可使用光罩對準標記M1、M2及基板對準標記P1、P2來對準圖案化裝置(例如,倍縮光罩/光罩)MA與基板W。儘管如所說明之基板對準標記佔據專用目標部分,但其可位於目標部分之間的空間中(此等被稱為切割道對準標記)。類似地,在多於一個晶粒提供於圖案化裝置(例如,光罩)MA上之情形中,光罩對準標記可位於晶粒之間。小對準標記 亦可在裝置特徵當中包括於晶粒內,在此情況下,需要使該等標記儘可能地小且相比於鄰近特徵無需任何不同成像或程序條件。下文進一步描述偵測對準標記之對準系統。
可在多種模式中使用所描繪設備。在掃描模式中,在經賦予至輻射光束之圖案投影至目標部分C上的同時同步地掃描圖案化裝置支撐件(例如光罩台)MT及基板台WT(亦即,單次動態曝光)。可藉由投影系統PS之放大率(縮小率)及影像反轉特性來判定基板台WT相對於圖案化器件支撐件(例如光罩台)MT之速度及方向。在掃描模式中,曝光場之最大大小限制單次動態曝光中之目標部分之寬度(在非掃描方向上),而掃描運動之長度判定目標部分之高度(在掃描方向上)。如在此項技術中為吾人所熟知,其他類型之微影設備及操作模式係可能的。舉例而言,步進模式係已知的。在所謂「無光罩」微影中,可程式化圖案化裝置經保持靜止,但具有改變之圖案,且移動或掃描基板台WT。
亦可採用上文所描述之使用模式之組合及/或變化或完全不同的使用模式。
微影設備LA屬於所謂的雙載物台類型,其具有兩個基板台WTa、WTb,以及兩個站(曝光站EXP及量測站MEA),在該兩個站之間可交換該等基板台。在曝光站處曝光一個基板台上之一基板的同時,可在量測站處將另一基板裝載至另一基板台上且進行各種預備步驟。此情形實現設備之產出率之相當巨大增加。預備步驟可包括使用位準感測器LS來映射基板之表面高度輪廓,及使用對準感測器AS來量測基板上之對準標記之位置。若位置感測器IF在基板台處於量測站以及處於曝光站時不能夠量測該基板台之位置,則可提供第二位置感測器以使得能夠在兩個站處追蹤 基板台相對於參考框架RF之位置。代替所展示之雙載物台配置,其他配置係已知且可用的。舉例而言,提供基板台及量測台之其他微影設備為吾人所知。此等基板台及量測台在執行預備量測時銜接在一起,且接著在基板台進行曝光時不銜接。
如圖2中所展示,微影設備LA形成微影製造單元LC(有時亦被稱作微影單元或叢集)之部件,微影製造單元LC亦包括用以對基板執行曝光前程序及曝光後程序之設備。習知地,此等設備包括用以沈積抗蝕劑層之旋塗器SC、用以顯影經曝光抗蝕劑之顯影器DE、冷卻板CH,及烘烤板BK。基板處置器或機器人RO自輸入/輸出埠I/O1、I/O2拾取基板,在不同程序設備之間移動基板,且隨後將基板遞送至微影設備之裝載盤LB。常常統稱為塗佈顯影系統之此等裝置係在塗佈顯影系統控制單元TCU之控制下,塗佈顯影系統控制單元TCU自身受到監督控制系統SCS控制,監督控制系統SCS亦經由微影控制單元LACU控制微影設備。因此,不同設備可經操作以最大化產出率及處理效率。
為了正確且一致地曝光由微影設備曝光之基板,需要檢測經曝光基板以量測諸如後續層之間的疊對誤差、線厚度、臨界尺寸(CD)等之屬性。因此,經定位有微影單元LC之製造設施亦包括度量衡系統MET,度量衡系統MET收納已在微影單元中處理之基板W中的一些或全部。將度量衡結果直接地或間接地提供至監督控制系統SCS。若偵測到誤差,則可對後續基板之曝光進行調整,尤其是在可足夠迅速地且快速地進行檢測而使得同一批量之其他基板仍待曝光的情況下。又,已經曝光之基板可被剝離及重工以改良良率或被捨棄,藉此避免對已知有缺陷之基板執行進一步處理。在基板之僅一些目標部分有缺陷的情況下,可僅對良好的 彼等目標部分執行其他曝光。
在度量衡系統MET內,使用檢測設備以判定基板之屬性,且尤其是判定不同基板或同一基板之不同層之屬性如何在不同層間變化。檢測設備可整合至微影設備LA或微影單元LC中,或可為單獨裝置。為了實現最快速量測,需要使檢測設備緊接在曝光之後量測經曝光抗蝕劑層中之屬性。然而,抗蝕劑中之潛影具有極低對比度--在已曝光至輻射的抗蝕劑之部分與尚未曝光至輻射的抗蝕劑之部分之間僅存在極小折射率差--且並非所有檢測設備皆具有足夠敏感度來進行潛影之有用量測。因此,可在曝光後烘烤步驟(PEB)之後進行量測,曝光後烘烤步驟(PEB)通常為對經曝光基板執行之第一步驟且增加抗蝕劑之經曝光部分與未經曝光部分之間的對比度。在此階段,抗蝕劑中之影像可被稱作半潛影。亦有可能對經顯影抗蝕劑影像進行量測-此時,抗蝕劑之經曝光部分或未經曝光部分已被移除-或在諸如蝕刻之圖案轉印步驟之後對經顯影抗蝕劑影像進行量測。後一可能性限制重工有缺陷基板之可能性,但仍可提供有用資訊。
圖3(a)中展示適合用於本發明之實施例中的度量衡設備。應注意,此僅為合適之度量衡設備之一個實例。替代的合適之度量衡設備可使用EUV輻射,諸如WO2017/186483A1中所揭示之EUV輻射。在圖3(b)中更詳細地說明目標結構T及用以照明目標結構之量測輻射之繞射射線。所說明之度量衡設備屬於被稱為暗場度量衡設備之類型。度量衡設備可為單機裝置,或併入於(例如)量測站處之微影設備LA中抑或微影製造單元LC中。貫穿設備具有若干分支之光軸係由點線O表示。在此設備中,由源11(例如氙氣燈)發射之光係由包含透鏡12、14及物鏡16之光學系統經由光束分裂器15而導向至基板W上。此等透鏡係以4F配置之雙重序列而配 置。可使用不同透鏡配置,其限制條件為:該透鏡配置仍將基板影像提供至偵測器上,且同時地允許存取中間光瞳平面以用於空間頻率濾光。因此,可藉由在呈現基板平面之空間光譜之平面(此處被稱作(共軛)光瞳平面)中界定空間強度分佈來選擇輻射入射於基板上之角度範圍。詳言之,可藉由在為物鏡光瞳平面之背向投影影像之平面中在透鏡12與14之間插入適合形式之孔徑板13來進行此選擇。在所說明實例中,孔徑板13具有不同形式,標記為13N及13S,從而允許選擇不同照明模式。本實例中之照明系統形成離軸照明模式。在第一照明模式中,孔徑板13N提供自僅出於描述起見被指定為「北」之方向之離軸。在第二照明模式中,孔徑板13S用以提供類似照明,但提供來自被標記為「南」之相反方向之照明。藉由使用不同孔徑,其他照明模式係可能的。光瞳平面之其餘部分理想地暗,此係因為在所要照明模式外部之任何不必要光將干涉所要量測信號。
如圖3(b)中所展示,在基板W垂直於物鏡16之光軸O的情況下置放目標結構T。基板W可由支撐件(圖中未示)支撐。自偏離軸O之角度照射於目標結構T上之量測輻射射線I產生零階射線(實線0)及下文稱作一對互補繞射階之兩個第一階射線(點鏈線+1及雙點鏈線-1)。應注意,該對互補繞射階可為任何高階對;例如,+2、-2對等,且不限於一階互補對。應記住,在填充過度之小目標結構的情況下,此等射線僅為覆蓋包括度量衡目標結構T及其他特徵之基板區域的許多平行射線中之一者。由於板13中之孔徑具有有限寬度(為接納有用量之光所必要),因此入射射線I實際上將佔據一角度範圍,且繞射射線0及+1/-1將稍微散開。根據小目標之點散佈函數,各階+1及-1將跨越角度範圍進一步散開,而非如所展示之單個理想射線。應注意,可設計或調整目標結構之光柵間距及照明角度,以使 得進入物鏡之一階射線與中心光軸緊密對準。圖3(a)及圖3(b)所說明之射線被展示為稍微離軸,以純粹地使其能夠在圖中被更容易地區分。
由基板W上之目標結構T繞射的至少0階及+1階係由物鏡16收集,且經返回導向穿過光束分裂器15。返回至圖3(a),藉由指明標記為北(N)及南(S)之完全相對孔徑而說明第一照射模式及第二照射模式兩者。當量測輻射之入射射線I來自光軸之北側時,亦即,當使用孔徑板13N來應用第一照明模式時,被標註為+1(N)之+1繞射射線進入物鏡16。相比之下,當使用孔徑板13S應用第二照明模式時,-1繞射射線(經標註為-1(S))為進入透鏡16之繞射射線。
第二光束分裂器17將繞射光束劃分成兩個量測分支。在第一量測分支中,光學系統18使用零階繞射光束及一階繞射光束來在第一感測器19(例如,CCD或CMOS感測器)上形成目標結構之繞射光譜(光瞳平面影像)。每一繞射階射中感測器上之一不同點,使得影像處理可比較及對比若干階。由感測器19俘獲之光瞳平面影像可用於聚焦度量衡設備及/或正規化一階光束之強度量測。光瞳平面影像亦可用於諸如重新建構之許多量測目的。
在第二量測分支中,光學系統20、22在感測器23(例如CCD或CMOS感測器)上形成目標結構T之影像。在第二量測分支中,在與光瞳平面共軛之平面中提供孔徑光闌21。孔徑光闌21用以阻擋零階繞射光束,使得形成於感測器23上之目標之影像係僅由-1或+1一階光束形成。由感測器19及23俘獲之影像經輸出至處理影像之處理器PU,該處理器PU之功能將取決於正被執行之量測之特定類型。應注意,本文中在廣泛意義上使用術語「影像」。因而,若僅存在-1階及+1階中之一者,則將不形成 光柵線之影像。
位置誤差可歸因於疊對誤差(常常被稱作「疊對」)而出現。疊對為相對於第二曝光期間之第二特徵在第一曝光期間置放第一特徵時的誤差。微影設備藉由在圖案化之前將每一基板與參考件準確地對準來最小化疊對誤差。此係藉由使用對準感測器量測基板上之對準標記之位置完成。可在美國專利申請公開案第US 2010-0214550號中找到關於對準工序之更多資訊,該公開案以全文引用的方式併入本文中。舉例而言,圖案尺寸標定(例如CD)誤差可在基板相對於微影設備之焦平面並未正確地定位時出現。此等焦點位置誤差可與基板表面之非平整度相關聯。微影設備旨在藉由在圖案化之前使用位準感測器量測基板表面構形而最小化此等焦點位置誤差。在後續圖案化期間應用基板高度校正以有助於確保圖案化裝置至基板上之正確成像(聚焦)。可在美國專利申請公開案第US 2007-0085991號中找到關於位準感測器系統之更多資訊,該公開案係以全文引用之方式併入本文中。
除微影設備LA及度量衡設備MT以外,亦在裝置生產期間使用一或多個其他處理設備。蝕刻站(圖中未示)在圖案曝光至抗蝕劑中之後處理基板。蝕刻站將圖案自抗蝕劑轉印至抗蝕劑層下方之一或多個層中。通常,蝕刻係基於施加電漿介質。可例如使用基板之溫度控制或使用電壓控制環來導向電漿介質從而控制一或多個局部蝕刻特性。可在PCT專利申請公開案第WO 2011-081645號及美國專利申請公開案第US 2006-016561號中找到關於蝕刻控制之更多資訊,該等公開案以全文引用之方式併入本文中。
在裝置之製造期間,需要使供使用諸如微影設備或蝕刻站 之一或多個處理設備處理基板之程序條件保持穩定,使得特徵之屬性保持在某些控制界限內。程序之穩定性對於諸如IC之電氣裝置的功能部分之特徵(亦稱作產品特徵)特別重要。為了有助於確保穩定處理,程序控制能力應就位。程序控制涉及監測處理資料及用於程序校正之構件之實施,例如基於處理資料之一或多個特性控制處理設備。程序控制可基於藉由度量衡設備MT進行之週期性量測,常常被稱作「進階程序控制」(亦進一步被稱作APC)。可在美國專利申請公開案第US 2012-008127號中找到關於APC之更多資訊,該公開案係以全文引用之方式併入本文中。典型APC實施涉及對基板上之度量衡特徵之週期性量測,從而監測及校正與一或多個處理設備相關聯之漂移。度量衡特徵反映了對產品特徵之程序變化之回應。度量衡特徵對程序變化之敏感度相比於對產品特徵之敏感度可能不同。在彼情況下,可判定所謂的「度量衡對裝置」偏移(亦被稱作MTD)。
此MTD偏移之一個原因係實際產品結構比散射量測或成像量測所需之目標結構之大小小得多(多個數量級),且此大小差可產生不同參數行為(例如,度量衡目標之圖案置放及所得疊對可不同於實際結構之圖案置放及所得疊對)。為了模仿產品特徵之行為,度量衡目標內之特徵可被製得較小(例如,具有與產品結構可相當的大小,其可被稱作依解析度疊對ARO),併入經分段特徵、輔助特徵或具有特定幾何形狀及/或尺寸之特徵。謹慎設計之度量衡目標理想地應以與產品特徵相似之方式對程序變化作出回應。可在以全文引用的方式併入本文中之PCT專利申請公開案第WO 2015-101458號中找到關於度量衡目標設計之更多資訊。
在另一方法中,可直接對產品結構執行度量衡。此可使用例如掃描電子顯微鏡(SEM)或電子束度量衡設備來完成。然而,此等裝置 對於商業(大容量製造HVM)環境中之程序控制而言通常過慢。被稱作裝置內度量衡IDM之另一替代方案可包含使用基於散射計之度量衡設備直接量測產品結構。諸如圖3中所說明之現代散射量測工具具有(至少)量測此等小結構上之基於不對稱性之度量(例如,疊對)的能力。然而,此通常僅對於具有足夠正規化(足夠週期性),使得其可充當有效繞射光柵之產品結構(例如,記憶體類型)係可能的。光點內之所有特徵皆添加至光瞳,因此,特徵遍及整個光點應為規則的,以便獲得信號。無法以此方式量測較不規則之產品結構,諸如(例如)邏輯結構。
已知度量衡技術稱為裝置中度量衡(IDM)。在IDM中,使用例如諸如圖3(a)中所示之度量衡工具(使用瞳孔成像分支)量測(例如,在蝕刻之後)晶圓。所得光學信號(通常在本文中稱為「光瞳」)各自包含量測值之角解析光譜或信號參數值(例如,強度、繞射效率或任何其他合適之參數)。此等光瞳係自自基板上之「目標」散佈之輻射獲得,且可包含來自任何一或多個繞射階之輻射,其中繞射階在此內容背景中包括零階(鏡面反射輻射)。因而,光瞳可自僅僅零階、僅僅單一高階或階之組合獲得。
在一實施例中,亦即,在傅立葉變換平面處,量測經散射輻射之光瞳。本文中之術語光瞳及光瞳平面包括其任何共軛物,除非內容背景另有要求(例如,在特定光學系統之光瞳平面正被識別的情況下)。
目標可為特定出於度量衡之目的而形成的度量衡目標(例如,光柵)。在一些實施例中,此光柵可模擬裝置結構,諸如邏輯結構(例如,產品結構之規則化版本)。替代地,在本發明之內容背景中,術語「目標」亦可包括實際功能性產品結構,例如,其中該結構為充分週期性 或規則性以直接對其執行度量衡。
用於量測目標之入射量測輻射可經偏振且交叉偏振器在經散射輻射上使用以將經散射輻射分成兩個量測通道,一交叉偏振通道(其提供交叉偏振光瞳)及一共偏振通道(其提供共偏振光瞳)。
推斷演算法用於基於物理學及程序之知識自光瞳推斷所關注參數。在習知IDM中,交叉偏振光瞳用於推斷不對稱參數(例如,疊對或傾斜)且共偏振光瞳用於推斷對稱參數(例如,臨界尺寸(CD)及高度)。
自僅僅交叉偏振光瞳推斷疊對具有其缺點。詳言之,此方法對程序變化(例如,諸如CD及高度之對稱參數的變化)並不穩固。推斷演算法依賴於界定用於光瞳之每像素權重的預定「量測配方」。此權重係在用於特定程序(特定堆疊尺寸等)之校準中判定。以此方式,可自經適當加權之像素之強度組合判定疊對(其中權重自身用作強度至疊對之轉換因子或可與自強度至疊對之轉換因子組合)。在此實例中,疊對信號可描述為:
Figure 111124398-A0305-02-0017-1
其中疊對信號OV為交叉偏振光瞳
Figure 111124398-A0305-02-0017-17
之信號分量之加權組合,且w i 為用於信號分量
Figure 111124398-A0305-02-0017-18
(i為像素索引)中之每一者的各別權重。在一實施例中,權重w i 為量值與疊對相關的向量。此類度量衡技術之主要原理及權重之判定係在以引用的方式併入本文中的PCT申請案WO2019110254A1中描述。
權重可在資料驅動方法中校準,使得對於給定堆疊,學習一權重,該權重可將交叉偏振光瞳轉換成疊對值。然而,在此方法中,不考慮交叉偏振光瞳之程序相依分量。因而,若程序漂移及/或任何程序參數改變(有意地或以其他方式),則疊對推斷可變得不佳及不準確,且可需 要對新堆疊進行一另外校準。此係由於兩個堆疊(各自具有相同疊對但不同(例如,對稱)程序效應)將產生不同不對稱光瞳,當施加相同權重時該等不同不對稱光瞳產生用於每一堆疊之不同疊對推斷。
為解決此問題,已開發本文中被稱作「雙光瞳」之程序。雙光瞳配方中增加之穩固性係經由雙光瞳方法之解碼程序之狀態的能力而達成,以便推薦自交叉偏振光瞳正確地提取疊對的合適之推斷權重。
雙光瞳方法之主要概念係自自晶圓/目標/堆疊獲得的共偏振光瞳判定權重及將此權重施加至對應交叉偏振光瞳,該權重經最佳化以補償對稱程序效應,使得在每一目標具有相同疊對但經受不同程序效應的情況下,經推斷疊對將(至少大約)相同。
雙光瞳方法可包含基於共偏振光瞳(對稱量測信號分量)判定用於加權交叉偏振光瞳(不對稱量測信號分量)之權重的模型M之構造。因而,該模型接收共偏振光瞳並輸出最佳化權重以用於自遵循局部程序變化之相關聯交叉偏振光瞳推斷疊對。因而,來自單一交叉偏振光瞳P x 之疊對OV可自下式判定:OV=wP x
其中權重w係自下式判定w=[1 P c ]M
其中P c 為共偏振光瞳。因此:OV=[1 P c ]MP x
以此方式,藉由模型M自共偏振光瞳判定的權重經最佳化以考慮歸因於程序變化之不同光瞳回應。
降維技術可視情況用以減小簡化之雙光瞳模型中之自由參 數之數目(例如,減小高達103之數量級)。此方法可包含藉由找到訓練資料中之共偏振光瞳的前q c 個主分量而建構一第一矩陣 U c 及藉由找到訓練資料中之交叉偏振光瞳之前q x 個主分量而建構一第二矩陣 U x 。簡化矩陣模型經訓練以基於對稱分量推斷不對稱分量中之疊對。
雙光瞳模型可藉由收集包含來自訓練晶圓之交叉偏振及共偏振光瞳之對應集合及對應參考疊對資料(例如,來自掃描電子顯微鏡(SEM)晶圓或自參考校準目標)的訓練資料而建構。接著可例如經由合適之機器學習方法發現雙光瞳模型M。
經判定雙光瞳配方可準確地量測用於寬程序窗之疊對,從而擴展配方在長週期內之有效性。僅當先前在模型訓練期間遇到類似程序時,理解新監測晶圓中之基礎程序才係可能的。若存在超出模型已在其上訓練的程序效應之相當大的程序變化/漂移,則經訓練雙光瞳模型仍可損失準確度。此為資料驅動模型之典型,該等模型當經量測資料實質上不同於用於在訓練階段中訓練模型的訓練資料時往往會不正確外推參數估計值。
為抵消在訓練窗外的此程序變化或漂移,本文中所描述的係用於判定及評估描述所量測度量衡信號或自其導出的所關注值(例如,疊對值)之參數相對於準確預測空間(例如,如藉由一訓練空間判定,該訓練空間由程序變化界定,該程序變化由用以訓練在推斷所關注參數之值時使用的推斷模型(諸如上文或以其他方式描述的雙光瞳模型)之訓練資料所覆蓋)的可靠性之可靠性度量的方法。在一實施例中,訓練資料用以訓練一推斷模型,該推斷模型判定用於所量測(例如,交叉偏振)光瞳之權重以便將度量衡信號轉換成所關注值之參數。
推斷模型可包含包括(例如)神經網路、支援向量機或決策樹之任何合適的機器學習模型。
在本發明之內容背景中的度量衡信號或量測信號可包含原始光瞳影像或經處理光瞳影像。經處理光瞳影像可包含呈任何形式之光瞳影像資料,形式包括(例如)以下各者中的一或多者:表示為向量或矩陣(例如,強度、繞射效率或任何其他合適之參數值之向量或矩陣)及/或已經歷任何其他處理技術(諸如降維);亦即矩陣 U c U c為在本發明之內容背景中的度量衡信號。
在一實施例中,可靠性度量可包含將經量測影像或光瞳(例如,在生產或監測階段中)之相似度量化成訓練資料中之量測影像或光瞳的相似度度量。在一實施例中,比較可為共偏振光瞳之比較。或者或另外,比較可為交叉偏振光瞳之比較。共偏振光瞳之比較可用以評估對稱程序變化(例如,高度、CD等)是否已在訓練資料中遇到,而交叉偏振光瞳之比較可用以評估非疊對不對稱程序變化(例如,傾斜及底部光柵不對稱性等)是否已在訓練資料中遇到。
所提議方法提供訓練與監測程序窗之間的相似度之量測。已發生顯著程序變化的情形不可由雙光瞳模型單獨偵測。原則上,外參考(例如,SEM量測)可用以驗證雙光瞳配方並不外推,亦即在訓練程序變化之範圍外量測。SEM度量衡較慢且在生產設定中可係不切實際的。因此,所提議方法提供用於判定量測是否可靠的度量,該度量接著可用於以關於另外訓練是否應被執行的決策為基礎。因而或在一實施例中,接著將僅僅執行參考量測(例如,作為用於模型更新/額外訓練之實況)。方法可提供建議以採用另外晶圓量測以在需要時執行配方擴展(亦即,其建議使用者訓 練包含在當前程序窗內處理的晶圓之新資料驅動模型)。
雙光瞳推斷模型之配方健康係與訓練晶圓(經量測以獲得用於訓練模型之訓練資料)與當前所量測晶圓之間的程序變化之相似度相關。可能影響量測準確性之變化可分類為:˙幾何學上對稱的堆疊/程序變化,諸如CD大小或堆疊高度之改變;˙未在訓練階段中見過的在堆疊中出現的額外/新不對稱性,諸如傾斜、底部光柵不對稱性(BGA)。
為量化此類變化,假定共偏振光瞳之對稱模式攜載關於對稱堆疊變化的資訊;且交叉偏振光瞳之不對稱模式攜載關於不對稱堆疊變化的資訊。
實例監測KPI
基於此等概念,在更特定實施例中,監測關鍵效能指示符(KPI)之兩個類別經界定以用作可靠性度量。一第一類別(在本文中稱為SPV度量)評估對稱程序變化(SPV),一第二類別(在本文中稱為APV度量)評估不對稱程序變化(APV)。此等KPI中之任一者或兩者可在本文所揭示之實施例中使用。
SPV度量及APV度量兩者可用以比較基礎程序窗是否足夠類似於在雙光瞳推斷模型之訓練期間遇到的製程窗。
在一實施例中,與自量測光瞳提取所關注值之實際參數相反,監測KPI可基於與程序變化相關的抽象特徵之提取。
圖4為描述根據一實施例之用於使用SPV度量量化SPV之方法的流程圖,其中SPV度量為比較來自訓練晶圓之共偏振對稱光瞳與在監測晶圓中獲取的光瞳的KPI。在訓練階段400中,在步驟410處,用於訓練 的全部目標之共偏振對稱光瞳(對稱訓練資料)經組織於對稱訓練資料矩陣Ps中,其中每一行表示呈向量化形式之光瞳。在步驟420處,矩陣Ps之奇異值分解經計算且前k個左奇異向量儲存於矩陣U中(此等為上文所描述的抽象特徵)。
監測階段430包含一步驟440,其中對於經量測之每一目標(例如,在生產或監測晶圓上),共偏振對稱光瞳表示為向量
Figure 111124398-A0305-02-0022-16
。接著,在步驟450處,判定SPV度量值。
在特定實施例中,SPV度量值SPV可經判定為:
Figure 111124398-A0305-02-0022-2
其中I為單位矩陣且c為將訓練群體之百分之95引入至慣用值3的縮放因子。應瞭解此為僅僅例示性SPV度量及任一SPV度量,其例如比較可使用的訓練資料影像與生產/監測資料影像之間的對稱影像/光瞳分量(例如,共偏振光瞳)之間的相似度。
此SPV度量評估在投影在準確預測空間或訓練期間觀測到的相關光瞳空間外的光瞳之後損失的共偏振光瞳之「能量」(在信號感測中,更特定言之,每一像素(例如,強度)值的平方之和)之比率。若此能量損失較高,則其意謂訓練光瞳空間(由U表示)不能夠俘獲當前量測程序之足夠資訊內容,以使得關於程序的相關資訊可能丟失。可瞭解,矩陣U亦可由雙光瞳模型使用以提取關於程序變化的資訊。因此,若此類矩陣不適合於俘獲監測晶圓之全部相關資訊內容,則預期雙光瞳模型不能提取關於對稱程序變化的全部相關資訊從而導致不佳的外推及準確度損失係合理的。
APV度量可以類似於SPV度量之方式界定以例如藉由自交 叉偏振光瞳(不對稱量測影像分量)提取抽象特徵來量化不對稱參數之差異。如同SPV度量,APV度量可以數種不同方式界定。在一個特定實例中,APV度量APV可根據在疊對提取之後光瞳剩餘能量來界定:
Figure 111124398-A0305-02-0023-4
其中
Figure 111124398-A0305-02-0023-3
為(經向量化)不對稱交叉偏振光瞳且f -1為疊對推斷函數之逆; 例如,如經由雙光瞳方法產生。
在另一實施例中,APV度量可在類似於上文關於SPV度量所描述之方法的方法中界定為投影方法:
Figure 111124398-A0305-02-0023-5
其中V含有不對稱(交叉偏振)訓練光瞳之主要左側奇異向量,如前所述。
用於判定SPV度量或APV度量中之任一者或兩者的另外實施例可包含以相關模式分解光瞳剩餘能量(亦即,分別地,對稱影像分量或不對稱影像分量)。
任何一或多個所描述SPV量度及/或任何一或多個所描述APV量度之組合亦可用以界定一或多個監測KPI。
使用機率模型化量化配方準確度
經驗觀測結果已經展示,諸如本文所揭示之SPV度量為機率感測中的配方準確度之極好預測子。此意謂若目標經判定以具有SPV度量之高值,則不佳及不準確/錯誤的疊對推斷之機率較高。可例如使用以下模型俘獲及描述此概念:誤差~N(0,ASPV+B),其表述疊對量測誤差遵循具有零均值,及為SPV之仿射函數的標準 差的高斯分佈。N為正態(高斯)分佈。A及B為將SPV度量變換成疊對相關量的係數。係數A可解譯為以[nm]為單位之常量,且B為俘獲與程序變化無關之全部誤差源(例如光子雜訊、定位誤差等)的量。
使用此機率模型,可直接估計每一疊對量測之可信度度量。SPV度量可通知程序距離訓練程序窗多遠,但其不能實際上預測疊對誤差將為多少。為進行此操作,提議將SPV度量與準確度相關的一另外模型,且在下文描述一個此類模型之實例。由於SPV度量與誤差之間的關係並非一對一,但實際上係機率性的(亦即,高SPV度量值指示疊對誤差之高機率),因此SPV度量可用作描述對於某一量測之可信度(根據統計可信度區間)的可信度度量。一旦估計不確定度,可基於可信度區間設定臨限值(例如,臨限值係基於疊對有95%機會在某一區間內之使用者設定)。
在此實施例中,初始步驟可包含估計參數A及B。可使用最大似然最佳化法進行。
圖5為說明此方法之流程圖。在步驟500處,誤差p(e i )在目標i上之機率分佈可由下式定義:
Figure 111124398-A0305-02-0024-6
在步驟510處,量測之對數-似然函數L(A,B)變為:
Figure 111124398-A0305-02-0024-10
在步驟520處,參數A及B藉由最大化對數-似然函數L(A,B)而發現。在步驟530處,發現一定限SPV,其提供可信度區間(其例如可藉由反轉擬合高斯密度之累積分佈而發現)。
配方更新諮詢
此章節描述建議配方更新的方法。對於每一經監視晶圓, 方法通知使用者(例如,雙光瞳)配方是否應藉由將彼晶圓作為訓練晶圓包括而更新。以此方式,必要時,擴展在訓練期間看到的程序窗。
圖6為描述此類方法之流程圖。在訓練或校準階段CP中,獲得(例如,使用諸如圖3(a)中所示之光學度量衡工具,以及對應實況參考資料TDREF(例如,使用SEM或以光學方式使用自參考偏置目標叢集來量測))訓練光瞳影像TDPUP。使用此訓練資料,雙光瞳配方DET REC經判定且適當監測KPI經校準(例如,根據圖4之訓練階段400,以校準SPV度量)。在生產階段PP中,下一監測或生產晶圓PW經量測MEAS PW,且一或多個監測KPI經計算KPI。舉例而言,對於每一量測位置,SPV及/或APV量度可經計算。基於此,可判定SPV及/或APV度量之晶圓級統計度量值。若經判定值高於預定義之臨限值KPI>t?,則使用者可經建議採取適當動作。此適當動作可包括擴展配方以取決於例如時間約束條件包括此晶圓,及/或一或多個後續晶圓。假設此建議起作用,生產晶圓可經量測MEAS PW REF以判定用於其之參考資料(例如,經由SEM或參考目標叢集度量衡)且例如使用與配方訓練類似之方法更新配方UPD REC。方法接著繼續進行下一生產晶圓(不論更新是否認為必需)。
在上述方法中,量化晶圓級準確度之晶圓級統計度量經界定並與臨限值相比較。將藉助於實例描述用於判定晶圓級統計度量及臨限值的兩種提議方法。
一第一方法包含基於上文所描述之機率模型化方法的機率臨限值設定方法。此方法使用機率模型以計算晶圓級統計資料及定限。該方法依賴於兩個使用者設定:疊對量測之最大允許誤差X(例如,以nm計);及晶圓上違反此之機率Y。基於所需要效能規範: P(|e|<X)=Y
其中e為誤差量測,可判定晶圓級統計及相關臨限值。在SPV度量之內容背景中,以下誤差函數erf可經求解:
Figure 111124398-A0305-02-0026-12
可經由下式找到用以找到臨限值
Figure 111124398-A0305-02-0026-11
之解:
Figure 111124398-A0305-02-0026-13
藉助於特定實例,若需要對於10%之目標至多違反5nm規範,則:
Figure 111124398-A0305-02-0026-15
第二方法包含經驗臨限值設定。此方法係基於界定適當與晶圓級疊對準確度相關的SPV及/或APV之晶圓級統計度量。單獨地,此晶圓級統計資料之臨限值可經界定以便推薦更準確配方更新。
對於晶圓級統計資料(WLS),可使用以下KPI:˙SPV/APV晶圓群體之百分之20;˙SPV/APV晶圓群體之中值。
為建議配方更新,以上WLS可與對其準確度已例如使用外參考(SEM)或自參考目標度量衡驗證的晶圓計算的相同統計資料相比較。假設例如N個晶圓已經驗證為在相對於準確度之規範內,則臨限值tt=median N wafers (WLS)+2.25 IQR N wafers (WLS)
其中IQR表示四分位距。
在一實施例中,假設可靠性度量或監測KPI指示影像或值係不可靠的,則可在任何重新訓練之前執行進一步檢查以檢查影像是否已經正確地量測,以便防止裝置缺陷或環境效應包括於模型中。
在經編號條項之後續清單中揭示本非暫時性電腦可讀媒 體、方法及度量衡工具之另外實施例:
1.一種判定描述度量衡信號及/或自其導出的所關注值之一參數之一可靠性的一可靠性度量的方法,該方法包含;獲得用於自一量測信號推斷一所關注參數之一值的一經訓練推斷模型;獲得一或多個量測信號及/或使用該經訓練推斷模型自該一或多個量測信號導出之一所關注參數的各別一或多個值;及判定用於該一或多個量測信號及/或一所關注參數之各別一或多個值的至少一個可靠性度量值,該可靠性度量描述一或多個量測信號及/或一所關注參數之各別一或多個值相對於與該經訓練推斷模型相關聯的一準確預測空間之一可靠性。
2.如條項1之方法,其中該準確預測空間與該經訓練推斷模型之一訓練相關。
3.如條項1或2之方法,其中該經訓練推斷模型可操作以判定用於該一或多個量測信號或其各別分量中之每一者的一權重。
4.如條項3之方法,其中該所關注參數為一不對稱參數且該經訓練推斷模型可操作以判定用於該一或多個量測信號中之每一者的一不對稱量測信號分量之一權重。
5.如條項4之方法,其中該所關注參數為疊對或焦點。
6.如條項3之方法,其中該所關注參數為一對稱參數且該經訓練推斷模型可操作以判定用於該一或多個量測信號中之每一者的一對稱量測信號分量之一權重。
7.如條項6之方法,其中該所關注參數為臨界尺寸或高度。
8.如條項3至7中任一項之方法,其中該權重將該一或多個量測信號或其各別分量中之每一者轉換成一各別所關注值之參數。
9.如任何前述條項之方法,其中該準確預測空間係由藉由用於該訓練之訓練資料描述的一訓練程序窗界定,該訓練程序窗描述包含於該訓練資料內的程序變化之邊界。
10.如條項9之方法,其中該訓練資料包含訓練量測信號及包含用於該等訓練量測信號中之每一者的所關注參數之實況值的對應參考資料。
11.如任何前述條項之方法,其中該可靠性度量包含將該一或多個量測信號或其各別分量與該等訓練量測信號或其對應各別分量中之至少一者的相似度量化的至少一個相似度度量。
12.如條項11之方法,其中該至少一個相似度度量包含將該一或多個量測信號中之每一者的一對稱量測信號分量與該等訓練量測信號中之至少一者的一對稱量測信號分量的相似度量化的一對稱程序變化度量。
13.如條項12之方法,其中該對稱程序變化度量評估在投影在該準確預測空間外的該光瞳之後該一或多個量測信號中之每一者的該對稱量測信號分量的一能量度量之該損失。
14.如任何前述條項之方法,其中該至少一個相似度度量包含將該一或多個量測信號中之每一者的一不對稱量測信號分量與該等訓練量測信號中之至少一者的一不對稱量測信號分量的相似度量化的一不對稱程序變化度量。
15.如條項14之方法,其中該不對稱程序變化度量評估在該所關注參數之提取之後的光瞳剩餘能量。
16.如條項14之方法,其中該不對稱程序變化度量評估在投影在該 準確預測空間外部的該光瞳之後的該一或多個量測信號中之每一者的該不對稱量測信號分量的一能量度量之該損失。
17.如條項13或16之方法,其中該能量度量包含該一或多個量測信號中之每一者的該對稱量測信號分量之每一值的該平方之該和之比率。
18.如任何前述條項之方法,其中該經訓練推斷模型包含一神經網路、一支援向量機或一決策樹。
19.如條項1或2之方法,其中該經訓練推斷模型包含一神經網路且該判定至少一個可靠性度量值包含:隨機地更改該經訓練推斷模型中之一或多個神經連接之該狀態;使用該隨機更改經訓練推斷模型獲得用於該所關注參數之一值;重複該前述兩個步驟複數次;及自該所關注參數之該等值的一所得分佈判定該可靠性度量。
20.如任何前述條項之方法,其包含:評估該至少一個可靠性度量;及假設該可靠性度量指示該等量測信號及/或一所關注參數之各別值中之至少一者不可靠,提示該經訓練模型之一更新以包括該至少一個不可靠的量測信號及/或一所關注參數之各別值,及/或來自一或多個隨後量測基板之量測信號及/或一所關注參數之各別值。
21.如條項20之方法,其中,假設提示一更新,該方法包含:進一步量測對應於該至少一個不可靠的量測信號及/或一所關注參數之各別值的一或多個結構,及/或該一或多個隨後量測基板上之一或多個結構以獲得各別實況值;及運用該至少一個不可靠的量測信號及/或一所關注參數之各別值及該 等各別實況值進一步訓練該經訓練模型。
22.如條項20或21之方法,其中該評估該至少一個可靠性度量包含對照用於該可靠性度量之一各別臨限值評估該至少一個可靠性度量。
23.如條項22之方法,其包含用於設定該臨限值之一臨限值設定步驟。
24.如條項23之方法,其中該臨限值設定步驟包含:基於該可靠性度量建構一機率模型;獲得每一所關注值參數之一最大允許誤差;及在該基板上違反此的一機率;及使用該機率模型、該最大允許誤差及該機率以自自一或多個基板獲得的複數個該等量測信號,及該臨限值計算基板級統計資料。
25.如條項23之方法,其中該臨限值設定步驟包含:界定用於與用於該所關注參數之一基板級準確度相關之該可靠性度量的一基板級統計度量,及基於比較該基板級統計度量與來自驗證之參考資料的一等效度量而界定用於彼基板之一臨限值。
26.如條項15之方法,其中該晶圓級統計度量包含該可靠性度量基板群體之一特定百分比。
27.如條項26之方法,其中該特定百分比包含該基板群體之百分之20或中值。
28.如任何前述條項之方法,其中每一量測信號及/或其分量包含值之一經處理或未經處理角解析陣列。
29.如任何前述條項之方法,其中每一量測信號及/或其分量已經歷 一降維程序。
30.如任何前述條項之方法,其對一或多個基板上之一或多個結構執行度量衡以獲得該一或多個度量衡信號。
31.一種包含處理器可讀指令之電腦程式,該等處理器可讀指令在運行於合適之處理器控制之設備上時使得該處理器控制之設備執行如條項1至30中任一項之方法。
32.一種電腦程式載體,其包含如條項31之電腦程式。
33.一種處理設備,其包含:一處理器;及一電腦程式載體,其包含如條項32之電腦程式。
34.一度量衡設備,其包含如條項33之處理設備。
上文所描述的推斷模型之類型為可用於推斷所關注參數的一推斷模型之僅僅一個實例。對於基於神經網路之推斷模型的不同類型,用於評估自量測影像導出的所關注值(例如,疊對值)之參數相對於準確預測空間之可靠性的提議方法可使用蒙特卡羅丟棄技術。在此實施例中,當量測疊對時,模型中之一或多個神經連接可隨機地斷開。此可在不同神經連接斷開情況下重複,使得對於每一重複,推斷模型輸出不同參數估計。藉由觀測輸出之所得分佈,可進行參數推斷之不確定度的(可靠性度量值)評估。如同本文所揭示之其他實施例,此可靠性度量可用於以該模型訓練是否應擴展的決策為基礎(例如,高不確定度建議疊對推斷係不可信且模型應擴展)。
已根據疊對描述上述方法,但可使用推斷模型基於本文中之概念判定其他所關注參數。舉例而言,焦點可自具有依賴於用於曝光目 標之實際掃描器焦點的所形成不對稱性的焦點目標或結構而推斷。本文所描述之方法同等地適用於使用此類目標之焦點度量衡且上文對於疊對之任一提及可以焦點取代。可經由共偏振光瞳(對稱分量)量測的其他所關注參數(諸如CD或高度)亦可受益於本文所揭示之概念且方法因此適用於此等概念。
本文中所使用之術語「輻射」及「光束」涵蓋所有類型之電磁輻射,包括紫外線(UV)輻射(例如具有為或為約365nm、355nm、248nm、193nm、157nm或126nm之波長)及極紫外線(EUV)輻射(例如具有在5nm至20nm之範圍內之波長),以及粒子束,諸如離子束或電子束。
術語「透鏡」在內容背景允許的情況下可指各種類型之光學組件中之任一者或其組合,包括折射、反射、磁性、電磁及靜電光學組件。
術語目標不應被解釋為意謂僅出於度量衡之特定目的而形成之專用目標。術語目標應被理解為涵蓋具有適合於度量衡應用之屬性的其他結構,包括產品結構。
對特定實施例之前述描述將因此充分地揭露本發明之一般性質:在不脫離本發明之一般概念的情況下,其他人可藉由應用熟習此項技術者所瞭解之知識針對各種應用而容易地修改及/或調適此等特定實施例,而無需不當實驗。因此,基於本文所呈現之教示內容及指導,希望此等調適及潤飾屬於所揭示實施例之等效物的含義及範圍內。應理解,本文中之措辭或術語係出於藉由實例進行描述而非限制之目的,以使得本說明書之術語或措辭應由熟習此項技術者鑒於該等教示及該指導進行解譯。
本發明之範圍及範疇不應由上述例示性實施例中之任一者限制,而應僅根據以下申請專利範圍及其等效者進行界定。
CP:訓練或校準階段
PP:生產階段

Claims (13)

  1. 一種判定描述一量測信號及/或自其導出的所關注值之一參數之一可靠性的一可靠性度量(reliability metric)的方法,該方法包含;獲得用於自該量測信號推斷該所關注參數之一值的一經訓練推斷模型(trained inference model);獲得一或多個量測信號及/或使用該經訓練推斷模型自該一或多個量測信號導出之該所關注參數的各別一或多個值;及判定用於該一或多個量測信號及/或該所關注參數之各別一或多個值的該可靠性度量之一值,其中該可靠性度量描述一或多個量測信號及/或該所關注參數之各別一或多個值相對於與該經訓練推斷模型相關聯的一準確預測空間之一可靠性,其中該可靠性度量包含將該一或多個量測信號或其各別分量與一或多個訓練量測信號或其對應各別分量的相似度量化的至少一個相似度度量(similarity metric),其中該一或多個訓練量測信號係用於訓練該經訓練推斷模型,其中該至少一個相似度度量包含將該一或多個量測信號中之每一者的一不對稱量測信號分量與該一或多個訓練量測信號中之至少一者之一不對稱量測信號分量的相似度量化的一不對稱程序變化度量(process variation metric)。
  2. 如請求項1之方法,其中該量測信號包含一原始光瞳影像或一經處理 光瞳影像。
  3. 如請求項1或2之方法,其中該準確預測空間與該經訓練推斷模型之一訓練相關。
  4. 如請求項1或2之方法,其中該經訓練推斷模型可操作以判定用於該一或多個量測信號或其各別分量中之每一者的一權重。
  5. 如請求項4之方法,其中該所關注參數為一不對稱參數且該經訓練推斷模型可操作以判定用於該一或多個量測信號中之每一者的一不對稱量測信號分量的一權重。
  6. 如請求項4之方法,其中該權重將該一或多個量測信號或其各別分量中之每一者轉換成所關注值之一各別參數。
  7. 如請求項1或2之方法,其中該準確預測空間係由藉由用於該訓練之訓練資料描述的一訓練程序窗界定,該訓練程序窗描述包含於該訓練資料內的程序變化之邊界。
  8. 如請求項1或2之方法,其包含:評估該可靠性度量之該值;及假設該可靠性度量之該值指示該等量測信號及/或該所關注參數之各別值中之至少一者不可靠,提示該經訓練推斷模型之一更新以包括該至少 一個不可靠的量測信號及/或該所關注參數之各別值,及/或來自一或多個隨後量測基板之量測信號及/或該所關注參數之各別值。
  9. 如請求項8之方法,其中,假設提示一更新,該方法包含:進一步量測對應於該至少一個不可靠的量測信號及/或該所關注參數之各別值的一或多個結構,及/或該一或多個隨後量測基板上之一或多個結構以獲得各別實況值;及運用該至少一個不可靠的量測信號及/或該所關注參數之各別值及該等各別實況值進一步訓練該經訓練推斷模型。
  10. 如請求項8之方法,其中該評估該可靠性度量之該值包含對照用於該可靠性度量之一各別臨限值評估該可靠性度量之該值。
  11. 一種評估一可靠性度量的方法,該方法包含;評估該可靠性度量之一值,該可靠性度量描述一或多個量測信號及/或一所關注參數之各別一或多個值相對於與用於自該一或多個量測信號推斷該所關注參數之一值的一經訓練推斷模型相關聯之一準確預測空間的一可靠性;及假設該可靠性度量指示該等量測信號及/或該所關注參數之各別值中之至少一者不可靠,提示該經訓練推斷模型之一更新以包括該至少一個不可靠的量測信號及/或該所關注參數之各別值,及/或來自一或多個隨後量測基板之量測信號及/或該所關注參數之各別值。
  12. 一種電腦程式,其包含處理器可讀指令,該等處理器可讀指令在執行於合適的處理器控制之設備上時,使得該處理器控制之設備執行如請求項1至11中任一項之方法。
  13. 一種度量衡設備,其包含:一處理器;及一電腦程式載體,其包含如請求項12之電腦程式。
TW111124398A 2021-07-01 2022-06-30 監測量測配方之方法及其相關度量衡方法、電腦程式及設備 TWI810997B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP21183254.8A EP4113210A1 (en) 2021-07-01 2021-07-01 A method of monitoring a measurement recipe and associated metrology methods and apparatuses
EP21183254.8 2021-07-01

Publications (2)

Publication Number Publication Date
TW202311849A TW202311849A (zh) 2023-03-16
TWI810997B true TWI810997B (zh) 2023-08-01

Family

ID=76744760

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111124398A TWI810997B (zh) 2021-07-01 2022-06-30 監測量測配方之方法及其相關度量衡方法、電腦程式及設備

Country Status (6)

Country Link
EP (1) EP4113210A1 (zh)
KR (1) KR20240028997A (zh)
CN (1) CN117616339A (zh)
IL (1) IL309081A (zh)
TW (1) TWI810997B (zh)
WO (1) WO2023274687A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017102299A1 (en) * 2015-12-17 2017-06-22 Asml Netherlands B.V. Optical metrology of lithographic processes using asymmetric sub-resolution features to enhance measurement
WO2019110254A1 (en) * 2017-12-04 2019-06-13 Asml Netherlands B.V. Method of determining information about a patterning process, method of reducing error in measurement data, method of calibrating a metrology process, method of selecting metrology targets
CN107076681B (zh) * 2014-10-14 2019-12-31 科磊股份有限公司 用于基于图像的测量及基于散射术的叠对测量的信号响应度量
CN108027568B (zh) * 2015-09-23 2020-08-14 科磊股份有限公司 光谱光束轮廓叠对度量
TW202117459A (zh) * 2018-08-15 2021-05-01 荷蘭商Asml荷蘭公司 用於評估一印刷圖案之影像之方法及相關聯電腦程式產品
US20210142466A1 (en) * 2019-01-02 2021-05-13 Kla Corporation Machine Learning for Metrology Measurements

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100610010B1 (ko) 2004-07-20 2006-08-08 삼성전자주식회사 반도체 식각 장치
US7791727B2 (en) 2004-08-16 2010-09-07 Asml Netherlands B.V. Method and apparatus for angular-resolved spectroscopic lithography characterization
US7239371B2 (en) 2005-10-18 2007-07-03 International Business Machines Corporation Density-aware dynamic leveling in scanning exposure systems
NL1036245A1 (nl) 2007-12-17 2009-06-18 Asml Netherlands Bv Diffraction based overlay metrology tool and method of diffraction based overlay metrology.
NL1036351A1 (nl) 2007-12-31 2009-07-01 Asml Netherlands Bv Alignment system and alignment marks for use therewith cross-reference to related applications.
NL1036597A1 (nl) 2008-02-29 2009-09-01 Asml Netherlands Bv Metrology method and apparatus, lithographic apparatus, and device manufacturing method.
NL1036857A1 (nl) 2008-04-21 2009-10-22 Asml Netherlands Bv Inspection method and apparatus, lithographic apparatus, lithographic processing cell and device manufacturing method.
NL2004094A (en) 2009-02-11 2010-08-12 Asml Netherlands Bv Inspection apparatus, lithographic apparatus, lithographic processing cell and inspection method.
KR101461457B1 (ko) 2009-07-31 2014-11-13 에이에스엠엘 네델란즈 비.브이. 계측 방법 및 장치, 리소그래피 시스템, 및 리소그래피 처리 셀
CN102483582B (zh) 2009-08-24 2016-01-20 Asml荷兰有限公司 量测方法和设备、光刻设备、光刻处理单元和包括量测目标的衬底
WO2011081645A2 (en) 2009-12-15 2011-07-07 Lam Research Corporation Adjusting substrate temperature to improve cd uniformity
US9177219B2 (en) 2010-07-09 2015-11-03 Asml Netherlands B.V. Method of calibrating a lithographic apparatus, device manufacturing method and associated data processing apparatus and computer program product
WO2012022584A1 (en) 2010-08-18 2012-02-23 Asml Netherlands B.V. Substrate for use in metrology, metrology method and device manufacturing method
US9140998B2 (en) 2010-11-12 2015-09-22 Asml Netherlands B.V. Metrology method and inspection apparatus, lithographic system and device manufacturing method
KR101761735B1 (ko) 2012-03-27 2017-07-26 에이에스엠엘 네델란즈 비.브이. 메트롤로지 방법 및 장치, 리소그래피 시스템 및 디바이스 제조 방법
NL2010458A (en) 2012-04-16 2013-10-17 Asml Netherlands Bv Lithographic apparatus, substrate and device manufacturing method background.
US9535338B2 (en) 2012-05-29 2017-01-03 Asml Netherlands B.V. Metrology method and apparatus, substrate, lithographic system and device manufacturing method
WO2015101458A1 (en) 2013-12-30 2015-07-09 Asml Netherlands B.V. Method and apparatus for design of a metrology target
US10151986B2 (en) * 2014-07-07 2018-12-11 Kla-Tencor Corporation Signal response metrology based on measurements of proxy structures
CN109073568B (zh) 2016-04-29 2022-01-11 Asml荷兰有限公司 用于确定结构的特性的方法和装置、器件制造方法
EP3654103A1 (en) * 2018-11-14 2020-05-20 ASML Netherlands B.V. Method for obtaining training data for training a model of a semicondcutor manufacturing process
CN113574458A (zh) * 2019-03-14 2021-10-29 Asml荷兰有限公司 计量方法和设备、计算机程序和光刻系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107076681B (zh) * 2014-10-14 2019-12-31 科磊股份有限公司 用于基于图像的测量及基于散射术的叠对测量的信号响应度量
CN108027568B (zh) * 2015-09-23 2020-08-14 科磊股份有限公司 光谱光束轮廓叠对度量
WO2017102299A1 (en) * 2015-12-17 2017-06-22 Asml Netherlands B.V. Optical metrology of lithographic processes using asymmetric sub-resolution features to enhance measurement
WO2019110254A1 (en) * 2017-12-04 2019-06-13 Asml Netherlands B.V. Method of determining information about a patterning process, method of reducing error in measurement data, method of calibrating a metrology process, method of selecting metrology targets
TW202117459A (zh) * 2018-08-15 2021-05-01 荷蘭商Asml荷蘭公司 用於評估一印刷圖案之影像之方法及相關聯電腦程式產品
US20210142466A1 (en) * 2019-01-02 2021-05-13 Kla Corporation Machine Learning for Metrology Measurements

Also Published As

Publication number Publication date
KR20240028997A (ko) 2024-03-05
EP4113210A1 (en) 2023-01-04
CN117616339A (zh) 2024-02-27
WO2023274687A1 (en) 2023-01-05
TW202311849A (zh) 2023-03-16
IL309081A (en) 2024-02-01

Similar Documents

Publication Publication Date Title
US11728224B2 (en) Method and apparatus to determine a patterning process parameter
US11733610B2 (en) Method and system to monitor a process apparatus
US11143972B2 (en) Method and apparatus to determine a patterning process parameter
JP2019537237A (ja) メトロロジレシピ選択
US20130054186A1 (en) Method and Apparatus for Determining an Overlay Error
TWI682473B (zh) 處理參數之間接判定
KR20210105446A (ko) 계측 방법, 컴퓨터 제품 및 시스템
CN111742266A (zh) 基于参数的概率密度函数的控制
KR20180088729A (ko) 메트롤로지 데이터로부터의 통계적 계층 재구성
TW201706723A (zh) 度量衡方法及設備、電腦程式及微影系統
TWI810997B (zh) 監測量測配方之方法及其相關度量衡方法、電腦程式及設備
CN116209958A (zh) 目标结构以及相关联的方法和设备
EP4191337A1 (en) A method of monitoring a lithographic process and associated apparatuses
TWI810749B (zh) 監控微影製程之方法及相關裝置
TW202318098A (zh) 監測微影程序之方法及其相關設備
KR20230136136A (ko) 측정 레시피를 결정하는 방법 및 연계된 메트롤로지방법들 및 장치들
CN113168106A (zh) 确定处理装置对衬底参数的贡献的方法