TWI808599B - 半導體結構及其形成方法 - Google Patents

半導體結構及其形成方法 Download PDF

Info

Publication number
TWI808599B
TWI808599B TW111100508A TW111100508A TWI808599B TW I808599 B TWI808599 B TW I808599B TW 111100508 A TW111100508 A TW 111100508A TW 111100508 A TW111100508 A TW 111100508A TW I808599 B TWI808599 B TW I808599B
Authority
TW
Taiwan
Prior art keywords
layer
semiconductor layer
semiconductor
conductivity type
forming
Prior art date
Application number
TW111100508A
Other languages
English (en)
Other versions
TW202329324A (zh
Inventor
陳柏安
Original Assignee
新唐科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新唐科技股份有限公司 filed Critical 新唐科技股份有限公司
Priority to TW111100508A priority Critical patent/TWI808599B/zh
Priority to CN202210544601.3A priority patent/CN116454016A/zh
Application granted granted Critical
Publication of TWI808599B publication Critical patent/TWI808599B/zh
Publication of TW202329324A publication Critical patent/TW202329324A/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/76224Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using trench refilling with dielectric materials
    • H01L21/76237Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using trench refilling with dielectric materials introducing impurities in trench side or bottom walls, e.g. for forming channel stoppers or alter isolation behavior
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/76224Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using trench refilling with dielectric materials

Abstract

一種半導體結構,包括:基板,具有第一導電類型;第一半導體層,在基板上並具有第二導電類型,第二導電類型不同於第一導電類型;第二半導體層,在第一半導體層上並具有第一導電類型;埋置層,在第二半導體層上並具有第二導電類型;磊晶層,在埋置層上並具有第二導電類型;以及深溝槽隔離結構,從磊晶層的頂表面往下延伸穿過磊晶層、埋置層、第二半導體層以及第一半導體層,並延伸至基板之中。

Description

半導體結構及其形成方法
本發明實施例係有關於一種半導體結構及其形成方法,且特別關於一種具有深溝槽隔離結構的半導體結構及其形成方法。
相較於單一分離的裝置,功率積體電路(integrated circuit, IC)在性能以及可靠度的方面有顯著的進步,並且減低了製造成本。然而,功率裝置之間的串擾(cross-talk)以及功率裝置與低壓裝置之間的交互作用造成了一些阻礙。
過去存在大量關於在塊體(bulk)功率技術中注入少數載子(裝置之間的接面隔離(junction isolation))的可靠性問題。克服這些問題的理想解決方案是通過使用絕緣體上矽 (silicon-on-insulator, SOI)技術以提供完全的介電隔離。然而,絕緣體上矽晶圓的高成本以及固有的熱問題阻礙了這些技術的普及。
深溝槽隔離(deep trench isolation, DTI)技術為兼具製造成本以及裝置隔離效果的替代技術方案,其在汽車電子產品的高溫環境下表現出色。深溝槽隔離結構先前已被整合至CMOS的結構中以抑制不同井之間的寄生效應以及CMOS的閉鎖效應(latch up)。
溝槽隔離結構的崩潰電壓(breakdown voltage)以及閉鎖效應免疫能力(immune capability)為判斷深溝槽隔離結構的性能的重要參數。因此,發展具有較佳性能的深溝槽隔離結構仍是本領域技術人員努力的方向之一。
本發明一些實施例提供一種半導體結構,包括:基板,具有第一導電類型;第一半導體層,在基板上並具有第二導電類型,第二導電類型不同於第一導電類型;第二半導體層,在第一半導體層上並具有第一導電類型;埋置層,在第二半導體層上並具有第二導電類型;磊晶層,在埋置層上並具有第二導電類型;以及深溝槽隔離結構,從磊晶層的頂表面往下延伸穿過磊晶層、埋置層、第二半導體層以及第一半導體層,並延伸至基板之中。
在一些實施例中,第一半導體層的摻雜濃度以及第二半導體層的摻雜濃度的比例係1:1至1:10。
在一些實施例中,第一半導體層的厚度以及第二半導體層的厚度的比例係1:1至1:0.25。
在一些實施例中,第一半導體層直接接觸基板以及第二半導體層。
在一些實施例中,深溝槽隔離結構直接接觸第一半導體層。
在一些實施例中,第二半導體層直接接觸埋置層。
在一些實施例中,深溝槽隔離結構的寬度係2µm至6µm,並且深溝槽隔離結構的深度係30µm至60µm。
在一些實施例中,深溝槽隔離結構包括非晶矽、多晶矽或其組合。
在一些實施例中,更包括槽區,設置在磊晶層的側壁以及埋置層的側壁,並接近深溝槽隔離結構的頂部。
在一些實施例中,槽區具有第二導電類型。
在一些實施例中,槽區的摻雜濃度大於磊晶層的摻雜濃度並且小於埋置層的摻雜濃度。
在一些實施例中,第一導電類型為P型,並且第二導電類型為N型。
本發明另一些實施例提供一種形成半導體結構的方法,包括:提供基板,基板具有第一導電類型;在基板上形成第一半導體層,第一半導體層具有第二導電類型,第二導電類型不同於第一導電類型;在第一半導體層上形成第二半導體層,第二半導體層具有第一導電類型;在第二半導體層上形成埋置層,埋置層具有第二導電類型;在埋置層上形成磊晶層,磊晶層具有第二導電類型;形成深溝槽,深溝槽從磊晶層的頂表面往下延伸穿過磊晶層、埋置層、第二半導體層以及第一半導體層,並延伸至基板之中;以及在深溝槽中形成深溝槽隔離結構。
在另一些實施例中,形成第二半導體層以及埋置層的步驟包括:在第一半導體層上磊晶成長具有第一導電類型的第二半導體層;以及藉由離子佈植在第二半導體層的上部分摻雜摻質,以形成具有第二導電類型的埋置層。
在另一些實施例中,形成第二半導體層以及埋置層的步驟包括:在第一半導體層上磊晶成長具有第二導電類型的第二半導體層;藉由離子佈植以第一摻質摻雜第二半導體層,使第二半導體層具有第一導電類型;以及藉由離子佈植在第二半導體層的上部分摻雜第二摻質,以形成具有第二導電類型的埋置層。
在另一些實施例中,形成深溝槽隔離結構的步驟包括:在深溝槽之中順應性地(conformally)形成介電層;以填充材料填充深溝槽的剩餘部分;以及去除磊晶層的頂表面上方剩餘的介電層以及填充材料。
在另一些實施例中,填充材料包括非晶矽、多晶矽或其組合。
在另一些實施例中,第一半導體層的摻雜濃度以及第二半導體層的摻雜濃度的比例係1:1至1:10。
在另一些實施例中,第一半導體層的厚度以及第二半導體層的厚度的比例係1:1至1:0.25。
在另一些實施例中,第一半導體層直接接觸基板以及第二半導體層。
在另一些實施例中,深溝槽隔離結構直接接觸第一半導體層。
在另一些實施例中,第二半導體層直接接觸埋置層。
在另一些實施例中,深溝槽隔離結構的寬度係2µm至6µm,並且深溝槽隔離結構的深度係30µm至60µm。
在另一些實施例中,更包括在磊晶層的側壁以及埋置層的側壁,且接近深溝槽隔離結構的頂部的位置形成槽區。
在另一些實施例中,槽區具有該第二導電類型。
在另一些實施例中,槽區的摻雜濃度大於磊晶層的摻雜濃度並且小於埋置層的摻雜濃度。
在另一些實施例中,第一導電類型為P型,並且第二導電類型為N型。
以下內容提供了許多不同實施例或範例,以實現本揭露實施例的不同部件。以下描述組件和配置方式的具體範例,以簡化本揭露實施例。當然,這些僅僅是範例,而非意圖限制本揭露實施例。舉例而言,元件的尺寸不限於所揭露的範圍或數值,而是可以取決於製程條件及/或裝置的期望特性。此外,在以下描述中提及於第二部件上方或其上形成第一部件,其可以包含第一部件和第二部件以直接接觸的方式形成的實施例,並且也可以包含在第一部件和第二部件之間形成額外的部件,使得第一部件和第二部件可以不直接接觸的實施例。為了簡單起見,可以按不同比例任意繪製各種部件。
本發明實施例可能在許多範例中重複元件符號及/或字母。這些重複是為了簡化和清楚的目的,其本身並非代表所討論各種實施例及/或配置之間有特定的關係。以下描述實施例的一些變化。在不同圖式和說明的實施例中,相似的元件符號被用來標示相似的元件。
在圖式中,可以按不同比例任意繪製各種部件。實施例之形狀或是厚度可擴大,並以簡化或是方便標示。再者,圖式中各元件之部分將以分別描述說明之,值得注意的是,圖中未繪示或描述之元件,為所屬技術領域中具有通常知識者所知的形式,此外,特定之實施例僅為揭示本發明使用之特定方式,其並非用以限定本發明。
此外,其中可能用到與空間相對用詞,例如「在……之下」、「下方」、「較低的」、「上方」、「較高的」等類似用詞,是為了便於描述圖式中一個(些)部件或特徵與另一個(些)部件或特徵之間的關係。空間相對用詞用以包括使用中或操作中的裝置之不同方位,以及圖式中所描述的方位。當裝置被轉向不同方位時(旋轉90度或其他方位),其中所使用的空間相對形容詞也將依轉向後的方位來解釋。
關於一些實施例說明的材料、配置、尺寸、過程及/或操作可以在其他實施例中採用,並且可以省略其詳細說明。此外,在一些實施例說明的方法的前、中、後可以提供額外的步驟,且一些所敘述的步驟可在其他實施例被使用、取代或刪除。
本領域技術人員將理解說明書中的用語「大抵(substantially)」,例如「大抵垂直」可以包括具有「完全垂直」等的實施例。在適用的情況下,用語「大抵垂直」可以涉及兩平面的交角與直角的差異在例如10%或更低、5%或更低、1%或更低、或並無差異。
此處所使用的用語「大約」、「近似」等類似用語描述數字或數字範圍時,該用語意欲涵蓋的數值是在合理範圍內包含所描述的數字,例如在所描述的數字之+/- 10%之內,或本發明所屬技術領域中具有通常知識者理解的其他數值。例如,用語「大約5奈米」涵蓋從4.5奈米至5.5奈米的尺寸範圍。
再者,說明書與請求項中所使用的序數例如「第一」、「第二」、「第三」等之用詞,以修飾請求項之元件,其本身並不意含及代表該請求元件有任何之前的序數,也不代表某一請求元件與另一請求元件的順序、或是製造方法上的順序,該些序數的使用僅用來使具有某命名的一請求元件得以和另一具有相同命名的請求元件能作出清楚區分。
本發明係揭露半導體結構之實施例,且實施例可被包含於例如微處理器、記憶元件、功率元件、及/或其他元件的積體電路(IC)中,例如可用於輸出緩衝功率金屬氧化物半導體(output buffer power metal oxide semiconductor(MOS))、或是高壓邏輯電路中。實施例可應用之積體電路也可包含不同的被動以及主動電子元件,例如薄膜電阻(thin-film resistor)、其他類型電容例如,金屬-絕緣體-金屬電容(metal-insulator-metal capacitor, MIMCAP)、電感、二極體、金屬氧化物半導體場效電晶體(MOS field-effect transistors)、互補式MOS電晶體、雙載子接面電晶體(bipolar junction transistors, BJTs)、側向擴散式MOS電晶體、高功率MOS電晶體、或其他類型的電晶體。在本發明所屬技術領域中具有通常知識者可以了解的是,也可將實施例的半導體結構使用於包含其他類型的半導體元件於積體電路之中。
本揭露一些實施例提供具有深溝槽隔離結構的半導體結構,其在基板上方具有相同導電類型的兩半導體層之間設置一層具有不同導電類型的半導體層,使基板上方的半導體層可以彼此產生空乏(depletion)作用。再者,深溝槽隔離結構也可以對半導體層產生空乏作用,使基板上方的半導體層呈現完全空乏(complete depletion)。由於整體空乏區提高,崩潰電壓也因此提高。此外,深溝槽隔離結構兩側具有三個串接的雙極(bipolar)路徑。相較於導通一個雙極路徑,要同時導通三個串接的雙極路徑的機率大幅降低。因此本揭露實施例提供的結構具有提高的閉鎖效應免疫能力。
根據本揭露的一些實施例,第1A至1H圖繪示半導體結構在各種製造階段的剖面圖。參照第1A圖,提供半導體基板100。在一些實施例中,半導體基板100可以為元素半導體基板,包括矽(silicon)、鍺(germanium);或是化合物半導體基板,包括碳化矽(silicon carbide)、砷化鎵(gallium arsenide)、磷化鎵(gallium phosphide)、磷化銦(indium phosphide)、砷化銦(indium arsenide)及/或銻化銦(indium antimonide);或是合金半導體基板,包括矽鍺合金(SiGe)、磷砷鎵合金(GaAsP)、砷鋁銦合金(AlInAs)、砷鋁鎵合金(AlGaAs)、砷銦鎵合金(GaInAs)、磷銦鎵合金(GaInP)及/或磷砷銦鎵合金(GaInAsP)或上述材料之組合。
在一些實施例中,半導體基板100可以摻雜P型摻質,例如硼(B)。在一些實施例中,半導體基板100可以摻雜N型摻質,例如磷(P)或砷(As)。在此實施例中,半導體基板100摻有P型摻質,例如硼(B),並具有第一導電類型(例如P型)。其摻雜濃度為大約10 18原子/cm 3至大約10 20原子/cm 3
繼續參照第1A圖,在半導體基板100上形成第一半導體層102。在一些實施例中,第一半導體層102直接接觸半導體基板100。在一些實施例中,第一半導體層102可以包括矽、鍺、III-V族化合物或上述之組合,並可以對應半導體基板100而摻有N型或P型摻質。在此實施例中,第一半導體層102摻有N型摻質,例如磷(P),並具有第二導電類型(例如N型)。第一半導體層102的摻雜濃度為大約10 15原子/cm 3至大約10 17原子/cm 3,並具有大約10µm至大約20µm的厚度T1。
在一些實施例中,可以藉由金屬有機物化學氣相沉積法(metal organic chemical vapor deposition, MOCVD)、電漿增強化學氣相沉積法(plasma enhanced CVD, PECVD)、分子束磊晶法(molecular beam epitaxy, MBE)、氣相磊晶法(vapour phase epitaxy, VPE)、液相磊晶法(liquid phase epitaxy, LPE)、其他相似的製程方法、或前述製程方法之組合形成第一半導體層102。
參照第1B圖,在第一半導體層102上形成第二半導體層104。在一些實施例中,第二半導體層104直接接觸第一半導體層102。在一些實施例中,第二半導體層104可以包括矽、鍺、III-V族化合物或上述之組合,並可以對應第一半導體層102而摻有N型或P型摻質。在此實施例中,第二半導體層104摻有P型摻質,例如硼(B),並具有第一導電類型(例如P型)。第二半導體層104的摻雜濃度為大約10 16原子/cm 3至大約10 17原子/cm 3,並具有大約3µm至大約15µm的厚度T2。
在一些實施例中,具有P型導電類型的第二半導體層104可以與下方具有N型導電類型的第一半導體層102彼此產生空乏(depletion)作用。因此,第二半導體層104的摻雜濃度可以對應於第一半導體層102的摻雜濃度。詳細而言,若第一半導體層102具有較高的摻雜濃度,則第二半導體層104也具有較高的摻雜濃度,反之亦然。在一些實施例中,第一半導體層102的摻雜濃度與第二半導體層104的摻雜濃度的比例為1:1至1:10,例如1:1至1:5,以達到第一半導體層102的完全空乏(complete depletion),從而提升崩潰電壓。若第一半導體層102的摻雜濃度與第二半導體層104的摻雜濃度的比例超出上述的比例範圍,則第二半導體層104中可能不具有足夠的摻質與第一半導體層102中的摻質達到完全空乏,或第二半導體層104與第一半導體層102彼此產生空乏作用後,第二半導體層104中依然具有過多的摻質,可能導致整體的空乏區下降,從而降低崩潰電壓。
此外,第二半導體層104的厚度T2也可以對應於第一半導體層102的厚度T1。詳細而言,若第一半導體層102具有較大的厚度T1,則第二半導體層104也具有較大的厚度T2,反之亦然。在一些實施例中,第一半導體層102的厚度T1與第二半導體層104的厚度T2的比例為1:1至1:0.5,例如1:1至1:0.25,以利於達到第一半導體層102的完全空乏,從而提升崩潰電壓。
繼續參照第1B圖,在第二半導體層104上形成埋置層(buried layer)106。在一些實施例中,第二半導體層104直接接觸埋置層106。在一些實施例中,埋置層106可以包括矽、鍺、III-V族化合物或上述之組合,並可以對應第二半導體層104而摻有N型或P型摻質。在此實施例中,埋置層106摻有N型摻質,例如磷(P),並具有第二導電類型(例如N型)。埋置層106的摻雜濃度為大約10 18原子/cm 3至10 19原子/cm 3,並具有大約1µm至大約4µm的厚度T3。
在一些實施例中,在形成具有第二導電類型(例如N型)的第一半導體層102之後,可以藉由磊晶成長在第一半導體層102上形成具有第一導電類型(例如P型)的第二半導體層104。隨後,藉由離子佈植以N型摻質摻雜第二半導體層104的上部分,以在第二半導體層104上方形成具有第二導電類型(例如N型)的埋置層106。
在另一些實施例中,在形成具有第二導電類型(例如N型)的第一半導體層102之後,可以藉由磊晶成長在第一半導體層102上形成具有第二導電類型(例如N型)的第二半導體層104。隨後,藉由離子佈植以P型摻質摻雜第二半導體層104,使第二半導體層104具有第一導電類型(例如P型),之後進一步藉由離子佈植以N型摻質摻雜第二半導體層104的上部分,以在第二半導體層104上方形成具有第二導電類型(例如N型)的埋置層106。在第二半導體層104以及埋置層106的離子佈植結束後,可以進行擴散(diffusion)製程。
參照第1C圖,在埋置層106上形成磊晶層108。在一些實施例中,磊晶層108可以包括矽、鍺、III-V族化合物或上述之組合,並可以摻有N型或P型摻質。在此實施例中,磊晶層108摻有N型摻質,例如磷(P),並具有第二導電類型(例如N型)。其摻雜濃度為大約10 15原子/cm 3至10 17原子/cm 3,並具有大約8µm至大約16µm的厚度T4。在一些實施例中,可以藉由金屬有機物化學氣相沉積法(MOCVD)、電漿增強化學氣相沉積法(PECVD)、分子束磊晶法(MBE)、氣相磊晶法(VPE)、液相磊晶法(LPE)、其他相似的製程方法、或前述製程方法之組合形成磊晶層108。
繼續參照第1C圖,在磊晶層108上形成遮罩結構115。遮罩結構115可以用於圖案化下方的膜層。上述圖案化製程包括微影製程以及蝕刻製程。微影製程包含光阻塗佈(例如,旋轉塗佈)、軟烘烤、遮罩對準、曝光、曝光後烘烤、光阻顯影、清洗、乾燥(例如,硬烘烤)、其他適合製程或其組合。微影製程也可以藉由無遮罩微影、電子束寫入、離子束寫入或分子壓印(molecular imprint)替代。蝕刻製程包含乾式蝕刻、濕式蝕刻或其他蝕刻方法(例如,反應式離子蝕刻)。蝕刻製程也可以是純化學蝕刻(電漿蝕刻)、純物理蝕刻(離子研磨)或其組合。
在一些實施例中,遮罩結構115包括一個或多個硬遮罩層(例如,氮化矽層、碳化矽層等)。舉例來說,在第1C圖中,遮罩結構115可以包括包含氧化矽的第一氧化物層110、包含氮化矽的第一氮化物層112及包含氧化矽的第二氧化物層114的堆疊。在一些實施例中,可以通過一種或多種沉積技術,例如物理氣相沉積(physical vapor deposition, PVD)、化學氣相沉積(CVD)、電漿增強化學氣相沉積(PECVD)、原子層沉積(atomic layer deposition, ALD)或其組合以形成遮罩結構115。
參照第1D圖,在遮罩結構115上形成光阻層116,並將光阻層116圖案化以定義第一開口200以及第二開口202。在一些實施例中,可以經由旋轉塗佈形成光阻層116。隨後,可以搭配光罩,並以例如紫外光的電磁輻射選擇性地(selectively)照射光阻層116,使光阻層116被照射的區域產生例如光化學反應,而形成易於溶解於顯影液的區域。隨後,將光阻層116顯影以移除上述被照射的區域,以定義第一開口200及第二開口202。
參照第1E圖,進行第一蝕刻製程(例如乾式蝕刻)以移除遮罩結構115未被光阻層116覆蓋的部分,直到暴露出磊晶層108為止。亦即經由第一開口200及第二開口202蝕刻第二氧化物層114、第一氮化物層112及第一氧化物層110,使得在第一蝕刻製程之後,第一開口200及第二開口202延伸穿過遮罩結構115以暴露出磊晶層108。
參照第1F圖,剝除光阻層116,並進行第二蝕刻製程以形成第一溝槽300以及第二溝槽302,第一溝槽300以及第二溝槽302是由第一開口200及第二開口202定義。第一溝槽300以及第二溝槽302從磊晶層108的頂表面向下延伸穿過磊晶層108、埋置層106、第二半導體層104以及第一半導體層102,並延伸至基板100之中。在一些實施例中,第一溝槽300以及第二溝槽302具有可以從磊晶層108的頂表面測量的深度D1,深度D1為大約30µm至大約60µm。在一些實施例中,第二蝕刻製程為乾式蝕刻製程以達成第一溝槽300以及第二溝槽302的側壁與底表面呈大抵垂直,並分別具有第一寬度W1以及第二寬度W2。在一些實施例中,第一寬度W1以及第二寬度W2分別為大約2µm至大約6µm 。
參照第1G圖,在磊晶層108與埋置層106的側壁,接近第一溝槽300與第二溝槽302頂部的位置形成槽(sink)區118,隨後去除遮罩結構115。在一些實施例中,可以藉由離子佈植摻雜N型摻質以形成具有第二導電類型(例如N型)的槽區118。槽區118的摻雜濃度為大約10 17原子/cm 3至大約10 18原子/cm 3。在一些實施例中,槽區118的摻雜濃度大於磊晶層108的摻雜濃度且小於埋置層106的摻雜濃度,以形成具有低電阻的區域,其利於隨後在具有低電阻的槽區118上形成接觸件(未繪示)以連接裝置的其他區域。
參照第1H圖,在第一溝槽300以及第二溝槽302中形成介電層120以及填充材料122。在一些實施例中,介電層120可以為熱氧化物或沉積的順應性氧化物,並且可以包含氧化矽、氮氧化矽或其他合適的介電材料。在一些實施例中,可以在熔爐腔室中通過熱成長製程形成介電層120。在一些實施例中,可以通過沉積製程,例如化學氣相沉積、電漿增強化學氣相沉積,形成順應性(conformal)介電層120。在一些實施例中,第一溝槽300以及第二溝槽302不完全填充有介電層120,介電層120可以具有例如大約0.4µm至大約0.8µm的厚度W3、W4,且介電層120之間仍存在寬度W5、W6為大約1.2µm至大約4.4µm的空腔。隨後,以填充材料122填充第一溝槽300以及第二溝槽302剩餘的空腔。在一些實施例中,填充材料122可以包括非晶矽、多晶矽或其組合,並且可以藉由化學氣相沉積(CVD)、電漿增強化學氣相沉積(PECVD)或其組合填充第一溝槽300以及第二溝槽302。在形成介電層120以及填充材料122之後,可以執行平坦化製程,例如化學機械研磨(chemical mechanical polishing, CMP),以去除磊晶層108頂表面上多餘的介電層120以及填充材料122,從而使磊晶層108、介電層120以及填充材料122的頂表面共平面以形成深溝槽隔離結構120及122。在一些實施例中,深溝槽隔離結構直接接觸半導體基板100、第一半導體層102、第二半導體層104、埋置層106以及磊晶層108。
參照第2圖,其為第1H圖中區域R的放大圖。在一些實施例中,在具有相同導電類型(例如N型)的第一半導體層102以及N型埋置層(N-type buried layer, NBL)106之間設置具有不同導電類型(例如P型)的第二半導體層104,使基板100、第一半導體層102、第二半導體層104以及埋置層106的導電類型例如依序為P型、N型、P型以及N型,從而可以提高崩潰電壓。詳細而言,如第2圖所示,P型基板100對上方N型第一半導體層102產生空乏作用。相似地,P型第二半導體層104與下方N型第一半導體層102互相產生空乏作用,同時P型第二半導體層104也與上方的NBL 106互相產生空乏作用。再者,第一半導體層102兩側填充有多晶矽的深溝槽隔離結構120及122可以視為P型導電類型,從而對第一半導體層102產生空乏作用。因此,如第2圖中的箭頭所示,第一半導體層102達到完全空乏,而第二半導體層104同時也與上方的NBL 106以及下方的第一半導體層102產生空乏作用,故整體的空乏區提高,崩潰電壓也因此提高。
除了崩潰電壓之外,閉鎖效應免疫能力也是深溝槽隔離結構的性能的重要參數。詳細而言,閉鎖效應之所以發生是因為半導體結構中存在寄生電晶體(parasitic transistor)。在隔離結構的兩側具有寄生的雙極路徑,當發生閉鎖效應時,寄生的雙極路徑不預期的導通而產生不預期的大電流使元件損壞。因此,若寄生的雙極路徑導通的機率越低,則閉鎖效應免疫能力越高。
參照第3圖,其係根據一些實施例,繪示半導體結構中的電流示意圖。在一些實施例中,在具有相同導電類型(例如N型)的第一半導體層102以及N型埋置層(NBL)106之間設置具有不同導電類型(例如P型)的第二半導體層104,使基板100、第一半導體層102、第二半導體層104、埋置層106以及磊晶層108的導電類型例如依序為P型、N型、P型、N型以及N型,並使深溝槽隔離結構120及122兩側具有三個串接的雙極路徑,如第3圖所示。電流要從深溝槽隔離結構120及122的右側流向左側,表示三個串接的雙極路徑要同時導通。相較於導通一個雙極路徑,要同時導通三個串接的雙極路徑的機率大幅降低,如第3圖以及下列方程式所示: 因此,本揭露一些實施例提供的結構可以提高閉鎖效應免疫能力。
根據本揭露一些實施例,在基板上方具有相同導電類型的兩半導體層之間設置一層具有不同導電類型的半導體層,使基板上方的半導體層可以達到完全空乏。由於整體空乏區提高,崩潰電壓也因此提高。此外,深溝槽隔離結構兩側具有三個串接的雙極路徑。相較於導通一個雙極路徑,要同時導通三個串接的雙極路徑的機率大幅降低,從而可以提高閉鎖效應免疫能力。
以上概述數個實施例之特徵,以便在本發明所屬技術領域中具有通常知識者可以更加理解本發明實施例的觀點。在本發明所屬技術領域中具有通常知識者應理解,他們能輕易地以本發明實施例為基礎,設計或修改其他製程和結構,以達到與在此介紹的實施例相同之目的及/或優勢。在本發明所屬技術領域中具有通常知識者也應理解,此類等效的結構並無悖離本發明的精神與範圍,且他們能在不違背本發明之精神和範圍下,做各式各樣的改變、取代和替換。因此,本發明之保護範圍當視後附之申請專利範圍所界定為準。
100:基板 102:第一半導體層 104:第二半導體層 106:埋置層 108:磊晶層 110:第一氧化物層 112:第一氮化物層 114:第二氧化物層 115:遮罩結構 116:光阻層 118:槽區 120:介電層 122:填充材料 200:開口 202:開口 300:溝槽 302:溝槽 D1:深度 R:區域 T1:厚度 T2:厚度 T3:厚度 T4:厚度 W1:寬度 W2:寬度 W3:厚度 W4:厚度 W5:寬度 W6:寬度 Ic1:電流 Ic2:電流 Ic3:電流 Ie1:電流 Ie2:電流 Ie3:電流
以下將配合所附圖示詳述本揭露之各面向。應注意的是,依據在業界的標準做法,各種特徵並未按照比例繪製且僅用以說明例示。事實上,可能任意地放大或縮小單元的尺寸,以清楚地表現出本揭露的特徵。 第1A至1H圖係根據本揭露的一些實施例,繪示半導體結構在各種製造階段的剖面圖。 第2圖係根據本揭露的一些實施例,繪示第1H圖中的區域放大圖。 第3圖係根據本揭露的一些實施例,繪示半導體結構中的電流示意圖。
100:基板
102:第一半導體層
104:第二半導體層
106:埋置層
108:磊晶層
118:槽區
120:介電層
122:填充材料
R:區域
W3:厚度
W4:厚度
W5:寬度
W6:寬度

Claims (16)

  1. 一種半導體結構,包括:一基板,具有一第一導電類型;一第一半導體層,在該基板上並具有一第二導電類型,其中該第二導電類型不同於該第一導電類型;一第二半導體層,在該第一半導體層上並具有該第一導電類型;一埋置層,在該第二半導體層上並具有該第二導電類型;一磊晶層,在該埋置層上並具有該第二導電類型;一深溝槽隔離結構,從該磊晶層的一頂表面往下延伸穿過該磊晶層、該埋置層、該第二半導體層以及該第一半導體層,並延伸至該基板之中;以及一槽區,設置在該磊晶層的一側壁以及該埋置層的一側壁,並接近該深溝槽隔離結構設置在該磊晶層以及該埋置層的一頂部。
  2. 如請求項1之半導體結構,其中該第一半導體層的厚度以及該第二半導體層的厚度的比例係1:1至1:0.25。
  3. 如請求項1之半導體結構,其中該第一半導體層直接接觸該基板以及該第二半導體層。
  4. 如請求項1之半導體結構,其中該深溝槽隔離結構直接接觸該基板、該第一半導體層以及該第二半導體層。
  5. 如請求項1之半導體結構,其中該深溝槽隔離結構的寬度係2μm至6μm,並且該深溝槽隔離結構的深度係30μm 至60μm。
  6. 如請求項1之半導體結構,其中該槽區具有該第二導電類型,並且該槽區的摻雜濃度大於該磊晶層的摻雜濃度及小於該埋置層的摻雜濃度。
  7. 一種形成半導體結構的方法,包括:提供一基板,該基板具有一第一導電類型;在該基板上形成一第一半導體層,該第一半導體層具有一第二導電類型,其中該第二導電類型不同於該第一導電類型;在該第一半導體層上形成一第二半導體層,該第二半導體層具有該第一導電類型;在該第二半導體層上形成一埋置層,該埋置層具有該第二導電類型;在該埋置層上形成一磊晶層,該磊晶層具有該第二導電類型;形成一深溝槽,該深溝槽從該磊晶層的一頂表面往下延伸穿過該磊晶層、該埋置層、該第二半導體層以及該第一半導體層;並延伸至該基板之中;在該深溝槽中形成一深溝槽隔離結構;以及在該磊晶層的一側壁以及該埋置層的一側壁,且接近該深溝槽隔離結構的一頂部的一位置形成一槽區。
  8. 如請求項7之形成半導體結構的方法,其中形成該第二半導體層以及該埋置層的步驟包括:在該第一半導體層上磊晶成長具有該第一導電類型的該第二半 導體層;以及藉由離子佈植在該第二半導體層的一上部分摻雜一摻質,以形成具有該第二導電類型的該埋置層。
  9. 如請求項7之形成半導體結構的方法,其中形成該第二半導體層以及該埋置層的步驟包括:在該第一半導體層上磊晶成長具有該第二導電類型的該第二半導體層;藉由離子佈植以一第一摻質摻雜該第二半導體層,使該第二半導體層具有該第一導電類型;以及藉由離子佈植在該第二半導體層的一上部分摻雜一第二摻質;以形成具有該第二導電類型的該埋置層。
  10. 如請求項7之形成半導體結構的方法,其中形成該深溝槽隔離結構的步驟包括:在該深溝槽之中順應性地(conformally)形成一介電層;以一填充材料填充該深溝槽的一剩餘部分;以及去除該磊晶層的該頂表面上方剩餘的該介電層以及該填充材料。
  11. 如請求項7之形成半導體結構的方法,其中該第一半導體層的厚度以及該第二半導體層的厚度的比例係1:1至1:0.25。
  12. 如請求項7之形成半導體結構的方法,其中該第一半導體層直接接觸該基板以及該第二半導體層。
  13. 如請求項7之形成半導體結構的方法,其中該深溝槽隔離結構直接接觸該基板、該第一半導體層以及該第二半導體層。
  14. 如請求項7之形成半導體結構的方法,其中該第二半導體層直接接觸該埋置層。
  15. 如請求項7之形成半導體結構的方法,其中該深溝槽隔離結構的寬度係2μm至6μm,並且該深溝槽隔離結構的深度係30μm至60μm。
  16. 如請求項7之形成半導體結構的方法,其中該槽區具有該第二導電類型,並且該槽區的摻雜濃度大於該磊晶層的摻雜濃度及小於該埋置層的摻雜濃度。
TW111100508A 2022-01-06 2022-01-06 半導體結構及其形成方法 TWI808599B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW111100508A TWI808599B (zh) 2022-01-06 2022-01-06 半導體結構及其形成方法
CN202210544601.3A CN116454016A (zh) 2022-01-06 2022-05-19 半导体结构及其形成方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW111100508A TWI808599B (zh) 2022-01-06 2022-01-06 半導體結構及其形成方法

Publications (2)

Publication Number Publication Date
TWI808599B true TWI808599B (zh) 2023-07-11
TW202329324A TW202329324A (zh) 2023-07-16

Family

ID=87130795

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111100508A TWI808599B (zh) 2022-01-06 2022-01-06 半導體結構及其形成方法

Country Status (2)

Country Link
CN (1) CN116454016A (zh)
TW (1) TWI808599B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201931595A (zh) * 2017-12-29 2019-08-01 新唐科技股份有限公司 半導體裝置及其製造方法
CN112840450A (zh) * 2018-12-26 2021-05-25 德州仪器公司 具有深沟槽隔离及沟槽电容器的半导体装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201931595A (zh) * 2017-12-29 2019-08-01 新唐科技股份有限公司 半導體裝置及其製造方法
CN112840450A (zh) * 2018-12-26 2021-05-25 德州仪器公司 具有深沟槽隔离及沟槽电容器的半导体装置

Also Published As

Publication number Publication date
TW202329324A (zh) 2023-07-16
CN116454016A (zh) 2023-07-18

Similar Documents

Publication Publication Date Title
TWI622129B (zh) 半導體結構及其製造方法
US9373637B2 (en) Epitaxial semiconductor resistor with semiconductor structures on same substrate
TW201806008A (zh) 半導體裝置及其形成方法
CN106206312A (zh) 外延形成的v形半导体层
US8501572B2 (en) Spacer structure for transistor device and method of manufacturing same
TW202137572A (zh) 積體晶片
TWI732335B (zh) 積體電路裝置及其製造方法
TWI808599B (zh) 半導體結構及其形成方法
TWI672767B (zh) 被動裝置結構及其製造方法
CN116978936A (zh) 双极结晶体管
TWI798617B (zh) 具有p-n-p接合和垂直對準場效電晶體的積體電路及其形成方法
US11804481B2 (en) Fin-based and bipolar electrostatic discharge devices
TW202119624A (zh) 雙極接面電晶體及其形成方法
US20080283930A1 (en) Extended depth inter-well isolation structure
US9564317B1 (en) Method of forming a nanowire
US20230178638A1 (en) Bipolar transistors
US11935927B2 (en) Bipolar transistor with collector contact
US11837460B2 (en) Lateral bipolar transistor
WO2023273320A1 (zh) 齐纳二极管及其制作方法
US20230087058A1 (en) Bipolar transistors
TWI614901B (zh) 半導體結構與其形成方法
US10170601B2 (en) Structure and formation method of semiconductor device with bipolar junction transistor
EP3671856A1 (en) A method for forming a group iii-v heterojunction bipolar transistor on a group iv substrate and corresponding heterojunction bipolar transistor device
CN117393431A (zh) 一种半导体器件及其制备方法
CN117712119A (zh) 触发器可控硅整流器